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Abstract

Data acquisition is a necessary first step in digital signal processing applications such

as radar, wireless communications and array processing. Traditionally, this process is

performed by uniformly sampling signals at a frequency above the Nyquist rate and

converting the resulting samples into digital numeric values through high-resolution

amplitude quantization. While the traditional approach to data acquisition is straight-

forward and extremely well-proven, it may be either impractical or impossible in many

modern applications due to the existing fundamental trade-off between sampling rate,

amplitude quantization precision, implementation costs, and usage of physical resources,

e.g. bandwidth and power consumption. Motivated by this fact, system designers

have recently proposed exploiting sparse and few-bit quantized sampling instead of the

traditional way of data acquisition in order to reduce implementation costs and usage of

physical resources in such applications. However, before transition from the tradition

data acquisition method to the sparsely sampled and few-bit quntized data acquisition

approach, a study on the feasibility of retrieving information from sparsely sampled and

few-bit quantized data is first required to be conducted. This study should specifically

seek to find the answers to the following fundamental questions:

1. Is the problem of retrieving the information of interest from sparsely sampled and

few-bit quantized data an identifiable problem? If so, what are the identifiability

conditions?

2. Under the identifiability conditions: what are the fundamental performance bounds

for the problem of retrieving the information of interest from sparsely sampled and

few-bit quantized data? and how close are these performance bounds to those of

retrieving the same information from the data acquired through the traditional

approach?

3. Does there exist any computationally efficient algorithm for retrieving the infor-

mation of interest from sparsely sampled and few-bit quantized data capable of

achieving the corresponding performance bounds?

My thesis focuses on finding the answers to the above fundamental questions for the

problems of Direction of Arrival (DoA) estimation and localization, which are of the most

important information retrieval problems in radar, wireless communication and array

processing. Inthis regard, the first part of this thesis focuses on DoA estimation using

Sparse Linear Arrays (SLAs). I consider this problem under three plausible scenarios

from quantization perspective. Firstly, I assume that an SLA quantized the received

signal to a large number of bits per samples such that the resulting quantization error
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can be neglected. Although the literature presents a variety of estimators under such

circumstances, none of them are (asymptotically) statistically efficient. Motivated by

this fact, I introduce a novel estimator for the DoA estimation from SLA data employing

the Weighted Least Squares (WLS) method. I analytically show that the large sample

performance of the proposed estimator coincides with the Cramér-Rao Bound (CRB),

thereby ensuring its asymptotic statistical efficiency. Next, I study the problem of

DoA estimation from one-bit SLA measurements. The analytical performance of DoA

estimation from one-bit SLA measurements has not yet been studied in the literature and

performance analysis in the literature has be limited to simulations studies. Therefore, I

study the performance limits of DoA estimation from one-bit SLA measurements through

analyzing the identifiability conditions and the corresponding CRB. I also propose a

new algorithm for estimating DoAs from one-bit quantized data. I investigate the

analytical performance of the proposed method through deriving a closed-form expression

for the covariance matrix of its asymptotic distribution and show that it outperforms

the existing algorithms in the literature. Finally, the problem of DoA estimation from

low-resolution multi-bit SLA measurements, e.g. 2 or 4 bit per sample, is studied. I

develop a novel optimization-based framework for estimating DoAs from low-resolution

multi-bit measurements. It is shown that increasing the sampling resolution to 2 or 4

bits per samples could significantly increase the DoA estimation performance compared

to the one-bit sampling case while the power consumption and implementation costs are

still much lower compared to the high-resolution sampling scenario.

In the second part of the thesis, the problem of target localization is addressed. Firstly,

I consider the problem of passive target localization from one-bit data in the context

of Narrowband Internet-of-Things (NB-IoT). In the recently proposed narrowband IoT

(NB-IoT) standard, which trades off bandwidth to gain wide area coverage, the location

estimation is compounded by the low sampling rate receivers and limited-capacity links.

I address both of these NB-IoT drawbacks by consider a limiting case where each node

receiver employs one-bit analog-to-digital-converters and propose a novel low-complexity

nodal delay estimation method. Then, to support the low-capacity links to the fusion

center (FC), the range estimates obtained at individual sensors are converted to one-bit

data. At the FC, I propose a novel algorithm for target localization with the aggregated

one-bit range vector. My overall one-bit framework not only complements the low NB-IoT

bandwidth but also supports the design goal of inexpensive NB-IoT location sensing.

Secondly, in order to reduce bandwidth usage for performing high precision time of

arrival-based localization, I developed a novel sparsity-aware target localization algorithm

with application to automotive radars.

The thesis concludes with summarizing the main research findings and some remarks on

future directions and open problems.
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Chapter 1

Introduction

1.1 Motivation

The problem of inferring location information of animate and inanimate objects from

radio sensor measurements has been a topic of research for decades. Direction of Arrival

(DoA) estimation and source/target localization are two key aspects of this problem. DoA

estimation refers to the process of finding the direction from which some electromagnetic

waves arrive at a particular point from the output of a set of receiving antennas which

form an array of sensors. A basic model for DoA estimation problem is illustrated in Fig.

1.1. Indeed, Fig. 1.1 depicts multiple sources radiate electromagnetic waves, which are

received by a set of co-located equally-spaced linear antennas, termed a Uniform Linear

Array (ULA). The ULA measurements are then processed by one of DoA estimation

algorithms to find source DoAs, i.e., θk∀k [1]. In Fig. 1.1, the sources are depicted in red

empty circles and the wavefronts of the electromagnetic waves are indicated in red curves.

In addition, the receiving antennas are shown in blue solid circles. Localization denotes

the process of finding the location of some sources/targets, radiating electromagnetic

waves, with respect to a reference point. Localization can be performed by using the

measurements of either co-located sensors or distributed sensors. In the former, we

simply need to estimate the distances between the sources/targets and the co-located

sensor array in addition to the DoAs. The later exploit the spatial diversity, provided

by the measurements of spatially separated sensors, to localize sources/targets. An

illustrative example of a distributed localization scenario is given in Fig. 1.2. Fig. 1.2

shows a number of distributed sensors which receive the electromagnetic wave radiated

by a source/target. The sensor measurements are individually processed to estimate the

distances between the source/target and the sensors. Then, the distance estimates are

used to localize the source/target. Fig. 1.2 shows graphically how the distance estimates

1
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Figure 1.1: A basic model for DoA estimation problem.

can be employed for localizing the source/target. In Fig. 1.2, the distributed sensors are

shown in blue solid circles and the source/target of interest is depicted in a red empty

circle.

DoA estimation and target/source localization are two fundamental problems in signal

processing with extensive applications in wireless communications, radar, sonar, remote

sensing and speech processing [1–4]. Performing accurate DoA estimation and target/-

source localization with low resource usage and low implementation costs has been always

a serious challenge amongst all the aforementioned applications. Exploiting sparse and

low-resolution sampling strategies could address this challenge to a great extent.

The concept of sparse sampling is based on the fact that the dimension of information of

interest in many practical applications is much smaller than the dimension of the observed

data. Under such circumstances, only a small portion of data suffices for recovering the

information of interest. This fact allows for a significant reduction in usage of physical

resources such as bandwidth, power, and the number of sensors through collecting only

sparse low-dimensional samples of data. In consequence, sparse sampling has found

applications in a large number of areas such as communication systems [5–7], radar

[8–12], array processing [13, 13–17] and image processing [18–20].

Further, analog-to-digital conversion is an essential step in digital signal processing.

Ideally, the analog-to-digital conversion requires an infinite number of bits to accurately
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Figure 1.2: An illustrative example of a distributed localization scenario.

represent continuous-time signals in the digital domain. In practice, the signal is quantized

to a finite number of bits leading to errors in the digital approximation of the original

analog signal. If the sampling resolution is large enough, this error has negligible effect on

digital signal processing. However, power consumption and production cost of Analog-to-

Digital Converters (ADCs) increase exponentially with the number of quantization bits

and sampling frequency [21]. Hence, deployment of high-resolution ADCs in many modern

applications, e.g. cognitive radio [22], cognitive radars [23], automotive radars [24], radio

astronomy[25] and massive multiple-input multiple-output (MIMO) systems[26], is not

economically viable owing to limitations on power consumption and production costs. In

order to reduce energy consumption and production cost in such applications, researchers

and system designers have recently proposed using low-resolution ADCs. As an extreme

case of low-resolution ADCs, one-bit ADCs, which convert an analog signal into digital

data using a single bit per sample, has received significant attention in the literature

[27–33]. One-bit ADCs offer an extremely high sampling rate at a low cost and very

low energy consumption [21]. Additionally, they enjoy the benefits of relatively easy

implementation due to their simple architecture [34].

This thesis aims at answering some of the fundamental open problems in the context of

DoA estimation and source/target localization in presence of sparse and one-bit samples.

In the first part of the thesis, we are interested in the DoA estimation problem. DoAs

of electromagnetic waves/sources are typically retrieved through processing the data
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collected a ULA. However, if the electromagnetic waves/sources impinging on a ULA

are uncorrelated, the dimension of the parameters have to be estimated in the DoA

estimation problem will be considerably smaller than the dimension of the data observed

by the ULA [16]. As a result, based on sparse sampling concept, exploiting the prior

information about the uncorrelatedness of sources allows for reducing the size of acquired

data by removing antennas from ULAs. This leads to a new array configuration, referred

to as a Sparse Linear Array (SLA). In the first part of this thesis, we focus on the

problem of estimating DoAs of uncorrelated source signals from measurements collected

by SLAs. This problem is investigated under three plausible scenarios from quantization

perspective:

1. The analog signal received by an SLA is converted into digital data using a large

number of bits per sample such that the resulting quantization errors can be

neglected.

2. The analog received signal by an SLA is converted into digital data using a single

bit per sample.

3. The analog signal received by an SLA is converted into digital data using p bit per

sample. Here p is assumed to be an arbitrary positive integer number but not large

enough such that the resulting quantization errors can be neglected.

In case of scenario 1, numerous algorithms for DoA estimation has been proposed in the

literature [15, 16, 35–38]. However, none of them are able to achieve the CRB performance.

A detail review of the state of the art in this area is provided in Chapter 2. Motivated by

this fact, in Chapter 3, we go beyond the state of the art in this area by introducing a new

algorithm for DoA estimation which is proved to be asymptotically statistically efficient.

Concerning scenario 2, the analytical performance of DoA estimation from one-bit SLA

measurements has not yet been studied in the literature and performance analysis in the

literature has be limited to simulations studies. The reader is referred to Chapter 2 for

a detailed literature review [32, 39–43]. Therefore, we study the performance limits of

DoA estimation from one-bit SLA measurements through analyzing the identifiability

conditions and the corresponding Cramér-Rao Bound (CRB) in Chapter 4. We also

introduce a new DoA estimator with enhanced performance compared to the state of the

art in this case. To the best of our knowledge, scenario 3 has never been investigated

in the literature. In Chapter 5, we establish an optimization framework whereby DoA

estimation from low-resolution multi-bit measurements, say 2 or 4 bits per sample,

becomes possible.

In the second part of the thesis, the problem of distributed target localization is addressed.

In Chapter 6, we consider the problem of passive target localization from one-bit data
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in the context of Narrowband Internet-of-Things (NB-IoT). In this context, apart from

application to NB-IoT localization, our work is the first work in the context of one-bit

sampling in a passive and distributed radar array setting. Then, in order to reduce

bandwidth usage for performing high precision time of arrival-based localization, with

application to automotive radars, we developed a novel sparsity-aware target localization

algorithm in Chapter 7.

1.2 Thesis Outline

This thesis is comprised of two major parts. The first part of the thesis, including Chapters

3, 4 and 5, is dedicated to DoA estimation from SLA measurements. The second part

of the thesis, including Chapters 6 and 7, studies distributed target localization in

presence of sparse and one-bit samples. It is noted that all the chapters of the thesis are

self-contained. The thesis outline is as follows:

• Chapter 2 conducts a review on the most relevant state-of-the-art works in the

literature and highlight the contributions of the thesis compared to the literature.

• Chapter 3 considers DoA estimation from infinite-bit SLA measurements. Although

the literature presents a variety of estimators in the context of DoA estimation

from SLA measurements, none of them are proven to be statistically efficient. This

chapter introduces a novel estimator for DoA estimation employing the Weighted

Least Squares (WLS) method, which is shown to be asymptotically statistically

efficient.

• In Chapter 4, we study the performance limits of DoA estimation from one-bit SLA

measurements through analyzing the identifiability conditions and the corresponding

Cramér-Rao Bound (CRB). We also introduce a new DoA estimator with enhanced

performance compared to the state of the art in this case.

• Chapter 5 considers the problem of DoA estimation from low-resolution multi-

bit SLA measurements. We develop a novel optimization-based framework for

recovering the covaraince matrix of unquantized data from low-resolution multi-bit

measurements. Then, MUSIC is applied to an augmented version of the recovered

covariance matrix to find the DoAs of interest.

• In Chapter 6, we investigate the problem of passive target localization from one-bit

measurements in the context of Internet-of-Things (IoT) applications and propose

a novel algorithm for target localization with one-bit measurements.
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• Chapter 7 presents a sparsity-based waveform for the problem of distributed target

localization with application to automotive radar. The proposed waveform enable

us to achieve a high precision localization performance without increasing the

required bandwidth.

• Chapter 8 summarizes the thesis and discusses future work in the considered domain.

Appendices

• Appendices A, B and C include the detailed proofs of the Theorems and Lemmas

given in Chapters 3, 4 and 6, respectively.

1.3 Publications

The work presented in this thesis has resulted in a number of peer-reviewed journal and

conference papers, currently published or under revision. The publications included in

this thesis are listed here below.

Journals

• J1: S. Sedighi, B. Shankar, B. Ottersten, “An Asymptotically Efficient Weighted

Least Squares Estimator for Co-Array-Based DoA Estimation,” IEEE Transactions

on Signal Processing, vol. 68, pp. 589-604, 2020.

• J2: S. Sedighi, K. V. Mishra, B. Shankar, B. Ottersten, “Localization with One-Bit

Passive Radars in Narrowband Internet-of-Things using Multivariate Polynomial

Optimization,” IEEE Transactions on Signal Processing, vol. 69, pp. 2525-2540,

2021.

• J3: S. Sedighi, M. Soltanalian, B. Shankar, B. Ottersten, “DoA Estimation Using

Low-Resolution Multi-Bit Sparse Array Measurements,” IEEE Signal Processing

Letters, vol. 28, pp. 1400-1404, 2021.

• J4: S. Sedighi, B. Shankar, M. Soltanalian, B. Ottersten, “On the Performance of

One-Bit DoA Estimation via Sparse Linear Arrays,” IEEE Transactions on Signal

Processing, accepted, in press.

• J5: S. Sedighi, B. Shankar, B. Ottersten, “Performance Analysis of DoA Estima-

tion from One-Bit Sample Covarinace Matrix,” IEEE Signal Processing Letters, to

be submitted.
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Conferences

• C1: S. Sedighi, B. Shankar, Sina Maleki, B. Ottersten, “Multi-Target localization

in asynchronous MIMO radars using sparse sensing,” in Proc. IEEE 7th Interna-

tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing

(CAMSAP), Curacao, 2017, pp. 1-5.

• C2: S. Sedighi, B. Shankar, Sina Maleki, B. Ottersten, “Consistent Least Squares

Estimator for Co-Array-Based DOA Estimation,” in Proc. IEEE 10th Sensor Array

and Multichannel Signal Processing Workshop (SAM), Sheffield, 2018, pp. 524-528.

• C3: S. Sedighi, B. Shankar, B. Ottersten, “A Statistically Efficient Estimator for

Co-array.Based DoA Estimation,” in Proc. 52nd Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, USA, 2018, pp. 880-883.

• C4: S. Sedighi, K. V. Mishra, B. Shankar, B. Ottersten, “Localization Perfomance

of 1-Bit Passive Radars in NB-IoT Applications,” in Proc. IEEE 8th International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-

SAP), Le gosier, Guadeloupe, 2019, pp. 156-160.

• C5: S. Sedighi, B. Shankar, M. Soltanalian, B. Ottersten, “DoA Estimation via

Sparse Arrays and One-Bit sampling,” in Proc. IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp.

9135-9139.

• C6: S. Sedighi, B. Shankar, M. Soltanalian, B. Ottersten, “On the Asymptotic

Performance of One-Bit Co-Array-Based MUSIC,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,

Canada, 2021, pp. 4635 - 4639.

1.4 Publications not included in this thesis

The following publications, carried out in the context of the PhD work, are not included

in this thesis to keep it consistent.

• C7: S. Sedighi, K. V. Mishra, B. Shankar, B. Ottersten, “Optimum Design for
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Signals, Systems, and Computers, Pacific Grove, CA, USA, 2019, pp. 913-918.

• C8: M. Alaee, S. Sedighi, B. Shankar, B. Ottersten, “Designing (In)Finite-

Alphabet Sequence via Shaping the Radar Ambiguity Function,” in Proc. IEEE
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Brighton, United Kingdom, 2019, pp. 4295-4299.

• C9: S. Dokhanchi, B. Shankar, Y. Nijsure, T. Stifler, S. Sedighi, B. Ottesrten,

“Joint automotive radar communications waveform design,”” in Proc. IEEE 28th

Annual International Symposium on Personal, Indoor, and Mobile Radio Commu-

nications (PIMRC), Montreal, QC, 2017, pp. 1-7.



Chapter 2

Background and Contributions

In this chapter, we first conduct a literature review on Direction of Arrival (DoA)

estimation and distributed target/source localization with a focus on the most relevant

research works to the contributions of this thesis. Then, we highlight the contribution of

the thesis compared to the literature. The literature review is divided into two parts. The

first part is dedicated to DoA estimation and the distributed localization is considered in

the second part.

2.1 DoA Estimation

The problem of Direction of Arrival (DoA) estimation is of central importance in the field

of array processing with many applications in radar, sonar, and wireless communications

[1–3]. Conventionally, source DoAs are retrieved through processing the output of

equally-spaced linear sensor arrays, termed Uniform Linear Arrays (ULAs). Estimating

DoAs using ULAs is well investigated in the literature; a number of algorithms Maximum

Likelihood (ML) estimation, MUSIC, ESPRIT and subspace fitting have been presented

and their performance thoroughly analyzed [44–47]. However, it is widely known that

ULAs are not capable of identifying more sources than the number of physical elements

in the array [3, 46].

To transcend this limitation, exploitation of Sparse Linear Arrays (SLAs) with particular

geometries, such as Minimum Redundancy Arrays (MRAs) [48], co-prime arrays [17],

nested arrays [16] and their variants [49–51], has been proposed. These architectures

can dramatically boost the degrees of freedom of the array when source signals are

uncorrelated such that a significantly larger number of sources than the number of

physical elements in the array can be identified. In addition, the enhanced degrees of

9
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freedom provided by these SLAs can improve the resolution performance appreciably

compared to ULAs [16]. These features have spurred further research on DoA estimation

using SLAs in recent years. A detailed study on DoA estimation via SLAs through an

analysis of the Cramér-Rao Bound (CRB) has been conducted in [52]. The findings in

[52] provide valuable insights into the performance limits of DoA estimation via SLAs.

For example, it has been shown that, when there are more sources than the number of

array elements, the CRB does not drop to zero as the Signal-to-Noise Ratio (SNR) goes

to infinity. Further, a number of DoA estimators based on the difference co-array of SLAs

have been proposed in the literature. In general, existing co-array-based estimators can

be classified under two main groups: 1. Sparsity-Based Methods (SBMs); 2. Augmented

Covariance-Based Methods (ACBMs).

2.1.1 DOA Estimation Using SLAs

In this section, after providing a quick description of the system model, we will review

DoA estimation from SLA measurements using SBMs and ACBMs.

2.1.1.1 System Model

Consider an SLA with M elements located at positions
(
m1

λ
2 ,m2

λ
2 , · · · ,mM

λ
2

)
with

mi ∈ M. Here M is a set of integers with cardinality |M| = M , and λ denotes the

wavelength of the incoming signals. It is assumed that K narrowband uncorrelated

signals with distinct DoAs θ=[θ1, θ2, · · · , θK ]T ∈ [−π/2, π/2]K×1 impinge on the SLA

from far field. The signal received at the array at time instance t can be modeled as

y(t) = A(θ)s(t) + n(t) ∈ CM×1, t = 0, · · · , N − 1, (2.1)

where s(t) ∈ CK×1 denotes the vector of source signals, n(t) ∈ CM×1 is additive noise,

and A(θ) = [a (θ1) ,a (θ2) , · · · ,a (θK)] ∈ CM×K represents the SLA steering matrix with

a(θk)=[ejπ sin θkm1 , ejπ sin θkm2 , · · · , ejπ sin θkmM ]T , (2.2)

being the SLA manifold vector for the ith signal. Further, the following assumptions are

made on source signals and noise:

A1 n(t) follows a zero-mean circular complex Gaussian distribution with the covariance

matrix E{n(t)nH(t)}=σ2IM .
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Figure 2.1: Array geometry of a co-prime array with M = 6 elements: (a) physical
array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-array with D = {0, 1, 2, 3, 4, 5, 6, 7, 9}

and v = 8.

A2 The source signal vector is modeled as a zero-mean circular complex Gaussian ran-

dom vector with covariance matrix E{s(t)sH(t)}=diag(p) where p=[p1, p2, · · · , pK ]T

∈ RK×1
>0 (i.e., pk > 0, ∀k).

A3 Source and noise vectors are mutually independent.

A4 There is no temporal correlation between the snapshots, i.e., E{n(t1)nH(t2)} =

E{s(t1)sH(t2)} = 0 when t1 6= t2 and 0 is an all-zero matrix of appropriate

dimensions.

Based on the above assumptions, the covariance matrix of y(t) is expressed as

R = A(θ)diag(p)AH(θ) + σ2IM ∈ CM×M . (2.3)

Vectorizing R leads to [38, 52, 53]

r
.
= vec(R) = JAd(θ)p + σ2Je ∈ CM2×1, (2.4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering matrix of the difference co-array

of the SLA whose elements are located at (−`D−1
λ
2 , · · · , 0, · · · , `D−1

λ
2 ) with `i ∈ D =

{|mp − mq| : mp,mq ∈ M} and D = |D|. Moreover, e ∈ {0, 1}(2D−1)×1 is a column

vector with [e]i = δ[i−D], and the selection matrix J ∈ {0, 1}M2×(2D−1) is represented

as follows [52]:

J=
[
vec(LTD−1), · · · , vec(L0), · · · , vec(LD−1)

]
, (2.5)

where [Ln]p,q =

{
1, if mp −mq = `n,

0, otherwise,
with 1 ≤ p, q ≤ M and 0 ≤ n ≤ D − 1.

The steering matrix of the difference co-array typically includes a contiguous ULA

segment around the origin with the size of 2v − 1 where v is the largest integer such that

{0, 1, · · · , v − 1} ⊆ D. An illustrative example of an SLA, the corresponding difference

co-array, and its contiguous ULA segment is presented in Fig. 2.1.
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2.1.1.2 SBMs

SBMs can be categorized to on-grid, off-grid and gridless methods. On-grid methods

discretize the angular domain into a set of grid points θ = {θ̄1, θ̄2, · · · , θ̄L} where

L� 2D − 1. This means that the DoAs can only take the values given in θ. Hence, the

model (2.4) can be equivalently expressed as follows:

r = JAd(θ)p̃ + σ2Je (2.6)

where Ad(θ) ∈ C(2D−1)×L is a known dictionary matrix and p̃ is a sparse vector with

only K non-zero elements defined as

[p̃]i =

{
pk, if θ̄i = θk,

0, otherwise,
(2.7)

It is observed from (2.7) that the DoAs are encoded in the support of p̃. Thus, one can

find DoAs by recovering the support of p̃. This can be done by solving the following

convex optimization problem [15, 35–37, 54]:

minimize
p̃,σ2

µ ‖r̂− JAd(θ)p̃− σ2Je‖22 + 1
2‖p̃‖1, (2.8)

where r̂ = vec(R̂) with R̂ = 1
N

∑N−1
t=0 y(t)yH(t) and µ is a regularization parameter.

Such estimators are susceptible to grid mismatch leading to significant performance

degradation when DoAs do not lie on the predefined grid [55]. To alleviate this problem,

off-grid methods approximate the array manifold at a specific DoA θk by using a first

order Taylor series expansion as follows:

ad(θk) ' ad(θ̄k) + ȧd(θ̄k)∆θk (2.9)

where θ̄k is the nearest grid point to θk and ȧd(θ̄k) denotes the derivative of a(θk) with

respect to θk, computed at θ̄k. From (2.9), the model (2.4) reduces to

r = J
[
Ad(θ) + Ȧd(θ)diag(β)

]
p̃ + σ2Je (2.10)

where Ȧd(θ) = [ȧd(θ̄1), ȧd(θ̄2), · · · , ȧd(θ̄L)]T ,

[β]i =

{
∆θk, if θ̄i = θk,

0, otherwise,
(2.11)
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and p̃ is given in (2.7). Considering sparsity of p̃ and β, DoAs and mismatch variables

can be jointly estimated as follows [56]:

minimize
p̃,β,σ2

1

2
‖r̂− J

[
Ad(θ) + Ȧd(θ)diag(β)

]
p̃− σ2Je‖22 + µ1 ‖p̃‖1 + µ2 ‖β‖1. (2.12)

Although the off-grid methods show an improvement over on-grid methods, they are still

restricted by higher-order mismatch terms. The shortcoming of discretization approach

is overcome by a grid-less sparsity-based algorithm in [57]. This algorithm, named as

Sparse and Parametric Approach (SPA), employs the covariance fitting criteria and

semi-definite programming. Although SPA does not suffer from grid mismatch, its

asymptotic performance (for the large number of snapshots) is not guaranteed to achieve

the CRB.

2.1.1.3 ACBMs

ACBMs estimate DoAs by applying conventional subspace methods such as MUSIC and

ESPRIT on an Augmented Covariance Matrix (ACM) constructed from r [16, 38, 58].

Two different ways of constructing the ACM are given in the literature, namely, 1. the

direct augmentation approach [59]; 2. spatial smoothing approach [16]. Both approaches

first construct v overlapping uniform linear sub-arrays of size v from the contiguous ULA

segment of the difference co-array as follows:

hi = TiJ
†r. (2.13)

where Ti is a selection matrix defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1). (2.14)

Then, the ACMs corresponding to the direct augmentation approach and the spatial

smoothing approach are respectively given by

Rv1 =
[
hv hv−1 · · · h1

]
= Av(θ)diag(p)AH

v (θ) + σ2Iv,∈ Cv×v, (2.15)

Rv2 =
1

v

v∑
i=1

hih
H
i =

1

v
(Av(θ)diag(p)AH

v (θ) + σ2Iv)
2,∈ Cv×v (2.16)

where Av(θ) = [av (θ1) ,av (θ2) , · · · ,av (θK)] ∈ Cv×K denotes the steering matrix of

a contiguous ULA with v elements located at (0, λ2 , · · · , (v − 1)λ2 ). Considering the

structure of Rv1 and Rv2, DoAs can be estimated by applying subspace algorithms such

as MUSIC and ESPRIT to them. We note that, in practice, the true values of Rv1 and

Rv2 are unknown and they should be replaced with their consistent estimates, called
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Augmented Sample Covariance Matrix (ASCM), obtained by replacing R with R̂ where

R̂ = 1
N

∑N−1
t=0 y(t)yH(t) in (2.4) and (2.13). It was shown that both approaches span

identical subspaces resulting in the same estimation performance [38], but the former is

computationally efficient. A main drawback of this family of algorithms is the need for

prior knowledge on the exact number of sources, which may not be available in practice.

On the contrary, SBMs only need information about an upper bound on the number

of sources. The performance of such estimators, called Co-Array-Based MUSIC (CAB-

MUSIC) and Co-Array-Based ESPRIT (CAB-ESPRIT), has been rigorously analyzed in

[38] and [58], respectively. The analyses reveal existence of a considerable gap between

their performance and the CRB especially when the number of sources is greater than

one.

Further, CAB-MUSIC and CAB-ESPRIT suffer from an inherent performance loss when

applied to SLAs with holes in their difference co-arrays, such as co-prime arrays, since

they discard the information contained in the non-contiguous segment of the difference

co-array. To avoid this performance loss, array interpolation-based algorithms has been

used for DoA estimation with co-prime arrays in [60–62]. These algorithms work with a

virtual ULA obtained by interpolating extra sensors into the holes of the difference co-

array. Firstly, the Toeplitz covariance matrix of the interpolated virtual ULA, denoted by

T(u), is estimated from the co-prime array measurements through solving the following

convex optimization problem:

minimize
u

1
2‖T̃(u)− R̂v1‖2F + µ tr(T(u))

s.t. T(u) � 0,
(2.17)

where T̃(u) is a sub-matrix of T(u) corresponding to the elements exists in the difference

co-array and µ is a regularization parameter. Indeed, the optimization problem (2.17)

finds the Toeplitz matrix with the least fitting error to the co-prime array ASCM. Once

T(u) is determined, subspace methods such as mMUSIC and ESPRIT is applied to it to

find the DoAs. The performance of interpolation-based algorithms has been analyzed in

[63]. It was shown that although the proposed estimators in [60, 61] succeed in dealing

with the performance loss due to omission of the non-contiguous segment of difference

co-array, they are still unable to achieve the CRB performance.

2.1.2 DOA Estimation from One-Bit Measurements

The aforementioned techniques for DoA estimation in the previous section rest on the

assumption that the analog array measurements are digitally represented by a significantly

large number of bits per sample such that the resulting quantization errors can be
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disregarded. However, the production costs and energy consumption of Analog-to-Digital

Converters (ADCs) escalate dramatically as the number of quantization bits and sampling

rate increase [21]. In consequence, deployment of high-resolution ADCs in many modern

applications, e.g. cognitive radio [22], cognitive radars [23], automotive radars [24], radio

astronomy[25] and massive multiple-input multiple-output (MIMO) systems[26], is not

economically viable owing to their very high bandwidth. In order to reduce energy

consumption and production cost in such applications, researchers and system designers

have recently proposed using low-resolution ADCs. As an extreme case of low-resolution

ADCs, one-bit ADCs, which convert an analog signal into digital data using a single

bit per sample, has received significant attention in the literature. One-bit ADCs offer

an extremely high sampling rate at a low cost and very low energy consumption [21].

Additionally, they enjoy the benefits of relatively easy implementation due to their

simple architecture [34]. In the past few years, numerous studies were conducted to

investigate the impact of using one-bit sampling on various applications such as massive

MIMO systems [27, 28, 64–66], dictionary learning [67], radar [29–31, 68–70], and array

processing [32, 33].

The problem of DoA estimation from one-bit quantized data has been studied in the

literature presuming both the deterministic signal model [71] and the stochastic signal

model [46]. The studies in [39–43] presuppose the deterministic signal model. The authors

in [39] developed an algorithm for reconstruction of the unquantized array measurements

from one-bit samples followed by MUSIC to determine DOAs. The ML estimation was

deployed in [40] for finding DoAs from one-bit data. In [43], the authors utilized a

sparse Bayesian learning algorithm to solve the DoA estimation problem from one-bit

samples. Two sparsity-based approaches were also proposed in [41, 42]. Further, DoA

estimation from one-bit data assuming the stochastic signal model has been discussed in

[32, 33, 72, 73]. In the special case of a two-sensor array, the exact CRB expression for

the DoA estimation problem from one-bit quantized data was derived in [32].Moreover,

an approach for estimating DoAs was proposed in [32] which is based on reconstruction

of the covariance matrix of unquantized data from one-bit ULA samples [74]. In contrast

to the approach employed in [75] which relies on the covaraince matrix reconstruction

of unquantized data, the DoA estimation was performed in [73] by directly applying

MUSIC on the sample covariance matrix of one-bit ULA data. The numerical simulations

demonstrated that the approach proposed in [73] performs similar to the algorithm

proposed in [32] in the low Signal-to-Noise Ratio (SNR) regime. An upper bound on the

CRB of estimating a single source DoA from one-bit ULA measurements was derived in

[33].

The aforementioned research works considered using ULAs for one-bit DoA estimation.

Exploitation of SLAs for one-bit DoA estimation has been studied in [75–78]. The authors
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in [75] deployed the arcsine law [74] to reconstruct the ASCM from one-bit SLA data.

According to the arcsine law, the following relationship exists between the covariance

matrix of one-bit data and the normalized covariance matrix unquantized data

R = sin(
π

2
Rx), (2.18)

where Rx denotes the covariance matrix of one-bit data, [arcsine(R)]m,n=arcsin(<{[R]m,n})
+ j arcsin(={[R]m,n}) and

R =
1

σ2 +
∑K

k=1 pk
R, (2.19)

is the normalized covariance matrix of unquantized data. Equation (2.18) implies that a

consistent estimate of R is obtained by replacing Rx with the sample covariance matrix

of one-bit data. Then, the ASCM is reconstructed from the derived consistent estimate

of R followed by MUSIC to estimate DoAs. It was shown in [75] that the performance

degradation due to one-bit quantization can, to some extent, be compensated using SLAs.

An array interpolation-based algorithm was employed in [78] to estimate DoAs from

one-bit data received by co-prime arrays. Cross-dipoles sparse arrays were deployed in

[77] to develop a method for one-bit DoA estimation which is robust against polarization

states. In [76], the authors proposed an approach to jointly estimate DoAs and array

calibration errors from one-bit data.

Nonetheless, the analytical performance of DoA estimation from one-bit SLA measure-

ments has not yet been studied in the literature and performance analysis in the literature

has be limited to simulations studies. Therefore, fundamental performance limitations of

DoA estimation form one-bit SLA measurements have not well understood.

2.2 Localization

Localization is one of the fundamental tasks of communications and radar systems and it

has received a considerable attention in the last few years [79–81]. In general, localization

techniques can be categorized under two main approaches with regard to the sensing

nodes architecture. The first approach develops the localization algorithms based on

measurements received by a fully-synchronized collocated sensors [82, 83]. Although

localization with fully-synchronized collocated sensors is able to achieve high localization

performance through providing the waveform diversity [84], they demand a complicated

transceiver structure with expensive devices to enable the coherent processing required.

However, many commercial applications, such as automotive radar and Internet-of-Things



Background and Contributions 17

(IoT), are required to perform localization using cheap devices. This capability is en-

abled by the second approach based on distributed localization techniques where simple,

independent nodes are used instead of a complicated collocated system. Distributed

localization techniques exploit the angular (spatial) diversity, provided by spatially sepa-

rated sensing nodes, to estimate target/source locations [84]. Generally, the distributed

localization techniques can be classified into three groups based on the information they

use for estimating the source/target location, namely Direction of arrival (DoA) based

localization, signal strength (SS) based localization, and Time of Arrival (ToA) based

localization [85]. In the following, we briefly review each of these techniques and discuss

their advantages and disadvantages.

2.2.1 DoA-based localization

In a DoA-based localization technique, sensing nodes measure the DoA of the signal

emitted by the source/target of interest compared to a reference direction. The reference

direction is a fixed direction and against that all DoAs are measured. In order to measure

the DoA of the received signals, the sensing nodes are required to be equipped with

either an antenna array or a directional antenna. Once the DoAs are determined, the

DoA measurements are gathered by a Fusion Center (FC) at which the location of the

corresponding target/source is estimated by triangulation technique [86–88]. It was

shown that, to identify the location of a target/source in a two-dimensional space, at

least two DoAs are required [86]. Obviously, the localization accuracy in DoA-based

localization technique highly depends on the quality of DoA measurements at sensing

nodes. On the other hand, attaining accurate DoA measurements requires an array

with a large number of antenna at each sensing node, which will be very costly. This is

considered as a main drawback of DoA-based localization technique.

2.2.2 SS-based Localization

In SS-based localization, firstly, the distances between sensing nodes and the signal

emitted by the source/target of interest are calculated by measuring the energy of the

received signal by exploiting a path loss model. Once the distances between sensing

nodes and the signal emitted by the source/target are estimated, they are sent to a FC

which determines the source/target location by making use of triangulation technique

[89, 90]. The SS-Based technique requires at least three sensing nodes to determine

the source/target location in a two-dimensional space [89]. As opposed to DoA-based

technique, SS-based localization does not need costly receivers, but they need a knowledge

of the channel characteristics. Therefore, SS-based technique is very sensitive to channel
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parameter estimates. Further, the accuracy of the SS-Based technique does not improve by

increasing the SNR and, moreover, the range information obtained from SS measurements

is very coarse compared to that obtained from the other techniques.

2.2.3 ToA-based Localization

In ToA-Based localization, similar to the SS-based technique, the localization is performed

by measuring the distances between sensing nodes and the signal emitted by the source/-

target of interest. However, here the range information is obtained from calculating travel

times of signals between sensing nodes and the source/target of interest [91, 92]. Indeed,

if sensing nodes are synchronized with the emitted signal by the source/target, then they

are able to determine the ToA of the incoming signal through matched-filtering. In ToA-

Based localization, clock synchronization between the sensing nodes and the incoming

signal is an important factor which highly influences ToA estimation accuracy. In case

the incoming signal and the sensing nodes are asynchronous, but sensing nodes share the

same clock, then the Time-Difference-of-Arrival (TDoA) technique can be employed. In

this case, the TDoA of the signals received by two sensing nodes is calculated, which

determines the location of the node on a hyperbola with foci at the locations of two

sensing nodes [93, 94]. Intersecting the hyperbolas obtained from TDoA measurements

determines the source/target location. We should note that the accuracy of ToA-based

localization techniques is highly affected by the effective signal bandwidth such that a

more accurate ToA-based localization demands a higher bandwidth. This could pose a

problem in applications where high precision localization is desired. We will address this

challenge in Chapter 7 through introducing a sparsity-based waveform.

2.3 Thesis Contributions

The main contributions of this thesis are briefly outlined in the following:

2.3.1 Chapter 3: An Asymptotically Efficient Weighted Least Squares

Estimator for Co-Array-Based DoA Estimation

Although the literature presents a variety of estimators in the context of DoA estimation

from SLA measurements, none of them are proven to be statistically efficient. This

chapter introduces a novel estimator for the co-array-based DoA estimation employing

the Weighted Least Squares (WLS) method. An analytical expression for the large sample

performance of the proposed estimator is derived. Then, an optimal weighting is obtained



Background and Contributions 19

so that the asymptotic performance of the proposed WLS estimator coincides with the

Cramér-Rao Bound (CRB), thereby ensuring asymptotic statistical efficiency of resulting

WLS estimator. This implies that the proposed WLS estimator has a significantly better

performance compared to existing methods. Numerical simulations are provided to

validate the analytical derivations and corroborate the improved performance. The

content of this chapter appears in the following publications:

• J1: S. Sedighi, B. Shankar, B. Ottersten, “An Asymptotically Efficient Weighted

Least Squares Estimator for Co-Array-Based DoA Estimation,” IEEE Transactions

on Signal Processing, vol. 68, pp. 589-604, 2020.

• C2: S. Sedighi, B. Shankar, Sina Maleki, B. Ottersten, “Consistent Least Squares

Estimator for Co-Array-Based DOA Estimation,” in Proc. IEEE 10th Sensor Array

and Multichannel Signal Processing Workshop (SAM), Sheffield, 2018, pp. 524-528.

• C3: S. Sedighi, B. Shankar, B. Ottersten, “A Statistically Efficient Estimator for

Co-array.Based DoA Estimation,” in Proc. 52nd Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, USA, 2018, pp. 880-883.

2.3.2 Chapter 4: On the Performance of One-Bit DoA Estimation via

Sparse Linear Arrays

In this chapter, we study the problem of DoA estimation from one-bit measurements

received by an SLA. Specifically, we first investigate the identifiability conditions for the

DoA estimation problem from one-bit SLA data and establish an equivalency with the

case when DoAs are estimated from infinite-bit unquantized measurements. Towards

determining the performance limits of DoA estimation from one-bit quantized data, we

derive a pessimistic approximation of the corresponding Cramér-Rao Bound (CRB). This

pessimistic CRB is then used as a benchmark for assessing the performance of one-bit

DoA estimators. We also propose a new algorithm for estimating DoAs from one-bit

quantized data. We investigate the analytical performance of the proposed method

through deriving a closed-form expression for the covariance matrix of the asymptotic

distribution of the DoA estimation errors and show that it outperforms the existing

algorithms in the literature. Numerical simulations are provided to validate the analytical

derivations and corroborate the resulting performance improvement. The content of this

chapter appears in the following publications:

• J4: S. Sedighi, B. Shankar, M. Soltanalian, B. Ottersten, “On the Performance of

One-Bit DoA Estimation via Sparse Linear Arrays,” IEEE Transactions on Signal

Processing, Major Revision submitted, 19 July 2021.
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• J5: S. Sedighi, B. Shankar, B. Ottersten, “Performance Analysis of DoA Estima-

tion from One-Bit Sample Covarinace Matrix,” IEEE Signal Processing Letters, To

be Submitted.

• C6: S. Sedighi, B. Shankar, M. Soltanalian, B. Ottersten, “On the Asymptotic

Performance of One-Bit Co-Array-Based MUSIC,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,

Canada, 2021, pp. 4635 - 4639.

2.3.3 Chapter 5: DoA Estimation Using Low-Resolution Multi-Bit

Sparse Array Measurements

In previous works, the problem of Direction of Arrival (DoA) estimation was studied

under two extreme scenarios for analog-to-digital conversion, i.e., infinite-bit quantization

and one-bit quantization. In this chapter, the problem of DoA estimation from low-

resolution multi-bit SLA measurements, e.g. 2 or 4 bit per sample, is studied. In such

cases, contrary to the one-bit case, the well known arcsine law cannot be employed to

reconstruct the covaraince matrix of unquantized data. Instead, we develop a novel

optimization-based framework for recovering the covaraince matrix of unquantized data

from low-resolution multi-bit measurements. The MUSIC algorithm is then applied to

an augmented version of the recovered covariance matrix to find the DoAs of interest.

The simulation results show that increasing the sampling resolution to 2 or 4 bits per

samples could significantly increase the DoA estimation performance compared to the

one-bit sampling regime while the power consumption and implementation costs is still

much lower in comparison to the high-resolution sampling implementation. The content

of this chapter appears in the following publications:

• J3: S. Sedighi, M. Soltanalian, B. Shankar, B. Ottersten, “DoA Estimation Using

Low-Resolution Multi-Bit Sparse Array Measurements,” IEEE Signal Processing

Letters, vol. 28, pp. 1400-1404, 2021.

• C5: S. Sedighi, B. Shankar, M. Soltanalian, B. Ottersten, “DoA Estimation

via Sparse Arrays and One-Bit sampling,” in Proc. IEEE IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona,

Spain, 2020, pp. 9135-9139.
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2.3.4 Chapter 6: Localization with One-Bit Passive Radars in Nar-

rowband Internet-of-Things using Multivariate Polynomial Op-

timization

Several Internet-of-Things (IoT) applications provide location-based services, wherein it is

critical to obtain accurate position estimates by aggregating information from individual

sensors. In the recently proposed narrowband IoT (NB-IoT) standard, which trades off

bandwidth to gain wide coverage, the location estimation is compounded by the low

sampling rate receivers and limited-capacity links. We address both of these NB-IoT

drawbacks in the framework of passive sensing devices that receive signals from the

target-of-interest. We consider the limiting case where each node receiver employs one-bit

analog-to-digital-converters and propose a novel low-complexity nodal delay estimation

method using constrained-weighted least squares minimization. To support the low-

capacity links to the fusion center (FC), the range estimates obtained at individual sensors

are then converted to one-bit data. At the FC, we propose target localization with the

aggregated one-bit range vector using both optimal and sub-optimal techniques. The

computationally expensive former approach is based on Lasserre’s method for multivariate

polynomial optimization while the latter employs our less complex iterative joint range-

target location estimation (ANTARES) algorithm. Our overall one-bit framework not

only complements the low NB-IoT bandwidth but also supports the design goal of

inexpensive NB-IoT location sensing. Numerical experiments demonstrate feasibility of

the proposed one-bit approach with a 0.6% increase in the normalized localization error

for the small set of 20-60 nodes over the full-precision case. When the number of nodes

is sufficiently large (> 80), the one-bit methods yield the same performance as the full

precision. The content of this chapter appears in the following publications:

• J2: S. Sedighi, K. V. Mishra, B. Shankar, B. Ottersten, “Localization with One-Bit

Passive Radars in Narrowband Internet-of-Things using Multivariate Polynomial

Optimization,” IEEE Transactions on Signal Processing, vol. 69, pp. 2525-2540,

2021.

• C4: S. Sedighi, K. V. Mishra, B. Shankar, B. Ottersten, “Localization Perfomance

of 1-Bit Passive Radars in NB-IoT Applications,” in Proc. IEEE 8th International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-

SAP), Le gosier, Guadeloupe, 2019, pp. 156-160.
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2.3.5 Chapter 7: Sparsity-Aided Localization in asynchronous MIMO

radar

Target localization, warranted in emerging applications like autonomous driving, requires

targets to be perfectly detected in the distributed nodes with accurate range measurements.

This implies that high range resolution is crucial in distributed localization in the

considered scenario. This chapter proposes a new framework for target localization,

addressing the demand for the high range resolution in automotive applications without

increasing the required bandwidth. In particular, it employs sparse stepped frequency

waveform and infers the target ranges by exploiting sparsity in target scene. The range

measurements are then sent to a fusion center where direction of arrival estimation is

undertaken. Numerical results illustrate the impact of range resolution on multi-target

localization and the performance improvement arising from the proposed algorithm in

such scenarios. The content of this chapter appears in:

• C1: S. Sedighi, B. Shankar, Sina Maleki, B. Ottersten, “Multi-Target localization

in asynchronous MIMO radars using sparse sensing,” in Proc. IEEE 7th Interna-

tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing

(CAMSAP), Curacao, 2017, pp. 1-5.
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Chapter 3

An Asymptotically Efficient

Weighted Least Squares

Estimator for Co-Array-Based

DoA Estimation

3.1 Introduction

The problem of Direction of Arrival (DoA) estimation is of central importance in the field

of array processing with many applications in radar, sonar, and wireless communications

[1–3]. Estimating DoAs using Uniform Linear Arrays (ULAs) is well-investigated in the

literature; a number of algorithms such as the Maximum Likelihood (ML) estimator,

MUSIC, ESPRIT and subspace fitting were presented and their performance thoroughly

analyzed [44–47, 71]. However, it is widely known that ULAs are not capable of identifying

more sources than the number of physical elements in the array [3, 46].

To transcend this limitation, exploitation of Sparse Linear Arrays (SLAs) with particular

geometries, such as Minimum Redundancy Arrays (MRAs) [48], co-prime arrays [17],

nested arrays [16] and their variants [49–51], has been proposed. These architectures can

dramatically boost the degrees of freedom of the array for uncorrelated source signals such

that a significantly larger number of sources than the number of physical elements in the

array can be identified. In addition, the enhanced degrees of freedom provided by these

SLAs can improve the resolution performance appreciably compared to ULAs [16]. These

features have spurred further research on DoA estimation using SLAs in recent years.

A detailed study on DoA estimation via SLAs through an analysis of the Cramér-Rao

25
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Bound (CRB) has been conducted in [52]. The findings in [52] provide valuable insights

into the performance limits of DoA estimation via SLAs and are useful for benchmarking.

Further, a number of DoA estimators based on the difference co-array of SLAs have

been proposed in the literature. In general, existing co-array-based estimators can be

classified under two main groups: 1. Sparsity-Based Methods (SBMs); 2. Augmented

Covariance-Based Methods (ACBMs).

SBMs first discretize the angular domain into a grid and then estimate DoAs by imposing

sparsity constraints on source profiles and exploiting the compressive sensing recovery

techniques [15, 35–37, 54]. Such estimators are susceptible to grid mismatch leading

to significant performance degradation when DoAs do not lie on the predefined grid

[55]. To alleviate this problem, the authors in [56] include a first order approximation of

grid mismatch in the model through Taylor series expansion and then estimate DoAs

and mismatch variables jointly. Although the algorithm proposed in [56] shows an

improvement over that of conventional sparsity-based methods, it is still restricted by

higher-order mismatch terms. The shortcoming of discretization approach is overcome by a

grid-less sparsity-based algorithm in [57]. This algorithm, named as Sparse and Parametric

Approach (SPA), employs the covariance fitting criteria and semidefinite programming.

Although SPA does not suffer from grid mismatch, its asymptotic performance (for the

large number of snapshots) is not guaranteed to achieve the CRB.

In the second approach, DoAs are estimated by applying conventional subspace methods

such as MUSIC, ESPRIT on an Augmented Sample Covariance Matrix (ASCM) obtained

from the original sample covariance matrix by exploiting the difference co-array struc-

ture [16, 38, 58]. Two different ways of constructing the ASCM are given in the literature,

namely, 1. the direct augmentation approach [59]; 2. spatial smoothing approach [16].

Both approaches span identical subspaces resulting in the same estimation performance,

but the former is computationally efficient. A main drawback of this family of algorithms

is the need for prior knowledge on the exact number of sources, which may not be

available in practice. On the contrary, SBMs need information on an upper bound on

the number of sources. The performance of such estimators, called Co-Array-Based MU-

SIC (CAB-MUSIC) and Co-Array-Based ESPRIT (CAB-ESPRIT), has been rigorously

analyzed in [38] and [58], respectively. An existence of a considerable gap between their

performance and the CRB is revealed when the number of sources is greater than one.

Further, CAB-MUSIC and CAB-ESPRIT suffer from an inherent performance loss when

applied to SLAs with holes in their difference co-arrays, such as co-prime arrays, since

they discard the information contained in the non-contiguous segment of the difference

co-array. To avoid this performance loss, array interpolation-based algorithms has been

used for co-prime arrays in [60–62] where a convex optimization problem is formulated

to recover the covariance matrix of a virtual ULA interpolated from the co-prime array.
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The performance of interpolation-based algorithms has been analyzed in [63]. In addition,

the authors of this paper have recently proposed a least squares estimator capable of

exploiting the information contained in the non-contiguous ULA segment of the difference

co-array [95]. Although the proposed estimators in [60, 61, 95] succeed in dealing with

the performance loss due to omission of the non-contiguous segment of difference co-array,

they are still unable to achieve the CRB performance.

It is known that the covariance matrix of uncorrelated signals received by a linear array is

structured, e.g, Hermitian Toeplitz for ULA [96]. The structure in the covariance matrix

is shown to be highly beneficial in obtaining an enhanced covariance matrix estimate

compared to the conventional sample covariance matrix [96]. This, in turn, could yield

better DoA estimates through an application of MUSIC. While the discussions in [96]

are restricted to ULAs, the approach can be straightforwardly used for SLAs to obtain

an enhanced covariance matrix estimate and subsequently construct the ASCM. The

performance of such an estimator, which we call it Structured CAB-MUSIC (SCAB-

MUSIC), has been never investigated in the literature for SLAs. However, our results for

this method, reported in the ensuing Section 3.5, reveal that SCAB-MUSIC does not

attain the CRB.

The performance gap between the estimators available in the literature and the CRB

motivates the current work on designing an asymptotically statistically efficient estimator

for co-array-based DoA estimation via SLAs. To close this gap, in this chapter, we

propose a Weighted Least Squares (WLS) approach to DoA estimation using SLAs. We

analytically prove that the proposed approach can yield an estimator that asymptotically

achieves the corresponding CRB for any SLA configuration. As a consequence, the result-

ing WLS estimator exhibits enhanced performance compared to the existing algorithms

in the literature. Accordingly, the contributions of this chapter are described as follows:

• For any given feasible weighting matrix, we formulate the WLS approach towards

estimating the DoAs and the ancillary variables − source powers and noise variance.

• We first provide a consistent estimate of the noise variance which is applicable to

the difference co-array model. Making use of this consistent noise variance estimate,

we derive WLS estimates of the signal powers and concentrate the WLS objective

on the DoAs.

• The proposed estimator is the minimizer of the aforementioned concentrated

WLS objective. Key attributes of this WLS estimator are studied for any feasible

weighting matrix by proving consistency, asymptotic unbiasedness and then deriving

a closed-form expression for the asymptotic covariance matrix of DoA estimation

errors.
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• Considering the earlier asymptotic unbiasedness of the proposed WLS estimator

and noting that the covariance matrix of any unbiased estimator is lower bounded

by the CRB, the optimal weighting matrix should be the one that renders the

resulting covariance matrix of DoA estimation errors and CRB identical. To derive

this optimal weighting matrix, we reformulate the CRB expression given in [52] in

a form suitable for establishing equality of the CRB and the covariance matrix of

DoA estimation errors.

• The new expression for the CRB is exploited to analytically obtain the optimal

weighting that results in the equivalence of the asymptotic performance of the

proposed WLS estimator and the CRB.

• With the framework to obtain asymptotically efficient WLS estimate provided, we

now consider the key aspect of implementing the minimization of the WLS objective

that leads to the proposed WLS estimate. This, typically needs computationally

complex minimization of a multimodal objective function. The quality of the

solutions of the iterative algorithms used for minimizing such multimodal functions

highly depends on the initialization such that the global minima potentially achieved

in case a very good initial point, which is close enough to the global minima, is

available. This motivates us to introduce two efficient algorithms for solving the

optimization problem. The first algorithm is applicable to SLAs with hole-free

co-arrays, such as MRA and nested arrays. This method recasts the optimization

problem as a quadratic optimization problem followed by rooting a polynomial

function. This leads to a significant reduction in computations, rendering the

complexity of the proposed estimator comparable to that of the other techniques

such as CAB-MUSIC, CAB-ESPIRIT and SCAB-MUSIC while the WLS estimator

enjoys a better performance compared to them. The second algorithm can be used

for SLAs with holes in their co-arrays such as co-prime arrays. This algorithm

recasts the optimization problem as a polynomial optimization problem followed by

rooting a polynomial function where the global minima of the introduced polynomial

optimization problem is guaranteed to be attained by using Lasserre’s Semidefinite

Programming (SDP) relaxation given in [97].

• Further, we validate the analytical derivations through numerical simulations and

compare the performance of the proposed WLS estimator with those proposed in

the literature. Numerical results confirm asymptotic efficiency of the proposed WLS

estimator and illustrate its superior performance in terms of estimation accuracy

and resolution compared to the existing estimators in the literature.

Chapter organization: Section 3.2 describes the co-array system model. In Section 3.3,

the proposed WLS framework is presented and the form of the WLS estimates of DoAs
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is derived. The performance of the proposed WLS estimator is analytically evaluated

and its asymptotic statistical efficiency is proved in Section 3.4. The simulation results

and related discussions are included in Section 3.5. Finally, Section 3.6 concludes the

chapter.

3.2 Co-Array System Model

We consider an SLA with M elements located at positions
(
m1

λ
2 , m2

λ
2 , · · · ,mM

λ
2

)
with

mi ∈ M. Here M is a set of integers with cardinality |M| = M , and λ represents the

wavelength of the incoming signals. It is assumed K narrowband signals with distinct

DoAs θ =
[
θ1 θ2 · · · θK

]T
impinge on the SLA from far field. Accordingly, the vector

of signals received by the SLA at time instance t can be modeled as

y(t) = A(θ)x(t) + n(t) ∈ CM×1, t = 1, · · · , N, (3.1)

where x(t) ∈ CK×1 denotes the vector of source signals, n(t) ∈ CM×1 is additive noise,

and A(θ) =
[
a (θ1) , a (θ2) , · · · a (θK)

]
∈ CM×K represents the SLA steering matrix

where

a(θi) =
[
ejπ sin θim1 ejπ sin θim2 · · · ejπ sin θimM

]T
, (3.2)

is the SLA manifold vector for the ith signal. Further, the following assumptions are

made on source signals and noise:

A1 The noise vector follows a zero-mean circular complex Gaussian distribution with

the covariance matrix, E{n(t)nH(t)} = σ2IM .

A2 The source signals are modeled as zero-mean uncorrelated circular complex Gaussian

random variables with covariance matrix E{s(t)sH(t)} = diag(p) where p =

[p1, p2, · · · , pK ]T ∈ RK×1
>0 (i.e., pk > 0, ∀k).

A3 Source and noise vectors are mutually independent.

A4 There is no temporal correlation between the snapshots, i.e., E{n(t1)nH(t2)} =

E{x(t1)xH(t2)} = 0 when t1 6= t2 and 0 is an all zero matrix of appropriate

dimensions.

Based on the above assumptions, the covariance matrix of the received signals, i.e.,

R = E{y(t)yH(t)}, is given by

R = A(θ)diag(p)AH(θ) + σ2IM ∈ CM×M . (3.3)
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Figure 3.1: Array geometry of a co-prime array with M = 6 elements: (a) physical
array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-array with D = {0, 1, 2, 3, 4, 5, 6, 7, 9}

and v = 8.

Following [16, 38, 52], the difference co-array model of the SLA is obtained by vectorizing

the covariance matrix in (3.3), which results in

r
.
= vec(R) = (A∗(θ)�A(θ)) p + σ2vec(IM ),

= JAd(θ)p + σ2Je ∈ CM2×1, (3.4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering matrix of the difference co-

array whose elements are located at (−`D−1
λ
2 , · · · , 0, · · · , `D−1

λ
2 ) with `i ∈ D = {|mp −

mq|∣∣mp,mq ∈ M} and D = |D|. Further, e ∈ {0, 1}(2D−1)×1 is a column vector with

[e]i = δ[i−D], and the selection matrix J is represented as follows

Definition 3.1. The binary matrix J ∈ {0, 1}M2×(2D−1) is defined as [52]

J =
[
vec(LTD−1) · · · vec(L0) · · · vec(LD−1),

]
, (3.5)

where [Ln]p,q =

{
1, if mp −mq = `n,

0, otherwise,
with 1 ≤ p, q ≤M and 0 ≤ n ≤ D − 1.

The difference co-array model in (3.4) can be perceived to be the response of a virtual

array whose steering matrix is given by Ad(θ) to the parameter vector with signal powers

p in presence of the noise vector σ2vec(IM ). This virtual array includes a contiguous

ULA segment around the origin with the size of 2v − 1 where v is the largest integer

such that {0, 1, · · · , v − 1} ⊆ D. An illustrative example of an SLA, the corresponding

difference co-array and its contiguous ULA segment is provided in Fig. 3.1. It has been

shown in [16, 17, 52] that the size of the contiguous ULA segment of the difference

co-array plays a crucial role in the number of identifiable sources such that K distinct

sources are identifiable if K ≤ v − 1. Hence, in case the SLA is designed properly such

that v > M , we are able to identify more sources than the number of physical elements

in the SLA, exploiting the source signal covariance matrix structure efficiently.
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3.3 Co-array-based WLS estimator

The problem under consideration is the estimation of the unknown parameters in (3.4)

− DoAs, signal powers and the noise variance − using array observations, i.e., {y(t)}Nt=1.

Of these, the DoAs are of primary interest and the other parameters are of subordinate

interest. However, the estimation of the secondary parameters is essential for accurate

DoA estimation. In what follows, we first propose a heuristic, but, consistent estimate of

the noise variance. We then derive the WLS estimates of DoAs and source signal powers

exploiting the proposed consistent estimate of the noise variance.

3.3.1 Estimation of the Noise Variance

Let R̂ denote the sample covariance matrix, defined as

R̂ =
1

N

N∑
t=1

y(t)yH(t) ∈ CM×M , (3.6)

and r̂ = vec(R̂) denote its vectorized form. In addition, let R̂v be the augmented sample

covariance matrix, which is constructed as follows[59]

R̂v =
[
TvJ

†r̂ Tv−1J
†r̂ · · · T1J

†r̂
]
∈ Cv×v, (3.7)

where Ti is a selection matrix defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1), (3.8)

Then, we are able to obtain a consistent estimate of the noise variance, as stated in the

following lemma.

Lemma 3.1. If K ≤ v − 1, a consistent estimate of the noise variance is given by

σ̂2 =
vecH(ÛnÛ

H
n )TJ†r̂

v −K
, (3.9)

where Ûn represents the eigenvectors of the augmented sample covariance matrix R̂v

corresponding to its v − K smallest eigenvalues and T =
[
TT
v TT

v−1 · · · TT
1

]T
∈

Cv
2×(2D−1).

Proof. See Appendix A.1

Remark 3.1 (Efficiency of the Noise Estimate). It can be demonstrated that σ̂2,

while being consistent, is not statistically efficient, meaning that E{(σ̂2−σ2)2}
CRB(σ2)

> 1 where
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CRB(σ2) represents the CRB of σ2. We will not dwell on this further since estimation

of σ2 is not the main aim here. A consistent estimate of σ2 suffices for our purpose.

Remark 3.2. Employing Lemma A.5 in Appendix A.7, it can easily be shown that

σ̂2
∗

= σ̂2, implying that σ̂2 is real-valued. It is not, however, guaranteed to be positive

for a small number of snapshots. Nonetheless, considering the fact that σ̂2 is a consistent

estimate of σ2 > 0 ensures that σ̂2 is positive when the number of snapshots is adequately

large. As a consequence, the asymptotic performance of the DoA estimator, which will

be introduced in the next subsection, will not be affected.

3.3.2 WLS Estimates of DoAs

To estimate source DoAs from (3.4), it is possible to formulate the co-array-based LS

estimates of θ, p as [
θ̂ls

p̂ls

]
= argmin

θ,p
‖r̂− JAd(θ)p− σ̂2vec(IM )‖22. (3.10)

However, our investigations, presented in [95], indicate that the LS estimates of DoAs

do not show a significant performance improvement in terms of MSE compared to the

existing algorithms. Thus it would be useful to introduce a weighting in the above

criterion to achieve better performance. Hence, we propose the following WLS estimator

instead [
θ̂wls

p̂wls

]
= argmin

θ,p

∥∥∥W 1
2

(
r̂− JAd(θ)p− σ̂2vec(IM )

)∥∥∥2

2
. (3.11)

where W is a positive definite weighting matrix. The weighting matrix W should be

determined to minimize the MSE of DoA estimates. For the time being, we defer problem

of finding the optimal weighting matrix until Section 3.4.2 and proceed with the derivation

of the WLS estimator for DoAs.

Inserting (3.9) into (3.11) and performing certain standard algebraic manipulations leads

to [
θ̂wls

p̂wls

]
= argmin

θ,p
‖W

1
2 (Q̂r̂− JAd(θ)p)‖22, where (3.12)

Q̂
.
= IM2 −

vec(IM )vecH(ÛnÛ
H
n )TJ†

v −K
. (3.13)
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Solving (3.12) with respect to p yields

p̂wls =
(
W

1
2 JAd(θ)

)†
W

1
2 Q̂r̂. (3.14)

Remark 3.3 (Consistency of Signal Power Estimates). Based on (A.6) and (A.5) in

Appendix A.2, it is readily deduced that p̂wls is a consistent estimator of p iff W
1
2 JAd(θ)

has full column rank. Clearly, W is positive definite by definition and it was shown in [52]

that J has full column rank. These imply that p̂wls is consistent iff Ad(θ) has full column

rank. Following the same approach used in the proof of Lemma A.1 in Appendix A.2, it

can be shown that Ad(θ) has full column rank if K ≤ 2v − 1. This condition is weaker

than the identifiability condition, i.e., K ≤ v − 1, given in the literature [16, 17, 52].

Hence, the consistency of p̂wls is guaranteed in practice.

Remark 3.4. Making use of Lemma A.6 in Appendix A.7, it can be shown that p̂wls is

a real number, i.e., p̂∗wls = p̂wls. Hence, the same considerations mentioned in Remarks

3.2 for σ̂2 are applicable to p̂wls as well.

Finally, inserting (3.14) into (3.12), concentrates the WLS objective on DoAs and the

WLS estimator of θ follows as

θ̂wls = argmin
θ
‖Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂‖22. (3.15)

In general, the above problem can be solved iteratively by using either gradient descent

or Newton’s methods [98]. The gradient and Hessian of the objective function, needed

for implementing the aforementioned methods, are given in Appendix A.3. However,

finding the global minimum in (3.15) through these algorithms is not guaranteed due

to multimodality of the objective function. The quality of the solution is susceptible to

the initial point with the global minima potentially achieved in case a very good initial

point, which is close enough to the global minima, is available. This motivates us to

introduce two efficient algorithms for solving the optimization problem (3.15), which are

presented in next. The first algorithm is applicable to SLAs with hole-free co-arrays,

such as MRA and nested arrays, while the second one can be used for SLAs with holes

in their co-arrays such as co-prime arrays.

Remark 3.5. We should remark that the proposed estimator, like ACBMs, requires

uncorrelated sources and the exact knowledge of their number.
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3.3.3 WLS Implementation for SLAs With Hole-Free Co-arrays

When the SLA has no holes in its difference co-array, it is possible to recast (3.15) as a

quadratic optimization problem followed by rooting a polynomial through reparameteriza-

tion of the objective function. The main idea is similar to the technique used in [99, 100].

Indeed, for such kind of SLAs, the objective function in (3.15) can be reparameterized in

terms of the coefficient of the following polynomial

f(z) =

K∑
n=0

γK−nz
n = γ0

K∏
k=1

(zk − ejπ sin θk). (3.16)

To show that, let define

ΓHAd =


γK · · · γ1 γ0 0 · · · 0

0 γK · · · γ1 γ0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 γK · · · γ1 γ0

 ∈ C(2D−1−K)×(2D−1), (3.17)

and J⊥ ∈ RM
2×(M2−2D+1) obtained from QR-factorization of J as J =

[
J‖ J⊥

] [Λ
0

]
. It

is readily confirmed that
[
J⊥ J†HΓAd

]H
JAd(θ) = 0 due to the Vadermonde structure of

Ad(θ) for the aforementioned SLAs. This implies that the columns of Γ
.
=
[
J⊥ J†HΓAd

]
span the null space of AH

d (θ)JH . Hence, considering the fact that Π⊥
W

1
2 JAd(θ)

= Π
W− 1

2 Γ

[101], the objective in (3.15) can be rewritten as

r̂HQ̂HΓ(ΓHW−1Γ)−1ΓHQ̂r̂. (3.18)

Minimization of (3.18) with respect to the free parameters in Γ leads to the estimates of

γ0, γ1, · · · , γK from which the WLS etimates of DoAs can be obtained through finding

the roots of the polynomial (3.16). However, the reparameterized optimization problem

is still complicated due to multimodality of the objective function and, moreover, the

constraint on γ0, γ1, · · · , γK arising from the fact that the roots of the polynomial (3.16)

should lie on the unit circle.

The multimodal objective function (3.18) can be relaxed through replacing (ΓHW−1Γ)−1

with its consistent estimate. This relaxation does not affect the asymptotic behavior of

the objective function[44, 99, 100, 102], but converts the objective function to a quadratic

function with respect to γ0, γ1, · · · , γK . A consistent estimate of (ΓHW−1Γ)−1 can be

obtained in two ways: 1. making use of CAB-MUSIC or CAB-ESPIRIT to derive an

initial consistent estimate of θ; 2. through minimizing ‖ΓHQ̂r̂‖2 = ‖ΓHAdJ
†Q̂r̂‖2 with
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respect to γ0, γ1, · · · , γK . Following the same arguments provided in Appendix A.2 and

the fact that there is a one-to-one mapping from θ to γ0, γ1, · · · , γK [99], it can easily

be shown that minimizing ‖ΓHAdJ
†Q̂r̂‖2 with respect to γ0, γ1, · · · , γK gives consistent

estimates of γ0, γ1, · · · , γK . Once consistent estimates of γ0, γ1, · · · , γK are given, an

initial consistent estimates of θ can be obtained by solving the polynomial equation

(3.16).

In addition, we need to ensure that the roots of the polynomial lie on the unit circle.

Following the methodology in [99, 100], this is addressed by imposing the conjugate

symmetric constraint, i.e., γn = γ∗K−n for n = 0, 1, · · · ,K. While this constraint is only

necessary, following [99], this relaxation tends to be tight in the asymptotic regimes.

Further, to avoid γi = 0, ∀i, an additional constraint is required. Herein, we employ the

linear constraints, i.e., <{γ0} = 1 or ={γ0} = 1 [99, 100] for simplicity.

Accordingly, the proposed procedure for estimating θ can be summarized as follows:

1. Compute a consistent estimate of θ by using CAB-MUSIC, CAB-ESPRIT or

minimizing the quadratic function ‖ΓHAdJ
†Q̂r̂‖.

2. Based on the initial consistent estimate of θ and the sample covarince matrix, i.e.,

R̂, calculate a consistent estimate of (ΓHW−1Γ)−1.

3. Minimize the quadratic criterion

r̂HQ̂HΓ(Γ̂HŴ−1Γ̂)−1ΓHQ̂r̂. (3.19)

with respect to γ0, · · · , γK considering the conjugate symmetric constraint, i.e.,

γn=γ∗K−n for n=0, · · · ,K, besides the linear constraints <{γ0}=1 or ={γ0}=1.

4. Obtain the WLS estimate of θ by rooting f(z) in (3.16).

3.3.4 WLS Implementation for SLAs With Holes in Co-arrays

For these SLAs, it is possible to recast (3.15) as a polynomial optimization problem

followed by rooting f(z) given in (3.16). This can be done, similar to Section 3.3.3, through

reparameterization of (3.15) in terms of the coefficients of f(z), i.e., γ0, γ1, · · · , γK , by

finding a set of bases spanning the null space of AH
d (θ)JH . Then, the introduced

polynomial optimization problem can be globally solved by using the algorithm proposed

in [97].
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Let define Γ̃Ad =
[
Γ̃ ∆1 ∆2

]
∈ C(2D−1)×(2D−1−K) such that the matrices Γ̃ ∈

C(2D−1)×(2v−1−K), ∆1 ∈ C(2D−1)×(D−v) and ∆2 ∈ C(2D−1)×(D−v) are given by

Γ̃H =


0 · · · 0 γK · · · γ1 γ0 0 · · · 0 0 · · · 0

0 · · · 0 0 γK · · · γ1 γ0 · · · 0 0 · · · 0
...

. . .
...

. . .
. . .

. . .
. . .

. . .
... 0

. . . 0

0 · · · 0 0 · · · 0 γK · · · γ1 γ0 0 · · · 0

 , (3.20)

∆H
1 =


δ1
K · · · δ1

1 δ1
0 0 · · · 0 0 · · · 0

0 δ2
K · · · δ2

1 δ2
0 · · · 0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

...
. . .

...

0 · · · 0 δD−vK · · · δD−v1 δD−v0 0 · · · 0

 , (3.21)

∆H
2 =


0 · · · 0 δ1

K · · · δ1
1 δ1

0 0 · · · 0

0 · · · 0 0 δ2
K · · · δ2

1 δ2
0 · · · 0

...
. . .

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 0 · · · 0 δD−vK · · · δD−v1 δD−v0

 , (3.22)

where γ0, · · · , γK are the coefficients of f(z) given in (3.16) and δi0, · · · , δiK are the

coefficients of the following polynomial

qi(z) =
K∑
n=0

δiK−nz
`
ain = f(z)gi(z) (3.23)

with ain = D − 1 − K − i + n for i ∈ {1, · · · , D − v} and gi(z) =
∑K
n=0 δ

i
K−nz

`
ain

f(z) .

From (3.16), it is observed that f(ejπ sin θk) = 0 for k ∈ {1, · · · ,K}, which in turn

implies that qi(e
jπ sin θk) = 0 for k ∈ {1, · · · ,K}. Hence, it is easily checked that[

J⊥ J†HΓAd

]H
JAd(θ) = 0, indicating that the columns of Γ

.
=
[
J⊥ J†HΓAd

]
span

the null space of AH
d (θ)JH . Hence, considering Π⊥

W
1
2 JAd(θ)

= Π
W− 1

2 Γ̃
[101], the objective in

(3.15) can be rewritten as

r̂HQ̂HΓ̃(Γ̃HW−1Γ̃)−1Γ̃HQ̂r̂. (3.24)

Here the minimization should be done with respect to the free parameters in Γ̃, i.e.,

γ0, · · · , γK and δi0, · · · , δiK ∀i from which the WLS etimates of DoAs can be obtained

through finding the roots of the polynomial (3.16). Akin to Section 3.3.3, (3.24) can be

relaxed through replacing (Γ̃HW−1Γ̃)−1 with its consistent estimate without affecting

the asymptotic behavior of the objective function[44, 99, 100, 102]. However, the repa-

rameterized optimization problem is still complicated despite this relaxation due to the

existing constraints on γ0, · · · , γK and δi0, · · · , δiK ∀i. It can be further simplified if the pa-

rameters δi0, · · · , δiK ∀i are somehow expressed in terms of γ0, · · · , γK . This parametrizes
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the optimization problem only in terms of the desired parameters, i.e., γ0, · · · , γK and

thereby eliminates the constraints corresponding to δi0, · · · , δiK ∀i. Towards this, in what

follows, we use the fact that the remainder hi(z) generated by division of qi(z) by f(z) is

zero according to (3.23).

Let ñ be an integer such that `aiñ
< K and `aiñ+1

≥ K. It is then possible to rewrite qi(z)

as qi(z) =
∑ñ

n=0 δ
i
K−nz

ain +
∑K

n=ñ+1 δ
i
K−nz

ain . Making use of polynomial long division

and after some tedious calculations, the remainder hi(z) resulting from division of qi(z)

by f(z) takes the form

hi(z) =
K−1∑
n=0

ciK−1−nz
n, (3.25)

where

ciK−1−n =

{
δiK−n − ãn(γ0, · · · , γK , δiK−ñ−1, · · · , δi0) if n ∈ S
ān(γ0, · · · , γK , δiK−ñ−1, · · · , δi0) if n /∈ S

(3.26)

with S = {`ai0 , · · · , `aiñ}, ãn(.) and ān(.) being linear functions of δiK−ñ−1, · · · , δi0 for

n = 0, · · · ,K − 1 whose coefficients are obtained during long division. hi(z) is identically

zero ∀i if and only if cin = 0 ∀n, i. Letting cin’s equal to zero for each i results in

K linear equations with respect to δiK , · · · , δi0. Considering the fact that δi0 can be

chosen arbitrarily, the solution of these K linear equations provides us with the values

of δiK , · · · , δi1 based on γ0, · · · , γK and δi0. Through an appropriate choice of δi0, the

parameters δiK , · · · , δi1 can be expressed as polynomial functions of γ0, · · · , γK . Hence, Γ̃

is parameterized only in terms of the coefficients γ0, · · · , γK .

Consequently, the optimization problem (3.23) is converted to a polynomial optimization

with respect to γ0, γ1, · · · , γK . Similar to Section 3.3.3, conjugate symmetry constraint

is imposed on {γi} towards ensuring roots of f(z) on the unit circle. Then, the resulting

polynomial optimization can be solved by using the Lasserre’s SDP relaxation given in

[97]. It is proved in [97] that the Lasserre’s SDP relaxation attains the global minima of

the polynomial optimization if the order of relaxation is big enough. However, evidently,

this solution exhibits higher complexity than the descent algorithms mentioned earlier

due to the nature of operations and increased number of variables.

Accordingly, the proposed procedure for estimating θ can be summarized as follows:

1. Compute a consistent estimate of θ by using CAB-MUSIC, CAB-ESPRIT.

2. Based on the initial consistent estimate of θ and the sample covariance matrix, i.e.,

R̂, calculate a consistent estimate of (ΓHW−1Γ)−1.
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3. Compute the coefficients cin’s ∀i, n, using polynomial long division.

4. Let cin’s equal to zero for each i and solve the K resulting linear equations with re-

spect to δiK , · · · , δi0. This step gives us the values of δiK , · · · , δi1 based on γ0, · · · , γK
and δi0.

5. Choose the free variable δi0 such that δi0, δiK , · · · , δi0 are obtained as polynomial

functions of γ0, · · · , γK .

6. Find the minima of the following polynomial criterion

r̂HQ̂HΓ̃(ˆ̃ΓHŴ−1 ˆ̃Γ)−1Γ̃HQ̂r̂. (3.27)

with respect to γ0, · · · , γK considering the conjugate symmetric constraint and the

linear constraints <{γ0} = 1 or ={γ0} = 1 by using the Lasserre’s SDP relaxation.

7. Obtain the WLS estimate of θ by rooting f(z) in (3.16).

3.4 Asymptotic Performance Analysis

The asymptotic behavior of the proposed WLS estimator for a large number of samples

is analyzed in this section and its asymptotic statistical efficiency when an optimal

weighting matrix being selected is shown.

3.4.1 Asymptotic Performance

In this subsection, we analyze the key attributes of the proposed WLS estimator including

consistency, bias and estimation errors for an arbitrary weighting matrix. Asymptotics

are resorted to yield tractable analytical results. We start with proving the consistency

of the DoA estimates provided by the proposed WLS estimator.

Theorem 3.1. θ̂wls is a consistent estimate of θ if K ≤ v − 1.

Proof. See Appendix A.2

Remark 3.6 (Unbiasedness). It readily follows from Theorem 3.1 that θ̂wls is asymp-

totically unbiased as well.

Remark 3.7. Note that the sufficient condition for the consistency of θ̂wls, i.e., K ≤ v−1,

given in Theorem 3.1, is equivalent to the sufficient condition for source identifiability

given in [16, 17, 52].
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The consistency of θ̂wls can be utilized to obtain the covariance matrix of DoA estimation

errors through a Taylor series expansion approach when N →∞. This is detailed in the

following theorem.

Theorem 3.2. Let KM denote the commutation matrix defined according to Definition

A.1 in Appendix A.7. If K ≤ v − 1 and KMW = W∗KM , the asymptotic (N → ∞)

covariance matrix of the WLS estimator θ̂wls is given by (3.28),

Cwls =E
{

(θ̂wls − θ)(θ̂wls − θ)H
}

=
1

π2N
diag−1(p)

(
ΩHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Ω
)−1

×
(
ΩHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 QM2QHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Ω
)

×
(
ΩHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Ω
)−1

diag−1(p), (3.28)

where

Q
.
= IM2 −

vec(IM )bH

v −K
, (3.29)

b
.
= J†HTHvec

(
UnU

H
n

)
, (3.30)

M2 = RT ⊗R, (3.31)

Ω
.
= Jdiag (d) Ad(θ)Φ(θ), (3.32)

with d =
[
−`D−1 · · · `0 · · · `D−1

]T
, Un being given in Appendix A.1, and Φ(θ) =

diag(
[
cos θ1 · · · cos θK

]T
).

Proof. See Appendix A.3

Remark 3.8. In Theorem 3.2, it is assumed that KMW = W∗KM because it simplifies

the expression for the covariance matrix of DoA estimation errors. Further, it is shown in

Appendix A.5 (See Lemma A.7) that the optimal weighting matrix, to be introduced later

in Theorem 3.4, fulfills the constraint. Thus the constraint is not restrictive. However, it

is fairly straightforward to also obtain the covariance matrix of θ̂wls for the weighting

matrices not satisfying the aforementioned constraint by exploiting the derivations given

in Appendix A.3.

3.4.2 Optimal Weighting Matrix and Achieving CRB

The results presented in Section 3.4.1 are valid for an arbitrary weighting matrix. However,

it is of interest to find an optimal weighting matrix providing the best DoA estimation

performance in terms of MSE. In this regard, we resort to the fact that Cwls, given in

Theorem 3.2, is lower bounded by the CRB. Thus, a good way of finding the optimal
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weighting matrix is to seek a weighting matrix rendering Cwls to be identical to the CRB.

Accordingly, in what follows, we first reformulate the CRB expression given in [52] in a

form suitable for establishing equality of Cwls and the CRB in Theorem 3.3. Then, we

show in Theorem 3.4 that there is a weighting matrix enabling Cwls to coincide with the

CRB.

Theorem 3.3. The CRB expression given in [52, Eq. (49)] can be reformulated as the

following form

CRB(θ) =
(

diag(p)ΩHF
(
FHHF

)−1
FHΩdiag(p)

)−1
, (3.33)

where F ∈ CM2×(M2−K) is any matrix whose columns span the null space of AH
d (θ)JH

and

H =QM2QH +
M2bbHM2

bHM2b
. (3.34)

Proof. See Appendix A.4

Theorem 3.4. If the weighting matrix is selected as follows

Wopt =
(

Π⊥JAd(θ)SΠ⊥JAd(θ) + JAd(θ)AH
d (θ)JT

)−1
, (3.35)

where

S =QM2QH + bbH , (3.36)

then we have Cwls = CRB(θ).

Proof. See Appendix A.5

Remark 3.9. We note that the optimal weighting matrix given in Theorem 3.4 depends

on the true value of the parameters. However, in practice, it can be replaced with a

consistent estimate without affecting the asymptotic performance of the WLS estimator[44,

99, 100, 102]. To this end, we can first use any other consistent estimator like CAB-

MUSIC or CAB-ESPRIT to obtain an initial estimate of θ. Then, we compute a

consistent estimate of the optimal weighting matrix based on the initial estimate of θ

and the sample covariance matrix R̂. Finally, we use the WLS estimator given in (3.15)

to derive asymptotically statistically efficient estimates of DoAs. This procedure may

be iterated with Wopt and θ alternatively estimated. This may enhance the estimation

accuracy especially at low snapshots.
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We are also required to make sure that the optimal weighting matrix is positive definite,

and moreover, its estimate, obtained using the approach explained in Remark 3.9, is

always nonsingular regardless of the available number of snapshots. The following Lemma

addresses this concern.

Lemma 3.2. Wopt is positive definite and its estimate, obtained through either CAB-

MUSIC or CAB-ESPRIT, is nonsingular regardless of the available number of snapshots.

Proof. See Appendix A.6

3.5 Simulation Results

In this section, we provide some numerical results to validate the analytical results

obtained in Section 3.3 as well as to assess the performance of the proposed estimator.

Further, we compare the performance of the WLS estimator proposed in this chapter

with that of CAB-MUSIC [16, 38], CAB-ESPRIT [58], SPA [57] and SCAB-MUSIC

[96]; and we will show that the WLS estimator yields better performance in terms of

resolution, estimation accuracy and statistical efficiency.

3.5.1 General Set-up

In all experiments, each simulated point has been computed by 5000 Monte Carlo

repetitions. In addition, it is assumed that the K independent sources are located at

{−60° + 120°(k − 1)/(K − 1)|k = 0, 1, · · · ,K − 1}. All sources have equal powers, i.e.,

pk = p ∀k, and the SNR is defined as 10 log p
σ2 . Throughout this section, we use three

different types of SLAs with M = 6 physical elements and the following geometries:

Mnested : {1, 2, 3, 4, 8, 12} , (3.37)

Mco-prime : {0, 2, 3, 4, 6, 9} , (3.38)

MMRA : {0, 1, 6, 9, 11, 13} . (3.39)

These SLAs generate the difference co-arrays as:

Dnested : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} , (3.40)

Dco-prime : {0, 1, 2, 3, 4, 5, 6, 7, 9} , (3.41)

DMRA : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} . (3.42)
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Figure 3.2: RMSE in degree for θ2 versus the number of snapshots for a nested
array with M = 6 elements and configuration given in (3.37), SNR = 3 dB, and: (A)

K = 4 < M ; (B) K = 7 > M .

The optimization problem (3.15) for MRAs and nested arrays is solved through the

algorithm described in Section 3.3.3; and for co-prime arrays it is solved by using the

algorithm given in Section 3.3.4. In both cases, CAB-ESPRIT is used to derive a

consistent estimate of (ΓHW−1Γ)−1. Further, we take the grid from −90° to 90° with

step size 0.001° to implement CAB-MUSIC and SCAB-MUSIC. Moreover, all estimators
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Figure 3.3: RMSE in degree for θ2 versus SNR for a nested array with M = 6 elements
and configuration given in (3.37), N = 500, and: (A) K = 4 < M ; (B) K = 7 > M .

but SPA need an exact knowledge of the exact number of sources. Hence, for a fair

comparison, SPA is also assumed to know the exact number of sources in all simulations.

For this end, it is implemented by applying MUSIC on the augmented covaraince matrix

estimate obtained from the SPA algorithm.
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3.5.2 MSE vs. the Number of Snapshots

Fig. 3.2 depicts the Root-Mean-Squares-Error (RMSE) for θ2 in degree versus the

number of snapshots for the nested array in (3.37). The SNR is assumed to be 3 dB.

In addition, noting M = 6, two different scenarios are considered: (A) K = 4 < M ,

and (B) K = 7 > M . Fig. 3.2 illustrates a close agreement between the RMSE of the

proposed WLS estimator and the CRB when about 70 or more snapshots are available,

indicating asymptotic statistical efficiency of the WLS estimator. Further, a considerable

gap is observed between the performance of CAB-MUSIC (CAB-ESPRIT) and that

of the WLS estimator (the CRB). For instance, at N = 400, Figs 3.3a and 3.3b show

a performance gain of roughly 2.6 dB and 2 dB, respectively, in terms of the RMSE

when the WLS estimator is used. It is also observed that SCAB-MUSIC and SPA

outperform CAB-MUSIC CAB-ESPRIT, but their performance is inferior to that of the

WLS estimator and they are unable to attain the CRB.

Fig. 3.2 also shows that when a small number of snapshots is available, for example

less than 70, all estimators are confronted with substantial performance degradation.

Performance loss of the subspace methods, i.e., CAB-MUSIC, CAB-ESPRIT and SCAB-

MUSIC, is justified by the subspace swap arising from the inaccurate estimate of the

resulting augmented covariance matrix is this case. Further, the underlying reasons for

performance degradation of the WLS estimator in such a regime are twofold. Firstly, as

mentioned in Remarks 1 and 4, the estimates of σ2 and p are not precise and might even

yield negative values in this case. Consequently, the value of Q̂r̂ significantly deviates

from its asymptotic value, i.e., JAd(θ)p, which, in turn, causes the minimizer of (15) to

diverge from the true value of θ. Secondly, there exists a poor estimate of the optimal

weighting matrix, i.e., Wopt. This has a detrimental effect on the performance of the

WLS estimator. However, it is seen that the proposed WLS estimator still has superior

performance compared to the other estimators even in low snapshot paradigm.

3.5.3 MSE vs. SNR

Fig. 3.3 shows the RMSE for θ2 in degree versus SNR for the same setup used for Fig.

3.2. The number of snapshots is considered to be N = 500. It is seen in Figs. 3.3a

and Fig. 3.3b that the RMSE of the WLS estimator perfectly matches the CRB for

the considered range of SNR as a consequence of its asymptotic statistical efficiency.

However, the other estimators are not capable of attaining the CRB.

Fig. 3.3a demonstrates that for K = 4 < M the RMSEs of the WLS estimator and SPA,

like the CRB, tend to decay to zero as SNR increases while the RMSEs of CAB-MUSIC,
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CAB-ESPRIT and SCAB-MUSIC tend to get saturated at the high SNR regime. For

instance, the RMSEs of CAB-MUSIC and CAB-ESPRIT get saturated at SNR around 5

dB. The underlying cause for this saturation behavior of CAB-MUSIC and CAB-ESPRIT

was already explained in [20, Corollary 2] and [21], respectively, through an analysis of

their MSE expressions. This saturation behaviour of CAB-MUSIC, CAB-ESPRIT and

SCAB-MUSIC renders them highly inefficient as SNR increases while the WLS estimator

remains statistically efficient for the considered range of SNR.

Fig. 3.3b shows that when K = 7 < M , the RMSEs of all the estimators as well as the

CRB get saturated at the high SNR regime. The saturation point for the WLS estimator,

SPA and the CRB is at the SNR around 15 dB while for CAB-MUSIC, CAB-ESPRIT

and SCAB-MUSIC it happens at the SNR around 10 dB. Nonetheless, the WLS estimator

still pefroms better than all the other estimators under this condition. For example, at

SNR = 15, the performance gains of about 2.2 dB and 1.3 dB are attained in terms of

RMSE compared to CAB-MUSIC (CAB-ESPRIT) and SCAB-MUSIC, respectively.

3.5.4 Impact of Different SLA Configurations

In Fig. 3.4, we plot the RMSE for θ2 in degree versus SNR for different types of SLAs

given in (3.37)-(3.39). The rest of parameters are equal to those in Fig. 3.3. It is readily

observed that there is a good agreement between the RMSE of the WLS estimator and

the CRB regardless of the array geometry. These simulations corroborate the analytical

results where the asymptotic equality of the CRB and the MSE of the WLS estimator

is shown considering a generic SLA. Another observation is that amongst these three

SLAs, MRA is endowed with the least RMSE followed by the nested and co-prime arrays,

respectively. This follows from the distinction between the size of their corresponding

difference co-array in comparison to each other. The difference co-arrays for these SLAs

are given in (3.40)-(3.42). Indeed, the array with a bigger difference co-array size brings

about the lower RMSE.

3.5.5 Resolution Probability

Figs. 3.5 and 3.6 depict the probability of resolution versus SNR for the proposed WLS

estimator, CAB-MUSIC, CAB-ESPRIT, SCAB-MUSIC and SPA. The co-prime and

nested arrays with the configurations given in (3.38) and (3.37) are considered in Figs. 3.5

and 3.6, respectively. The number of snapshots is considered to be N = 500. In addition,

we consider two sources with equal powers, located at θ1 = 20°− ∆θ
2 and θ2 = 20° + ∆θ

2

with: (A) ∆θ = 1°, and (B) ∆θ = 2°. We define the two sources as being resolvable if
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Figure 3.4: RMSE in degree for θ2 versus SNR for SLAs with M = 6 elements and
different configurations, N = 500, and: (A) K = 4 < M ; (B) K = 7 > M .

max
i∈{1,2}

|θ̂i − θi| < ∆θ
2 [103]. Figs. 3.5 and 3.6 demonstrate that the WLS estimator has

the best resolution performance amongst all the estimators while the SPA resolution

performance is inferior to that of all the other ones. Furthermore, CAB-MUSIC and

CAB-ESPRIT perform almost equivalently and SCAB-MUIC performs slightly better

than them. When ∆θ = 1°, all the estimators but the WLS are unable to resolve the

sources with a probability of 1 even at SNR = 17 dB while the WLS estimator could
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Figure 3.5: Probability of resolution versus SNR for a co-prime array with M = 6
elements and configuration given in (3.38), N = 500, and: (A) ∆θ = 1°; (B) ∆θ = 2°.

achieve a resolution probability of 1 at SNR = 13 dB. In case ∆θ is increased to 2°, the

WLS achieves SNR gains of 3 dB and 6 dB compared to SCAB-MUSIC, to attain a

resolution probability of 1, when co-prime and nested arrays are used respectively. A

comparison of Figs. 3.5 and 3.6 indicates that the probability of resolution for the WLS,

CAB-MUSIC and CAB-ESPRIT increases when the co-prime array is replaced with the

nested array. This can be justified comparing the aperture size of the co-prime and nested
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Figure 3.6: Probability of resolution versus SNR for a nested array with M = 6
elements and configuration given in (3.37), N = 500, and: (A) ∆θ = 1°; (B) ∆θ = 2°.

arrays. Indeed, the nested array enjoys a bigger aperture compared to the co-prime

array; thus it is expected to demonstrate a better probability of resolution. However, it

is observed that the resolution probabilities of SCAB-MUSIC and SAP decline as the

nested array is used instead of the co-prime array. This behavior arises from the structure

exhibited by the covarinace matrix in co-prime arrays compared to that of nested arrays.

Hence, SCAB-MUSIC and SAP, utilizing a structured estimate of the covariance matrix,
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are capable of providing a better estimate of the covariance matrix when the co-prime

array is used. This naturally leads to a better covaraince matrix estimate and hence

better DoA estimates.

3.6 Conclusion

In this chapter, a novel WLS estimator for the co-array-based DoA estimation via SLAs

was proposed and its performance is thoroughly analyzed. It was shown that the proposed

WLS estimator provides consistent estimates of DoAs of identifiable sources for any SLAs.

Further, an asymptotic closed-form expression for the resulting covariance matrix of

DoA estimation errors was derived and it was analytically proved that it asymptotically

coincides with the CRB in case the optimal weighting matrix is selected. This implies

that the proposed WLS estimator is asymptotically statistically efficient. It thus closes an

important gap in the co-array-based DoA estimation. Simulation results demonstrated

superior performance of the proposed WLS estimator compared to the existing algorithms

in the literature in terms of estimation accuracy and resolution.





Chapter 4

On the Performance of One-Bit

DoA Estimation via Sparse

Linear Arrays

4.1 Introduction

The problem of Direction of Arrival (DoA) estimation is of central importance in the field

of array processing with many applications in radar, sonar, and wireless communications

[1–3]. Estimating DoAs using Uniform Linear Arrays (ULAs) is well-investigated in the

literature; a number of algorithms such as the Maximum Likelihood (ML) estimator,

MUSIC, ESPRIT and subspace fitting were presented and their performance thoroughly

analyzed [44–47, 71? ]. However, it is widely known that ULAs are not capable of

identifying more sources than the number of physical elements in the array [3, 46].

To transcend this limitation, exploitation of Sparse Linear Arrays (SLAs) with particular

geometries, such as Minimum Redundancy Arrays (MRAs) [48], co-prime arrays [17] and

nested arrays [16] has been proposed. These architectures can dramatically boost the

degrees of freedom of the array for uncorrelated source signals such that a significantly

larger number of sources than the number of physical elements in the array can be

identified. In addition, the enhanced degrees of freedom provided by these SLAs can

improve the resolution performance appreciably compared to ULAs [16]. These features

have spurred further research on DoA estimation using SLAs in recent years. A detailed

study on DoA estimation via SLAs through an analysis of the Cramér-Rao Bound

(CRB) was conducted in [52]. Further, a number of approaches to estimating DoAs

from SLA measurements were proposed in the literature. In general, the proposed

approaches can be classified under two main groups: 1. Sparsity-Based Methods (SBMs);

51
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2. Augmented Covariance-Based Methods (ACBMs). SBMs estimate DoAs by imposing

sparsity constraints on source profiles and exploiting the compressive sensing recovery

techniques [15, 35–37, 55–57]. However, in ACBMs, DoAs are estimated by applying

conventional subspace methods such as MUSIC and ESPRIT on an Augmented Sample

Covariance Matrix (ASCM) developed from the original sample covariance matrix by

exploiting the difference co-array structure [16, 38, 95]. In addition, the authors of

this paper recently proposed a Weighted Least Squares (WLS) estimator capable of

asymptotically achieving the corresponding CRB for DoA estimation from SLA data

[53, 104].

The aforementioned techniques for DoA estimation from SLA data rest on the assumption

that the analog array measurements are digitally represented by a significantly large

number of bits per sample such that the resulting quantization errors can be disregarded.

However, the production costs and energy consumption of Analog-to-Digital Converters

(ADCs) escalate dramatically as the number of quantization bits and sampling rate

increase [21]. In consequence, deployment of high-resolution ADCs in many modern

applications, e.g. cognitive radio [22], cognitive radars [23], automotive radars [24], radio

astronomy[25] and massive multiple-input multiple-output (MIMO) systems[26], is not

economically viable owing to their very high bandwidth. In order to reduce energy

consumption and production cost in such applications, researchers and system designers

have recently proposed using low-resolution ADCs. As an extreme case of low-resolution

ADCs, one-bit ADCs, which convert an analog signal into digital data using a single

bit per sample, has received significant attention in the literature. One-bit ADCs offer

an extremely high sampling rate at a low cost and very low energy consumption [21].

Additionally, they enjoy the benefits of relatively easy implementation due to their simple

architecture [34]. In the past few years, numerous studies were conducted to investigate

the impact of using one-bit sampling on various applications such as massive MIMO

systems [27, 28, 64–66], dictionary learning [67], radar [29, 68? –70], and array processing

[32, 33].

4.1.1 Relevant Works

The problem of DoA estimation from one-bit quantized data has been studied in the

literature presuming both the deterministic signal model [71] and the stochastic signal

model [46]. The studies in [39–43] presuppose the deterministic signal model. The authors

in [39] developed an algorithm for reconstruction of the unquantized array measurements

from one-bit samples followed by MUSIC to determine DOAs. The ML estimation was

deployed in [40] for finding DoAs from one-bit data. In [43], the authors utilized a

sparse Bayesian learning algorithm to solve the DoA estimation problem from one-bit
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samples. Two sparsity-based approaches were also proposed in [41, 42]. Further, DoA

estimation from one-bit data assuming the stochastic signal model has been discussed in

[32, 33, 72, 73]. In the special case of a two-sensor array, the exact CRB expression for

the DoA estimation problem from one-bit quantized data was derived in [32]. Moreover,

an approach for estimating DoAs from one-bit ULA samples was proposed in [32] which

is based on reconstruction of the covariance matrix of unquantized data using the arcsine

law [74]. In contrast to the approach employed in [75] which relies on the covaraince

matrix reconstruction of unquantized data, the DoA estimation was performed in [73]

by directly applying MUSIC on the sample covariance matrix of one-bit ULA data.

The numerical simulations demonstrated that the approach proposed in [73] performs

similar to the algorithm proposed in [32] in the low Signal-to-Noise Ratio (SNR) regime.

An upper bound on the CRB of estimating a single source DoA from one-bit ULA

measurements was derived in [33].

The aforementioned research works considered using ULAs for one-bit DoA estimation.

Exploitation of SLAs for one-bit DoA estimation has been studied in [75–78]. The

authors in [75] deployed the arcsine law [74] to reconstruct the ASCM from one-bit SLA

data. Then, they applied MUSIC on the reconstructed ASCM to estimate DoAs. It

was shown in [75] that the performance degradation due to one-bit quantization can,

to some extent, be compensated using SLAs. An array interpolation-based algorithm

was employed in [78] to estimate DoAs from one-bit data received by co-prime arrays.

Cross-dipoles sparse arrays were deployed in [77] to develop a method for one-bit DoA

estimation which is robust against polarization states. In [76], the authors proposed an

approach to jointly estimate DoAs and array calibration errors from one-bit data.

Nonetheless, the analytical performance of DoA estimation from one-bit SLA measure-

ments has not yet been studied in the literature and performance analysis in the literature

has been limited to simulations studies. Therefore, fundamental performance limitations

of DoA estimation form one-bit SLA measurements have not well understood.

4.1.2 Our Contributions

It is of great importance to analytically investigate the performance of DoA estimation

from one-bit SLA measurements. Such a performance analysis not only provides us with

valuable insights into the performance of DoA estimation from one-bit SLA data but

also enables us to compare its performance with that of DoA estimation using infinite-bit

(unquantized) SLA data. Hence, as one of the contributions of this paper, we conduct a

rigorous study on the performance of estimating source DoAs from one-bit SLA samples.

Furthermore, we propose a new algorithm for estimating source DoAs from one-bit SLA
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measurements and analyze its asymptotic performance. Specifically, the contributions of

this paper are described as follows:

• Identifiability Analysis: We study the identifiability conditions for the DoA

estimation from one-bit SLA data. We first show that the identifiability condition

for estimating DoAs from one-bit SLA data is equivalent to the case when DoAs

are estimated from infinite-bit (unquantized) SLA data. Then, we determine a

sufficient condition for global identifiablity of DoAs from one-bit data based on the

relationship between the number of source and array elements.

• CRB Derivation and Analysis: We derive a pessimistic approximation of the

CRB of DoA estimation using one-bit data received by an SLA. This pessimistic

CRB approximation provides a benchmark for the performance of DoA estimation

algorithms from one-bit data. Additionally, it helps us to spell out the condition

under which the Fisher Information Matrix (FIM) of one-bit data is invertible, and

thus, the CRB is a valid bound for one-bit DoA estimators. Further, we derive the

performance limits of one-bit DoA estimation using SLAs at different conditions.

• Novel One-bit DoA Estimator: We propose a new MUSIC-based algorithm

for estimating DoAs from one-bit SLA measurements. In this regard, we first

construct an enhanced estimate of the normalized covariance matrix of infinite-bit

(unquantized) data by exploiting the structure of the normalized covariance matrix

efficiently. Then, we apply MUSIC to an augmented version of the enhanced

normalized covariance matrix estimate to determine the DoAs.

• Performance Analysis of the Proposed Estimator: We derive a closed-

form expression for the second-order statistics of the asymptotic distribution

(for the large number of snapshots) of the proposed algorithm. Our asymptotic

performance analysis shows that the proposed estimator outperform its counterparts

in the literature and that its performance is very close to the proposed pessimistic

approximation of the CRB. Moreover, the asymptotic performance analysis of the

proposed DoA estimator enables us to provide valuable insights on its performance.

For examples, we observe that the Mean Square Error (MSE) depends on both the

physical array geometry and the co-array geometry. In addition, we observe that

the MSE does not drop to zero even if the SNR approaches infinity.

• Wider Applicability of the derived performance Analysis: We provide

a closed-form expression for the large sample performance of the one-bit DoA

estimator in [75] as a byproduct of the performance analysis of our proposed DoA

estimator.
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Chapter organization: Section 4.2 describes the system model. In Section 4.3, the

identifiability condition for DoA estimation problem from one-bit quantized data is

discussed. Section 4.4 presents the pessimistic approximation of the CRB and related

discussions. In Section 4.5, the proposed algorithm for DoA estimation from one-bit

measurements is given and its performance is analyzed. The simulation results and

related discussions are included in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.2 System Model

We consider an SLA with M elements located at positions
(
m1

λ
2 ,m2

λ
2 , · · · ,mM

λ
2

)
with

mi ∈ M. Here M is a set of integers with cardinality |M| = M , and λ denotes the

wavelength of the incoming signals. It is assumed that K narrowband signals with

distinct DoAs θ=[θ1, θ2, · · · , θK ]T ∈ [−π/2, π/2]K×1 impinge on the SLA from far field.

The signal received at the array at time instance t can be modeled as

y(t) = A(θ)s(t) + n(t) ∈ CM×1, t = 0, · · · , N − 1, (4.1)

where s(t) ∈ CK×1 denotes the vector of source signals, n(t) ∈ CM×1 is additive noise,

and A(θ) = [a (θ1) ,a (θ2) , · · · ,a (θK)] ∈ CM×K represents the SLA steering matrix with

a(θk)=[ejπ sin θkm1 , ejπ sin θkm2 , · · · , ejπ sin θkmM ]T , (4.2)

being the SLA manifold vector for the ith signal. Further, the following assumptions are

made on source signals and noise:

A1 n(t) follows a zero-mean circular complex Gaussian distribution with the covariance

matrix E{n(t)nH(t)}=σ2IM .

A2 The source signals are modeled as zero-mean uncorrelated circular complex Gaussian

random variables with covariance matrix E{s(t)sH(t)} = diag(p) where p =

[p1, p2, · · · , pK ]T ∈ RK×1
>0 (i.e., pk > 0, ∀k).

A3 Source and noise vectors are mutually independent.

A4 There is no temporal correlation between the snapshots, i.e., E{n(t1)nH(t2)} =

E{s(t1)sH(t2)} = 0 when t1 6= t2 and 0 is an all-zero matrix of appropriate

dimensions.

Based on the above assumptions, the covariance matrix of y(t) is expressed as

R = A(θ)diag(p)AH(θ) + σ2IM ∈ CM×M . (4.3)



On the Performance of One-Bit DoA Estimation via Sparse Linear Arrays 56

−9 −8 −7 −6 −5 −4 −3 −2 0−1 1 2 3 4 5 6 7 8 9

(a)

(b)

The contiguous ULA segment

λ
2

Figure 4.1: Array geometry of a co-prime array with M = 6 elements: (a) physical
array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-array with D = {0, 1, 2, 3, 4, 5, 6, 7, 9}

and v = 8.

Vectorizing R leads to [38, 52, 53]

r
.
= vec(R) = (A∗(θ)�A(θ)) p + σ2vec(IM ),

= JAd(θ)p + σ2Je ∈ CM2×1, (4.4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering matrix of the difference co-array

of the SLA whose elements are located at (−`D−1
λ
2 , · · · , 0, · · · , `D−1

λ
2 ) with `i ∈ D =

{|mp − mq| : mp,mq ∈ M} and D = |D|. Moreover, e ∈ {0, 1}(2D−1)×1 is a column

vector with [e]i = δ[i−D], and the selection matrix J ∈ {0, 1}M2×(2D−1) is represented

as follows [52]:

J=
[
vec(LTD−1), · · · , vec(L0), · · · , vec(LD−1)

]
, (4.5)

where [Ln]p,q =

{
1, if mp −mq = `n,

0, otherwise,
with 1 ≤ p, q ≤ M and 0 ≤ n ≤ D − 1. The

steering matrix of the difference co-array includes a contiguous ULA segment around the

origin with the size of 2v−1 where v is the largest integer such that {0, 1, · · · , v−1} ⊆ D.

The size of the contiguous ULA segment of the difference co-array plays a crucial role

in the number of identifiable sources such that K distinct sources are identifiable if

K ≤ v− 1. Hence, in case the SLA is designed properly such that v > M , we are able to

identify more sources than the number of physical elements in the SLA; exploiting the

resulting structure of R efficiently[16, 17, 52, 53]. An illustrative example of an SLA,

the corresponding difference co-array, and its contiguous ULA segment is presented in

Fig. 4.1.

Here it is assumed that each array element is connected to a one-bit ADC which

directly converts the received analog signal into binary data by comparing the real and

imaginary parts of the received signal individually with zero. In such a case, the one-bit

measurements at the mth array element are given by

[x(t)]m=
1√
2

sgn (<{[y(t)]m})+
j√
2

sgn (={[y(t)]m}) . (4.6)
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The problem under consideration is the estimation of source DoAs, i.e., θ, from one-bit

quantized measurements, i.e., X =
[
x(0), x(1), · · · , x(N − 1)

]
, collected by the

SLA.

4.3 Identifiability Conditions

Note that there is a significant information loss expected when gping from infinite-bit

(unquantized) data, i.e., Y = [y(0),y(1), · · · ,y(M)], to one-bit data, i.e., X. This

information loss may affect the attractive capability of SLAs to identify a larger number

of uncorrelated sources than the number of array elements. To address this concern,

we will consider the identifiability conditions for DoA estimation from one-bit SLA

measurements in this section. Before proceeding further, we first need to give a clear

definition of indetifiability for this problem.

Definition 4.1 (Identifiability). Let f(X | θ,p, σ2) denote the Probability Density

Function (PDF) of X parameterized by θ, p and σ2. Then, the source DoAs are said

to be identifiable from X at point θ0 ∈ [−π/2, π/2]K×1 if there exist no θ̆ 6= θ0 ∈
[−π/2, π/2]K×1 such that f(X | θ0,p, σ

2) = f(X | θ̆, p̆, σ̆2) for any arbitrary values of

p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 , σ2 and σ̆2 [105, Ch. 1, Definition 5.2] [106, pp. 62].

Remark 4.1. The above definition can be used for identifiabilty of θ0 from Y by

replacing f(X |θ,p, σ2) with f(Y |θ,p, σ2).

Based on the above definition, the necessary and sufficient condition for a particular

DoA point to be identifiable from one-bit SLA data is given in the following Theorem.

Theorem 4.1. The source DoAs are identifiable from X at θ0 ∈ [−π/2, π/2]K×1 if and

only if they are identifiable from Y at θ0.

Proof. See Appendix B.1.

The above Theorem shows that the identifiability condition for the DoA estimation

problem from one-bit SLA measurements is equivalent to that for the DoA estimation

problem from infinite-bit (unquantized) SLA measurements. Hence, the information loss

arises from one-bit quantization does not influence the number of identifiable sources.

However, Theorem 4.1 simply spells out the identifiability condition of a single DoA

point. A sufficient condition for global identifiablity of source DoAs from one-bit data is

given in the following theorem.
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Definition 4.2 (Global identifiability). The source DoAs are said to be globally identifi-

able from X if there exists no distinct θ ∈ [−π/2, π/2]K×1 and θ̆ ∈ [−π/2, π/2]K×1 such

that f(X | θ,p, σ2) = f(X | θ̆, p̆, σ̆2) for any arbitrary values of p ∈ RK×1
>0 , p ∈ RK×1

>0 ,

σ2 and σ2.

Theorem 4.2. The sufficient conditions for global indentifiability and global non-

indentifiability of source DoAs from one-bit SLA data are given as follows:

S1 The source DoAs are globally identifiable (with probability one) from X for any

value of θ ∈ [−π/2, π/2]K×1 if K ≤ v − 1.

S2 The source DoAs are globally unidentifiable from X for any value of θ ∈ [−π/2, π/2]K×1

if K ≥ D.

Proof. See Appendix B.2.

Having revealed that one-bit quantization does not affect the indentifiability conditions

of source DoAs, we will investigate the performance of DoA estimation from one-bit SLA

data through a CRB analysis in the next section.

4.4 Cramér-Rao Bound Analysis

It is well-known that the CRB offers a lower bound on the covariance of any unbiased es-

timator [107]. Hence, it is considered as a standard metric for evaluating the performance

of estimators. In particular, the CRB can provide valuable insights into the fundamental

limits of estimation for specific problems as well as the dependence of the estimation

performance on various system parameters. Deriving a closed-form expression for the

CRB requires knowledge of the data distribution. However, the data distribution may

not be known for some problems. In such cases, the Gaussian assumption is a natural

choice which leads to the largest CRB in a general class of data distributions [108].

In the problem of DoA estimation from one-bit SLA measurements, the true PDF of

one-bit data is obtained from the orthant probabilities [109] of Gaussian distribution,

for which a closed-form expression is not available in general. Motivated by this fact, in

what follows, we derive a pessimistic closed-form approximation for the CRB of the DoA

estimation problem from one-bit SLA data through considering a Gaussian distribution

for x(t). This pessimistic closed-form approximation is used for benchmarking the

performance of one-bit DoA estimators as well as for investigating the performance limits

of the DoA estimation problem from one-bit data. Making use of assumptions A1-A4,
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it is readily confirmed that E{x(t)} = 0. Further, the arcsine law [74] establishes the

following relationship between R and Rx:

Rx = E{x(t)xH(t)} =
2

π
arcsine(R), (4.7)

where [arcsine(R)]m,n = arcsin(<{[R]m,n}) + j arcsin(={[R]m,n}) and

R =
1

σ2 +
∑K

k=1 pk
R

= A(θ)diag(p)AH(θ) + (1−
K∑
k=1

pk)IM , (4.8)

is the normalized covariance matrix of y(t) with p = [p1, p2, · · · , pK ]T and pk =
pk

σ2+
∑K
k=1 pk

. It follows from (4.7) and (4.8) that Rx is a function of the parameters

θ and p. Let % = [θ,p]T denote the vector of unknown parameters. Then, considering

the Gaussian assumption, the worst-case Fisher Information Matrix (FIM) Iw(%) is given

by [107]

[Iw(%)]m,n = Ntr(R−1
x

∂Rx

∂[%]m
R−1

x

∂Rx

∂[%]n
)

= N
∂rHx
∂[%]m

(R−Tx ⊗R−1
x )

∂rx

∂[%]n
, (4.9)

where rx = vec(Rx) and the last equality is obtained by using the relation tr(C1C2C3C4) =

vecH(CH
2 )(CT

1 ⊗C3)vec(CH
4 ). From (4.4), (4.7) and (4.9), we obtain

rx =
2

π
arcsine(vec(R))

=
2

π
Jarcsine

(
Ad(θ)p + (1−

K∑
k=1

pk)e

)
. (4.10)

Computing the derivative of rx with respect to θk and pk yields

∂rx

∂θk
=jπ cos(θk)pkJdiag(d)

[
diag(h)<{ad(θk)}+ jdiag(h)={ad(θk)}

]
, (4.11)

∂rx

∂pk
=J
[
diag(h)<{ad(θk)}+ jdiag(h)={ad(θk)}

]
, (4.12)
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where h and h are given by

h =

[
1√

1−|<{
∑K
k=1 pke

−jπ sin θk`D−1}|2
· · · 0 · · · 1√

1−|<{
∑K
k=1 pke

jπ sin θk`D−1}|2

]T
,

(4.13)

h =

[
1√

1−|={
∑K
k=1 pke

−jπ sin θk`D−1}|2
· · · 0 · · · 1√

1−|={
∑K
k=1 pke

jπ sin θk`D−1}|2

]T
,

(4.14)

ad(θk) denotes the kth column of Ad(θ) and d = [−`D−1, · · · , `0, · · · , `D−1]T . It follows

from (4.9), (4.11) and (4.11) that

Iw(%) = N

[
GH

VH

]
JH(R−Tx ⊗R−1

x )J
[
G V

]
, (4.15)

where

G =jπdiag(d)
[
diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}

]
Φ(θ)diag(p), (4.16)

V =diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}, (4.17)

with Φ(θ) = diag([cos θ1, cos θ2, · · · , cos θK ]T ). If Iw(%) is non-singular, a pessimistic

approximation for the CRB of estimating DoAs from one-bit SLA data can be obtained

through inverting Iw(%). Hence, we need to first establish the non-singularity of Iw(%).

Lemma 4.1. Define Υ =
[
∆ z

]
∈ C(2D−1)×2K , where

∆ = diag(d)
[
diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}

]
, (4.18)

z = diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}. (4.19)

Then, Iw(%) is non-singular if and only if the matrix Υ is full column rank.

Proof. See Appendix B.3

Remark 4.2. Assuming I(%) to be the true FIM, it follows from I(%) � Iw(%) that Υ

being full column rank is also a sufficient condition for the non-sigularity of I(%).

Theorem 4.3. Let CRB(θ) denote the the CRB for source DoAs θ from X. If Iw(%)

is non-singular, then a pessimistic approximation of CRB(θ), denoted by CRBw(θ), is

given by

CRB(θ) � CRBw(θ) =
1

4N
(QHΠ⊥

M
1
2 V

Q)−1, (4.20)
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where

M = JH
(

arcsine(R
T

)⊗ arcsine(R)
)−1

J, (4.21)

Ω =
1

π
G, (4.22)

Q = M
1
2 diag(d)ΩΦ(θ)diag(p), (4.23)

with G and V being given in (4.16) and (4.17), respectively.

Proof. See Appendix B.4

Remark 4.3. We note that CRBw(θ) bears a superficial resemblance to the CRB

expression for DoA estimation from unquantized data, given by [52, Theorem 2]

CRBI(θ) =
1

4Nπ2
(Q̃HΠ⊥

M̃
1
2 Ṽ

Q̃)−1, (4.24)

where

M̃ = JH
(
R
T ⊗R

)−1
J, (4.25)

Q̃ = M̃
1
2 diag(d)Ad(θ)Φ(θ)diag(p), (4.26)

Ṽ =
[
Ad(θ) e

]
. (4.27)

Theorem 4.4. Assume all sources have equal power p and SNR = p/σ2. Then, we have

lim
SNR→∞

CRBw(θ) � 0, (4.28)

Proof. See Appendix B.5

Remark 4.4. Theorem 4.4 implies that the CRBw(θ) does not go to zero as the SNR

increases. As a consequence, in the one-bit DoA estimation problem, we may not be able

to render estimation errors arbitrarily small by increasing the SNR.

4.5 Proposed One-Bit DoA Estimator

In this section, we first derive an enhanced estimate of the normalized covariance matrix

of y(t), i.e., R, from one-bit SLA measurements through exploiting the structure of R.

Then, we obtain DoA estimates by applying Co-Array-Based MUSIC (CAB-MUSIC)

[38, 59] to the enhanced estimate of R. Further, we investigate the analytical performance

of the proposed method for estimating DoAs from one-bit measurements.
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4.5.1 Enhanced One-Bit Co-Array-Based MUSIC

It is deduced from the strong law of large numbers [110, ch. 8] that the sample covariance

matrix of one-bit measurements provides a consistent estimate of Rx with probability 1,

i.e.,

Pr

(
lim
N→∞

R̂x = Rx

)
= 1, (4.29)

where R̂x = 1
NXXH . In addition, reformulating (4.7) provides R based on the covariance

matrix of one-bit data as follows:

R = sine(
π

2
Rx), (4.30)

where [sine(π2 Rx)]m,n = sin(π2<{[R]m,n}) + j sin(π2={[R]m,n}). Accordingly, a consistent

estimate of R is obtained as

R̃ = sine(
π

2
R̂x). (4.31)

Most of the algorithms in the literature employ R̃ for estimating DoAs from one-bit

measurements [32, 75]. However, an enhanced estimate of R compared to R̃ can be

found if the structure of R is taken into account. This enhanced estimate could in

turn yield a better DoA estimation performance. In what follows, we introduce such an

enhanced estimate of R by exploiting its structure. Then, we use this enhanced estimate

to improve the DoA estimation performance from one-bit data.

It is readily known from (4.8) that R has the following structure

R = IM +

D−1∑
n=1

unLn +

D−1∑
n=1

u∗nL
T
n , (4.32)

where un =
∑K

k=1 pke
jπ sin θk`n and Ln is given after eq. (4.5) for 1 ≤ n ≤ D − 1. It can

be observed from (4.32) that the diagonal elements of R are all one while the off-diagonal

elements are parameterized by the vector u = [u1, · · · , uD−1]T ∈ C(D−1)×1. This means

that there exist only 2D− 2 free real parameters in R. Let r̈ ∈ C(M2−M)×1 be the vector

containing the off-diagonal elements of R, obtained by removing the diagonal elements

of R from vec(R). Evidently, r̈ is given by

r̈ = J

[
u∗

u

]
= JΨφ, (4.33)
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where φ = [<{u}T ,={u}T ]T ∈ R(2D−1×1),

Ψ =

[
ID−1 −jID−1

ID−1 jID−1

]
. (4.34)

and J ∈ {0, 1}(M2−M)×(2D−2) is obtained by removing the D-th column as well as the

rows with indices (i− 1)M + 1 for all 1 ≤ i ≤M from J. It follows from (4.33) that R

is parameterized by the real-valued vector φ. We wish to find φ ∈ Eφ = {φ | R(φ) � 0}
from R̂x. To this end, let ̂̈rx ∈ R(M2−M)×1 denote the vector made from the off-diagonal

elements of R̂x. For large N , it follows from the Central Limit Theorem (CLT) [110,

ch. 8] that the distribution of ̂̈rx asymptotically approaches a complex proper Gaussian

distribution, i.e., ̂̈rx
D→ CN (r̈x,

4
π2N

Σ), where r̈x is the vector obtained from stacking the

off-diagonal elements of Rx and Σ = π2N
4 E{(̂̈rx − r̈x)(̂̈rx − r̈x)H} ∈ C(M2−M)×(M2−M).

The closed-form expressions for the elements of Σ are provided in Appendix B.11. It is

observed that the elements of Σ are functions of r̈, thereby parameterized by φ as well.

Considering the transformation (4.31), the asymptotic distribution of the off-diagonal

elements of R̃, denoted by ˜̈r ∈ C(M2−M)×1, is given by

f(˜̈r | φ) =

(
NM2−M

(2π)M2−M det(Σ(φ))

)
(4.35)

× exp{−N [arcsine(˜̈r)− JΨ arcsin(φ)]HΣ−1(φ)[arcsine(˜̈r)− JΨ arcsin(φ)]}
ΠD−1
n=1 (1− [φ]2n)νn(1− [φ]2n+D−1)νn

.

Hence, the asymptotic ML estimation of φ from ˜̈r is derived as follows;

φ̂ = argmin
φ∈Eφ

L(φ), (4.36)

where the cost function L(φ) is given by

L(φ) = ln det(Σ(φ))−
D−1∑
n=1

νn ln(1− [φ]2n)(1− [φ]2n+D−1)

+N [arcsine(˜̈r)− JΨ arcsin(φ)]HΣ−1(φ)[arcsine(˜̈r)− JΨ arcsin(φ)], (4.37)

with νn = ‖vec(Ln)‖2. However, the minimization of (4.37) with respect to φ is very

complicated owing to the nonlinearity of the cost function as well as the constraint φ ∈ Eφ.

To make the problem computationally tractable, we first find an asymptotic equivalent

approximation of L(φ) which is much simpler to minimize. Let γ ∈ Eγ ⊂ R(M2−M)×1

be the (M2 −M) × 1 vector containing the real and imaginary parts of the elements

of R above its main diagonal elements. Obviously, there is the following relationship
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between φ and γ:

γ = FJΨφ ∈ Eγ , ∀φ ∈ Eφ, (4.38)

where F = 1
2

[
F̈T jF̃T

]T
∈ {0, 1}(M2−M)×(M2−M) such that for all 1 ≤ p < q ≤M :

1. the
(

(p− 1)M + q − p(p+1)
2

)
-th rows of F̈ ∈ {0, 1}

(M2−M)
2

×(M2−M) is obtained by

removing the elements with indices (i− 1)M + 1 for all 1 ≤ i ≤M from eTp ⊗ eTq +

eTq ⊗ eTp with [ep]n = δ[p− n] for 1 ≤ n ≤M .

2. the
(

(p− 1)M + q − p(p+1)
2

)
-th rows of F̃ ∈ {0, 1}

(M2−M)
2

×(M2−M) is obtained by

removing the elements with indices (i− 1)M + 1 for all 1 ≤ i ≤M from eTp ⊗ eTq −
eTq ⊗ eTp with [ep]n = δ[p− n] for 1 ≤ n ≤M .

Lemma 4.2. The matrices F, Ψ and J are full rank.

Proof. See Appendix B.6.

The mapping from φ ∈ Eφ to γ ∈ Eγ is one-to-one due to the full rankness of F, Ψ and

J. Hence, it is possible to equivalently reparameterize (4.37) in terms of γ instead of φ.

This can be done by simply replacing φ with Ψ−1J
†
F−1γ. To achieve computational

simplification, we make use of the fact that a consistent estimate of γ can be obtained

as γ̃ = F˜̈r. We can see that γ̃ ∈ R(M2−M)×1 /∈ Eγ with probability one, since the Eγ is

a zero-measure subset of R(M2−M)×1. Now, considering the Taylor series expansion of

L(γ) around γ̃, we obtain

L(γ) =L(γ̃) + (γ − γ̃)H∇γL(γ̃)

+
1

2
(γ̃ − γ)H∇2

γL(γ̃)(γ̃ − γ) + · · · , (4.39)

where ∇γL(γ̃) and ∇2
γL(γ̃) denote the gradient vector and the Hessian matrix of L(γ)

with respect to γ, computed at γ̃, respectively. The first term in (4.39) is constant and,

moreover, the higher other term can be neglected for large N considering the fact that

γ̃ is a consistent estimate of γ. Consequently, making use of (4.38) and the fact that

γ̃ = F˜̈r, we have

φ̂ ' argmin
φ∈Eφ

(JΨφ− ˜̈r)HFH∇γL(γ̃)

+ (˜̈r− JΨφ)HFH∇2
γL(γ̃)F(˜̈r− JΨφ). (4.40)

The above quadratic optimization problem is asymptotically equivalent to (4.36) but is

much more convenient to work with. Relaxing the constraint φ ∈ Eφ with φ ∈ R2D−2
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yields the following closed-form solution for φ̂

φ̂ 'Ψ−1
(
J
H

FH∇2
γL(γ̃)FJ

)−1
J
H

×
[
FH∇2

γL(γ̃)F˜̈r− FH∇γL(γ̃)
]
. (4.41)

To derive the final expression for φ̂, we need to calculate ∇γL(γ̃) and ∇2
γL(γ̃). It is

straightforward to derive L(γ) by making use of (4.38). It follows that

∇γL(γ̃) = g(γ̃), (4.42)

where [g(γ)]n = 4[γ]n
1−|[γ]n|2 + ∂ ln det(Σ(γ))

∂[γ]n
, for 1 ≤ n ≤M2 −M . Additionally, the Hessian

matrix at γ̃ is obtained as

∇2
γL(γ̃) =Ndiag(b̂)F−HΣ̂−1F−1diag(b̂) + E(γ̃), (4.43)

where Σ̂ = Σ(γ̃), [b̂]n = 1√
1−|[γ̃]n|2

, for 1 ≤ n ≤M2 −M and [E(φ)]n,l = 2νn(1+|[φ]n|2)
(1−|[φ]n|2)2 +

∂2 ln det(Σ(γ))
∂[γ]n∂[γ]m

. Inserting (4.42) and (4.43) into (4.41) leads to

φ̂ 'Ψ−1

J
H

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)FJ +

~︷ ︸︸ ︷
E(γ̃)

N


−1

× J
H
(

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)F˜̈r +
FHE(γ̃)F˜̈r− FHg(γ̃)

N︸ ︷︷ ︸
ℵ

)
. (4.44)

In the above equation, the terms ~ and ℵ can be neglected for large N , thus (4.44) may

be simplified as

φ̂ 'Ψ−1
(
J
H

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)FJ
)−1

× J
H

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)F˜̈r. (4.45)

Hence, from (4.33), an enhanced consistent estimate of r = vec(R) is derived as follows

r̂ = J


0 ID−1 −jID−1

1 0 0

0 ID−1 jID−1


[

1

φ̂

]
. (4.46)

Remark 4.5. Considering limN→∞ ˜̈r = r̈, it is readily observed from (4.33) and (4.45)

that φ̂ is a consistent estimate of φ. This in turn implies that r̂ is also a consistent

estimate of r.
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Algorithm 1 EOCAB-MUSIC

Input: SLA one-bit observations, i.e., X.
Output: The estimates of source DoAs.

1: Compute the sample covariance matrix of one-bit data as R̂x = 1
NXXH .

2: Compute R̃ from (4.31).

3: Form ˜̈r by removing the diagonal elements of R̃ from vec(R̃).
4: Compute γ̃ from γ̃ = F˜̈r.
5: Compute b̂ using [b̂]n = 1√

1−|[γ̃]n|2
, for 1 ≤ n ≤M2 −M .

6: Compute Σ̂ by replacing R with R̃ in the closed-form expressions for the elements
of Σ given in Appendix K.

7: Compute φ̂ from (4.45).
8: Compute r̂ from (4.46).

9: Compute R̂v from (4.47).

10: Apply MUSIC to R̂v to estimate DoAs.

To estimate DoAs using r̂, we resort to CAB-MUSIC [75]. Specifically, we first construct

the normalized augmented covariance matrix as

R̂v =
[
TvJ

†r̂ Tv−1J
†r̂ · · · T1J

†r̂
]
∈ Cv×v, (4.47)

where Ti is a selection matrix, defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1). (4.48)

It follows from the consistency of r̂ that

lim
N→∞

R̂v =
[
TvJ

†r Tv−1J
†r · · · T1J

†r
]
∈ Cv×v

= Av(θ)diag(p)AH
v (θ) + σ2Iv, (4.49)

where Av(θ) = [av (θ1) ,av (θ2) , · · · ,av (θK)] ∈ Cv×K denotes the steering matrix of a

contiguous ULA with v elements located at (0, λ2 , · · · , (v − 1)λ2 ). Hence, we can apply

MUSIC to R̂v to estimate the DoAs. We call the proposed method Enhanced One-bit

CAB-MUSIC (EOCAB-MUSIC). Algorithm 1 summarizes the steps of EOCAB-MUSIC.

Remark 4.6. The computational complexity of each step of Algorithm 1 is separately

specified in Table 4.1 where G(n), K(n) and Z denote the complexity of the chosen

algorithm for multiplication of two n-digit numbers, the complexity of integration in

(108) and the number of grid point of the MUSIC algorithm, respectively. Considering

that D and v are typically in the order of M2 and, moreover, n and M are normally very

smaller than Z, it follows from Table 4.1 that the complexity of EOCAB-MUSIC is in the

order of O(MN +M2(G(n)(Z +M4) +K(n)M2)). On the other hand implementation

of OCAB-MUSIC needs only steps 1, 2, 9 and 10 in algorithm 1. Hence, its complexity
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Table 4.1: Complexity of the steps of Algorithm 1

Step order Complexity

1 O(MN)

2 O(G(n)
√
nM2)

3 O(M2)

4 O(G(n)M4)

5 O(G(n)M2)

6 O(K(n)M4)

7 O(G(n)(DM4 +M6 +D3))

8 O(G(n)(D2M2)

9 O(G(n)(M2v(2D − 1 + v))

10 O(G(n)(ZM2 +M3))

is given by O(MN +M2G(n)(Z +M4)). Typically, we have G(n)(Z +M4)� K(n)M2,

implying that the complexity of EOCAB-MUSIC is almost in the same order as that of

OCAB-MUSIC.

4.5.2 Asymptotic Performance Analysis

In this section, we investigate the asymptotic performance of the proposed estimator

through the derivation of a closed-form expression for the second-order statistics of the

asymptotic distribution (as N →∞) of the DoA estimation errors. Our main results are

summarized in Theorem 4.5, Corollary 4.1, Corollary 4.2 and Theorem 4.6.

Lemma 4.3. θ̂ obtained by EOCAB-MUSIC is a consistent estimate of θ if K ≤ v − 1.

Proof. See Appendix B.7

Theorem 4.5. The closed-form expression for the covariance of the asymptotic distribu-

tion (as N → ∞) of the DoA estimation errors obtained by EOCAB-MUSIC is given

by

Eθk1
,θk2

=
(σ2 +

∑K
k=1 pk)

2<{zTk1
T(J

H
WJ)−1J

H
WΓWJ(J

H
WJ)−1T

H
z∗k2
}

Nπ2pk1pk2qk1qk2 cos θk1 cos θk2

, (4.50)
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where

zk =βk ⊗αk, (4.51)

βk =Π⊥
Av(θ)

diag(v)av(θk), (4.52)

αk =A†Tv (θ)ık, (4.53)

qk =aHv (θk)diag(v)Π⊥Av
diag(v)av(θk), (4.54)

W =FHdiag(b)F−HΣ−1F−1diag(b)F, (4.55)

[Γ]p,q =
1

2

(√
1− [<{[r̈]p}]2 ×

√
1− [<{[r̈]q}]2 (4.56)

+
√

1− [={[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
<{[Σ]p,q}

+
j

2

(√
1− [={[r̈]p}]2 ×

√
1− [<{[r̈]q}]2

+
√

1− [<{[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
={[Σ]p,q},

with v = [0, 1, 2, · · · , v−1]T , [b]n = 1√
1−|[γ]n|2

for 1 ≤ n ≤M2−M , Σ ∈ C(M2−M)×(M2−M)

as given in Appendix B.11, T ∈ Cv2×(2D−2) as defined in (B.38) in Appendix B.8, and

ık being the kth column of IK .

Proof. See Appendix B.8

corollary 4.1. The asymptotic MSE expression (as N → ∞) for the DoA estimates

obtained by EOCAB-MUSIC is given by

Eθk = E{(θk1 − θ̂k)2}

=
(σ2 +

∑K
k′=1 pk′)

2<{zTkT(J
H

WJ)−1J
H

WΓWJ(J
H

WJ)−1T
H

z∗k}
Nπ2p2

kq
2
k cos2 θk

. (4.57)

corollary 4.2. The covariance of the asymptotic distribution (as N →∞) of the DoA

estimation errors and the asymptotic MSE expression (as N → ∞) for the one-bit

DoA estimator given in [75], named as One-bit CAB-MUSIC (OCAB-MUSIC), is easily

obtained by replacing W with IM2−M in (4.50) and (4.57), respectively.

Proof. See Appendix B.9

Remark 4.7. It is concluded from Corollary 4.1 and Corollary 4.2 that, similar to

Infinite-bit Co-Array-Based MUSIC (ICAB-MUSIC) [38], the MSEs of EOCAB-MUSIC

and OCAB-MUSIC also depend on both the physical and the virtual array geometries

through Av(θ) and R, respectively.
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Remark 4.8. Another interesting implication of Corollary 4.1 is that the MSEs of

EOCAB-MUSIC and OCAB-MUSIC reduce at the same rate as that of ICAB-MUSIC

[38] with respect to N ; i.e. Eθk ∝
1
N for both.

Remark 4.9. It is readily clear from the definition that r is a function of the SNR, and

not p and σ2. This indicates that W and Γ are also functions of the SNR instead of p

and σ2. Further, multiplying the numerator and denominator of (σ2+
∑K

k′=1 pk′)
2/p2

k by

1/σ4 reformulates it as a function of the SNR. These observations imply that the MSEs

of EOCAB-MUSIC and OCAB-MUSIC are functions of the SNR instead of p and σ2.

This fact can also be deduced directly from system model where we have

[x(t)]m=
1√
2

sgn (<{[y(t)]m})+
j√
2

sgn (={[y(t)]m})

=
1√
2

sgn

(
<{ [y(t)]m

σ
}
)

+
j√
2

sgn

(
={ [y(t)]m

σ
}
)
. (4.58)

for σ > 0. This implies that, without loss of generality, the power of each source can

consider to be equal to the SNR for that source and the noise variance can be consider

to be equal to 1.

Theorem 4.6. Assume all sources have equal power p and SNR = p/σ2. Then, for a

sufficiently large SNR, the MSE of EOCAB-MUSIC converges to the following constant

value:

lim
SNR→∞

Eθk =
K2

Nπ2q2
k cos2 θk

×<{zTkT(J
H

W∞J)−1J
H

W∞Γ∞W∞J(J
H

W∞J)−1T
H

z∗k} > 0, (4.59)

where W∞ and Γ∞ are obtained by replacing R, r̈ and γ in the definitions of W and Γ

(kindly refer to Theorem 4.5) with R∞, γ∞ and r̈∞, respectively, where

R∞ =
1

K
A(θ)AH(θ) + (1− 1

K
)IM , (4.60)

γ∞ is the (M2 −M)× 1 vector containing the real and imaginary parts of the elements

of R∞ above its main diagonal elements and r̈∞ = Ψ−1J
†
F−1γ∞.

Proof. See Appendix B.10.

Remark 4.10. It follows from Theorem 4.6 that it is not possible to make the MSEs of

EOCAB-MUSIC and OCAB-MUSIC arbitrarily small by increasing the SNR.
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4.6 Simulation Results

In this section, we provide some numerical results to validate the analytical results

obtained in previous sections as well as to assess the performance of the proposed

DoA estimator. Specifically, we will show that the proposed estimator yields better

performance in terms of estimation accuracy and resolution compared to the approach

given in [75]. In the rest of this section, we will refer to: 1. the CRB for DoA estimation

from infinite-bit measurements as Infinite-bit CRB (I-CRB), whose expression is given

in Remark 4.3; 2. the pessimistic approximation of the CRB for DoA estimation from

one-bit measurements as One-bit CRB (O-CRB); 3. CAB-MUSIC using infinite-bit

measurements as Infinite-bit CAB-MUSIC (ICAB-MUSIC); 4. the DoA estimator given

in [75] as one-bit CAB-MUSIC (OCAB-MUSIC); 5. the proposed estimator in this paper

as Enhanced One-bit CAB-MUSIC (EOCAB-MUSIC).

4.6.1 General Set-up

In all experiments, each simulated point has been computed by 5000 Monte Carlo

repetitions. Unless the source locations are specified for a particular result, it is assumed

that the K independent sources are equally spaced in the angular domain [−60°, 60°]

such that θ = −60° when K = 1. Further, all sources are assumed to have equal powers,

i.e., pk = p for all k, and the SNR is defined as 10 log p
σ2 . For our numerical investigation,

we use four different types of arrays with M = 10 physical elements and the following

geometries:

Mnested : {1, 2, 3, 4, 5, 6, 12, 18, 24, 30} , (4.61)

Mco-prime : {0, 3, 5, 6, 9, 10, 12, 15, 20, 25} , (4.62)

MMRA : {0, 1, 3, 6, 13, 20, 27, 31, 35, 36} , (4.63)

MULA : {0, 1, 2, · · · , 9} . (4.64)

These arrays generate the difference co-arrays:

Dnested : {0, 1, 2, · · · , 29} , (4.65)

Dco-prime : {0, 1, 2, · · · , 22, 25} , (4.66)

DMRA : {0, 1, 2, · · · , 36} , (4.67)

DULA : {0, 1, 2, · · · , 9} . (4.68)

Further, we generate the grid from −90° to 90° with step size 0.001° to implement MUSIC.
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Figure 4.2: RMSE in degrees for θ2 versus the number of snapshots for a nested
array with M = 10 elements and configuration given in (4.61), SNR = 3 dB, and: (A)

K = 5 < M ; (B) K = 12 > M .

4.6.2 MSE vs. the Number of Snapshots

Fig. 4.2 depicts the Root-Mean-Squares-Error (RMSE) for θ2 in degree versus the number

of snapshots when the nested array in (4.61) is used. The SNR is assumed to be 3 dB.

In addition, noting M = 10, two different scenarios are considered: (A) K = 5 < M ,

and (B) K = 12 > M . Fig. 4.2 illustrates a close agreement between the numerical

simulations and analytical expression derived for RMSEs of OCAB-MUSIC and EOCAB-

MUSIC when about 200 or more snapshots are available. Further, a considerable gap is
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Figure 4.3: RMSE in degrees for θ2 versus N for a nested array with M = 10 elements
and configuration given in (4.61) when K = 3, θ1 = 2°, θ2 = 3°, θ3 = 75°, SNR1 = 20

dB, SNR2 = 8 and SNR3 = 22.

observed between the performance of OCAB-MUSIC and that of the EOCAB-MUSIC.

For instance, at N = 400, Figs. 4.2a and 4.2b show a performance gain of roughly 3 dB

and 1 dB, respectively, in terms of the RMSE when the EOCAB-MUSIC is used. It is

also observed that EOCAB-MUSIC performs as well as ICAB-MUSIC when K = 5 < M .

Further, it is observed that the RMSE of EOCAB-MUSIC is very close to O-CRB when

K = 5 < M but we see a gap between them when K = 12 > M .

Fig. 4.2 also shows that when a small number of snapshots is available, e.g. less than

1000, all estimators are confronted with substantial performance degradation. This

performance loss is justified by the subspace swap arising from the inaccurate estimate

of the normalized covariance matrix of y(t), i.e. R, in this case. However, it is seen that

the proposed estimator still has superior performance compared to OCAB-MUSIC, even

in the low snapshot paradigm.

Fig. 4.3 depicts the RMSE θ2 in degree versus the number of snapshots when K = 3

and the sources powers are unequal. Specifically, It is assumed that θ1 = 2°, θ2 = 3°,

θ3 = 75°, SNR1 = 20 dB, SNR2 = 8 and SNR3 = 22. Comparing Fig. 4.2 with Fig. 4.3

reveals that a high difference between the SNRs of the closely-spaced source signals do

not have a meaningful impact on the relative asymptotic performance of ICAB-MUSIC,

OCAB-MUSIC and EOCAB-MUSIC, however, by increasing the difference between SNRs,

OCAB-MUSIC needs more number of snapshots to achieve its asymptotic performance

compared to EOCAB-MUSIC and ICAB-MUSIC.
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Figure 4.4: RMSE in degrees for θ2 versus SNR for a nested array with M = 10
elements and configuration given in (4.61), N = 500, and: (A) K = 5 < M ; (B)

K = 14 > M .

4.6.3 MSE vs. SNR

Fig. 4.4 shows the RMSE for θ2 in degrees versus SNR for the same setup used for Fig.

4.2. The number of snapshots is considered to be N = 500. It is seen in Figs. 4.4a and

Fig. 4.4b that the RMSEs of OCAB-MUSIC and EOCAB-MUSIC perfectly match with

their asymptotic analytical RMSEs given in Corollary 4.1 and Corollary 4.2.

Fig. 4.4 demonstrates that the I-CRB tends to decay to zero as the SNR increases when

K = 4 < M while it gets saturated as the SNR increases when K = 12 > M . However,



On the Performance of One-Bit DoA Estimation via Sparse Linear Arrays 74

-10 -5 0 5 10 15 20
10

-3

10
-2

10
-1

10
0

(a)

-10 -5 0 5 10 15 20

10
-1

10
0

(b)

Figure 4.5: RMSE in degrees for θ2 versus SNR wen the source powers are unequal
for a nested array with M = 10 elements and configuration given in (4.61), N = 500,

and: (a) K = 5 < M ; (b) K = 12 > M .

as opposed to the I-CRB, O-CRB tends to converge to a constant non-zero value at the

high SNR regime for both the cases K = 4 < M and K = 12 > M . This behavior of

O-CRB was already predicted by Theorem 4.4. In addition, as shown in Theorem 4.6,

the RMSEs of OCAB-MUSIC and EOCAB-MUSIC also converge to a constant non-zero

value as the SNR increases for both K = 4 < M and K = 12 > M .
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We observe from Fig. 4.4 that EOCAB-MUSIC preforms better than OCAB-MUSIC

in both scenarios K = 4 < M and K = 12 > M . For example, at SNR = 5, EOCAB-

MUSIC leads to performance gains of about 3.7 dB and 1.15 dB in terms of RMSE

compared to OCAB-MUSIC. Further, it is seen that EOCAB-MUSIC even outperforms

ICAB-MUSIC at high SNR regime when K = 4 < M . Another interesting observation is

that the RMSE of O-CRB is either better or equal to that of ICAB-MUSIC.

Fig. 4.5 shows the RMSE for θ2 in degrees versus SNR when the sources powers are

unequal and DoAs are not exactly on the grid as opposed to Fig. 4.4. The number of

snapshots is considered to be N = 500. In case of K = 5 < M , the sources are located

at θ1 = −49.4551°, θ2 = −30.1443°, θ3 = −2.4525°, θ4 = 26.8293° and θ5 = 56.5149°.

Further, the source SNRs are assumed to be SNR1 = 0.75 × SNR2, SNR3 = 1.22 ×
SNR2, SNR4 = 0.92× SNR2 and SNR5 = 0.66× SNR2 while SNR2 varies from 10 dB to

20 dB as shown in Fig. 4.5a. Further, in case of K = 12 > M , the sources are located

at θ1 = −56.3351°, θ2 = −36.2628°, θ3 = −19.9004°, θ4 = −2.4093°, θ5 = 0.0027°, θ6 =

13.1840°, θ7 = 23.8495°, θ8 = 25.8044°, θ9 = 29.2889°, θ10 = 40.9107°, θ11 = 48.4465° and

θ12 = 48.5667°. The source SNRs are assumed to be SNR1 = 1.34 × SNR2,SNR3 =

0.84× SNR2,SNR4 = 0.83× SNR2,SNR5 = 0.67× SNR2,SNR6 = 0.69× SNR2, SNR7 =

0.95×SNR2,SNR8 = 0.61×SNR2, SNR9 = 0.79×SNR2, SNR10 = 0.56×SNR2,SNR10 =

0.82×SNR2 and SNR12 = 0.88×SNR2 while SNR2 varies from 10 dB to 20 dB as shown

in Fig. 4.5b. Comparing Fig. 4.5 with Fig. 4.4 reveals that unequal source powers do

not have remarkable impact on the estimation accuracy particularly in high-SNR regime.

4.6.4 CRB vs. the Number of Source Signals

Fig. 4.6 plots the I-CRB and the O-CRB for θ2 in degree versus the number of source

signals for SNR = 3 dB and N = 500 and different type of SLAs given in (4.61), (4.62),

(4.63) and and (4.64). The values of D and v for the different types of arrays are as:

1. MRA: D = 37 and v = 37; 2. nested array: D = 30 and v = 30; 3. co-prime array:

D = 26 and v = 23; ULA: D = 10 and v = 10. Fig. 4.6 indicates that both the I-CRB

and the O-CRB increase as the number of source signals increases. Moreover, it is

observed that the I-CRB and the O-CRB are quite small for all the SLAs as long as

1 ≤ K ≤ v − 1, but they escalate dramatically when K approaches values that are equal

to or larger than D. This observation is in compliance with Theorem 4.2 which indicates

that the DoA estimation problem is globally identifiable when 1 ≤ K ≤ v − 1 and is

globally non-identifiable when K ≥ D.
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Figure 4.6: The CRB versus the number of sources K for various array configurations
given from (4.61) to (4.63), N = 500 and SNR = 3 dB.

4.6.5 Resolution Probability

Fig. 4.7 depicts the probability of resolution versus the source separation for ICAB-

MUSIC, EOCAB-MUSIC and OCAB-MUSIC when the nested array given in (4.61) is

employed. The number of snapshots and the SNR are considered to be N = 500 and

0 dB, respectively. In addition, we consider two sources with equal powers, located

at θ1 = 20° − ∆θ
2 and θ2 = 20° + ∆θ

2 . We define the two sources as being resolvable if

max
i ∈ {1, 2}

|θ̂i − θi| < ∆θ
2 [103]. According to this definition and making use of two-dimensional

Chebychev’s bound [111], the probability of resolution can be lower bounded as

P(max
i ∈ {1, 2}

|θ̂i − θi| <
∆θ

2
) (4.69)

= P(|θ̂1 − θ1| <
∆θ

2
, |θ̂2 − θ2| <

∆θ

2
) ≥ 1− 2[E(θ1) + E(θ2)]

∆θ2

+
2
√
E2
θ1

+ E2
θ2

+ 2Eθ1Eθ2 − 4E2
θ1,θ2

∆θ2
,

where E(θ1), E(θ2) and E(θ1, θ2) are given in (4.57) and (4.50). The analytical expression

on the right-hand side of (4.69) enables us to predict the minimum source separation

required for achieving a particular probability of resolution. For example, Fig. 4.6 shows

the predicted values for the the minimum source separation to achieve a probability

of resolution greater than 0.9, obtained from (4.69), for ICAB-MUSIC, OCAB-MUSIC

and EOCAB-MUSIC. It is observed that the predicted values of the minimum source

separation for ICAB-MUSIC, EOCAB-MUSIC and OCAB-MUSIC, which are respectively

∆θ = 1.2°, ∆θ = 1.4° and ∆θ = 1.5°, are in a good agreement with the values obtained
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Figure 4.7: Probability of resolution versus source separation in degree for a nested
array with M = 10 elements and configuration given in (4.61), N = 500 and SNR = 0

dB.

from the numerical simulations, which are respectively ∆θ = 1.1°, ∆θ = 1.2° and

∆θ = 1.3°. Additionally, Fig. 4.7 demonstrates the resolution performance of EOCAB-

MUSIC is superior to that of OCAB-MUSIC while ICAB-MUSIC outperforms both.

4.7 Conclusion

In this paper, we considered the problem of DoA estimation from one-bit measurements

received by an SLA. We showed that the idetifiability condition for the DoA estimation

problem from one-bit SLA data is equivalent to that for the case when DoAs are

estimated from infinite-bit unquantized measurements. Then, we derived a pessimistic

approximation of the corresponding CRB. This pessimistic CRB was used as a benchmark

for assessing the performance of one-bit DoA estimators. Further, it provides us with

valuable insights on the performance limits of DoA estimation from one-bit quantized

data. For example, it was shown that the DoA estimation errors in one-bit scenario

reduces at the same rate as that of infinite-bit case with respect to the number of samples

and, moreover, that the DoA estimation errors in one-bit scenario converges to a constant

value by increasing the SNR. We also proposed a new algorithm for estimating DoAs

from one-bit quantized data. We investigated the analytical performance of the proposed

method through deriving a closed-form expression for the second-order statistics of its

asymptotic distribution (for the large number of snapshots) and show that it outperforms
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the existing algorithms in the literature. Numerical simulations were provided to validate

the analytical derivations and corroborate the improvement in estimation performance.



Chapter 5

DoA Estimation Using

Low-Resolution Multi-Bit Sparse

Array Measurements

5.1 Introduction

Direction of Arrival (DoA) estimation from Uniform Linear Array (ULA) measurements is

extensively studied in the literature [44–46]. However, the number of identifiable sources

with ULAs is limited to the number of array elements minus one [3, 46]. Deployment

of Sparse Linear Arrays (SLAs), e.g. Minimum Redundancy Arrays (MRAs) [48], co-

prime arrays [17] and nested arrays [16], allows for transcending this limitation under the

assumption of uncorrelated source signals such that the number of identifiable sources can

go considerably beyond the number array elements. A detailed study on the performance

of DoA estimation via SLAs has been conducted in [52] through an analysis of the

Cramér-Rao Bound (CRB). Further, a variety of algorithms for estimating DoAs from

SLA data have been presented in the literature [15, 16, 36, 38, 53, 56, 57, 95].

Most of the algorithms developed for estimating DoAs from SLA measurements are

based on the assumption that quantization errors are negligible as a result of using

high-resolution Analog-to-Digital Converters (ADCs). However, use of high-resolution

ADCs is typically expensive and power-hungry [21]. Hence, to reduce energy consumption

and production costs, DoA estimation with binary measurements collected by one-bit

ADCs has been recently proposed and discussed in the literature [39–43, 72, 73, 75–78].

One-bit ADCs represent each sample of the analog array observations with only a single

bit offering, an exceedingly high sampling rate at a low production cost and very low

power consumption [21]. The analytical performance bounds for DoA estimation from

79
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one-bit data have been studied in [32, 33, 112]. Further, a number of one-bit DoA

estimators have been provided in [73, 75, 76, 78], which rest on retrieving the covariance

matrix of unquantized array observations using the well-known Bussgang theorem [74].

In this paper, as opposed to the previous works which have studied the problem of DoA

estimation under two extreme scenarios for analog-to-digital conversion, i.e., infinite-bit

quantization and one-bit quantization, we aim to investigate the problem of estimating

DoAs from low-resolution few-bit SLA measurements. In such cases, contrary to the

one-bit quantization case, the Bussgang theorem may not be directly employed to retrieve

the covaraince matrix of array unquantized observations. Instead, we develop a novel

optimization-based framework for retrieving the covaraince matrix of unquantized array

observations from low-resolution multi-bit measurements. Then, we apply the Co-Array-

Based MUSIC (CAB-MUSIC) [16, 38] to the recovered covariance matrix to find the

DoAs of interest. The simulation results show that increasing the sampling resolution

with a few bits per samples could significantly improve the DoA estimation performance

compared to the one-bit sampling case while the power consumption and implementation

costs are still much lower than the high-resolution scenario.

Chapter organization: The system model is described in Section 5.2. Section 5.3 presents

the proposed algorithm for estimating DoAs from few-bit data. Simulation results are

shown and discussed in Section 5.4. Finally, conclusions are drawn in Section 5.5.

5.2 System Model

We consider an SLA with M elements located at positions m1
λ
2 ,m2

λ
2 , · · · ,mM

λ
2 with

mi ∈M. Here λ denotes the wavelength of the incoming signals and M is a set of integers

with a cardinality of M . It is assumed that K narrowband signals with distinct DoAs

θ=[θ1, θ2, · · · , θK ]T impinge on the SLA from far-field. The signal received by the array

at time instance t can be modeled as

y(t) = A(θ)s(t) + n(t) ∈ CM×1, t = 0, · · · , N − 1, (5.1)

where s(t) ∈ CK×1 denotes the vector of K source signals, n(t) ∈ CM×1 is additive noise,

and A(θ) = [a (θ1) ,a (θ2) , · · · ,a (θK)] ∈ CM×K represents the SLA steering matrix with

a(θk)=[ejπ sin θkm1 , ejπ sin θkm2 , · · · , ejπ sin θkmM ]T , (5.2)

being the SLA manifold vector for the kth signal. Further, the following assumptions are

made on source and noise signals:



DoA Estimation Using Multi-Bit Low-Resolution Sparse Array Measurements 81

0 1 2 3 4 5 6 7 8 9 10 11 12

(a)

(b)

λ
2

Figure 5.1: (a) An SLA with M = {1, 2, 3, 4, 8, 12}; (b) corresponding difference
co-array with D = {0, 1, · · · , 11}.

A1 n(t) follows a zero-mean circular complex Gaussian distribution with the covariance

matrix E{n(t)nH(t)}=σ2IM .

A2 The source signals are modeled as zero-mean uncorrelated circular complex Gaussian

random variables with covariance matrix E{s(t)sH(t)} = diag(p) where p =

[p1, p2, · · · , pK ]T ∈ RK×1
>0 (i.e., pk > 0, ∀k).

A3 No temporal correlation is assumed between the snapshots, i.e., E{n(t1)nH(t2)} =

E{s(t1)sH(t2)} = 0 when t1 6= t2 and 0 is an all-zero matrix of appropriate

dimensions.

Based on the above assumptions, the covariance matrix of y(t) is given by

R=E{y(t)yH(t)}=A(θ)diag(p)AH(θ)+σ2IM ∈CM×M . (5.3)

It is readily verified that R is a structured matrix with only 2D−1 free parameters where

D= |D| with D={|mp −mq| :mp,mq ∈M}. The set D is called the difference co-array

[52, 53]. Noticing the structure in R, it can be rewritten as follows

R(u) = u0L0 +
D−1∑
n=1

unLn +
D−1∑
n=1

u∗nL
T
n , (5.4)

where u0 = σ2 +
∑K

k=1 pk, un =
∑K

k=1 pke
jπ sin θk`n and

[Ln]p,q =

{
1, if mp −mq = `n,

0, otherwise,
(5.5)

with `n ∈ D, mp,mq ∈ M, 1 ≤ p, q ≤ M and 0 ≤ n ≤ D − 1. A proper design of SLA

allows for identifying more uncorrelated source signals than the number of array elements

by exploiting the resulting structure of R efficiently[16, 17, 52, 53]. Fig. 5.1 illustrates

an SLA along with its difference co-array.

In the classical mode, the received signals are sampled at Nyquist rate and processed

assuming full-precision analog-to-digital conversion. On the other hand, herein, we assume

that each array sensor is equipped with a low-resolution multi-bit ADC converting the
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received analog signal into digital data using q bits per sample. A generic q-bit ADC has

2q − 1 threshold levels where α1 < α2 < · · · < 0 < · · · < α2q < α2q−1. The q-bit ADC at

the mth array element transforms the real and imaginary parts of [y(t)]m into one of the

2q − 1 prescribed qunatization levels {γ1, γ2, · · · , γ2q−1} by comparing them individually

with the threshold levels. Particularly, the q-bit quantized output signal at the mth array

element is expressed as

[x(t)]m = Q([<{y(t)}]m) + jQ([={y(t)}]m), (5.6)

where Q(.) denotes the q-bit quantization operation defined as

Q(a) = γh if αh ≤ a < αh+1. (5.7)

We are interested in estimating DoAs from q-bit quantized output signals of the SLA,

i.e., X =
[
x(0), x(1), · · · , x(N − 1)

]
.

5.3 Multi-Bit DoA estimation with Sparse Arrays

In this section, we first formulate an optimization problem whose solution provides us

with an estimate of the covariance matrix of y(t), i.e., R, using q-bit quantized array

measurements, i.e., X. Subsequently, we apply the CAB-MUSIC [16, 38] to obtain DoA

estimates from the estimate of R.

It follows from (5.4) that R is fully described by the complex vector u = [u0, u1, · · · , uD−1]T .

Hence, for a given Y =
[
y(0), y(1), · · · , y(N − 1)

]
, R can be obtained from the

solution of the following optimization problem

minimize
u

‖R(u)−YYH‖2

subject to R(u) � 0.
(5.8)

However, Y is unknown here, and instead, we only have access to its q-bit quantized

values, i.e., X. It follows from (5.6) and (5.7) that each element of the observation

matrix X determines a lower and an upper bound for the real and imaginary parts of the

corresponding element in Y. Putting these lower and upper bound into the matrices Γl
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and Γu, an optimization problem for joint estimation of u and Y can be cast as follows:

minimize
u,Y

‖R(u)−YYH‖2F

subject to R(u) � 0,

vec(<{Y} − <{Γl}) ≥ 0,

vec(={Y} − ={Γl}) ≥ 0,

− [vec(<{Y} − <{Γu})] ≥ 0,

− [vec(={Y} − ={Γu})] ≥ 0.

(5.9)

where the last four constraints in (5.9) aim to enforce the consistency of Y with the

q-bit measurements by ensuring that the elements of Y lie in the regions determined

by the observation matrix X. The above optimization problem is non-convex as its

objective is a quartic function with respect to Y. In what follows, we first present

an equivalent reformulation for (5.9), which paves the way for iteratively solving this

non-convex optimization problem.

Theorem 5.1. Consider slack variables G ∈ C(M+N)×M , W ∈ CM×M and ξ∈R. The

optimization problem (5.9) is equivalent to

minimize
u,Y,W,G,ξ

‖R(u)−W‖2F + ηξ

subject to R(u) � 0,

vec(<{Y} − <{Γl}) ≥ 0,

vec(={Y} − ={Γl}) ≥ 0,

− [vec(<{Y} − <{Γu})] ≥ 0,

− [vec(={Y} − ={Γu})] ≥ 0,

T � 0,

ξIM −GHTG � 0,

GHG = IM ,

(5.10)

where T =

[
IN YH

Y W

]
∈ C(M+N)×(M+N) and η is a regularization parameter.
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Proof. Consider the slack variables W=YYH . Then it is readily seen that the optimiza-

tion problem (5.9) is equivalent to:

minimize
u,Y,W

‖R(u)−W‖2F

subject to R(u) � 0,

vec(<{Y} − <{Γl}) ≥ 0,

vec(={Y} − ={Γl}) ≥ 0,

− [vec(<{Y} − <{Γu})] ≥ 0,

− [vec(={Y} − ={Γu})] ≥ 0,

W = YYH .

(5.11)

It is readily confirmed that W = YYH if and only if rank(W −YYH) = 0. Further,

rank(W−YYH) = 0 can be equivalently expressed as rank(IN )+rank(W−YYH) = N .

Since IN is positive definite, it follows from the Guttman rank additivity formula [113]

that rank(IN ) + rank(W−YYH) = rank(T). Moreover, it follows from W−YYH = 0

and IN � 0 that T has to be positive semi-definite. These imply that the equality

constraint in (5.11) can be replaced with a rank constraint on a semi-definite matrix.

Hence, the optimization problem (5.11), and equivalently (5.9), can be recast as follows:

minimize
u,Y,W

‖R(u)−W‖2

subject to R(u) � 0,

vec(<{Y} − <{Γl}) ≥ 0,

vec(={Y} − ={Γl}) ≥ 0,

− [vec(<{Y} − <{Γu})] ≥ 0,

− [vec(={Y} − ={Γu})] ≥ 0,

T � 0,

rank(T) = N.

(5.12)

The constraint rank(T) = N in (5.12) is equivalent to imposing the constraint that the M

smallest eigenvalues of T are all zero. This constraint on the M smallest eigenvalues of T

can be formulated by introducing the new slack variables G ∈ C(M+N)×M and ξ ∈ R with

GHG = IM . Indeed, in what follows, we will show the M smallest eigenvalues of T are all

zero if ξIM−GHTG � 0 and ξ → 0. Let ρ1 ≤ ρ2 ≤ · · · ≤ ρM+N and ν1 ≤ ν2 ≤ · · · ≤ νM
denote the eigenvalues of T and GHTG, respectively. From ξIM −GHTG � 0, we

have νi ≤ ξ for i = 1, 2, · · · ,M . Additionally, it follows from [114, Corollary 4.3.16] that

0 ≤ ρi ≤ νi for i = 1, 2, · · · ,M . Hence, we observe that

0 � diag([ρ1, ρ2, · · · , ρM ]T ) � diag([ν1, ν2, · · · , νM ]T ) � ξIM . (5.13)

It easily observed from (5.13) that ξ → 0 leads the M smallest eigenvalues of T to go to
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zero. Accordingly, we can deduce that, by properly selecting η in (5.13) such that the

optimum value of ξ goes to zero, the constraints ξIM −GHTG � 0 and GHG = IM

in (5.13) will be equivalent to the rank constraint in (5.12). This implies that (5.13) is

equivalent to (5.12) and thus to (5.9). This completes the proof.

The optimization problem (5.10) can be solved iteratively by alternating between G and

the other parameters, i.e., u, Y, W and ξ. Let G(k), u(k), Y(k), W(k) and ξ(k) be the

values of the parameters G, u, Y, W and ξ at the k-th iteration, respectively. Given

G(k−1), the optimization problem with respect to u, Y, W and ξ at the k-th iteration

becomes

minimize
u(k),Y(k),W(k),ξ(k)

‖R(u(k))−W(k)‖2F + ηξ(k)

subject to R(u(k)) � 0,

vec(<{Y(k)} − <{Γl}) ≥ 0,

vec(={Y(k)} − ={Γl}) ≥ 0,

−
[
vec(<{Y(k)} − <{Γu})

]
≥ 0,

−
[
vec(={Y(k)} − ={Γu})

]
≥ 0,

T(k) � 0,

ξ(k)IM−G(k−1)HT(k)G(k−1) � 0,

ξ(k) ≤ ξ(k−1).

(5.14)

Once T(k), u(k) and ξ(k) are found by solving (5.14), G(k) can be obtained by seeking

an (M+N)×M matrix with orthonormal columns such that G(k)HT(k)G(k) � ξ(k)IM .

Choosing G(k) to be equal to the matrix composed of the eigenvectors of T(k) corre-

sponding to its M smallest eigenvalues, and following similar arguments provided after

(5.12), we have

G(k)HT(k)G(k) = diag([ρ
(k)
1 , ρ

(k)
2 , · · · , ρ(k)

M ]T )

� diag([ν
(k−1)
1 , ν

(k−1)
2 , · · · , ν(k−1)

M ]T ) � ξ(k)IM , (5.15)

where ρ
(k)
1 ≤ ρ

(k)
2 ≤ · · · ≤ ρ

(k)
M+N and ν

(k−1)
1 ≤ ν

(k−1)
2 ≤ · · · ≤ ν

(k−1)
M denote the

eigenvalues of T(k) and G(k−1)HT(k)G(k−1), respectively. It follows from (5.15) that the

matrix composed of the eigenvectors of T(k) corresponding to its M smallest eigenvalue

is a right choice of G(k). Accordingly, at each iteration of the proposed algorithm, we

need to solve a Semi-Definite Program (SDP), which can be solved efficiently, followed by

an Eigenvalue Decomposition (ED). The alternating optimization procedure is repeated

until either the objective or the optimization variables converge to a constant value.

Algorithm 2 summarizes the steps of the aforementioned iterative approach to solving

(5.9). Further, to initialize the algorithm, G(0) can be found through the ED of T(0)
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Algorithm 2 Covarinace Matrix Estimatiton from Low-Resolution Few-Bit Data

Input: The problem information Γl, Γu, η, ε1, ε2, ε3 and ε4.
Output: The estimate of the covariance matrix of the full-precision data.

1: initialization: Set k = 0 and obtain G(0) by dropping the rank constraint.
2: while ‖u(k) − u(k−1)‖2 ≥ ε1, ‖W(k) −W(k−1)‖F ≥ ε2, ‖Y(k) −Y(k−1)‖F ≥ ε3 and ξ(k) ≥ ε4 do
3: Increase k by one.
4: Find u(k), W(k), Y(k) and ξ(k) by solving (5.14).
5: Compute the ED of T(k).
6: G(k) equals the matrix composed of the eigenvectors of T(k) corresponding to its
M smallest eigenvalues.

7: end while

obtained from solving (5.12) without considering the rank constraint. We note that the

proposed algorithm, which is based on alternating optimization method, is guaranteed to

converge to at least a local minimum of (5.10) [115]. Once R is retrieved from Algorithm

2, the CAB-MUSIC [16, 38] is applied to the retrieved R to estimate DoAs.

5.4 Simulation Results

In this section, numerical results are provided for assessing the performance of the

proposed algorithm for estimating DoAs from low-resolution few-bit SLA output. In all

experiments, each simulated point has been computed by 1000 Monte Carlo repetitions

over noise realizations. In addition, the K independent sources with an equal power p

are equispaced in the angular domain [−60°, 60°] with respect to a 8-sensor nested array

with M : {1, 2, 3, 4, 5, 10, 15, 20} . The SNR is also defined as 10 log p
σ2 .

Fig. 5.2 depicts the Root-Mean-Squares-Error (RMSE) for θ2 in degree versus SNR for

different bit-width when N = 300, M = 8 and: (a) K = 4 < M ; (b) K = 10 > M . Fig.

5.2 demonstrates that increasing the number of quantization bits from one to two and then

to four leads to a considerable performance improvement. Further, it is observed that the

RMSE of 4-bit DoA estimation is very close to that of DoA estimates obtained from the

unquantized array observations. For instance, when K = 4, the performance loss arising

from quantization, defined as 10 log(RMSEquantized/RMSEunquantized), at SNR = 5 dB

are about 3.33 and 1.39 dB in case of 1-bit and 2-bit quantization, respectively, while

it is almost zero in case of 4-bit quantization. However, the implementation costs

and power consumption of 4-bit and 2-bit ADCs are still much lower compared to

high-resolution ADCs. For example, at sampling frequency of 10 MHz, a 14-bit ADC

consumes roughly 103 times more power than 2-bit and 4-bit ADCs [116]. The gap

between the power consumption of low- and high-resolution ADCs further increases

with higher sampling frequencies, e.g. at sampling frequency of 1 GHz, a 14-bit ADC

consumes roughly 105 times more power than 2-bit and 4-bit ADCs [116]. Further, it is
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Figure 5.2: RMSE in degree for θ2 versus SNR for a 8-sensor nested array with
M : {1, 2, 3, 4, 5, 10, 15, 20} ., N = 300, and: (a) K = 4 < M ; (b) K = 10 > M .

relatively easy to implement 4-bit and 2-bit ADCs even at very high sampling frequencies

while implementation feasibility of high-resolution ADCs moves from difficult at sampling

frequencies of ∼ 1 MHz to infeasible beyond those sampling frequencies [116]. Moreover,

it is seen that the proposed method in case of 1-bit quantization performs as well as

the one-bit DoA estimator in [75], which relies on estimating the covariance matrix of

unquantized array observations directly from one-bit data using the Bussgang theorem.

Fig. 5.3 plots the RMSE for θ2 in degree versus the number of snapshots for SNR = 0 dB

and: (a) K = 4 < M , and (b) K = 10 > M . Fig. 5.3 shows that, to achieve an RMSE

of 0.1 for example, infinite-bit, 4-bit, 2-bit and one-bit cases need 300, 300, 500 and 800

samples when K = 4, respectively. This indicates that the total number of bits required

to achieve an RMSE of 0.1 is, respectively, 1200, 1000 and 800 bits for 4-bit, 2-bit and

one-bit sampling scenarios.
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Figure 5.3: RMSE in degree for θ2 versus the number of snapshots for a 8-sensor
nested array with M : {1, 2, 3, 4, 5, 10, 15, 20} ., SNR = 0 dB, and: (a) K = 4 < M ; (b)

K = 10 > M .

5.5 Conclusion

The problem of DoA estimation from low-resolution few-bit SLA data was investigated.

Firstly, the covariance matrix of unquantized array observations was retrieved from

low-resolution few-bit SLA data by employing an iterative optimization-based algorithm.

Then, DoAs were estimated by applying CAB-MUSIC to the recovered covariance

matrix of unquantized array observations. The simulation results showed that increasing

the sampling resolution to 2 or 4 bits per samples could significantly increase the

DoA estimation performance compared to the one-bit sampling case while the power

consumption and implementation costs are still much lower than the high-resolution

sampling scenario.
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Chapter 6

Localization with One-Bit Passive

Radars in Narrowband

Internet-of-Things using

Multivariate Polynomial

Optimization

6.1 Introduction

Recent industry estimates project that nearly 75 billion devices will be connected in the

Internet-of-Things (IoT) by the year 2025 [117]. The IoT is envisioned to connect the

physical and digital world through extensive instrumentation with sensing, wearable, and

intelligent devices [118]. A common IoT application is to provide various localization-

based services [119, 120], wherein a large network of devices collects and transmits data

to determine the position of entities-of-interest with respect to a node or sensor within

the IoT. The location information is critical in order to gather crucial inference from

physical measurements in applications such as military surveillance [121], physiological

sensors [122], smart homes [123], disaster response [124], and environmental monitoring

[125].

Global Positioning System (GPS) devices are quite reliable in providing localization

measurements in other applications. However, GPS deployment at every IoT node is

very expensive in terms of cost and power, especially for networks with massive number

of devices. Further, GPS performs poorly in indoor environments. Therefore, many
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alternative IoT localization methods have been proposed in recent studies [120]. A

promising technology is passive sensor tags that augment existing IoT deployments

through backscatter communications [126]. These tags do not have any active radio-

frequency (RF) chain components thereby leading to huge savings in cost and energy.

This is also a practical approach because it is difficult to re-purpose the preset IoT

network sensing modalities (usually fixed before the deployment), especially when it

comprises millions of devices [127]. On the other hand, addition of passive sensors does

not require changing the deployed IoT hardware or placement of new communications

and power sources [128].

Since the IoT framework is defined by a massive number of largely battery-powered devices,

that also transmit or receive data, the underlying challenges for any communications link

in this setting are low power, low data rate, wide coverage, and scalability [129]. In this

context, the 3rd generation partnership project (3GPP) recently introduced narrowband

IoT (NB-IoT) system specifications to support wide coverage area, long user lifetime,

and low power/cost devices over a narrow bandwidth of 180 kHz [130]. While not fully

backward compatible with existing 3GPP devices, the NB-IoT harmoniously coexists

with legacy networks by reusing the functionalities of the latter’s design. The reduced

NB-IoT bandwidth implies higher transmit power spectral density within the existing

3GPP specifications. This, combined with a soft re-transmission strategy [131], enhances

the coverage of NB-IoT over conventional IoT solutions. The ultra-low complexity and

low power consumption features of NB-IoT are advantageous for location-based services

such as smart parking, smart tracking, and smart home [132]. In this paper, we focus on

passive localization in NB-IoT networks.

While NB-IoT networks benefit from low bandwidth to enhance their coverage, the same

feature imposes challenges in localization by severely limiting the data rate. Commonly

used ranging-based localization techniques lose accuracy because of low data rates [133].

In NB-IoT devices, low battery-power is insufficient to handle high sampling rates

required to attain necessary localization accuracy [134–137]. A popular alternative

NB-IoT localization technique is to employ fingerprinting, wherein the received signal

strength indicator (RSSI) measurements are collected at specified locations during the

training phase and then compared with online measurements to determine the location

of the target [90, 134]. However, this approach requires prior knowledge of a detailed

RSSI database which may be unavailable or unattainable. Hence, recent NB-IoT studies

explore RSSI-independent signal processing methods such as successive interference

cancellation [135], maximum likelihood estimation [136], frequency hopping [137] and

machine learning [138]. Our proposed technique is inspired by localization in passive

radar [93] not requiring prior RSSI measurements.
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The aforementioned works assume that measurements at each node are digitally repre-

sented by a large number of bits per sample such that the resulting quantization errors

can be neglected. Further, when nodal measurements are sent to a fusion center (FC)

for an aggregate decision, full capacity links are assumed. In this paper, contrary to

these works, we consider the limiting case wherein the receivers at each node employ

one-bit analog-to-digital converters (ADCs), which directly convert node measurements

into complex data with binary components, each containing one-bit information, by

comparing the real and imaginary parts of the node measurements with appropriate

thresholds separately and noting the sign. This leads to one-bit per component mea-

surements. Considering the fact that the cost and power consumption of ADCs increase

exponentially with the number of quantization bits and sampling frequency [139], the use

of one-bit ADCs supports the low-cost and low-power-consumption features of NB-IoT.

We then leverage the recent advances in one-bit signal processing [140] to estimate the

target range/delay with respect to a specific node. To cope with the capacity limitations

of the nodal links, we assume that, prior to transmission to FC, the receive sensors

quantize nodal estimates to one-bit data. The FC then performs target localization, i.e.

determination of target’s position with respect to the entire network, using the one-bit

range vector aggregated from the estimates sent by all the nodes.

Converting analog signals into digital data using a single bit per sample leads to significant

errors in the digital approximation of the original analog signals. This necessitates

development of new algorithms for information retrieval from one-bit samples. One-

bit sampling has a rich heritage of research in statistical signal processing [141–143]

and signal reconstruction [144]. It was shown in [144] that, for band-limited bounded-

amplitude square-integrable input signals, a sufficient number of one-bit samples lead

to recovery of full-precision data with locally bounded point-wise error, resulting in an

exponentially decaying distortion-rate characteristic. In the past few years, one-bit signal

processing has received significant attention in numerous modern applications such as

array processing [145, 146], massive multiple-input multiple-output (MIMO) [147], deep

learning [148], dictionary learning [67], and radar [29]. Most of these works are based on

either well-known Bussgang’s Theorem [145, 147, 149] or compressive sensing techniques

[29, 67, 148, 150]. Further, there are some elegant works on colocated one-bit radar

and array processing [31, 146] which formulate the parameter estimation from one-bit

measurements as an optimization problem with linear constraints which can be solved

by polynomial-time algorithms. Contrary to previous works on colocated one-bit radar

[31], our proposed method investigates widely separated radar setting.

We first formulate the problem of range/time-delay estimation in a clutter-free environ-

ment from one-bit samples received by each NB-IoT sensor as a sparse recovery problem.

The formulation and approach of the clutter-free scenario is effectively applicable in
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a weak clutter environment but the impact of strong clutter is unexamined and left

for the future work. We show that, unlike infinite precision sampling, oversampling

could improve the range/delay estimation performance in one-bit sampling. Further,

oversampling leads our proposed approach to be able to achieve a considerably high

resolution for time-delay estimation despite the narrow bandwidth used in NB-IoT.

Toward dealing with the capacity limitations of the backhaul links, we assume that each

sensor forwards an one-bit conversion of their range measurements to the FC. Collecting

these one-bit measurements at the FC, we formulate the passive localization problem

using the bistatic range-difference model. Note that the passive localization with NB-IoT

sensors has a model similar to that of a passive radar [93]. The passive radar localization

has been considered in [93] in the high-resolution ADC framework in which full-precision

range measurements are assumed. This usually results in a system of several equations

that are solved conventionally by the least squares (LS) method. In this context, apart

from application to NB-IoT localization, ours is the first work in the context of one-bit

sampling in a passive and distributed radar setting.

In our bistatic range-difference model, recovering locations from one-bit samples requires

minimizing a cost function that is a non-negative polynomial in range measurement

variables and subjected to polynomial inequalities defined by the positive-valued samples

(the one-bit range measurements). The general approach to solving this problem is to re-

cast the feasibility of this finite system of polynomial constraints in terms of an equivalent

polynomial that involves squares of (unknown) polynomials [151]. However, it is rather

difficult to express a non-negative multivariate polynomial as a sum-of-squares. To

address this, we employ Lasserre’s general solution approach for polynomial optimization

problems via semi-definite programming (SDP) using methods based on moment theory

[152]. Our novel formulation jointly estimates the full-precision data as well as the

target location. While this method could attain the global minimum, its computational

complexity grows considerably with increase in the number of NB-IoT sensors. In order to

reduce the computational complexity, we trade accuracy with complexity by proposing a

novel sub-optimal iterative joint range-target location estimation (ANTARES) algorithm.

We also derive the Cramér-Rao bound (CRB) for localization with one-bit nodal range

measurements and use it as benchmark for assessing the estimation performance of

the proposed optimal and sub-optimal algorithms. Numerical results show that when

sufficiently large number of NB-IoT nodes are available, the optimal approach yields

same performance as the full-precision and ANTARES leads to only 0.43% increase

in the normalized localization error. Further, the normalized localization error rises

minimally by 2.2% and 0.6% for a smaller set of 20-60 nodes using ANTARES and

optimal algorithm, respectively, over the full precision case.
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Preliminary results of this work appeared in our conference publication [153], where per-

formance analysis was not included and only Lasserre’s approach was considered. In this

paper, we also investigate the one-bit time-delay estimation for the oversampled scenario

and present ANTARES algorithm. In summary, our work provides a robust framework for

location-based services in NB-IoT, does not require prior RSSI measurements, performs

target delay estimation with one-bit samples, yields localization using limited capacity

links, and is computationally efficient. Further, our work also has connections with

the recent developments in spectrum sharing and joint radar-communications (JRC)

design [139, 154]. Unlike some recent works [155] where new waveforms are developed for

distributed JRC, our work exploits existing NB-IoT signaling for a sensing application.

Chapter organization: In section 6.2, we describe the system and signal model of the

passive localization problem via the NB-IoT sensors. We introduce our one-bit nodal

range estimation algorithm in Section 6.3. Then, using these estimates, we localize

the target at FC in Section 6.4 through a polynomial optimization. We validate our

models and methods through numerical experiments in Section 6.5 before concluding in

Section 6.6.

6.2 System Model

Consider a source, say, a communications base-station whose location in Cartesian

coordinates is
[
δxb δyb δzb

]T
∈ R3×1. The source transmits a known baseband single-

tone NB-IoT signal s(t) ∈ C with bandwidth B. As per NB-IoT specifications, the

signal has spectrum limited to 180 kHz. It is similar to LTE with fewer (1, 3, 6, or

12) subcarriers with normal cyclic prefix [129, 156] and employs rotated phase shift

keying (PSK) constellations, either π/2 binary PSK (π/2-BPSK) or π/4 quadrature PSK

(π/4-QPSK). The resulting signal is

s(t) =

Nc−1∑
k=0

ake
jk π
M g(t− kTc), 0 ≤ t < T, (6.1)

where ak ∈ {±1} for π/2-BPSK and ak ∈ {±1,±j} for π/4-QPSK are known pilot

symbols, M is the alphabet size (2 for π/2-BPSK and 4 for π/4-QPSK), Nc is the

maximum number of symbols allowed during the transmission, T denotes the observation

interval, Tc is the symbol period, and g(t) is the pulse shaping filter impulse response

with bandwidth B.

The transmit signal is bounced off from the target-of-interest located at
[
δx δy δz

]T
∈

R3×1. In a typical NB-IoT setting, a target could be a subject carrying a mobile phone,
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Figure 6.1: Illustration of the localization scenario. The NB-IoT #1, #2, · · · , nodes
(blue) are passive sensors (located at distances d̃1, d̃2, · · · , d̃6 from the base station).
The nodes receive the signal from the source bounced off from a target-of-interest (red)
located at distances d1, d1, · · · , d6 from the nodes and d0 from the base station. In our
proposed model, the nodes employ one-bit ADCs to sample the received signal and
estimate the range. The estimated range at each node is quantized and then forwarded

to the FC for an aggregated estimate.

an intelligent vehicle or a robot. The backscattered signal is then received by M distinct

NB-IoT sensor nodes. The location of the m-th node is
[
δxm δym δzm

]T
∈ R3×1,m ∈

M
.
= {1, 2, · · · ,M}. These nodes are synchronized with the base-station (Fig. 6.1).

Synchronization could be provided by sending a periodic synchronization signal from

the base-station to the NB-IoTs, including timing information of the base-station, while

the base-station maintains a constant clock using either receiving a reference time

from GPS or an atomic clock. After receiving the the base-station timing information,
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NB-IoTs are able to accurately synchronize their clocks with the base-station clock

[157–160]. More detailed information about the periodic synchronization signal and

the synchronization mechanism in NB-IoT systems are provided in [159, 160], and the

references therein. Synchronization may be also achieved through the use of protocols such

as IEEE 1588 generic precision time protocol (gPTP) [161], network time protocol (NTP)

[162] and wireless PTP [163]. These cost-effective clock synchronization protocols are

also popular in other applications, including electrical grid networks, cellular base-station

synchronization, industrial control, and vehicular systems [164, 165].

If the distance between the source and the target is d0 and that between the target and

the m-th NB-IoT node is

dm=
√

(δxm − δx)2 + (δym − δy)2 + (δzm − δz)2, 1≤m≤M, (6.2)

then the true target range with respect to the m-th NB-IoT node is

rm = dm + d0, 1≤m≤M. (6.3)

The propagation is non-dispersive and the base-station signal received by the NB-IoT

nodes includes a direct line-of-sight (LoS) path from the base-station to the nodes and

an indirect non-LoS (NLoS) path from the base-station to the target and then to the

nodes. The demodulated baseband analog signal received at m-th sensor is

y̆m(t) = α̃ms(t− τ̃m) + αms(t− τm) + n̆m(t), (6.4)

where α̃m ∈ C (αm ∈ C) and τ̃m ∈ R (τm ∈ R) are the attenuation coefficient and

time-delay of the propagation channel for the direct (indirect) path, respectively; and

n̆m(t) ∈ C denotes additive white noise following a circular-symmetric complex Gaussian

distribution with variance Nm > 0. The unknown time delay τm is linearly proportional

to rm, i.e. τm = rm/c where c = 3× 108 m/s is the speed of light. The unknown direct

path delay τ̃m is also linearly proportional to the distance between the m-th node and

the base station. i.e., τ̃m = d̃m/c where d̃m =
√

(δxm − δxb )2 + (δym − δyb )2 + (δzm − δzb )2

denotes the distance between the m-th node and the base station.

The baseband signal is filtered by an ideal low-pass filter with bandwidth B and frequency

response
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ym(t) ym zm
CDC Q(.)

Ts = 1
2ϑB

Figure 6.2: Conceptual representation of the oversampled one-bit ADC. The CDC
block represents the digitizer operating at sampling rate of 1/Ts. A quantizer Q(·) then

converts the digital samples into a one-bit data stream.

H(Ω) =

{
1, |Ω| ≤ 2πB,

0, otherwise.
(6.5)

This low-pass filtering of the signal y̆m(t) yields

ym(t) = α̃ms(t− τ̃m) + αms(t− τm) + nm(t), (6.6)

where nm(t) is the filtered noise trail whose auto-correlation is

Rnm(t1−t2)=
1

2π

∫ ∞
−∞

Nm|H(Ω)|2e−jΩ(t1−t2)dΩ

=2BNmsinc(2B(t1−t2)), (6.7)

where sinc(u) = sin(πu)
πu .

Each NB-IoT node is equipped with a one-bit ADC which admits binary samples of the

corresponding ym(t) during the observation interval [0, T ). The ADC sampling frequency

fs = 1
Ts

= 2ϑB, where ϑ is an integer greater than or equal to one, referred to as the

oversampling factor. Figure 6.2 conceptually depicts a one-bit ADC which comprises a

Continuous-to-Discrete Converter (CDC) with sampling frequency fs=2ϑB followed by

a one-bit quantizer. The CDC produces L= T
Ts

= 2ϑBT discrete samples of ym(t) during

the time interval [0, T ). Stacking all discrete samples produces a CL×1 vector

ym = α̃ms(τ̃m) + αms(τm) + nm, (6.8)

where [ym]l = ym((l − 1)Ts), [s(τ̃m)]l = s((l − 1)Ts − τ̃m), [s(τm)]l = s((l − 1)Ts − τm),

and [nm]l = nm((l − 1)Ts) for l = 1, 2, · · · , L. From (6.7) and Gaussianity of nm(t),

vector nm follows a zero-mean complex Gaussian distribution with the covariance

E{nmnHm} = σ2
mΣ ∈ CL×L (6.9)
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where [Σ]i,j = sinc
(
|i−j|
ϑ

)
and σ2

m = 2BNm.

The quantizer, represented by a function Q(·), converts the discrete samples into binary

data by comparing each sample to a known threshold and then measuring the sign of the

real and imaginary parts of the resulting difference. These one-bit measurements at the

m-th NB-IoT node are

zm = Q(ym), (6.10)

where the l-th element of Q(ym) is

[Q(ym)]l (6.11)

=
1√
2

sgn(<{[ym]l − [γm]l}) +
j√
2

sgn(={[ym]l − [γm]l}).

with γm ∈ CL×1 are known thresholds levels.

The nodal processing at each NB-IoT receiver entails estimation of the target time-delays,

and hence the range, from one-bit samples zm. In the next section, we devise a method

for one-bit time-delay estimation.

6.3 Time-Delay Estimation with One-Bit Samples

Several approaches have been proposed in the literature to estimate range (time-delay)

of targets from one-bit samples with most formulating this as an optimization problem.

For example, the covariance matrix formulation of [31] employs cyclic optimization

method to extract the range along with other parameters. Other recent works using only

one sensor exploit sparsity of the target scenario to estimate unknown parameters by

applying techniques such as `1-norm minimization [166] and log-relaxation [167] to solve

the resulting optimization. In our passive NB-IoT sensor set-up, the objective function is

a variation of weighted least squares (WLS) that we minimize via `1-norm regularization

to estimate τm using the one-bit quantized observations, i.e., zm. In conventional passive

radars, direct and indirect path signals are recorded in separate reference and surveillance

channels, respectively. However, the direct signal may seep into the surveillance channel

and mask the relatively weaker indirect signal. In such cases, adaptive filters are employed

to first suppress the direct signal in the surveillance channel [168]. However, our NB-IoT

scenario is an opportunistic sensing application where the receivers are not equipped to

record separate channels. Moreover, as explained next, the (additive) overlap of direct

signal with the target echo is useful because the former is used to estimate the latter in
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our formulation. Here, we also remark that there are passive radar applications where

direct signal suppression is not crucial. For example, this requirement is often relaxed in

passive sensing using communications satellites because of the relatively weak power of

the direct path satellite signal than, say, commonly used broadcasting signals [169].

6.3.1 Constrained-Weighted Least Squares Minimization

Equation (6.8) can be transformed to the frequency domain by multiplying both sides by

an L× L Discrete Fourier Transform (DFT) matrix F, whose (n, k)-th entry is e
−j2πnk

L .

This yields

Fym = α̃mdiag(sτ̃m)a(τ̃m) + αmdiag(sτm)a(τm) + nm, (6.12)

where nm = Fnm, [a(u)]l = e−j2π
(l−1)u
LTs for 0 ≤ l ≤ L− 1 and su = Fsu with

[su]l =

{
s((l − 1)Ts) 1 ≤ l ≤ L− b uLc,
0 otherwise.

(6.13)

Let us discretize the continuous space of the time delay, i.e., [0, T ), into a given set of

N ≥ L grid points, i.e., {τm,1, · · · , τm,N} [170]. This discretization transforms (6.12)

into the following sparse model

Fym = [S�A(τm)]αm + nm (6.14)

where A(τm) =
[
a(τm,1) · · · a(τm,N )

]
∈ CL×N , S =

[
sτm,1 · · · sτmN1

]
∈ CL×N

and αm =
[
αm,1 · · · αm,N

]
∈ CN×1 is a sparse vector with

[αm]k =


αm, if τm,k = τm,

α̃m, if τm,k = τ̃m,

0, otherwise.

(6.15)

The waveform s is known at NB-IoT receiver. Hence, the problem is to find ym and

a sparse vector αm which are consistent with the model in (6.15) as well as one-bit

measurments zm. In consequence, the time-delay estimation problem can be formulated

as follows [166]
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minimize
ym,αm

‖αm‖1 + ρ‖W
[
Fym − [S�A(τm)]αm

]
‖22

s.t. <{zm} � <{ym − γm} � 0,

={zm} � ={ym − γm} � 0.

(6.16)

where ρ is a regularization parameter and W = Σ−
1
2 FH is a weighting matrix. The

first term in the objective of (6.16) promotes sparsity in αm while the second term is

a WLS criterion that penalizes the model mismatch in (6.14) considering the fact that

the additive noise in (6.14) follows a circular-symmetric complex Gaussian distribution

with the covariance matrix σmFΣFH . Further, linear constraints arise because one-bit

quantized and discrete samples must share the same sign. Introducing a slack variable

xm = Σ−
1
2 FH

[
Fym − [S�A(τm)]αm

]
, (6.16) becomes

minimize
xm,αm

‖αm‖1 + ρ‖xm‖22

s.t. <{zm}�<{FH [S�A(τm)]αm+Σ
1
2 xm−γm} � 0,

={zm}�={FH [S�A(τm)]αm+Σ
1
2 xm−γm} � 0.

(6.17)

The above problem comprises minimization of a convex objective function with linear

constraints and can be solved efficiently [98].

The solution of (6.17) yields estimate of αm which has two non-zero elements at indices

k1 and k2. From this, we find τ̂m =
[

(k1−1)T
N , (k2−1)T )

N

]T
. The estimated unknown time

delay corresponding to the indirect path is then

τ̂m = max{[τ̂m]1, [τ̂m]2}, (6.18)

Lemma 6.1. τ̂m is a consistent estimate of τm.

Proof. See Appendix C.1.

Hence, the a consistent estimate of the range of the target is given by r̂m = cτ̂m.

6.3.2 Improved Performance with Oversampling

It is possible to improve the recovery performance if the one-bit ADCs sample at a rate

higher than the Nyquist. Note that the samples are still quantized to only single bits. In

this section, we analyze the effect of oversampling.
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ym(t) ỹm ym
CDC ϑ H̃(ejΩ)

T
′
s = 1
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Figure 6.3: An equivalent representation of Fig. 6.3 to show both oversampled ym
and Nyquist-sampled ỹm.

In case of oversampling, let replace the CDC module in Fig. 6.2 with an equivalent

system (Fig. 6.3) composed of a CDC that samples ym(t) at the Nyquist rate followed

by an ϑ-fold upsampling. A low-pass filter with frequency response

H̃(ejΩ) =

{
ϑ, |Ω| ≤ π

ϑ ,

0, Otherwise,
(6.19)

outputs the oversampled data ym. The oversampled ym and Nyquist-sampled ỹm (see

Fig. 6.3) are related as [171]

[ym]l =

L/ϑ∑
p=1

[ỹm]psinc

(
l − 1

ϑ
− p+ 1

)
(6.20)

=


[ỹm]p, if l = (p− 1)ϑ+ 1, 1 ≤ p ≤ L/ϑ,
L/ϑ∑
p=1

[ỹm]psinc

(
l − 1

ϑ
−p+1

)
, otherwise.

Indeed, (6.20) implies that L
ϑ elements of ym are exactly equal to those of ỹm; and

the other elements of ym are obtained from linear combinations of the elements of ỹm.

Let [ym]l = [ym]l for l 6= (p − 1)ϑ + 1 and 1 ≤ p ≤ L/ϑ and I(.|θ) denote the Fisher

Information Matrix (FIM) with respect to the parameter vector θ. The linear dependence

of ym and ỹm implies that I(ym|ỹm, τm,αm) = 0. Hence, it follows from the chain rule

of FIM [172] that

I(ym|τm,αm) = I(ỹm|τm,αm). (6.21)

This means that oversampling has no impact on the accuracy of the time-delay estimation

using full-precision data in our model.

Now let us consider the effect of oversampling on the accuracy of the time-delay estimation

using one-bit data. Substituting (6.20) into (6.10) yields
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[zm]l = Q([ym]l) (6.22)

=


[z̃m]p, if l=(p− 1)ϑ+ 1, 1≤p≤L,

Q

(
L∑
p=1

[ỹm]psinc
(
l−1
ϑ − p+ 1

))
, otherwise,

where z̃m = Q(ỹm) contains the one-bit data at the Nyquist rate. From (6.22), we deduce

that whereas L
ϑ elements of zm are exactly equal to those of z̃m, the remaining elements of

zm, denoted by zm ∈ C(1− 1
ϑ

)L×1, can not be constructed from linear combinations of the

elements of z̃m like the full-precision case. In other words, (6.22) indicates that while z̃m

provides information about only the signs of ỹm, zm provides additional information on

the signs of the linear combinations of ỹm. Therefore, in general, I(zm|z̃m, τm,αm) � 0.

From the chain rule of FIM [172], we have

I(zm|τm,αm)=I(z̃m|τm,αm)+I(zm|z̃m, τm,αm). (6.23)

Considering (6.23) and I(zm|z̃m, τm,αm) � 0, we observe

I(zm|τm,αm) � I(z̃m|τm,αm) (6.24)

This implies that oversampling could enhance the parameter estimation performance

when one-bit quantized data is used.

6.4 Target Localization with One-Bit Samples

In order to comply with bandwidth and power limitations, each of the M sensors converts

its nodal range measurements into a binary sample wm by comparing it to a positive

threshold λm > 0, i.e.,

wm = sgn(rm − λm). (6.25)

All nodes forward this binary range and the corresponding thresholds to the FC which

localizes the target using the binary range measurements from all nodes. We first present

a framework for target localization with full precision (or infinite-bit) range measurements

and follow it with our methods for one-bit data.

6.4.1 Localization with Full-Precision Range Estimates

Recall the expressions of dm and rm in (6.2) and (6.3), respectively. Without loss of

generality, consider the first (m = 1) sensor as the reference sensor. The difference
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between the true range with respect to reference sensor and any of the remaining m-th

(m > 1) sensor is

rm − r1 = dm − d1, (6.26)

Rearranging (6.26) as rm − r1 + d1 = dm, and squaring both sides produces

((rm − r1) + d1)2 =d2
m=(δxm − δx1 )2+(δym − δ

y
1)2+(δzm − δz1)2, (6.27)

where the last equality follows after substituting dm from (6.2). Simplifying yields

(δx − δx1 )(δxm − δx1 ) + (δy − δy1)(δym − δ
y
1) + (δz − δz1)(δzm − δz1)

+ (rm − r1)d1 = (6.28)

1

2

[
(δxm − δx1 )2 + (δym − δ

y
1)2 + (δzm − δz1)2 − (rm − r1)2

]
,

which are linear in the target coordinates
[
δx δy δz

]T
. Denote the unknown parameter

vector

θ =
[
δx − δx1 δy − δy1 δz − δz1 d1

]T
∈ R4×1. (6.29)

Then, collecting all linear equations specified by (6.28) for m = 2, · · · ,M , we obtain the

following compact matrix form

Gθ = h, (6.30)

where

G=


(δx2 − δx1 ) (δy2 − δ

y
1) (δz2 − δz1) r2 − r1

...
...

...
...

(δxM − δx1 ) (δyM − δ
y
1) (δzM − δz1) rM − r1

 ∈ R(M−1)×4, (6.31)

and

h =
1

2


(δx2 − δx1 )2 + (δy2 − δ

y
1)2 + (δz2 − δz1)2 − (r2 − r1)2

...

(δxm − δx1 )2 + (δyM − δ
y
1)2 + (δzM − δz1)2 − (rM − r1)2


∈ R(M−1)×1. (6.32)
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In practice, every true m-th sensor range rm is unknown. As explained in the previous

section, we employ constrained WLS to obtain the estimate r̂m. Assume r̂m = rm + em,

where em is the estimation error due to the receiver noise. Then, the equality in (6.30)

does not hold and the resulting perturbed system of equations takes the form

ε = Gθ − h, (6.33)

where ε denotes the perturbation term. Assuming G is full column rank, the least squares

(LS) solution of the system of linear equations in (6.33) yields

θ̂ = G†h. (6.34)

Then, the target location is obtained as

[
δx δy δz

]T
=
[
[θ̂]1 + δx1 [θ̂]2 + δy1 [θ̂]3 + δz1

]T
. (6.35)

Remark 6.1. Contrary to range estimation, WLS is not applicable for estimating θ in

(6.33) because the covariance matrix of perturbation ε is unknown. This is apparent from

the fact that the covariance matrix of the perturbation term is a function of the variances

of the range estimation errors, i.e., e1, e2, · · · , eM , as well as the unknown target location.

Under such circumstances, the best choice for the weighting matrix is the identity matrix,

which reduces WLS to LS.

When the FC receives the full-precision nodal range estimates, i.e., r̂m for 1 ≤ m ≤M ,

the aforementioned LS solution in (6.35) is quite effective. However, when the nodal

range estimates are quantized to one-bit as in (6.25), the LS approach is no longer

applicable at the FC.

6.4.2 Optimal Localization with One-Bit Nodal Range Estimates

We first develop an optimal approach for localization with one-bit quantized range

measurements from the M nodes denoted by w =
[
w1, w2, · · · , wM

]T
. We show that

this optimal approach achieves the global minimum.

Consider r =
[
r2 r3 · · · rM

]T
∈ R(M−1)×1 and denote 1 as a (M − 1)× 1 vector with

all ones as its elements. Define
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V =


(δx2 − δx1 ) (δy2 − δ

y
1) (δz2 − δz1)

...
...

...

(δxM − δx1 ) (δyM − δ
y
1) (δzM − δz1)

 ∈ R(M−1)×3, (6.36)

and

b =
1

2


(δx2 − δx1 )2 + (δy2 − δ

y
1)2 + (δz2 − δz1)2

...

(δxM − δx1 )2 + (δyM − δ
y
1)2 + (δzM − δz1)2

 ∈ R(M−1)×1. (6.37)

Both V and b are known a priori. Then,

G =
[
V r− r11

]
, (6.38)

h = b− 1

2
(r− r11)� (r− r11). (6.39)

We jointly estimate the unknown θ and r by solving the optimization

minimize
r,θ

‖Gθ − h‖22

s.t. w � (r− λ) � 0,

r � 0,

(6.40)

where λ = [λ1, λ2, · · · , λM ]T . The first linear constraint in (6.40), similar to the formula-

tion in Section 6.3, arises because the one-bit quantized data and the elements of r− λ
must share the same sign; and the second constraint indicates that range values are

non-negative. Reformulate the objective function L(r,θ) , ‖Gθ − h‖22 as

L(r,θ) ,

∥∥∥∥[V r− r11
]
θ − b +

1

2
(r− r11)� (r− r11)

∥∥∥∥2

2

. (6.41)

When r is fixed, the LS solution for θ is given by (6.34). Substituting (6.34) into (6.41)

yields

L(r) = L(r, θ̂) , ‖GG†h− h‖22 = ‖Π⊥Gh‖22 (6.42)

=

∥∥∥∥[Π⊥V −ΠΠ⊥V(r−r11)

][
b− 1

2
(r− r11)� (r− r11)

]∥∥∥∥2

2

,

where the last equality is obtained by substituting (6.38)-(6.39) and using Π⊥G = Π⊥V −
ΠΠ⊥V(r−r11) following the projection decomposition theorem [173]. Since Π⊥V(r− r11) ∈
N (VH), it is easily confirmed that Π⊥VΠΠ⊥V(r−r11) = ΠΠ⊥V(r−r11) simplifying (6.42) to
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L(r) =

[
b− 1

2
(r− r11)� (r− r11)

]T [
Π⊥V −ΠΠ⊥V(r−r11)

]
×
[
b− 1

2
(r− r11)� (r− r11)

]
. (6.43)

Expanding ΠΠ⊥V(r−r11) yields

ΠΠ⊥V(r−r11) = Π⊥V(r− r11)Π⊥V(r− r11)
†

=
Π⊥V(r− r11)(r− r11)TΠ⊥V

‖Π⊥V(r− r11)‖22
. (6.44)

Note that the fact that G is full column rank guarantees ‖Π⊥V(r−r11)‖22 6= 0. Substituting

(6.44) in (6.43), the L(r) takes the rational form F(r)
J (r) where

F(r) =‖Π⊥V(r− r11)‖22
(
‖Π⊥Vb‖22 +

1

4
‖Π⊥V

[
(r− r11)� (r− r11)

]
‖22

− bTΠ⊥V
[
(r− r11)� (r− r11)

])
−
(
bTΠ⊥V(r− r11)

)2
− 1

4

([
(r− r11)� (r− r11)

]T
Π⊥V(r− r11)

)2

+ bTΠ⊥V(r− r11)(r− r11)TΠ⊥V
[
(r− r11)� (r− r11)

]
, (6.45)

is a polynomial of degree 6 and

J (r) =‖Π⊥V(r− r11)‖22, (6.46)

is a polynomial of degree 2. Hence, (6.40) becomes

minimize
r

F(r)

J (r)

s.t. w � (r− λ) � 0,

r � 0.

(6.47)

The optimization problem in (6.47) is non-convex. In order to relax this fractional

structure, we decouple the numerator and the denominator as stated in the following

theorem.

Theorem 6.1. The optimization problem in (6.47) is equivalent to

minimize
v,r

v

s.t. vJ (r)−F(r) ≥ 0,

w � (r− λ) � 0,

r � 0,

(6.48)
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where v is a slack variable.

Proof. See Appendix C.2.

The objective in the optimization problem (6.48) is not rational. However, it is still

non-convex because of the polynomial constraint vJ (r)−F(r) ≥ 0 of degree 6. To refor-

mulate the problem to an equivalent SDP, we employ Lasserre’s multivariate polynomial

optimization [152].

Definition 6.1 (Monomial basis of degree p). The vector gp(u) is called the monomial

basis of degree p if it contains all monomials uν1
1 u

ν2
2 · · ·u

νq
q such that

∑q
i=1 νi ≤ p with

νi’s being integers.

For example, g2(u1, u2) is the monomial basis of degree 2 if

g2([u1, u2]T ) =
[
1 u1 u2 u2

1 u1u2 u2
2

]T
. (6.49)

To parametrize the first constraint of (6.48), substituting (6.45)-(6.46) in vJ (r)−F(r),

and expanding the resulting equation, we obtain

vJ (r)−F(r)=

M∑
m=1

ψmmr
2
mv + (κ2

m−χψmm)r2
m +

M∑
m=1

M∑
n=1

m 6=n

ψmnrmrnv +
(ψ2

mn−ψmmψnn)

4

× (r4
mr

2
n−r3

mr
3
n) + (κmψmn−ψmmψnn)(r3

mrn−r2
mr

2
n)+(κmκn−χψmn)rmrn

+
M∑
m=1

M∑
n=1

M∑
k=1

m 6=n 6=k

(ψmnψmk − ψmmψnk)
4

(r4
mrnrk − 2r3

mr
2
nrk + r2

mr
2
nr

2
k)

+ (ψmmψnk − ψmnκk)r2
mrnrk +

M∑
m=1

M∑
n=1

M∑
k=1

M∑
q=1

m 6=n 6=k 6=q

(ψmkψnq−ψmnψkq)
4

r2
mr

2
nrkrq

+
M∑
m=2

M∑
n=2

M∑
k=2

m 6=n 6=k

(ψ1mψnk−3ψmnψ1k)r
3
1rmrnrk + (4ψmnψmk + 3ψmmψnk)r

3
mrnrkr1

+ (ψmnκk − 2ψmmψnk)rmrnrkr1 + 3
M∑
m=2

M∑
n=2

M∑
k=2

M∑
q=2

m 6=n6=k 6=q

ψmnψkqr
2
mrnrkrq, (6.50)
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where

ψmn=



∑M−1
i=1

∑M−1
j=1 [Π⊥V]i,j , if m = n = 1,[

Π⊥V
]
m−1,m−1

, if 2 ≤ m = n ≤M,

−
∑M−1

i=1 [Π⊥V]i,m−1, if m = 1, 2 ≤ n ≤M[
Π⊥V
]
m−1,n−1

, if 2 ≤ m 6= n ≤M,

(6.51)

κm=

{
−
∑M−1

i=1

∑M−1
j=1 [Π⊥V]i,j [b]j , if m = 1,∑M−1

i=1 [Π⊥V]i,m−1[b]j , if 2 ≤ m ≤M,
(6.52)

and χ = ‖Π⊥Vb‖22. Using Definition 6.1, we parameterize the polynomial in the first

constraint of (6.48) as

vJ (r)−F(r) = φTg6([r, v]T ) (6.53)

where φ is the vector of the coefficients corresponding to the monomial basis g6([r, v]T ),

which is readily obtained from (6.50). We state the SDP equivalent of (6.48) in the

following theorem.

Theorem 6.2. Given the scalars r1, r2, · · · , rM and integers {νi}Mi=1, define K : RM+1 →
R as K(rν1

1 r
ν2
2 · · · rνMM vνM+1) = µν1ν2···νM+1 such that K(1) = µ00···0 = 1. Construct the

matrices

Tp(µ)=K
(
gp([r, v]T )gTp ([r, v]T )

)
, (6.54)

Tm
p−1(µ)= (6.55)
K
(
gp−1([r, v]T )gTp−1([r, v]T )wm(rm−λm)

)
, if 1≤m≤M,

K
(
gp−1([r, v]T )gTp−1([r, v]T )rm

)
, if M + 1≤m≤2M,

K
(
gp−1([r, v]T )gTp−1([r, v]T )(vmax − v)

)
if m=2M + 1,

and

Tp−3(µ)=K
(
gp−3([r, v]T )gTp−3([r, v]T )φTg6([r, v]T )

)
. (6.56)

Then, there exists an integer p ≥ 3 for which the optimization problem (6.48) is equivalent

to

minimize
µ

µ00···01

s.t. Tp(µ) � 0,

Tp−3(µ) � 0,

Tm
p−1(µ) � 0, 1 ≤ m ≤ 2M + 1,

(6.57)
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such that the minimizer of (6.48) is

[r?1, r
?
2, · · · , r?M , v?]T = [µ?10···00, µ

?
01···00, · · · , µ?00···10, µ

?
00···01]T . (6.58)

Proof. See Appendix C.3.

Remark 6.2. Note that the number of optimization variables in (6.57) is equal to(
M+2p+1

2p

)
which could be very large even for moderate values of the number of sensors

M and the relaxation order p. Therefore, even though this method is able to attain the

global minimum, it could become computationally expensive in the practical scenarios.

6.4.3 Sub-Optimal Localization with One-Bit Nodal Range Estimates

It is possible to reduce the computational complexity of the Lasserre’s SDP method by

trading off the optimality. We now present such a sub-optimal approach by iteratively

solving (6.40) through alternating minimizations over θ, r1 and r. Although this method,

that we call ANTARES standing for iterative joint rAN ge-TARget location EStimation,

achieves only a local minimum, its computationally efficiency is significantly higher than

SDP.

Denote θ(k), r
(k)
1 and r(k) to be the values of the parameters θ, r1 and r at the k-th

iteration, respectively. Given θ(k) and r
(k)
1 , using (6.41), the problem in (6.40) with

respect to r at the (k + 1)-th iteration becomes

minimize
r

∑M
m=2

(
(rm − r(k)

1 )2

2
+ [θ(k)]4(rm − r(k)

1 ) + ζ
(k)
m

)2

s.t. wm(rm − λm) ≥ 0, 2 ≤ m ≤M,

rm ≥ 0, 2 ≤ m ≤M,

(6.59)

where ζ
(k)
m = [Vθ

(k)
]m−1 − [b]m−1 with θ

(k)
=
[
[θ(k)]1 [θ(k)]2 [θ(k)]3

]T
. The global

minimizer of (6.59) gives the update of r(k) as r(k+1) to be used in the next iteration.

Observe this optimization problem is separable in r2, r3, · · · , rM . Hence, we convert it

into M − 1 parallel optimization problems, each of which is

minimize
rm

1
4r

4
m + β

(k)
m r3

m + ς
(k)
m r2

m + ω
(k)
m rm + η

(k)
m

s.t. wm(rm − λm) ≥ 0,

rm ≥ 0,

(6.60)

where
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β(k)
m =[θ(k)]4 − r(k)

1 , (6.61a)

ς(k)
m =

3(r
(k)
1 )2

2
− 3[θ(k)]4r

(k)
1 + ([θ(k)]4)2 + ζ(k)

m , (6.61b)

ω(k)
m =− (r

(k)
1 )3+3[θ(k)]4(r

(k)
1 )2−2

(
([θ(k)]4)2+ζ(k)

m

)
r

(k)
1

+2[θ(k)]4ζ
(k)
m , (6.61c)

η(k)
m =

(r
(k)
1 )4

4
−[θ(k)]4(r

(k)
1 )3+

(
([θ(k)]4)2+ζ(k)

m

)
(r

(k)
1 )2

−2[θ(k)]4ζ
(k)
m r

(k)
1 + (ζ(k)

m )2. (6.61d)

Since the objective and constraints in (6.60) are differentiable, the global minimizer of

(6.60) belongs to a set of points which satisfy the following Karush-Kuhn-Tucker (KKT)

conditions [98]:

r3
m + 3β(k)

m r2
m + 2ς(k)

m rm + ω(k)
m − %1wm − %2 = 0, (6.62a)

wm(rm − λm) ≥ 0, (6.62b)

rm ≥ 0, (6.62c)

%1wm(rm − λm) = 0, (6.62d)

%2rm = 0, (6.62e)

%1 ≥ 0, (6.62f)

%2 ≥ 0. (6.62g)

where %1 and %2 are the KKT multipliers. From (6.62b)-(6.62g), there are three possibil-

ities:

(i) %1 > 0 and %2 = 0: From (6.62e), under this condition, rm must be equal to λm.

Considering rm = λm and %2 = 0, it follows from (6.62a) that

%1 = wm(λ3
m + 3β(k)

m λ2
m + 2ς(k)

m λm + ω(k)
m ). (6.63)

Further, from %1 > 0, the point rm = λm satisfies the KKT conditions if

wm(λ3
m + 3β(k)

m λ2 + 2ς(k)
m λm + ω(k)

m ) > 0. (6.64)

(ii) %1 = 0 and %2 > 0: From (6.62f), rm must be zero under this scenario. Considering

rm = 0 and %1 = 0, it follows from (6.62a) and (6.62b) that %2 = ω
(k)
m and wm ≤ 0.
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Hence, when %2 > 0, the point rm = 0 satisfies the KKT conditions if{
ω

(k)
m > 0,

wm ≤ 0.
(6.65)

(iii) %1 = 0 and %2 = 0: Under this scenario, the KKT conditions imply that rm must

be equal to the non-negative real roots of the following cubic equation

r3
m + 3β(k)

m r2
m + 2ς(k)

m rm + ω(k)
m = 0, (6.66)

which satisfy (6.62b). The roots of (6.66) are given by

zq = −1

3

(
3β(k)

m + ξq∆2 +
∆0

ξq∆2

)
, q ∈ {0, 1, 2}, (6.67)

where ξ = −1+j
√

3
2 , ∆2 =

3

√
∆1±
√

∆2
1−4∆3

0

2 , ∆0 = 9(β
(k)
m )2 − 6ς

(k)
m and ∆1 =

54(β
(k)
m )3 − 54β

(k)
m ς

(k)
m + 27ω

(k)
m . Further, it is well-known that amongst the KKT-

compatible non-negative real roots of (6.66), only those which also satisfy the

following second-order sufficient condition

3z2
q + 6β(k)

m zq + 2ς(k)
m ≥ 0, (6.68)

act as the minimizers of (6.60) [98]. As a result, we only consider the non-negative

real root of (6.66) for which (6.62b) and (6.68) hold true.

Accordingly, the set of points which are the minimizers of (6.60) is derived by following

(i) to (iii) above. Then, the global minimizer of (6.60) is the point in this set at which

the value of the objective in (6.60) is the smallest.

Once r(k+1) is found, the problem (6.40) with respect to r1 at the (k + 1)-th iteration is

cast as

minimize
r1

1
4r

4
1 + β

(k)
1 r3

1 + ς
(k)
1 r2

1 + ω
(k)
1 r1 + η

(k)
1

s.t. w1(r1 − λ1) ≥ 0,

r1 ≥ 0,

(6.69)

where
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β
(k)
1 =

−1

M − 1

M∑
m=2

r(k+1)
m − [θ(k)]4, (6.70a)

ς
(k+1)
1 =

1

M − 1

M∑
m=2

3

2
(r(k+1)
m )2 + 3[θ(k)]4r

(k+1)
m + ζ(k)

m + ([θ(k)]4)2, (6.70b)

ω
(k)
1 =

−1

M − 1

M∑
m=2

(r(k+1)
m )3+3[θ(k)]4(r(k+1)

m )2

+2
(

([θ(k)]4)2+ζ(k)
m

)
r(k+1)
m +2[θ(k)]4ζ

(k)
m , (6.70c)

η
(k)
1 =

1

M − 1

M∑
m=2

(r
(k+1)
m )4

4
+[θ(k)]4(r(k+1)

m )3

+
(

([θ(k)]4)2+ζ(k)
m

)
(r(k+1)
m )2+2[θ(k)]4ζ

(k)
m r(k+1)

m +(ζ(k)
m )2. (6.70d)

The global minimizer of (6.69) is attained by following a procedure similar to that of

(6.60). From r(k+1) and r
(k+1)
1 , the update of θ(k) at (k + 1)-th iteration is

θ(k+1) = G†
(k+1)

h(k+1), (6.71)

where G†
(k+1)

and h(k+1) are computed by substituting r(k+1) and r
(k+1)
1 for r and r1 in

(6.31) and (6.32), respectively.

Algorithm 3 summarizes the steps of aforementioned ANTARES for joint estimation

of θ and r. Note that each iteration of ANTARES requires solving one-dimensional

optimizations, each of which has a closed-form solution. Further, the optimizations with

respect to r2, r3, · · · , rm are solved in parallel at each iteration. Hence, ANTARES is

computationally highly efficient compared to (6.57).

6.4.4 CRB for Localization with One-Bit Nodal Range Estimates

We employ the CRB as a benchmark for assessing the estimation performance of the

proposed optimal and sub-optimal algorithms. This is also useful for demonstrating the

performance loss of one-bit quantization over the unquantized processing.

Assume that the estimation error term in r̂m = rm + em, i.e., em, follows a zero-

mean Gaussian distribution with variance υ2
m, 1 ≤ m ≤ M . Then, r̂m is distributed

as a Gaussian random variable with mean rm and variance υ2
m, 1 ≤ m ≤ M . The

r̂1, r̂2, · · · , r̂M are statistically independent. Hence, the conditional probability density
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Algorithm 3 Iterative joint range-target location estimation (ANTARES)

Input: one-bit samples w, threshold vector λ, optimality tolerance parameters ε1 and
ε2.

Output: Target location estimate θ̂, range estimate r̂.

1: Initialization: Set k = 0, θ(0) ∈ R4×1 arbitrarily and r
(0)
1 ≥ 0 such that w1(r

(0)
1 −

λ1) > 0.
2: while ‖θ(k+1) − θ(k)‖22 ≥ ε1 and ‖r(k+1) − r(k)‖22 ≥ ε2 do
3: if 2 ≤ m ≤M then
4: S← {∅}.
5: if (6.64) is fulfilled then
6: S← {λm} ∪ S.
7: else
8: S← S.
9: end if

10: if (6.65) is fulfilled then
11: S← {0} ∪ S.
12: else
13: S← S.
14: end if
15: for q ← 0 to 2 do
16: D← {∅}.
17: Find zq from (6.67).

18: if wm(zq − λm) ≥ 0, zq ≥ 0, ={zq} = 0 and 3z2
q + 6β

(k)
m zq + 2ς

(k)
m ≥ 0 then

19: D← D ∪zq.
20: end if
21: end for
22: S← D ∪ S.
23: Find ropt ∈ S at which the objective of (6.59) is minimized.

24: r
(k+1)
m ← ropt.

25: end if
26: Follow steps 4-17 to solve (6.69) for r

(k+1)
1 .

27: θ(k+1) ← G†
(k+1)

h(k+1).
28: end while
29: θ̂ = θ(k+1) and r̂ = r(k+1).

function of w given q = [δx, δy, δz, d0, υ1, υ2, · · · , υM ]T ∈ R(M+4)×1 is

f(w | q) =
M∏
m=1

Φ(
wm(rm − λm)

υm
), (6.72)

where Φ(x) = 1√
2

∫ x
∞ e
−u2/2du. The CRB is the inverse of the Fisher Information Matrix

(FIM) I(q), whose (i, j)-th element is [107]

[I(q)]i,j = E
{
∂ log f(w | q)

∂[q]i

∂ log f(w | q)

∂[q]j

}
. (6.73)
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From (6.72), (6.2) and (6.3), the partial derivatives of the log-likelihood log f(w | q) are

∂ log f(w | q)

∂δx
=

1√
2π

M∑
m=1

wm(δx − δxm)e
− (rm−λm)2

2υ2
m

υmdmΦ(wm(rm−λm)
υm

)
, (6.74)

∂ log f(w | q)

∂δy
=

1√
2π

M∑
m=1

wm(δy − δym)e
− (rm−λm)2

2υ2
m

υmdmΦ(wm(rm−λm)
υm

)
, (6.75)

∂ log f(w | q)

∂δz
=

1√
2π

M∑
m=1

wm(δz − δzm)e
− (rm−λm)2

2υ2
m

υmdmΦ(wm(rm−λm)
υm

)
, (6.76)

∂ log f(w | q)

∂d0
=

1√
2π

M∑
m=1

wme
− (rm−λm)2

2υ2
m

υmdmΦ(wm(rm−λm)
υm

)
, (6.77)

∂ log f(w | q)

∂υm
= −wm(rm − λm)e

− (rm−λm)@

2υ2
m

υ2
mΦ(wm(rm−λm)

υm
)

, 1≤m≤M. (6.78)

Inserting (6.74) to (6.78) into (6.74) and exploiting the statistical independence of

w1, w2, · · · , wM , the elements of the FIM are

[I(q)]1,1 =

M∑
m=1

(δxm − δx)2

2πυ2
md

2
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, (6.79)

[I(q)]2,2 =

M∑
m=1

(δym − δy)2

2πυ2
md

2
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, (6.80)

[I(q)]3,3 =

M∑
m=1

(δzm − δz)2

2πυ2
md

2
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, (6.81)

[I(q)]1,2 =

M∑
m=1

(δxm − δx)(δym − δy)e
− (rm−λm)2

υ2
m

2πυ2
md

2
m

×
[

1

Φ( rm−λmυm
)
+

1

Φ(−rm+λm
υm

)

]
, (6.82)

[I(q)]1,3 =
M∑
m=1

(δxm − δx)(δzm − δz)e
− (rm−λm)2

υ2
m

2πυ2
md

2
m

×
[

1

Φ( rm−λmυm
)
+

1

Φ(−rm+λm
υm

)

]
, (6.83)

[I(q)]2,3 =

M∑
m=1

(δym − δy)(δzm − δz)e
− (rm−λm)2

υ2
m

2πυ2
md

2
m

×
[

1

Φ( rm−λmυm
)
+

1

Φ(−rm+λm
υm

)

]
, (6.84)



Localization with One-Bit Passive Radars in Narrowband Internet-of-Things using
Multivariate Polynomial Optimization 116

[I(q)]4,4 =
M∑
m=1

e
− (rm−λm)2

υ2
m

2πυ2
md

2
m

[
1

Φ( rm−λmυm
)
+

1

Φ(−rm+λm
υm

)

]
, (6.85)

[I(q)]1,4 =
M∑
m=1

(δx − δxm)

2πυ2
md

2
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, (6.86)

[I(q)]2,4 =
M∑
m=1

(δy − δym)

2πυ2
md

2
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, (6.87)

[I(q)]3,4 =
M∑
m=1

(δz − δzm)

2πυ2
md

2
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, (6.88)

[I(q)]m+4,m+4 =
(rm − λm)2

2πυ4
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, 1≤m≤M, (6.89)

[I(q)]m+4,m′+4 = 0, 1≤m 6= m′≤M, (6.90)

[I(q)]1,m+4 =
(δxm − δx)(rm − λm)

2πυ4
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, 1≤m≤M, (6.91)

[I(q)]2,m+4 =
(δym − δy)(rm − λm)

2πυ4
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, 1≤m≤M, (6.92)

[I(q)]3,m+4 =
(δzm − δz)(rm − λm)

2πυ4
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, 1≤m≤M, (6.93)

[I(q)]4,m+4 =
(rm − λm)

2πυ4
m

[
e
− (rm−λm)2

υ2
m

Φ( rm−λmυm
)

+
e
− (rm−λm)2

υ2
m

Φ(−rm+λm
υm

)

]
, 1≤m≤M. (6.94)
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Figure 6.4: N-RMSE of the time-delay estimates versus the SNR with L = 100 and
ϑ = 1. The signal s(t) is a π/2-BPSK modulated signal with bandwidth B = 180 KHz.

6.5 Numerical Experiments

We investigated the performance of our proposed method through numerical simulations.

We also compared the performance of one-bit processing with full precision measurements.

We used MATLAB CVX package to solve optimizations in (6.17) and (6.57) [174]. All

the experiments are conducted under identical conditions under Matlab R2018a on a PC

equipped with an operating system of Windows 10 64-bit, an Intel i7-6820HQ 2.70GHz

CPU, and a 8GB RAM. Throughout all the experiments, we define signal-to-noise ratio

(SNR) (in dB) at the m-th node as

SNRm = 10 log10

|αm|2‖s(τm)‖2

σ2
m

. (6.95)

One-bit time-delay estimation: For 100 digital samples obtained at the Nyquist

rate, i.e. L = 100 and ϑ = 1, Fig. 6.4 shows the normalized root-mean-squared-error

(N-RMSE) of the time-delay estimates, computed over 1000 Monte Carlo trials, with

respect to SNR. This estimation N-RMSE is

√∑J
j=1(τ̂m,j−τm)2

τmJ
where τ̂m,j denotes the

time-delay estimate at the j-th Monte Carlo trial and J is the number of Monte Carlo

trials. We assume s(t) to be π/2-BPSK-modulated with a raised cosine shaping filter of
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Figure 6.5: N-RMSE of the time-delay estimates versus the the oversampling factor ϑ
with L = 100 and SNR = −5 dB. The signal s(t) is a π/2-BPSK modulated signal with

bandwidth B = 180 KHz.

the bandwidth 180 KHz and the roll-off factor 1. The temporal threshold γm is randomly

drawn from a uniform distribution with support [−Amax, Amax], where Amax denotes the

maximum amplitude of the received signal at NB-IoT nodes. We observe that to achieve

the same N-RMSE, the SNR should be about 5 dB higher for one-bit processing than

the full-precision case.

Effect of oversampling: As discussed in Section 6.3.2, oversampling compensates

the performance loss arising from the one-bit quantization scheme. Fig. 6.5 shows the

N-RMSE of the time-delay estimates versus the oversampling factor, i.e., ϑ, at SNR = −5

dB. As predicted in theory, the N-RMSE of oversampled one-bit processing with ϑ = 5

approaches that of the full-precision processing.

Localization with different node geometries: Next, we investigate our proposed

localization method for various node placements. We consider three node geome-

tries: uniform circular (Fig. 6.6), uniform linearly-spaced in an L-shape (Fig. 6.7),

and random (Fig. 6.8). To show the performance over different ranges, we consider

the performance of these geometries over small ([−800 m, 800 m] × [−800 m, 800 m]),

large ([−2000 m, 2000 m] × [−2000 m, 2000 m]), and mid-size ([−1200 m, 1200 m] ×
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Figure 6.6: Localization with M = 20 NB-IoT nodes (black circles) uniformly
spaced on a circle with radius of 800 m. The target-of-interest is randomly placed at

(−309 m, 287 m). The SNR at all the NB-IoT nodes is 0 dB.

[−1200 m, 1200 m]) areas, respectively. In Fig. 6.6, the nodes were spaced on a circle

with radius of 800 m and the target and the base-station were randomly placed at

[−309 m, 287 m] and [−208, m,−312 m] (in X-Y Cartesian coordinate system), re-

spectively. When the nodes were configured in L-shape and randomly, the target was

randomly placed at [371.7 m,−338.4 m] and [−615.8 m,−753.8 m] and the base station

was randomly located at [−98 m, 1112 m] and [−87 m, 53 m], respectively.

To consider the impact of the relative distances of the different nodes to the target

of interest on the SNR, we generate the SNR at the m-th node (m > 1) as SNRm =

SNR1(dmd1
)2 where SNR1 denotes the SNR at the reference node, which is assumed to

be 0 dB in Figs. 6.6, 6.7, and 6.8. The temporal thresholds and s(t) are generated

similar to Fig. 6.4. The maximum detectable range by NB-IoT nodes, i.e., rmax, was

considered to be 4000 m. The positive thresholds λm’s were randomly drawn from 8

predetermined values over the interval (0, rmax]. These thresholds are encoded with 3

bits and transmitted to the FC along with one-bit range information.

Our ANTARES algorithm estimates the target location with errors of 22.89, 23.87, and

21.52 m for circular, L-shape, and random geometries, respectively. This is very close to

that of the optimal method given in Theorem 6.2, wherein the corresponding errors are

6, 9.4, and 7.81 m, respectively; the errors in the full-precision methods are 1 m, 1.2, and

1.06 m, respectively. This indicates the robustness of our method against distribution in
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Figure 6.7: Localization with M = 20 NB-IoT nodes (black circles) linearly spaced in
an L-shape. The target-of-interest is randomly placed at (371 m,−338 m). The SNR at

the m-th node (m > 1) is SNRm = SNR1

(
dm
d1

)2
with SNR1 = 0 dB.

of NB-IoT nodes. In order to draw a comparison between the computational complexities

of ANTARES and the optimal method, we take account of their corresponding run-times

for the investigated scenarios in Figs. 6.6, 6.7, and 6.8, which are, respectively, 3.27 s,

3.63 s, and 3.91 s for ANTARES besides 81.39 s, 88.53 s, and 85.74 s for the optimal

method. This implies that ANTARES is considerably more computationally efficient

than the optimal method in Theorem 6.2.

Next, for the random geometry, we show the effect of decreasing SNR1 to −5 dB (Fig. 6.9).

The error with ANTARES algorithm now degrades to 59.85 m compared to 12.4 and 3.4

m observed in the optimal and full-precision approaches.

Statistical performance: Figs. 6.10a illustrates the localization N-RMSE, i.e. N-

RMSE in the estimation of the target location, with respect to the number NB-IoT

nodes M , defined as

√
J∑
j=1

(δx−δ̂xj )2+(δy−δ̂yj )2

J
√
δx2+δy2

, where [δ̂xj , δ̂
y
j ]T denotes the target location

estimate at the j-th Monte Carlo trial and J is the number of Monte Carlo trials.

Figs. 6.10a plots the normalized-root-localization-CRB, i.e.,
√

[I−1(q)]1,1+[I−1(q)]2,2
δx2+δy2 where

I(q) is specified in Section 6.4.4. The nodes and targets were placed randomly over

([−800 m, 800 m]× [−800 m, 800 m]) area during each of the 200 Monte Carlo trials. The
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Figure 6.8: Localization with M = 20 NB-IoT nodes (black circles) randomly dis-
tributed over the area [−1200 m, 1200 m]× [−1200 m, 1200 m]. The target-of-interest
is randomly placed at (1160 m,−340 m). The SNR at the m-th node (m > 1) is

SNRm = SNR1

(
dm
d1

)2
with SNR1 = 0 dB.

SNR at the m-th node (m > 1) is assumed to be SNRm = SNR1

(
dm
d1

)2
with SNR1 = −2

dB. Further, the temporal thresholds, s(t) and λm’s are generated similar to Figs. 6.4

and 6.7. We observe that the N-RMSEs of the proposed optimal and ANTARES methods

improve with increase in M . The N-RMSE for the optimal method is very close to the

normalized root of the CRB and it approaches to that of the full-precision when M > 80.

It is also seen that the normalized CRB tends to the N-RMSEs of the full-precision

at the high number of sensors. In addition, Fig 6.10b shows the relative N-RMSE,

namely the difference in N-RMSE of the optimal and ANTARES methods as well as the

normalized CRB relative to that of full-precision. We observe that the relative N-RMSE

rises by 2.2%, 0.6% and 0.3% in case of ANTARES, optimal methods and the CRB,

respectively, over the full-precision approach when M = 20. The observed difference in

the estimation performance of ANTARES and optimal approaches arises from the fact

that the alternating approach employed for ANTARES is guaranteed to converge to only

a local minimum of the optimization problem in (44) [115], while the optimal method

always provides the global minimum of (44).

The temporal thresholds were randomly generated in all experiments. Comparing the

localization accuracy in Figs. 6.6-6.10 show that variations in temporal thresholds do

not have considerable influence on the overall localization performance.
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Figure 6.9: Localization with M = 20 NB-IoT nodes (black circles) randomly dis-
tributed within the area [−1200 m, 1200 m]× [−1200 m, 1200 m]. The target-of -nterest
is randomly placed at (−618 m,−338 m). The SNR at the m-th node (m > 1) is

SNRm = SNR1

(
dm
d1

)2
with SNR1 = −5 dB.

6.6 Summary

In summary, the one-bit sampling offers an attractive solution to the challenges posed by

the NB-IoT for location-based services. The one-bit samplers are integral to developing

low cost and low power devices. We proposed a one-bit passive sensor array formulation

to estimate the time-of-arrival in an NB-IoT network. The quantized samples of the

estimates are then forwarded to an FC. We propose a novel method that casts the local-

ization problem from aggregated quantized nodal estimates as a multivariate fractional

optimization problem that we solve using the optimal Lasserre’s SDP relaxation. We also

propose the ANTARES algorithm as an alternative sub-optimal method with reduced

computational complexity compared to Lasserre’s. Our approach is helpful in addressing

the problem of maintaining high localization accuracy while deploying reduced-rate ADCs

at the nodes as well as limited-capacity NB-IoT links.
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Figure 6.10: (a) N-RMSE and (b) Relative N-RMSE in the estimated target location
with respect to the number of IoT devices M . The SNR at the m-th node (m > 1) is

SNRm = SNR1

(
dm
d1

)2
with SNR1 = −2 dB.





Chapter 7

Sparsity-Aided Localization in

asynchronous MIMO radar

7.1 Introduction

Target localization is one of the fundamental tasks of radar systems and it has received

a considerable attention in the last few years [79–81]. In general, target localization

techniques can be categorized under two main approaches with regard to the radar

system architecture. The first approach develops the localization algorithms based

on measurements received by a fully-synchronized collocated radar sensors [82, 83].

Although localization with fully-synchronized collocated is able to achieve high localization

performance through providing the waveform diversity [84], they demand a complicated

transceiver structure with expensive devices to enable the coherent processing required.

However, many commercial applications, such as automotive radar, are required to localize

the targets using cheap devices. This capability is enabled by the second approach based

on distributed localization techniques where simple, independent radar nodes are used

instead of a complicated collocated radar system. Distributed localization techniques

exploit the angular (spatial) diversity, provided by spatially separated radar nodes, to

estimate targets locations [84].

In addition to lack of support for coherent processing, the independent radar nodes may

only provide coarse local Direction of Arrival (DoA) information. This is indeed the case

when each of the nodes is equipped with a single or a few antenna elements, as envisaged

in automotive applications [175], due to cost and implementation issues. Thus, the radar

nodes have access only to fine range, or equivalently time delay, measurements. Several

approaches have been proposed in the literature to estimate the targets locations in a

125



Sparsity-Aided Localization in asynchronous MIMO radar 126

distributed manner using range measurements provided by distributed radar nodes [176–

179]. Best Linear Unbiased Estimates (BLUE) of the target locations have been derived

in [176] by linearizing the elliptic equations corresponding to the target positions. A two-

stage weighted least square approach is proposed in [178], which is further demonstrated

to achieve Cramer-Rao Lower bound (CRLB) in the high Signal-to-Noise-Ratio (SNR)

regime.

Evidently, the performance of targer distributed localization relies heavily on perfect

target detection at each of the nodes. Erroneous target detection can significantly degrade

the localization performance regardless of the algorithm used. Further, since the radar

nodes are closely located in automotive applications (e.g. on the bumper), small errors

in range measurements can affect the localization. Therefore, high range resolution is a

must in targer distributed localization for automotive application. However, achieving

such a high range resolution using conventional methods demands high bandwidths which

may not be affordable in practice. Thus, in such applications, the need for developing

new algorithms, which are able to provide the desired range resolution without additional

requirements on bandwidth, is seriously felt.

Towards achieving enhanced targer localization for automotive application, we propose a

framework based on Sparse Stepped Frequency Waveforms (SSFW) and sparse sensing.

Specifically, exploiting the sparsity in the target scene, the framework uses a two-step

decentralized procedure for localization. In the first step, the target detection and

super-resolution range estimation are undertaken. The link between range resolution and

the bandwidth is broken by proposing a SSFW and then estimating the target ranges

using the sparse sensing technique. It is shown that the proposed approach provides

super-resolution estimates of the targets ranges enabling multi-target resolution with

affordable bandwidths. The waveform design parameters offer additional degrees-of-

freedom for efficient sparse sensing. In the second step, the precise range measurements

are transmitted to a Fusion Center (FC), where the DoA estimation is performed. The

Maximum Likelihood Estimation (MLE) is used in the FC for the DoA estimation and

subsequent localization.

Chapter organization: Section 7.2 describes the system and basic assumptions. The

proposed algorithm for sparsity-aided distributed target localization is given in Section 7.3.

We validate our proposed localization algorithm through numerical experiments in Section

Section 7.4. Finally, Section 7.5 concludes the chapter.
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Figure 7.1: Distributed radar system model

7.2 Basic Assumptions and System Model

We consider a distributed radar system (see Fig. 7.1) including M mono-static radar

nodes which are linearly distributed so that the mth radar node is located at distance

dm from some reference point. The reference point can also be one of the radar nodes.

The distances of the radar nodes from the reference point is assumed to be greater than

half of the wavelength of operation. Each radar node is composed of D patch antennas

embedded in an integrated chip, which beamform the transmit signal in a particular

direction at each sensing time. The transmit beams are designed such that the beams of

a subset A of the set of radar nodes intersect at each sensing time, with |A| ≥ κ. No

synchronization is assumed between the radar nodes, although the patch antennas in each

node are assumed to be synchronous. It is also supposed that K stationary point targets

are present in the area covered by the beams of radar nodes within the subset A. The kth

is located at distance rk and azimuth angle θk with respect to the reference point. The

targets are assumed to be in the far-field, i.e., rk � dm. Such a system model is valid,

for example, in automotive applications where the radar transceivers are installed on

car-bumpers. We note that the data association problem, arising in multi-target scenario,

is not considered in this work. Indeed, it is assumed that the signals backscattered from

different targets are properly associated in a preceding processing step.
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We employ a SSFW for target illumination by each of the nodes. The SSFW is a variation

of Stepped Frequency Waveforms (SFWs). A classical SFW (CSFW) is composed of

P consecutive monotone narrowband pulses with duration Tc so that the frequency of

the pth pulse is assumed to be fp = fc + p4f , where p ∈ P .
= {1, 2, · · · , P}, fc is the

carrier frequency and 4f denotes the frequency step size. The bandwidth and Coherent

Processing Interval (CPI) of the CSFW are P∆f and PTc, respectively. The SSFW can

be made out of the CSFW by transmitting only portions of the monotone narrowband

pulses of the CSFW in a CPI. Indeed, the frequency of the nth pulse of the SSFW is

fn = fc + S(n)4f , where S ⊆ P with |P| = N < P and S(s) denotes the nth element of

S. The subset S can be selected from P in a deterministic or random fashion so as to

achieve a desired inference performance [180]. The bandwidth and CPI of the SSFW are

respectively N∆f and NTc, which are considerably smaller than those of the CSFW.

Without loss of generality, it can be supposed that all transmit nodes use the same carrier

frequency1. Hence, the nth pulse transmitted by the mth radar node, where m ∈ A, can

be modeled as

Tm(n, t) = sm (t− nTc) exp {j2π (fc + S(n)4f) (t− nTc)} , (7.1)

where 0 ≤ n ≤ N − 1, and sm(t), 0 < t < Tc, denotes the complex envelope of the mono-

tone narrowband pulse transmitted by the mth radar node. The transmitted waveforms

are assumed to be orthogonal across the M transmit nodes, i.e., 1
Tc

∫ Tc
0 sm(t)s∗m′(t− τ)dt,

m 6= m′, is assumed to be negligible compared to 1
Tc

∫ Tc
0 sm(t)s∗m(t− τ)dt. Assuming that

the propagation is non-dispersive, the received signal at the location of the kth target

equals

vk(n, t) =
M∑
m=1

sm (t− nTc − τm,k) exp {j2π (fc + S(n)4f) (t− nTc − τk,m)} , (7.2)

where τk,m =
rk,m
c and c denotes the speed of light in vacuum. The backscattered signal

from K targets at the ith radar node, where m ∈ A, is then described by

yi(n, t) =

K∑
k=1

M∑
m=1

αksm (t− nTc − τk,m − τk,i)

× exp {j2π (fc + S(n)4f) (t− nTc − τk,m − τk,i)}+ ηi(n, t), (7.3)

where αk is referred to as the complex amplitude proportional to the radar cross section

(RCS) of the kth target, and ηi(n, t) is the zero-mean additive white Gaussian noise at

1It should be noted that the radar nodes are assumed to use the same carrier frequency for notational
brevity. However, in general, there may be some offset between the carrier frequencies of radar nodes,
which does not affect the validity of the ensuing derivations and system model.
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ith radar node, whose variance is σ2.

The received signal at the ith radar node, i.e., yi(n, t), is downconverted into the baseband

through being multiplied by e−j2π(fc+S(n)4f)(t−nTc), and is then cross-correlated with

the complex envelope of the monotone narrowband pulse transmitted by the same node

at time t ∈ [nTc, (n+ 1)Tc], i.e., si(t− nTc), yielding

zi(n) =
1

Tc

∫ (n+1)Tc

nTc

ỹi(n, t)s
∗
i (t− nTc)dt

=

A1︷ ︸︸ ︷
K∑
k=1

αk exp {−j4π (fc + S(n)4f) τk,i}
Tc

∫ (n+1)Tc

nTc

si (t− nTc − 2τk,i) s
∗
i (t− nTc)dt +

A2︷ ︸︸ ︷
K∑
k=1

∑
m 6=i

αk exp {−j2π (fc + S(n)4f) (τk,m + τk,i)}
Tc

∫ (n+1)Tc

nTc

sm (t− nTc−τk,m−τk,i) s∗i (t−nTc)dt

+ η̃i(n). (7.4)

where η̃i(n) = 1
Tc

∫ (n+1)Tc
nTc

ηi(t, n)s∗i (t− nTc)dt. Due to the orthogonality of the transmit-

ted waveforms across the radar nodes, the term A2 in (7.4) is negligible compared to the

term A1. Therefore, (7.4) can be simplified as

zi(n) =
K∑
k=1

βk,i exp

{
−j2π

(
2rk,i4f

c
S(n)

)}
+ η̃i(n), (7.5)

where βk,i = αka(
2rk,i
c ) exp

{
−j2π

(
2rk,i
λc

)}
, a(τ) = 1

Tc

∫ (n+1)Tc
nTc

si (t− nTc − τ) s∗i (t −
nTc)dt, and λc denotes the wavelength of the transmitted signal.

7.3 Proposed Localization Algorithm

In this section, we aim to determine the locations of the targets with respect to the

reference point. We propose a two-stage decentralized localization algorithm. In the first

step, the target detection and precise range estimation are separately done in each radar

node. Then, the range measurements are transmitted to a FC for DoA estimation and

subsequent localization.
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7.3.1 Range Estimation

Let us discretize the range plane on a fine grid so that

2rk,i = lϑ, 0 ≤ l ≤ L− 1, (7.6)

where ϑ and 4f are chosen so that ϑ4f
c = 1

L with L� N . We can then rewrite (7.5) as

zi(n) =

L−1∑
l=0

xl exp {−j2πlS(n)/L}+ η̃i(n), (7.7)

where xl = αka(lϑ/c)e−j2πlϑ4f/c if a target is present at the range lϑ and zero otherwise.

Stacking zi(n)’s into the vector zi = [z1(0), · · · , z1(N − 1)]T , we can express (7.7) in the

matrix form as

zi = Ψxi + η̃i, (7.8)

where xi = [x0, · · · , xL−1]T and Ψ is a Vandermonde matrix with [Ψ]n,l = e
−j2πlS(n)

N , i.e.,

it is composed of N rows of the L× L Discrete Fourier Transform (DFT) matrix. The

estimate of target ranges can be found by solving the sparse problem (7.8) such that

non-zero index l denotes a target with delay lϑ. In principle, the sparse vector x can be

recovered by solving the `1-norm optimization problem

x̂i = min‖xi‖1 s.t. ‖zi −Ψxi‖2 ≤ ε, (7.9)

which is also referred to as the least absolute shrinkage and selection operator (LASSO).

The LASSO is a convex problem and converge to a global solution with a high probability

in polynomial time if the matrix Ψ satisfies the Restricted Isometry Property (RIP) of

order 2K with the 2K-Restricted Isometry Constant (RIC) δ2K < 2

3+
√

7/4
[181]. The

K-RIC of a matrix A, i.e., δK , is the smallest number such that the inequality

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22, (7.10)

holds for all K-sparse vectors x and a matrix A fulfills the RIP of order K if δK < 1

[181]. Hence, in order to the range recovery is guaranteed, the subset S should be chosen

such that the RIP of order 2K [182] is satisfied. As mentioned in Section 7.2, the subset

S can be chosen from the set P in a deterministic or random way. In current work,

we select the subset S uniformly at random out of the set P. In this case, it has been

shown in [182] that the matrix Ψ obeys the RIP of order 2K with a high probability if

N ≥ CK log(L/K), where C is some constant.
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7.3.2 DoA Estimation

After the distributed sparse processing, the recovered ranges are transmitted to a FC for

DoA estimation. According to the law of cosine, we have

rk,m =
√
r2
k + d2

m ± 2rkdm sin θk, (7.11)

where + and − hold for the nodes on the left and right hand side of the reference point,

respectively. Considering the far-field assumption, i.e. rk � dm, and the Taylor series

expansion, (7.11) can be approximated by

rk,m ' rk ± dm sin θk. (7.12)

Thus, if r̂k,m denotes the recovered range of the kth target with respect to the mth node

and r̂k denote the recovered range of the same target with respect to the reference point,

we can argue that,

qk,i = r̂k,m − r̂k = ±dm sin θk + em, (7.13)

where em is the error proceeding from quantization as well as estimation error which can

be generally modeled as a Gaussian random variable with variance ρ2
m. Staking all qk,m’s

from different antenna for a particular target k into a vector qk = [qk,1, · · · , qk,M−1], we

have

qk = w sin θk + e, (7.14)

where e = [e1, · · · , eM−1]T and w = [w1, · · · , wM−1] with wm = dm if the ith radar

node is on the left hind side of the reference point and wm = −dm otherwise. We can

then recast the Maximum Likelihood Estimation (MLE) of γ
.
= sin θk as the following

optimization problem,

argmin
γ

(qk −wγ)TΣ−1(qk −wγ),

s.t. −1 ≤ γ ≤ 1, (7.15)

where Σ = E{eeH} = diag{ρ2
1, · · · , ρ2

M−1}. The above constrained optimization problem

is convex. Therefore, applying the Karush-Kuhn-Tucker (KKT) optimality conditions
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[98] leads us to the following estimate of ν

ν̂ =


wTΣ−1q
wTΣ−1w

−1 ≤ wTΣ−1q
wTΣ−1w

≤ 1

1 wTΣ−1q
wTΣ−1w

> 1

−1 wTΣ−1q
wTΣ−1w

< −1

. (7.16)

Taking account of the invariance property of the MLE [107], the estimate of θ is obtained

as

θ̂ = arcsin ν̂. (7.17)

Therefore, the location of the kth in the polar coordinate system with respect to the

reference point is obtained as (r̂k, θ̂)

7.4 Simulation Results

In this section, we present numerical results to illustrate the main contributions of the

chapter which relate to the enhanced performance of proposed localization algorithm

arising from sparse sensing.

7.4.1 General Set

We consider an automotive scenario with 5 radar nodes, separated by a distance of 0.1

m, and each containing 4 phased array elements. The phased array in each node creates

a wide beam with a width of π/3. We consider multiple point targets in the coverage

of the beams ensuring that the overlap requirement mentioned in Section II is satisfied.

The carrier frequency and the frequency step size are fc = 79 GHz and ∆f = 10 MHz,

respectively. Further, we consider a challenging situation with the SNR being 0 dB. The

SSFW is generated by selecting a subset S, with |S| = bandwidth
∆f , uniformly at random

out of the set P = {1, 2, · · · , 1000}. The number of grid points, i.e., L, is 1000. This set

up is simulated using the phased-array toolbox of Matlab.

7.4.2 Enhanced Range Resolution for given bandwidth

We consider the support recovery error [183] as figure of merit towards illustrating

the ability of the proposed scheme in achieving higher range resolution for a given

bandwidth. The support recovery error is defined as the error event when at least

one target is estimated erroneously [183]. Fig. 7.2 depicts the support recovery error
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Figure 7.2: Support recovery error as a function of the synthetic bandwidth.

versus bandwidth for the conventional and proposed technique. Fig. 7.3 compares the

localization performance of the SSFW and the SFW. We assumed that two targets are

present and the synthetic bandwidth of the SFW is 7 times of the SSFW. It can be

seen that the SSFW localizes the two targets properly, while using much lower synthetic

bandwidth than the SFW. On the other hand, SFW estimates the location of one of the

targets erroneously and fails to detect the second target although benefits from higher

synthetic bandwidth. 5000 Monte Carlo lo repetitions were performed using independent

realization of K = 5 targets locations, their RCS, the subset S, and noise. It can be seen

that the radar system exploiting SSFW and LASSO to recover the target ranges exhibits

much better performance than a CSFW radar system using DFT processing [184]. For

1.5 GHz of bandwidth, the proposed technique achieves a 73% improvement in support

recovery error.

7.4.3 Targer localization

Fig. 7.3 compares the localization performance of the SSFW and the CSFW. We consider

two targets at locations (8.1 m, π/6) and (8.2 m, π/4) in the polar coordinate system, as

shown in Fig. 7.3. Further, we consider the bandwidth of CSFW to be seven times that
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Figure 7.3: Localization of two targets.

of SSFW. It can be seen that the SSFW localizes the two targets properly, while using

much lower bandwidth than the CSFW. On the other hand, CSFW estimates the range

of one of the targets erroneously and fails to detect the second target, resulting in very

poor localization.

7.5 conclusion

The chapter considered the problem of targer localization using asynchronous MIMO

radars with applications to automotive scenario. Arguing the need for high range

resolution for accurate localization with affordable bandwidth in such scenarios, the

chapter considered a new framework based on SSFW and the sparse sensing paradigm. A

two stage decentralized procedure for localization is proposed within this framework. The

proposed scheme is shown to localize the targets better than the conventional schemes

for given bandwidths and offers avenues for further waveform optimization. Enhanced

performance and the limited resources consumed, makes the proposed scheme attractive

to the industry.



Chapter 8

Conclusions and Future Work

8.1 Summary and conclusions

In this chapter, the main conclusions of the thesis are summarized, and also the possible

research directions for the future works are identified and discussed. Broadly speaking, the

problems of Direction of Arrival (DoA) estimation and target localization by exploiting

sparse and one-bit samples has been investigated in this thesis. The works in this thesis

go beyond the state of the art in these areas by proposing novel algorithms. Moreover,

the performance of the proposed algorithms has been analyzed and then assessed through

comparing them with the Cramér-Rao Bound (CRB) as well as with the state-of-the-art

and conventional algorithms.

The first part of the thesis focuses the problem of DoA estimation from Sparse Linear

Array (SLA) measurements. Chapter 3 proposed a novel estimator for DoA estimation

from SLA measurements by deploying the Wieghted Least Squares technique. The

performance of the proposed estimator is analytically calculated and it was shown that it

provides consistent estimates of DoAs of identifiable sources for any SLAs. Further, an

asymptotic closed-form expression for the resulting covariance matrix of DoA estimation

errors was derived and it was analytically proved that it asymptotically coincides with

the CRB in case the optimal weighting matrix is selected. This implies that the proposed

WLS estimator is asymptotically statistically efficient. It thus closes an important

gap in the co-array-based DoA estimation. Simulation results demonstrated superior

performance of the proposed WLS estimator compared to the existing algorithms in

the literature in terms of estimation accuracy and resolution. The problem of DoA

estimation from one-bit SLA measurements was studied in Chapter 4. It was showed

that the idetifiability condition for the DoA estimation problem from one-bit SLA data

is equivalent to that for the case when DoAs are estimated from infinite-bit unquantized

135
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measurements. Then, a pessimistic approximation of the corresponding CRB was derived.

This pessimistic CRB was used as a benchmark for assessing the performance of one-bit

DoA estimators. Further, it provides us with valuable insights on the performance limits

of DoA estimation from one-bit quantized data. For example, it was shown that the DoA

estimation errors in one-bit scenario reduces at the same rate as that of infinite-bit case

with respect to the number of samples and, moreover, that the DoA estimation errors in

one-bit scenario converges to a constant value by increasing the SNR. A new algorithm

for estimating DoAs from one-bit quantized data was also proposed. and its analytical

performance of the proposed method was investigated through deriving a closed-form

expression for its asymptotic MSE and show that it outperforms the existing algorithms in

the literature. Numerical simulations were provided to validate the analytical derivations

and corroborate the improvement in estimation performance. In Chapter 5, the problem

of DoA estimation from low-resolution multi-bit SLA measurements, say 2 or 4 bits

per sample, was investigated. We proposed a novel optimization-based framework for

estimating the covariance matrix of unquantized data. Then, Co-Array-Based MUSIC

(CAB-MUSIC) was used for estimating DoAs of interest. The simulation results showed

that increasing the sampling resolution to 2 or 4 bits per samples could significantly

increase the DoA estimation performance compared to the one-bit sampling case while the

power consumption and implementation costs is still much lower beside the high-resolution

sampling scenario.

The second part of the thesis focuses on target localization problem using sparse and

one-bit measurements. It was shown in Chapter 6 that the one-bit sampling offers an

attractive solution to the challenges posed by the NB-IoT for location-based services.

The one-bit samplers are integral to developing low cost and low power devices. We

proposed a one-bit passive sensor array formulation to estimate the time-of-arrival in

an NB-IoT network. The quantized samples of the estimates are then forwarded to an

FC. We propose a novel method that casts the localization problem from aggregated

quantized nodal estimates as a multivariate fractional optimization problem that we

solve using the optimal Lasserre’s SDP relaxation. We also propose the ANTARES

algorithm as an alternative sub-optimal method with reduced computational complexity

compared to Lasserre’s. Our approach is helpful in addressing the problem of maintaining

high localization accuracy while deploying reduced-rate ADCs at the nodes as well as

limited-capacity NB-IoT links. Chapter 7 considered the problem of targer localization

using asynchronous MIMO radars with applications to automotive scenario. Arguing

the need for high range resolution for accurate localization with affordable bandwidth

in such scenarios, the chapter considered a new framework based on SSFW and the

sparse sensing paradigm. A two stage decentralized procedure for localization is proposed

within this framework. The proposed scheme is shown to localize the targets better than
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the conventional schemes for given bandwidths and offers avenues for further waveform

optimization. Enhanced performance and the limited resources consumed, makes the

proposed scheme attractive to the industry.

8.2 Future directions

The work carried out in this thesis can be extended in several directions. The main issues

left for future work are discussed below:

• DoA Estimation from One-Bit SLAs Measurements with Varying Thresh-

olds: Prior studies on one-bit DoA estimation presuppose that all one-bit ADCs use

an identical threshold, equal to zero, during the sensing time as well as across the

array elements to quantize the received analog signal. This is a convenient choice

but could be far away from the optimum. Hence, as a possible future work, one

can consider the problem of DoA estimation from one SLA data under conditions

that one-bit ADC thresholds vary during the sensing time as well as across the

array elements. This way of selecting one-bit ADC thresholds gives a boost to the

DoA estimation performance. The varying thresholds could be selected in either a

random or a systematic manner. In the latter case, the varying thresholds can be

selected for example by making use of Σ∆ sampling architecture in spatial and/or

time domain. This approach allows for alleviating the effect of quantization noise

to some extent.

We should note that the arcsine law will not be applicable anymore when the one-bit

ADC thresholds are not equal to zero. In consequence, we are not able to use

arcesine-law-based algorithms under such scenarios. The optimization framework

proposed in Chapter 5 after some modification could be a suitable approach for

DoA estimation in such cases.

• Sub-Bit Samplin: In the context of low-resolution sampling, it is also possible to

go even below one bit per sample. Let call this sampling strategy sub-bit sampling.

Sub-bit sampling can be done, e.g., by linearly mixing of N samples and use K

one-bit ADCs for sampling with K < N (non-linear mixing can also be considered).

I believe sub-bit sampling could contribute significantly to developing very cheap

ubiquitous signal processing devices.

• Colored Noise: Throughout Part I, noise is assumed to be white across the

array elements. However, in practice, this assumption may not be necessarily

true. It would be of great interest to investigate the performance bound of DoA
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estimation from both infinite-bit and one-bit SLA data as well as to devise proper

DoA estimators for the case when the white noise assumption is relaxed.

• One-Bit Distributed Detection: Chapter 6 investigates distributed target

localization using one-bit quntized measurements in passive radars. The distributed

detection problem using one-bit quntized measurements in passive radars still

remains to be investigated.
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Appendix A

Appendices of Chapter 3

A.1 Proof of Lemma 3.1

It is well-known that the sample covariance R̂ is a consistent estimate of R under the

current assumption [185], implying that limN→∞ r̂ = r. As a consequence, considering

(3.7), we obtain

lim
N→∞

R̂v =
[
TvJ

†r Tv−1J
†r · · · T1J

†r
]
. (A.1)

On the other hand, it has been proved in [59] that

lim
N→∞

R̂v = Av(θ)diag(p)AH
v (θ) + σ2Iv

.
= Rv, (A.2)

where the matrix Rv ∈ Cv×v has the same structure as the covariance matrix of signals

received by a contiguous ULA whose elements are located at
(
0, λ2 , λ, · · · , (v − 1)λ2

)
and

Av(θ) ∈ Cv×K is its corresponding steering matrix. Therefore, in case K ≤ v − 1,

exploiting the eigendecomposition, it is possible for (A.2) to be expressed as Rv =

UsΛsU
H
s + σ2UnU

H
n , where Us and Un represent the eigenvectors of Rv corresponding

to its K largest and v −K smallest eigenvalues, respectively. From (A.2), R̂v can be

deemed to be a perturbed version of Rv. Therefore, we have

lim
N→∞

ÛnÛ
H
n = UnU

H
n . (A.3)
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Eventually, making use of (A.1), (A.2), (A.3) and the fact that UH
n Av(θ) = 0, we obtain

lim
N→∞

σ̂2 =
vecH(UnU

H
n )TJ†r

v −K

=
vecH(UnU

H
n )vec(

[
TvJ

†r Tv−1J
†r · · · T1J

†r
]
)

v −K

=
σ2tr(UH

n Un)

v −K
= σ2. (A.4)

A.2 Proof of Theorem 3.1

Let define L(θ, r̂, Q̂) = ‖Π⊥
W

1
2 JAd(θ)

W
1
2 Q̂r̂‖22, L̃(θ) = limN→∞ L(θ, r̂, Q̂) and use θ0 to

distinguish the actual DoA vector from a generic vector θ. Since the derivatives of Ad(θ)

with respect to θ are bounded, L(θ, r̂, Q̂) converges uniformly to L̃(θ) as N →∞ [102].

Thus, θ̂wls also converges to the minimizing argument of L̃(θ) as N →∞.

It readily follows from (A.3) that limN→∞ Q̂ = Q. In addition, from (A.4) and (3.4)

Qr = JAd(θ0)p (A.5)

is readily checked. Hence, considering the fact that limN→∞ r̂ = r and making use of

continuous differentiability of L(θ, r̂, Q̂), we obtain

L̃(θ) = L(θ, lim
N→∞

r̂, lim
N→∞

Q̂) = ‖Π⊥
W

1
2 JAd(θ)

W
1
2 JAd(θ0)p‖22. (A.6)

It is evident from (A.6) that L̃(θ0) = 0 and L̃(θ) ≥ 0, implying L̃(θ) has a global minima

at θ0. Consequently, consistency of θ̂wls follows if θ0 is the unique solution to L̃(θ) = 0

with respect to θ. According to (A.6), L̃(θ) is equal to zero if and only if

Π⊥
W

1
2 JAd(θ)

W
1
2 JAd(θ0)p = 0. (A.7)

In what follows, we employ the method of proof by contradiction to complete the proof.

Let assume that θ1 is a solution to (A.7) but θ1 6= θ0. This means that θ1 could differ

from θ0 at q DoAs where 1 ≤ q ≤ K. Substituting θ1 into (A.7) yields

Π⊥
W

1
2 JAd(θ1)

W
1
2 JAd(θ

′
0)p

′
= 0. (A.8)

where θ
′
0 ∈ Cq×1 consists of those elements of θ0 which are not shared with θ1, and

Ad(θ
′
0) ∈ Cq×1 and p

′ ∈ Cq×1 are the corresponding blocks of Ad(θ0) and p. The
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expression on the left side of the above equation can be rewritten as follows

W
1
2 J
[
Ad(θ

′
0) Ad(θ1)

] IK

−
(
W

1
2 JAd(θ1)

)†
W

1
2 JAd(θ

′
0)

p
′

︸ ︷︷ ︸
ℵ

. (A.9)

Since the weighting matrix W is positive definite by definition and J a is full column

rank matrix[52], it is concluded that (A.7) is zero if and only if the term ℵ in (A.9) is

zero.

Lemma A.1.
[
Ad(θ

′
0) Ad(θ1)

]
has full column rank if K ≤ v − 1.

Proof. Let Aϑ(θ) ∈ C(2v−1)×K denote the steering matrix corresponding to the contiguous

ULA segment of the difference co-array. Since
[
Aϑ(θ

′
0) Aϑ(θ1)

]
is a sub-matrix of[

Ad(θ
′
0) Ad(θ1)

]
, it is sufficient to show that

[
Aϑ(θ

′
0) Aϑ(θ1)

]
is full column rank

instead of
[
Ad(θ

′
0) Ad(θ1)

]
.

It is possible to decompose
[
Aϑ(θ

′
0) Aϑ(θ1)

]
as follows


1 · · · 1 1 · · · 1

α1 · · · αq β1 · · · βK
...

. . .
...

...
. . .

...

α
2(v−1)
1 · · · α

2(v−1)
q β

2(v−1)
1 · · · β

2(v−1)
K


× diag(

[
α1−v

1 · · · α1−v
q β1−v

1 · · · β1−v
K

]
). (A.10)

where αi = ejπ sin[θ
′
0]i and βi = ejπ sin[θ1]i . The second matrix in (A.10) is a (K+q)×(K+q)

diagonal matrix and thus full rank. However, the first one is a (2v − 1) × (K + q)

Vandermonde matrix which has full column rank for distinct DoAs iff K + q ≤ 2v − 1.

This condition is fulfilled for all admissible q iff K ≤ v − 1. Hence, it follows that[
Aϑ(θ

′
0) Aϑ(θ1)

]
and, in turn,

[
Ad(θ

′
0) Ad(θ1)

]
have full column rank if K ≤ v −

1.

According to Lemma A.1, on condition that K ≤ v − 1, the term ℵ in (A.9) is equal to

zero if and only if [
IK

−
(
W

1
2 JAd(θ̃)

)†
W

1
2 JAd(θ0)

]
p
′

= 0, (A.11)
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implying that p
′

= 0, which is in contradiction with the definition of p given in A2.

Therefore, it is concluded that θ0 has to be the unique solution to L̃(θ) = 0 with respect

to θ if K ≤ v − 1, which indicates the consistency of θ̂wls. �

A.3 Proof of Theorem 3.2

The proof is composed of four steps. First, a closed-form error expression for the DoA

estimates is given through a Taylor series expansion method. The given closed-form

expression involves the gradient and Hessian of L(θ, r̂, Q̂). Hence, the corresponding

gradient and Hessian is computed at the second and third steps, respectively. Finally,

the covariance matrix of DoA estimation errors is obtained by combining the net results

of preceding steps.

A.3.1 Closed-form expression for DoA estimation errors

From (3.15), we know that θ̂wls is a critical point of L(θ, r̂, Q̂), thus we have∇θL(θ̂wls, r̂, Q̂)

= 0 where∇θL(θ, r̂, Q̂) denotes the gradient of L(θ, r̂, Q̂) with respect to θ. ∇θL(θ, r̂, Q̂)

is a real-valued1 function on RK , thereby applying Taylor theorem [186, Ch. 6, Theorem

12] around the true value of θ yields

∇θL(θ, r̂, Q̂) +∇2
θL(θ, r̂, Q̂)(θ̂wls − θ) +

(
IK ⊗ (θ̂wls − θ)T

)
H(θ∗, r̂, Q̂)(θ̂wls − θ) = 0,

(A.12)

where ∇2
θL(θ, r̂, Q̂) denotes the Hessian matrix of L(θ, r̂, Q̂) with respect to θ, the matrix

H(θ∗, r̂, Q̂) is given in [186, Ch. 6, Definition 2], and θ∗ = θ(1 − t) + tθ̂wls for some

t ∈ (0, 1). From (A.12), we have

θ̂wls − θ = −
(
∇2

θL(θ, r̂, Q̂) +

~︷ ︸︸ ︷(
IK ⊗ (θ̂wls − θ)T

)
H(θ∗, r̂, Q̂)

)−1

∇θL(θ, r̂, Q̂).

(A.13)

Noting that ÛnÛ
H
n = UnU

H
n +O( 1√

N
) [71], it is readily concluded that Q̂ = Q+O( 1√

N
)

for large N . Consequently, considering the fact that r̂ = r +O( 1√
N

) for large N [71, 107]

and making use of continuous differentiability of L(θ, r̂, Q̂), it can readily be shown that

∇2
θL(θ, r̂, Q̂) = ∇2

θL(θ, r,Q) +O( 1√
N

) and H(θ∗, r̂, Q̂) = H(θ∗, r,Q) +O( 1√
N

) for large

N . On the other hand, since θ̂wls is a consistent estimate of θ according to Theorem

3.1, there exists a > 0 such that θ̂wls − θ = O( 1
Na ) for large N . Hence, it follows that

1The fact that ∇θL(θ, r̂, Q̂) is a real-valued function will be shown later in (A.16)
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the Hessian term in (A.13) converges to a constant value as N →∞ while the term ~
converges to zero as N →∞. Therefor, it is possible to neglect the term ~ compared to

the Hessian term in (A.13) in the asymptotic regime (N →∞), leading to

θ̂wls − θ ' −
(
∇2

θL(θ, r,Q)
)−1∇θL(θ, r̂, Q̂). (A.14)

A.3.2 Derivation of the Gradient Vector

Taking derivative of L(θ, r̂, Q̂) with respect to θ and exploiting the following expression

for the derivative of projection matrix Π⊥
W

1
2 JAd(θ)

[187]

∂Π⊥
W

1
2 JAd(θ)

∂θk
=− (W

1
2 JAd(θ))†H(J

∂Ad(θ)

∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

−Π⊥
W

1
2 JAd(θ)

W
1
2 J
∂Ad(θ)

∂θk
(W

1
2 JAd(θ))†, (A.15)

we get

∂L(θ, r̂, Q̂)

∂θk
=− 2<{r̂HQ̂HW

1
2 (W

1
2 JAd(θ))†H

× (J
∂Ad(θ)

∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂}. (A.16)

Making use of Lemma A.6 in Appendix A.7, it can be readily shown that the term inside

the <{.} operator is real-valued in case KMW = W∗KM . Hence, considering (3.14),

(A.16) can be written as follows

∂L(θ, r̂, Q̂)

∂θk
= −2p̂Hls (J

∂Ad(θ)

∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂ (A.17)

= −j2π[p̂Hls ]k cos θka
H
d (θk)diag(d)JHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂,

where

ad(θk) =
[
e−jπ sin θk`D−1 · · · 1 · · · ejπ sin θk`D−1

]T
. (A.18)

From (A.17) and using limN→∞ p̂ls = p and limN→∞ Q̂ = Q, the gradient of L(θ, r̂, Q̂)

with respect to θ is given by

∇θL(θ, r̂, Q̂) ' −j2πdiag(p)Φ(θ)AH
d (θ)diag(d)JHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Qr̂. (A.19)

where Φ(θ) = diag(
[
cos θ1 · · · cos θK

]T
).
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A.3.3 Derivation of the Hessian Matrix

Taking the derivative of (A.16) with respect to θl and making use of (A.15) and the

following expression for the derivative of (W
1
2 JAd(θ))†H

∂(W
1
2 JAd(θ))†H

∂θl
=Π⊥

W
1
2 JAd(θ)

W
1
2 J
∂Ad(θ)

∂θl
(AH

d (θ)JHWJAd(θ))−1

− (W
1
2 JAd(θ))†H(J

∂Ad(θ)

∂θl
)HW

1
2 (W

1
2 JAd(θ))†H , (A.20)

leads to

∂2L(θ, r̂, Q̂)

∂θl∂θk
=− 2r̂HQ̂HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 J
∂Ad(θ)

∂θl
(AH

d (θ)JHWJAd(θ))−1

× (J
∂Ad(θ)

∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

+ 2r̂HQ̂HW
1
2 (W

1
2 JAd(θ))†H(J

∂Ad(θ)

∂θl
)HW

1
2 (W

1
2 JAd(θ))†H

× (J
∂Ad(θ)

∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

− 2r̂HQ̂HW
1
2 (W

1
2 JAd(θ))†H(J

∂2Ad(θ)

∂θl∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

+ 2r̂HQ̂HW
1
2 (W

1
2 JAd(θ))†H(J

∂Ad(θ)

∂θk
)HW

1
2 (W

1
2 JAd(θ))†H

× (J
∂Ad(θ)

∂θl
)HW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

+ 2r̂HQ̂HW
1
2 (W

1
2 JAd(θ))†H(J

∂Ad(θ)

∂θk
)HW

1
2 Π⊥

W
1
2 JAd(θ)

×W
1
2 J
∂Ad(θ)

∂θl
(W

1
2 JAd(θ))†Q̂r̂. (A.21)

Given the fact that L̃(θ0) = 0, it is possible to neglect the first four terms on the

right had side of (A.21) compared to the last term as N → ∞. Thus, by replacing

(W
1
2 JAd(θ))†W

1
2 Q̂r̂ from (3.14), we have

∂2L(θ, r̂, Q̂)

∂θl∂θk
'− 2π2[p̂Hls ]k cos θka

H
d (θk)diag(d)JHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2

× Jdiag(d)ad(θl) cos θl[p̂ls]l. (A.22)
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Based on (A.22) and considering limN→∞ p̂ls = p and limN→∞ Q̂ = Q, the Hessian

matrix of L(θ, r̂, Q̂) with respect to θ is obtained as follows

lim
N→∞

∇2
θL(θ, r̂, Q̂) =∇2

θL(θ, r,Q) (A.23)

'− 2π2diag(p)Φ(θ)AH
d (θ)diag(d)JHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2

× Jdiag(d)Ad(θ)Φ(θ)diag(p).

A.3.4 Calculation of the error covariance matrix

Combining (A.14), (A.19) and (A.23), it is possible to derive an asymptotic (N →∞)

expression for the covariance matrix of θ̂wls as follows

E
{

(θ̂wls − θ)(θ̂wls − θ)H
}

(A.24)

'E
{

(∇2
θL(θ0, r̂, Q̂))−1∇θL(θ0, r̂, Q̂)(∇θL(θ0, r̂, Q̂))H(∇2

θL(θ0, r̂, Q̂))−1
}

=
1

π2
(diag(p)ΦH(θ)AH

d (θ)diag(d)JHW
1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Jdiag(d)Ad(θ)Φ(θ)diag(p))−1

× diag(p)ΦH(θ)AH
d (θ)diag(d)JHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 QE{r̂r̂H}QHW

1
2 Π⊥

W
1
2 JAd(θ)

×W
1
2 Jdiag(d)Ad(θ)Φ(θ)diag(p)

× (diag(p)ΦH(θ)AH
d (θ)diag(d)JHW

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 Jdiag(d)Ad(θ)Φ(θ)diag(p))−1.

It is shown in [188] that

E{r̂r̂H} = rrH +
1

N

(
RT ⊗R

)
. (A.25)

Inserting (A.25) into (A.24) and exploiting (A.5) gives (3.28).

A.4 Proof of Theorem 3.3

Before proceeding to the main proof, let us first introduce the following preliminary

lemmas.

Lemma A.2. The vector b belongs to the range space of the matrix F, i.e., b ∈ R(F).

Proof. Recall Av(θ) from Appendix A.1, which is defined as the steering matrix of a

ULA whose elements are located at
(
0, λ2 , λ, · · · , (v − 1)λ2

)
. It is observe that there is a

selection matrix Z ∈ {0, 1}K2×K such that

A∗v(θ)�Av(θ) = (A∗v(θ)⊗Av(θ))Z. (A.26)
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Using (A.73), (A.26) and the fact that AH
v (θ)Un = 0 leads to

bHJAd(θ) = vecH(AH
v (θ)UnU

H
n Av(θ))Z = 0. (A.27)

(A.27) shows that b belongs to the null space of AH
d (θ)JH . We know N (AH

d (θ)JH) =

R(F). This concludes the proof.

Lemma A.3. The vector b belongs to the null space of ΩH .
= ΦH(θ)AH

d (θ)diag(d)JH ,

i.e., b ∈ N (ΩH).

Proof. Let av(θk)
.
=
[
1 ejπ sin θk · · · ejπ sin θk(v−1)

]T
denote the kth column of Av(θ)

and v
.
=
[
0 1 · · · v − 1

]T
. Exploiting (A.18) and (A.73), we can show that

Tdiag(d)Ad(θ)Φ(θ) =
−j
π

[
∂Tad(θ1)
∂θ1

∂Tad(θ2)
∂θ2

· · · ∂Tad(θK)
∂θK

]
(A.28)

=
−j
π

[
∂a∗v(θ1)⊗av(θ1)

∂θ1

∂a∗v(θ2)⊗av(θ2)
∂θ2

· · · ∂a∗v(θK)⊗av(θK)
∂θK

]
=
−j
π

(diag(v)A∗v(θ)�Av(θ) + A∗v(θ)� diag(v)Av(θ)) Φ(θ).

Exploiting (A.26), (A.28) and the fact that AH
v (θ)Un = 0 gives

bHΩ =
1

jπ

(
vecH(AH

v (θ)UnU
H
n diag(v)Av(θ))ZΦ(θ) (A.29)

+ vecH(AH
v (θ)diag(v)UnU

H
n Av(θ))ZΦ(θ)

)
= 0.

This completes the proof.

Now, let define Ψ
.
=
[
JAd(θ) vec(IM )

]
, the CRB expression given in [52, Theorem 2]

can then be rewritten as follows

CRB−1(θ) =
1

π2N
diag(p)ΩHM−1Π⊥

M−1Ψ
M−1Ωdiag(p). (A.30)

Based on the projection decomposition theorem [101], we have

Π⊥M−1Ψ = Π⊥M−1JAd(θ) −ΠΠ⊥
M−1JAd(θ)

M−1vec(IM )

= ΠMF −ΠΠMFM−1vec(IM ), (A.31)
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where the last equality is obtained by using the fact that Π⊥M−1JAd(θ) = ΠMF [101]. Substi-

tuting (A.31) into (A.30) yields

CRB−1(θ) =
1

π2N
diag(p)ΩHF

[
(FHM2F)−1 (A.32)

− (FHM2F)−1FHvec(IM )vecH(IM )F(FHM2F)−1

vecH(IM )F(FHM2F)−1FHvec(IM )

]
FHΩdiag(p).

Let decompose the vector vec(IM ) as a sum of two vectors h‖ and h⊥ where

h‖
.
= vec(IM )− (v −K)M2b

bHM2b
, (A.33)

h⊥
.
=

(v −K)M2b

bHM2b
. (A.34)

It follows from (3.30), (A.47) and the definitions of h‖ and h⊥, given above, that

hH⊥M−2h‖ =
(v −K)bHvec(IM )

bHM2b
− (v −K)2bHM2b

(bHM2b)2

=
(v −K)vecH(UnU

H
n )Tg

bHM2b
− (v −K)2

bHM2b

=
(v −K)vecH(UnU

H
n )vec(Iv)

bHM2b
− (v −K)2

bHM2b
= 0. (A.35)

Accordingly and making use of the fact that Π⊥M−1JAd(θ) = ΠMF, we obtain

vecH(IM )F(FHM2F)−1FHvec(IM ) =vecH(IM )M−1Π⊥M−1JAd(θ)M
−1vec(IM )

=vecH(IM )M−2vec(IM )− hH‖ M−1ΠM−1JAd(θ)M
−1h‖

− hH⊥M−1(M−1JAd(θ))†HAd(θ)HJHM−2h⊥

− hH‖ M−1(M−1JAd(θ))†HAd(θ)HJHM−2h⊥

− hH⊥M−2JAd(θ)(M−1JAd(θ))†M−1h⊥.

(A.36)

From the definition of h⊥ in (A.34) and Lemma A.2, we have

AH
d (θ)JHM−2h⊥ =

(v −K)AH
d (θ)JHb

bHM2b
= 0. (A.37)

Inserting (A.37) into (A.36) leads the last three terms in (A.36) to vanish. Then,

exploiting Π⊥M−1JAd(θ) = ΠMF once again yields

vecH(IM )F(FHM2F)−1FHvec(IM ) (A.38)

= vecH(IM )M−2vec(IM )− hH‖ M−1Π⊥MFM−1h‖.
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Given vec(IM ) = h‖ + h⊥ and from (A.35), it is observed that

vecH(IM )M−2vec(IM ) = hH‖ M−2h‖ + hH⊥M−2h⊥. (A.39)

Inserting (A.39) into (A.38) leads to

vecH(IM )F(FHM2F)−1FHvec(IM )

=
(v −K)2

bHM2b
+ hH‖ F(FHM2F)−1FHh‖. (A.40)

Further, making use of (A.37) and Lemma A.3, we can show that

ΩHF(FHM2F)−1FHh⊥ = ΩHM−1Π⊥M−1JAd(θ)M
−1h⊥

= ΩHM−2h⊥ −ΩHM−1(M−1JAd(θ))†HAd(θ)HJHM−2h⊥

=
(v −K)ΩHb

bHM2b
= 0. (A.41)

Substituting (A.38) and (A.41) into (A.32) gives

CRB−1(θ) =
1

π2N
diag(p)ΩHF

[
(FHM2F)−1 (A.42)

−
(FHM2F)−1FHh‖h

H
‖ F(FHM2F)−1

(v−K)2

bHM2b
+ hH‖ F(FHM2F)−1FHh‖

]
FHΩdiag(p)

=
1

π2N
diag(p)ΩHF

(
FH

(
M2 +

bHM2b

(v −K)2
h‖h

H
‖

)
F

)−1

FHΩdiag(p),

where the last equality is obtained by using the matrix inversion lemma [187]. Now,

given the definition of h‖ in (A.33), it is possible to show that

M2+
bHM2b

(v −K)2
h‖h

H
‖ = QM2Q +

M2bbHM2

bHM2b
. (A.43)

Inserting (A.43) into (A.42) completes the proof.

A.5 Proof of Theorem 3.4

The proof is compromised of two steps. The first step involves simplification of the

covariance matrix of DoA estimation errors through inserting the optimal weighting

matrix given in Theorem 3.4 into (3.28). At the second step, we simplify the CRB

expression given in Theorem 3.3 through doing some algebraic manipulations and show

that the CRB coincides with the simplified covariance matrix of DoA estimation errors

given in the first step.
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A.5.1 Simplification of the errors covariance matrix

Considering the expression for Wopt from Theorem 3.4 and exploiting FHJAd(θ) = 0

and Π⊥
W

1
2
optJAd(θ)

= Π
W
− 1

2
opt F

results in

W
1
2
optΠ

⊥
W

1
2
optJAd(θ)

W
1
2
opt = F(FHSF)−1FH . (A.44)

Let now introduce the following Lemma, whereby we can proceed further with simplifica-

tion of (A.44).

Lemma A.4. The matrix QM2QH ∈ CM2×M2
can be decomposed as VVH , where

VH ∈ CM2×M2
is a singular matrix with rank M2 − 1 whose null space is spanned by b.

Proof. For any given matrices B and C, it is known that rank(B −C) ≥ |rank(B) −
rank(C)| [187]. Hence, recalling the definition of Q in (3.29) , we have

rank(Q) ≥M2 − 1. (A.45)

On the other hand, given (3.30), we obtain

bHQ = bH −
vecH

(
UnU

H
n

)
Tg

v −K
bH . (A.46)

Let g′ ∈ {0, 1}(2v−1)×1 be a column vector with [g′]i = δ[i− v]. Utilizing (A.75), (A.72)

and [52, Corollary 3], we observe

Tg = T′g′ = vec(Iv). (A.47)

where T′ ∈ {0, 1}v2×2v−1 is defined in (A.72) in Appendix A.7. Inserting (A.47) into

(A.46) gives

bHQ = bH − tr(UnU
H
n )

v −K
bH = bH − bH = 0. (A.48)

which implies that

rank(Q) ≤M2 − 1. (A.49)

Comparing (A.45) and (A.49) concludes that rank(Q) = M2 − 1.

The fact rank(Q) = M2 − 1 implies that the dimension of the null space of QH is equal

to 1. In addition, it follows from (A.46) that b ∈ N (QH). This means that the vector b

spans the null space of QH .
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Let now define the matrix V = QM. Since R is positive definite, the matrix M =(
RT ⊗R

) 1
2 is also positive definite, implying that R(V) = R(Q). Hence, VH is also a

matrix of rank M2 − 1 whose null space is spanned by the vector b.

It follows from Lemma A.2 and Lemma A.4 that N (VH) ⊂ R(F) and, in turn, N (FH) ⊂
R(V). This implies that a K-dimensional subspace of R(V) is a spanning set for the

null space of FH . Hence, making use of Lemma A.4 and recalling the definition of S in

(3.36) result in

FHSF = FHΠFVVHΠFF + FHbbHF

= FH
[
V̄ b

] [V̄H

bH

]
F, (A.50)

where V̄ = UvΛv ∈ CM
2×(M2−K−1) with Uv ∈ CM

2×(M2−K−1) being comprised of

left-singular vectors of ΠFV and the diagonal matrix Λv ∈ C(M2−K−1)×(M2−K−1) its

corresponding singular values, meaning that

R(V̄) ⊂ R(F), (A.51)

R(V̄) ⊂ R(V), (A.52)

rank(V̄) = M2 −K − 1. (A.53)

It follows from (A.52) and Lemma A.4 that b /∈ R(V̄). From (A.53) and the fact that

b /∈ R(V̄), it can be deduced that

rank(
[
V̄ b

]
) = M2 −K = rank(F). (A.54)

Comparing (A.51), (A.53) and (A.54) proves that R(
[
V̄ b

]
) = R(F). Hence, there is a

full rank matrix X ∈ C(M2−K)×(M2−K) such that[
V̄ b

]
= FX. (A.55)

Inserting (A.50) and (A.55) into (A.44) yields

W
1
2
optΠ

⊥
W

1
2
optJAd(θ)

W
1
2
opt = F†HX−HX−1F† = (FX)†H(FX)†

=
[
V̄†H b†H

] [V̄†
b†

]
. (A.56)
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Considering (A.56), Lemma A.3 and R(b†H) = R(b) gives

ΩHW
1
2
optΠ

⊥
W

1
2
optJAd(θ)

W
1
2
opt = ΩH

[
V̄†H 0

] [V̄†
b†

]
= ΩH(V̄V̄H)†. (A.57)

Moreover, given (A.50) and using Π⊥
W

1
2
optJAd(θ)

= Π
W
− 1

2
opt F

, we have

Π⊥
W

1
2
optJAd(θ)

W
1
2
optQM2QHW

1
2
optΠ

⊥
W

1
2
optJAd(θ)

= W
− 1

2
optF(FHW−1

optF)−1FHV̄V̄HF(FHW−1
optF)−1FHW

− 1
2

opt

= Π⊥
W

1
2
optJAd(θ)

W
1
2
optV̄V̄HW

1
2
optΠ

⊥
W

1
2
optJAd(θ)

. (A.58)

Eventually, substituting (A.57) and (A.58) into (3.28), we find

Cwls =
1

π2N
diag−1(p)

(
ΩH(V̄V̄H)†Ω

)−1

×
(
ΩH(V̄V̄H)†V̄V̄H(V̄V̄H)†Ω

)(
ΩH(V̄V̄H)†Ω

)−1
diag−1(p)

=
1

π2N

(
diag(p)ΩH(V̄V̄H)†Ωdiag(p)

)−1
(A.59)

A.5.2 Simplification of the CRB expression

Now, we will show that the CRB expression given in Lemma 3.3 is also reduced to (A.59).

Let decompose the vector M2b√
bHM2b

as a sum of two vectors q‖ and q⊥ where

q‖ =

√
bHM2b

‖b‖2
b, q⊥ =

M2b√
bHM2b

−
√

bHM2b

‖b‖2
b. (A.60)

It is observed that q‖ is a scaled version of b and that bHq⊥ = 0. Hence, recalling (3.34)

and taking account of (A.50), we have

FHHF = FHVVF + FH(q‖ + q⊥)(q‖ + q⊥)HF

= FH
[
V̄ q‖ + q̄⊥

] [ V̄H

qH‖ + q̄H⊥

]
F, (A.61)

where q̄⊥ = ΠFq⊥. By definition, it is evident that q̄⊥ ∈ R(F) and bH q̄⊥ = 0, meaning

that q̄⊥ ∈ R(V̄). In addition, since b /∈ R(V̄), q‖ /∈ R(V̄) in turn. In consequence,

considering (A.51) and (A.53), it can be inferred thatR(
[
V̄ q‖ + q̄⊥

]
) = R(F) implying
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that there is a full rank matrix D ∈ C(M2−K)×(M2−K) such that[
V̄ q‖ + q̄⊥

]
= FD. (A.62)

By inserting (A.62) into (A.61) and doing some calculations similar to (A.56), we obtain

F(FHHF)−1FH =
[
V̄ q‖ + q̄⊥

]†H [ V̄H

qH‖ + q̄H⊥

]†
. (A.63)

Since
[
V̄ q‖ + q̄⊥

]
is a full column rank matrix, its pseudoinverse by definition can be

computed as

[
V̄ q‖ + q̄⊥

]†
=

[
V̄V̄H V̄H q̄⊥

q̄H⊥ V̄ ‖q‖‖2 + ‖q̄⊥‖2

]−1 [
V̄H

qH‖ + q̄H⊥

]
=V̄† +

V̄†q̄⊥q̄H⊥ΠV̄−V̄†q̄⊥(qH‖ +q̄H⊥ )

‖q‖‖2+‖q̄⊥‖2−q̄H⊥ΠV̄q̄⊥
−q̄H⊥ΠV̄+qH‖ +q̄H⊥

‖q‖‖2+‖q̄⊥‖2−q̄H⊥ΠV̄q̄⊥

 =

V̄† −
V̄†q̄⊥qH‖
‖q‖‖2

q†‖

 , (A.64)

where that last equality is obtained by exploiting the fact that q̄⊥ belongs to the range

space of V̄. Now, inserting (A.63) and (A.64) into the CRB expression given in (3.33)

gives

CRB(θ) = (diag(p)ΩH
[
V̄†H − q‖q̄

H
⊥ V̄†H

‖q‖‖2
q†H‖

]
×

V̄† −
V̄†q̄⊥qH‖
‖q‖‖2

q†‖

Ωdiag(p))−1

=
1

π2N

(
diag(p)ΩH(V̄V̄H)†Ωdiag(p)

)−1
, (A.65)

where the last equality is obtained by using Lemma A.3 and the fact that q‖ is a scaled

version of b.

Eventually, comparing (A.59) into (A.65) concludes the proof.

A.6 Proof of Lemma 3.2

We first prove positive definiteness of Wopt. It follows from (A.50) to (A.55) in Appendix

A.5.1 that

Π⊥JAd(θ)SΠ⊥JAd(θ) = ΠFSΠF = FXXHFH . (A.66)
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Consequently, we have

W−1
opt =

[
FX JAd(θ)

] [
FX JAd(θ)

]H
. (A.67)

The matrices FX ∈ CM
2×(M2−K) and JAd(θ) ∈ CM

2×K are full column rank by

definition. Further, it is easily checked that FX and JAd(θ) are orthogonal subspaces,

i.e., XHFHJAd(θ) = 0. Hence,
[
FX JAd(θ)

]
∈ CM2×M2

is full rank. This implies

that Wopt is also full rank and thereby positive definite.

Now we show that the estimate of Wopt, obtained from either CAB-MUSIC or CAB-

ESPRIT, is always positive definite regardless of the available number of snapshots. Let

assume that an arbitrary number of snapshots is available and Ŝ = Q̂M̂2Q̂H + b̂b̂H

denotes the estimate of S, obtained based on the sample covarinace matrix. Further, let

θ̂ be an estimate of θ given by CAB-MUSIC or CAB-ESPRIT and F̂ is the estimate of

F obtained from θ̂. Following similar kind of arguments and derivations provided from

Lemma A.4 to (A.55) in Appendix A.5.1, it can readily be shown that

Π⊥
JAd(θ̂)

ŜΠ⊥
JAd(θ̂)

= ΠF̂ŜΠF̂ = F̂X̂X̂HF̂H , (A.68)

where X̂ ∈ C(M2−K)×(M2−K) is a full rank matrix. Hence, using (A.68), we observe that

Ŵ−1
opt =

[
F̂X̂ JAd(θ̂)

] [
F̂X̂ JAd(θ̂)

]H
. (A.69)

Once again, we note that F̂X̂ ∈ CM2×(M2−K) and JAd(θ̂) ∈ CM2×K are full column rank

by definition, and moreover, they span orthogonal subspaces. Hence,
[
F̂X̂ JAd(θ̂)

]
∈

CM
2×M2

and in turn Ŵopt is full rank.

A.7 Commutation Matrix and Some Relevant Lemmas

Definition A.1. Let B be any matrix in Rp×p. Then, there exists a permutation matrix

Kp ∈ {0, 1}p
2×p2

such that vec
(
BT
)

= Kpvec (B). This matrix, called the commutation

matrix, is an involutory and symmetric matrix, i.e., Kp = KT
p = K−1

p [186].

Lemma A.5. KMJ†HTHKv = J†HTH where KM ∈ {0, 1}M
2×M2

and Kv ∈ {0, 1}v
2×v2

are commutation matrices defined according to Definition A.1.

Proof. It has been proved in [52] that J has orthogonal columns. Further, recalling the

definition of J given in Definition 3.1, since ‖vec(LTi )‖2 = ‖vec(Li)‖2 for 0 < n < D − 1,
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it is readily confirmed that

(JHJ)−1 = diag(
[

1
‖vec(LD−1)‖2 · · · 1

‖vec(L0)‖2 · · · 1
‖vec(LD−1)‖2

]T
). (A.70)

Recalling Aϑ and Av in the proof of Lemmas 3.1 and A.1, and based on [52, Appendix

B], it is straightforward to show that

A∗v(θ)�Av(θ) = T′Aϑ(θ), (A.71)

where T′ ∈ {0, 1}v2×2v−1 can be defined like J as

T′ =
[
vec(GT

v−1) · · · vec(G0) · · · vec(Gv−1)
]
, (A.72)

where [Gn]p,q =

{
1, if p− q = n,

0, otherwise.
. On the other hand, comparing the vectorized form of

(A.1) and (A.2) gives

TAd(θ) = A∗v(θ)�Av(θ). (A.73)

Making use of (A.71), (A.73) and the fact that

Aϑ(θ) =
[
0(2v−1)×(D−v) I2v−1 0(2v−1)×(D−v)

]
Ad(θ) (A.74)

results in

T =
[
0v2×(D−v) T′ 0v2×(D−v)

]
. (A.75)

Combining (3.5), (A.70), (A.72) and (A.75) gives

KMJ†HTHKv =J†HTH =
vec(L0)vecT (G0)

‖vec(L0)‖2
(A.76)

+

v−1∑
i=1

vec(Li)vecT (Gi) + vec(LTi )vecT (GT
i )

‖vec(Li)‖2
.

Lemma A.6. Let KM ∈ {0, 1}M
2×M2

be the commutation matrix as defined according

to Definition A.1 and KMW = W∗KM . Then, it follows that

a) Q̂∗r̂∗ = KMQ̂r̂,

b) r̂T Q̂TKM = r̂HQ̂H ,

c) (J∂Ad(θ)
∂θk

)T = (J∂Ad(θ)
∂θk

)HKM ,

d) KMW
1
2
∗(W

1
2 JAd(θ))†T = W

1
2 (W

1
2 JAd(θ))†H ,
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e) KMW
1
2
∗Π⊥∗

W
1
2 JAd(θ)

W
1
2
∗KM = W

1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 .

Proof. The proof of each item is given in the following:

a) and b): Since R̂ is Hermitian [185], it readily follows that r̂∗ = KM r̂. Hence, recalling

(3.13) and making use of Lemma A.5 and the fact that ÛnÛ
H
n is Hermitian, we obtain

Q̂∗r̂∗ = KM

(
r̂− vec(IM )vecH(ÛnÛ

H
n )KvTJ†KM r̂

v −K
)

= KMQ̂r̂. (A.77)

Further, transposing (A.77) results in item b).

c): Let a ∈ CK×1 be an arbitrary vector. From (3.4), we find

KMJAd(θ)a = vec
(
A∗(θ)diag (a) AT (θ)

)
= (JAd(θ))∗ a. (A.78)

Since a is an arbitrary vector, it can be concluded that

KMJAd(θ) = (JAd(θ))∗ . (A.79)

Eventually, replacing both side of (A.79) with their conjugate transposes and taking

derivative with respect to θk gives c).

d): Using (A.79) and KMW = W∗KM , it is observed that

KMW
1
2 (W

1
2 JAd(θ))†H = W∗ (JAd(θ))∗

(
(JAd(θ))HWJAd(θ)

)−1

= W
1
2
∗(W

1
2 JAd(θ))†T . (A.80)

Multiplying both sides of (A.80) by KM leads to d).

e) and f): Making use of (A.79), transpose of (A.80) and the fact that W = KMW∗KM ,

we get

W
1
2 Π⊥

W
1
2 JAd(θ)

W
1
2 = KMW∗KM −KMW∗(JAd(θ))∗(W

1
2 JAd(θ))†∗W

1
2
∗KM (A.81)

= KMW
1
2
∗Π⊥∗

W
1
2 JAd(θ)

W
1
2
∗KM .

Lemma A.7. KMWopt = W∗
optKM

Proof. Since KM is involutory and symmetric, to prove the lemma, we can equivalently

show that KMW∗
optKM = Wopt. From (A.79), it is readily observed that

KMΠ⊥∗JAd(θ) = Π⊥JAd(θ)KM . (A.82)
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Now, it follows from (A.79) and (A.82) that

KMW∗
optKM =

(
Π⊥JAd(θ)KMS∗KMΠ⊥JAd(θ) + JAd(θ)AH

d (θ)JT
)−1

. (A.83)

In consequence, KMW∗
optKM = Wopt if and only if KMS∗KM = S. Exploiting Lemma

A.5 and recalling (3.30), we find

KMb∗ = KMJ†HTHKvvec
(
UnU

H
n

)
= b. (A.84)

Further, recalling (3.29) and using transpose of (A.84), we have

KMQ∗ = KM −
KMvec(IM )bT

v −K
= QKM (A.85)

Now recalling (3.36) and making use of (A.84) and (A.85) gives

KMS∗KM = KMQ∗M2∗QTKM + KMb∗bTKM

= QKMM2∗KMQH + bbH = S, (A.86)

where the last equality is obtained by using the fact that KMM2∗KM = KM(R⊗RT )KM =

RT ⊗R = M2.



Appendix B

Appendices of Chapter 4

B.1 Proof of Theorem 4.1

We first prove the sufficiency. Assume that θ0 ∈ [−π/2, π/2]K×1 is identifiable from

Y. This implies that f(Y | θ0,p, σ
2) 6= f(Y | θ̆, p̆, σ̆2) for any arbitrary values

of θ̆ 6= θ0 ∈ [−π/2, π/2]K×1, p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 , σ2 and σ̆2. Hence, consider-

ing y(0),y(1), · · · ,y(N − 1) are independent and identically distributed with y(t) ∼
CN (0,R), we have

A(θ0)diag(p)AH(θ0) + σ2IM 6= A(θ̆)diag(p̆)AH(θ̆) + σ̆2IM , (B.1)

for all θ̆ 6= θ0 ∈ [−π/2, π/2]K×1, p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 , σ2 and σ̆2.

In what follows, we employ the method of proof by contradiction to prove the sufficiency.

In particular, we assume that θ0 ∈ [−π/2, π/2]K×1 is non-identifiable from X. Hence,

there exists a θ̆ 6= θ0 ∈ [−π/2, π/2]K×1 at which f(X | θ0, p̃, σ̃
2) = f(X | θ̆, ṗ, σ̇2) for

some values of p̃ ∈ RK×1
>0 , ṗ ∈ RK×1

>0 , σ̃2 and σ̇2. It is readily clear from assumption A4

and (4.6) that E{x(t1)xH(t2)} = 0 when t1 6= t2. Accordingly, we have

E
{
XXH |θ0,p, σ

2
}

= E
{

XXH | θ̆, p̆, σ̆2
}
, (B.2)

⇒
N−1∑
t=0

E{x(t)xH(t) |θ0,p, σ
2}=

N−1∑
t=0

E{x(t)xH(t) | θ̆, p̆, σ̆2}

159
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From (B.2), (4.7), (4.3) and the fact that the arcsine function is one-to-one when its

argument is between −1 and 1, it follows that

1

σ̃2 +
∑K

k=1 p̃k

[
A(θ0)diag(p̃)AH(θ0)+σ̃2IM

]
=

1

σ̇2 +
∑K

k=1 ṗk

[
A(θ̆)diag(ṗ)AH(θ̆)+σ̇2IM

]
. (B.3)

Considering p = p̃

σ̃2+
∑K
k=1 p̃k

, σ2 = σ̃2

σ̃2+
∑K
k=1 p̃k

, p̆ = ṗ

σ̇2+
∑K
k=1 ṗk

and σ̆2 = σ̇2

σ̇2+
∑K
k=1 ṗk

, we

obtain

A(θ0)diag(p)AH(θ0) + σ2IM = A(θ̆)diag(p̆)AH(θ̆) + σ̆2IM . (B.4)

which is in contradiction with (B.1). Hence, the initial assumption that θ0 ∈ [−π/2, π/2]K×1

is non-identifiable from X cannot be true. This proves the sufficiency.

To show the necessity, let assume that θ0 ∈ [−π/2, π/2]K×1 is non-identifiable from

Y. This implies that there exist some θ̆ ∈ [−π, π]q×1 6= θ0, p, p̆, σ2 and σ̆2 for which

f(Y | θ0,p, σ
2) = f(Y | θ̆, p̆, σ̆2). Since the true PDF of X is obtained from the orthant

probabilities of Y, it is readily deduced that f(X | θ0,p, σ
2) = f(X | θ̆, p̆, σ̆2) as well.

This proves that identifiability of θ0 ∈ [−π/2, π/2]K×1 from Y is a necessary condition

for identifiability of θ0 ∈ [−π/2, π/2]K×1 from X.

B.2 Proof of Theorem 4.2

We first prove S1. Consider arbitrary θ ∈ [−π/2, π/2]K×1 and θ̆ ∈ [−π/2, π/2]K×1 such

that [θ]k and [θ̆]k are distinct for 1 ≤ k ≤ K. Moreover, let Av(θ) be the steering matrix

of a contiguous ULA with v elements located at (0, λ2 , · · · , (v − 1)λ2 ). Considering the

fact that Av(θ) is a Vandermonde matrix, if K ≤ v − 1, it follows from Caratheodory-

Fejer-Pisarenko decomposition [189] that

Av(θ)diag(p)AH
v (θ) + σ2Iv 6= Av(θ̆)diag(p̆)AH

v (θ̆) + σ̆2Iv (B.5)

for any arbitrary values of p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 , σ2 and σ̆2. From [53, Eq. (113)],

vectorizing both sides of (B.5) leads to

T′Aϑ(θ)p + σ2T′e′ 6= T′Aϑ(θ̆)p̆ + σ̆2T′e′ (B.6)

where Aϑ(θ) ∈ C(2v−1)×K denotes the steering matrix corresponding to the contiguous

ULA segment of the difference co-array, T′ ∈ {0, 1}v2×2v−1 is a selection matrix defined in

[53, Eq. (114)] and e′ ∈ {0, 1}(2v−1)×1 is a column vector with [e′]i = δ[i−v]. Considering
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T
′

is full column rank [53], multiplying both sides of (B.6) by T
′†

and then moving all

the terms to one side of the equation yields

Aϑ(θ)p−Aϑ(θ̆)p̆ + (σ2 − σ̆2)e′ 6= 0. (B.7)

It follows from θ̆ 6= θ0 that θ̆ could differs from θ0 at q DoAs for some integer q ∈ [1,K].

Noting this fact, (B.7) is simplified to

[
Aϑ(θ) Aϑ(θ̈) e′

]
p− p̆� ε
−p̈

σ2 − σ̆2

 6= 0, (B.8)

where θ̈ ∈ [−π, π]q×1 consists of those elements of θ̆ which do not intersect with those in

θ, p̈ ∈ Rq×1
>0 contains those elements of p̆ corresponding to θ̈ and

[ε]i =

{
1, [θ]i = [θ̆]i,

0, otherwise.
(B.9)

Considering the fact that
[
Aϑ(θ) Aϑ(θ̆) e

′
]
∈ C(2v−1)×(2K+1) is a sub-matrix of[

Ad(θ) Ad(θ̈) e
]
∈ C(2D−1)×(2K+1), obtained from 2v − 1 rows of

[
Ad(θ) Ad(θ̈) e

]
,

it follows from (B.8) that

[
Ad(θ) Ad(θ̈) e

]
p− p̆� ε
−p̈

σ2 − σ̆2

 6= 0, (B.10)

⇒Ad(θ)p−Ad(θ̆)p̆ + (σ2 − σ̆2)e 6= 0. (B.11)

Multiplying (B.11) by J and exploiting (4.3) and (4.4), after some algebraic manipulations, we

obtain

vec(A(θ)diag(p)AH(θ) + σ2IM )

6= vec(A(θ̆)diag(p̆)AH(θ̆) + σ̆2IM ), (B.12)

which in turn implies that

A(θ)diag(p)AH(θ) + σ2IM 6= A(θ̆)diag(p̆)AH(θ̆) + σ̆2IM , (B.13)

for all θ 6= θ̆ ∈ [−π/2, π/2]K×1, p ∈ RK×1>0 , p̆ ∈ RK×1>0 , σ2 and σ̆2. Considering y(0),y(1), · · · ,y(N−
1) are independent and identically distributed with y(t) ∼ CN (0,R), it follows from (B.13)

that f(Y | θ0,p, σ2) 6= f(Y | θ̆, p̆, σ̆2) for any arbitrary values of θ 6= θ̆ ∈ [−π/2, π/2]K×1,

p ∈ RK×1>0 , p̆ ∈ RK×1>0 , σ2 and σ̆2 if K ≤ v − 1. Now, from Theorem 4.1, we conclude that

f(X | θ0,p, σ2) 6= f(X | θ̆, p̆, σ̆2). This completes the proof of S1.
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We now prove S2. We know from Lemma 4.1 that the FIM is singular for any value of

θ ∈ [−π/2, π/2]K×1 if K ≥ D. This means that the problem is not even locally indentifiable

at any θ [190]. Since the local identifiablity is a necessary condition for the identifiablity any

particular point, the problem is not identifiable for any θ.

B.3 Proof of Lemma 4.1

Let Rr
x and R

r
denote the equivalent real representation for Rx and R, respectively, given as

Rr
x =

[
<{Rx} −={Rx}
={Rx} <{Rx}

]
, R

r
=

[
<{R} −={R}
={R} <{R}.

]
(B.14)

Making use of (4.7) and Taylor expansion of arcsine function, we have

Rr
x =

2

π
arcsin(R

r
) = R

r
+

1

6
R
r �R

r �R
r

+
3

40
R
r �R

r �R
r �R

r �R
r

+ · · ·

=

∞∑
n=0

(2n)!

(2nn!)2(2n+ 1)
R
r �R

r � · · · �R
r︸ ︷︷ ︸

2n+1 times

. (B.15)

It is clear from (4.8) that R is positive definite, and so is R
r
. Further, it follows from the Schur

product theorem [191, Theorem 3.1], which establishes that the Hadamard product of two positive-

definite matrices is also a positive-definite matrix, that the 2n+ 1 times Hadamard products of

R
r

by itself is also positive definite for any integer n ∈ [0,∞). Hence, it follows from (B.15) that

Rr
x is obtained from a weighted sum of positive definite matrices, and thus it is positive definite.

Evidently, Rx is also positive definite. This in turn indicates non-singularity of (R−Tx ⊗R−1x ).

Hence, since J is also full column rank [52], we easily conclude that JH(R−Tx ⊗R−1x )J is full

rank. This implies that Iw(%) is non-singular if and only if
[
G V

]
∈ R(2D−1)×2K is full column

rank. In other words, Iw(%) is non-singular if and only if

[
G V

] [c1
c1

]
6= 0, (B.16)

for any arbitrary non-zero c = [cT1 , c
T
2 ]T ∈ C2K×1. Inserting (4.16) and (4.17) into (B.16) leads

to

[
∆ z

] [c̃1
c2

]
6= 0. (B.17)

where c̃1 =jπΦ(θ)diag(p)c1. This completes the proof.
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B.4 Proof of Theorem 4.3

We know from Appendix B.3 that M = JH(R−Tx ⊗R−1x )J is positive-definite. Hence, (4.15) can

be rewritten as

Iw(%) = N

[
GHM

1
2

VHM
1
2

] [
M

1
2 G M

1
2 V
]

= N

[
GHMG GHMV

VHMG VHMV

]
. (B.18)

The CRBw(θ) is then obtained by block-wise inversion as follows:

CRBw(θ) =
1

N

(
GHMG−GHMV

(
VHMV

)−1
VHMG

)−1
=

1

N

(
GHMG−GHM

1
2 Π

M
1
2 V

M
1
2 G
)−1

=
1

N

(
GHM

1
2 Π⊥

M
1
2 V

M
1
2 G
)−1

. (B.19)

The facts that G = jπdiag(d)ΩΦ(θ)diag(p) and Rx = 2
πarcsine(R) will lead to (4.20). In

addition, It follows from I(%) � Iw(%) that CRB(θ) � CRBw(θ).

B.5 Proof of Theorem 4.4

Recalling pk = pk
σ2+

∑K
k=1 pk

and assuming that all sources have equal power p, we conclude that

lim
SNR→∞

pk = lim
SNR→∞

SNR

K × SNR+ 1
=

1

K
. (B.20)

Making use of (B.20), it can be readily shown that

lim
SNR→∞

R =
1

K
A(θ)AH(θ) + (1− 1

K
)IM . (B.21)

The above equation implies that limSNR→∞R is a positive-definite matrix independent of the

SNR. Further, it follows from (B.21) that

lim
SNR→∞

diag(p) =
1

K
IK , (B.22)

lim
SNR→∞

h =

[
1√

1− |<{
∑K
k=1 e

−jπ sin θk`D−1}|2
K2

, · · · , 1, · · · , 1√
1− |<{

∑K
k=1 e

jπ sin θk`D−1}|2
K2

]T
,

(B.23)

lim
SNR→∞

h =

[
1√

1− |={
∑K
k=1 e

−jπ sin θk`D−1}|2
K2

, · · · , 1, · · · , 1√
1− |={

∑K
k=1 e

jπ sin θk`D−1}|2
K2

]T
.

(B.24)
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Substituting (B.22), (B.23) and (B.24) back into (4.16) and (4.17) indicates that limSNR→∞[
G V

]
is a full column rank matrix independent of the SNR. Hence, recalling (4.15), we

can conclude that limSNR→∞ Iw(%) is positive-definite and independent of the SNR. This in

turn implies that limSNR→∞ CRBw(θ), which is Schur complement of limSNR→∞ Iw(%), is also

positive-definite and independent of the SNR. This completes the proof.

B.6 Proof of Lemma 4.2

We start with showing that Ψ is full rank. Making use of relations det(

[
C1 C2

C3 C4

]
) = det(C1) det(C4−

C3C
−1
1 C2), we obtain

det(Ψ) = det(ID−1) det(2jID−1) = (2j)D−1 6= 0, (B.25)

which implies full rankness of Ψ.

Next, we proceed with proving that J is full rank. Let J̈ denote the matrix obtained after

removing the D-th column from J. J̈ is full column rank since its columns are a sub-set of the

columns of the full-column-rank matrix J [52]. Further, for 1 ≤ i ≤M , it is readily confirmed

that the ((i− 1)M + 1)-th row of vec(Ln) as well as vec(LTn ) equals the i-th diagonal element of

Ln, which is obviously zero for n 6= 0 according to the definition given after (4.5). Given (4.5),

this in turn implies that the rows of J̈ with indices (i − 1)M + 1, for all 1 ≤ i ≤ M , are zero

vectors. As a result, the matrix obtained by removing these rows from J̈, i.e., J, has the same

column rank as J̈. This completes the proof.

Finally, we show that F is full rank. It follows from the fact that eTp eq = 0 for p 6= q that

(eTi ⊗ eTj ± eTj ⊗ eTi )(ep ⊗ eq ± eq ⊗ ep) = eTi ep ⊗ eTj eq

± eTi eq ⊗ eTj ep ± eTj ep ⊗ eTi eq ± eTj eq ⊗ eTi ep = 0. (B.26)

for 1 ≤ i < j ≤ M and 1 ≤ p < q ≤ M when either p or q differs from i and j. In addition, in

case i = p and j = q, we have

(eTi ⊗ eTj + eTj ⊗ eTi )(ei ⊗ ej − ej ⊗ ei) = eTi ei ⊗ eTj ej

− eTi ej ⊗ eTj ei + eTj ei ⊗ eTi ej − eTj ej ⊗ eTi ei = 0. (B.27)

It is also observed that, for 1 ≤ i ≤ M and 1 ≤ p < q ≤ M , the ((i − 1)M + 1)-th element

of eTp ⊗ eTq ± eTp ⊗ eTq is equal to the i-th diagonal element of epe
T
q ± epe

T
q , which is obviously

zero for p 6= q. Consequently, the row vectors obtained by removing the elements with indices

(i − 1)M + 1 for all 1 ≤ i ≤ M from eTp ⊗ eTq + eTq ⊗ eTp and eTp ⊗ eTq − eTq ⊗ eTp will be still

orthogonal with each other. Hence, it is deduced that the square matrix F has orthogonal rows,

thereby being full rank.
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B.7 Proof of Lemma 4.3

Let define E(θ) = aHv (θ)ÛnÛH
n av(θ) and Ĕ(θ) = aHv (θ)UnUH

n av(θ) where Ûn and Un consist

of, respectively, the eigenvectors of R̂v and Av(θ)diag(p)AH
v (θ) + σ2Iv corresponding to their

v −K smallest eigenvalues with K ≤ v − 1. We know that the elements of θ̂ are equal to the

minimizers of E(θ). Defining En = sup
θ
|E(θ)− Ĕ(θ)|, we have

En = sup
θ

∣∣∣aHv (θ)(ÛnÛH
n −UnUH

n )av(θ)
∣∣∣

= sup
θ

∣∣∣(aTv (θ)⊗ aHv (θ)
)

vec(ÛnÛH
n −UnUH

n )
∣∣∣

≤ ‖aTv (θ)⊗ aHv (θ)‖2‖vec(ÛnÛH
n −UnUH

n )‖2

= v2‖vec(ÛnÛH
n −UnUH

n )‖2. (B.28)

It follows from (4.49) that limN→∞ ÛnÛH
n = UnUH

n . Hence, En → 0 as N →∞. This implies

that E(θ) converges uniformly to Ĕ(θ) as N → ∞. Thus, the minimizers of E(θ), i.e., the

elements of θ̂, converge to the minimizers of Ĕ(θ), i.e., θ1, θ2, · · · , θK , as N →∞. This complete

the proof.

B.8 Proof of Theorem 4.5

Considering the consistency of θ̂ and following the same arguments as in [38, App. B], for

sufficiently large N , the asymptotic estimation error expression for EOCAB-MUSIC is given by

θ̂k − θk = −<{z
T
kTJ†∆r}

πpkqk cos(θk)
, (B.29)

where ∆r = r̂− r and T =
[
TT
v TT

v−1 · · · TT
1

]T
∈ Cv2×(2D−1). From (B.29), the asymptotic

(as N →∞) covariance between the DoA estimation errors is given by

Eθk1 ,θk2 = E{(θ̂k1 − θk1)(θ̂k2 − θk2)}

=
E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
π2pk1pk2qk1qk2 cos(θk1) cos(θk2)

. (B.30)

Making use of the identity <{cH1 c2}<{cH3 c2} = 1
2<{c

H
1 c2c

H
2 c3 + cH1 c2c

T
2 c∗3}, we obtain

E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
=

1

2
E
{
<{zTk1TJ†∆r∆rHJ†HTHz∗k2 + <{zTk1TJ†∆r∆rTJ†HTHzk2}

}
. (B.31)

The matrix matM,M (J†HTHzk) is Hermitian [38, Lemma 6], thereby

J†HTHz∗k = KMJ†HTHzk. (B.32)
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where KM ∈ {0, 1}M
2×M2

is the commutation matrix defined as vec(CT ) = KMvec(C) for any

arbitrary matrix C [186]. In addition, since R
H

= R, we have

∆rT = ∆rHKH
M . (B.33)

Inserting (B.32) and (B.33) into (B.31) and using the fact that KM = KH
M = K−1M , we obtain

E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
= E{<{zTk1TJ†∆r∆rHJ†HTHz∗k2}}. (B.34)

Recalling (4.46) and (4.32), we have

TJ†∆r = TJ†J


0 ID−1 −jID−1
1 0 0

0 ID−1 jID−1


[

0

φ̂− φ

]

= T


0 ID−1 −jID−1
0 0 0

0 ID−1 jID−1


[

0

φ̂− φ

]
. (B.35)

Additionally, from [53, Eq. (114) and Eq. (116)], we know

T =
[
0v2×(D−v), vec(L

T

v−1), · · · , vec(L0), · · · , vec(Lv−1),0v2×(D−v)
]
, (B.36)

where [Ln]p,q =

{
1, if p− q = n,

0, otherwise.
. Substituting (B.36) into (B.35) yields

TJ†∆r = TΨ(φ̂− φ), (B.37)

where

T =
[
0v2×(D−v), vec(L

T

v−1), · · · , vec(LT−1), vec(L1), · · · , vec(Lv−1),0v2×(D−v)
]
. (B.38)

Inserting (B.37) into (B.34) gives

E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
= <{zTk1TE{Ψ(φ̂− φ)(φ̂− φ)HΨH}TH

z∗k2}}. (B.39)

As a result, for sufficiently large N , using a first-order perturbation expansion leads to

E{Ψ(φ̂− φ)(φ̂− φ)HΨH} ' (B.40)(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

× J
H

FHdiag(b)F−HΣ−1F−1diag(b)FE{˜̈r˜̈rH}
× FHdiag(b)F−HΣ−1F−1diag(b)FJ

×
(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1
−ΨφφHΨH ,
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where Σ = Σ(γ) given in B.11 and [b]n = 1√
1−|[γ]n|2

for 1 ≤ n ≤ M2 −M . It remains to

compute E{˜̈r˜̈rH}. Making use of the relation ˜̈r = sine(π2
̂̈rx), we obtain

E{[˜̈r]p[˜̈r]∗q} =
1

4
E
{
e
jπ(<{[̂̈rx]p}−<{[̂̈rx]q})

2 + e−
jπ(<{[̂̈rx]p}−<{[̂̈rx]q})

2

− e
jπ(<{[̂̈rx]p}+<{[̂̈rx]q})

2 − e−
jπ(<{[̂̈rx]p}−<{[̂̈rx]q})

2

+ e
jπ(={[̂̈rx]p}−={[̂̈rx]q})

2 + e−
jπ(={[̂̈rx]p}−={[̂̈rx]q})

2

− e
jπ(={[̂̈rx]p}+={[̂̈rx]q})

2 − e−
jπ(={[̂̈rx]p}+={[̂̈rx]q})

2

}
+
j

4
E
{
e
jπ(={[̂̈rx]p}−<{[̂̈rx]q})

2 + e
−jπ(={[̂̈rx]p}−<{[̂̈rx]q})

2

− e
jπ(={[̂̈rx]p}+<{[̂̈rx]q})

2 − e
−jπ(={[̂̈rx]p}+<{[̂̈rx]q})

2

− e
jπ(<{[̂̈rx]p}−={[̂̈rx]q})

2 − e−
jπ(<{[̂̈rx]p}−={[̂̈rx]q})

2

+ e
jπ(<{[̂̈rx]p}+={[̂̈rx]q})

2 + e−
jπ(<{[̂̈rx]p}+={[̂̈rx]q})

2

}
. (B.41)

Considering that ̂̈rx D→ CN (r̈x,
4

π2NΣ), the expectations in (B.41) can be computed using the

characteristic function of the Gaussian distribution as follows:

E{[˜̈r]p[˜̈r]∗q} =
e
−[Σ]p,p−[Σ]q,q

4N

2

[
cos
(π

2
[<{[r̈x]p} − <{[r̈x]q}]

)
e
<{[Σ]p,q}

2N

− cos
(π

2
[<{[r̈x]p}+ <{[r̈x]q}]

)
e−
<{[Σ]p,q}

2N

+ cos
(π

2
[={[r̈x]p} − ={[r̈x]q}]

)
e
<{[Σ]p,q}

2N

− cos
(π

2
[={[r̈x]p}+ ={[r̈x]q}]

)
e−
<{[Σ]p,q}

2N

+ j cos
(π

2
[={[r̈x]p} − <{[r̈x]q}]

)
e
={[Σ]p,q}

2N

− j cos
(π

2
[={[r̈x]p}+ <{[r̈x]q}]

)
e−
={[Σ]p,q}

2N

− j cos
(π

2
[<{[r̈x]p} − ={[r̈x]q}]

)
e−
={[Σ]p,q}

2N

+ j cos
(π

2
[<{[r̈x]p}+ ={[r̈x]q}]

)
e
={[Σ]p,q}

2N

]
. (B.42)
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Exploiting the Taylor expansion of the exponential function, (B.42) can be approximated for

sufficiently large N as

E{[˜̈r]p[˜̈r]∗q} '
1

2

[
cos
(π

2
[<{[r̈x]p} − <{[r̈x]q}]

)(
1 +
<{[Σ]p,q}

2N

)
− cos

(π
2

[<{[r̈x]p}+ <{[r̈x]q}]
)(

1− <{[Σ]p,q}
2N

)
+ cos

(π
2

[={[r̈x]p} − ={[r̈x]q}]
)(

1 +
<{[Σ]p,q}

2N

)
− cos

(π
2

[={[r̈x]p}+ ={[r̈x]q}]
)(

1− <{[Σ]p,q}
2N

)
+ j cos

(π
2

[={[r̈x]p} − <{[r̈x]q}]
)(

1 +
={[Σ]p,q}

2N

)
− j cos

(π
2

[={[r̈x]p}+ <{[r̈x]q}]
)(

1− ={[Σ]p,q}
2N

)
− j cos

(π
2

[<{[r̈x]p} − ={[r̈x]q}]
)(

1− ={[Σ]p,q}
2N

)
+ j cos

(π
2

[<{[r̈x]p}+ ={[r̈x]q}]
)(

1 +
={[Σ]p,q}

2N

)]
= sin(

π

2
<{[r̈x]p}) sin(

π

2
<{[r̈x]p})

+ sin(
π

2
={[r̈x]p}) sin(

π

2
={[r̈x]p})

+ j sin(
π

2
={[r̈x]p}) sin(

π

2
<{[r̈x]p})

− j sin(
π

2
<{[r̈x]p}) sin(

π

2
={[r̈x]p})

+
<{[Σ]p,q}

2N

[
cos(

π

2
<{[r̈x]p}) cos(

π

2
<{[r̈x]p})

+ cos(
π

2
={[r̈x]p}) cos(

π

2
={[r̈x]p})

]
+ j +

={[Σ]p,q}
2N

[
cos(

π

2
={[r̈x]p}) cos(

π

2
<{[r̈x]p})

+ cos(
π

2
<{[r̈x]p}) cos(

π

2
={[r̈x]p})

]
. (B.43)

Consequently, it follows from (4.30) that

[Γ]p,q =E{[˜̈r]p[˜̈r]∗q} ' [r̈]p[r̈]∗q

+
1

2N

(√
1− [<{[r̈]p}]2 ×

√
1− [<{[r̈]q}]2

+
√

1− [={[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
<{[Σ]p,q}

+
j

2N

(√
1− [={[r̈]p}]2 ×

√
1− [<{[r̈]q}]2

+
√

1− [<{[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
={[Σ]p,q}. (B.44)
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Inserting (B.44) into (B.40) and making use of (4.33) yields

E{Ψ(φ̂− φ)(φ̂− φ)HΨH} '(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

× J
H

FHdiag(b)F−HΣ−1F−1diag(b)FΓ

FHdiag(b)F−HΣ−1F−1diag(b)FJ

×
(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

, (B.45)

Finally, substituting (B.45) into (B.39) and considering that pk = pk
σ2+

∑K
k=1 pk

concludes the proof

of Theorem 4.5.

B.9 Proof of Corollary 4.2

OCAB-MUSIC employs r̃ = vec(R̃) instead of r̂. Hence, its asymptotic estimation error is

obtained by replacing ∆r with r̃− r in (B.29). Following the same steps from (B.30) to (B.34),

the covariance of the asymptotic distribution (as N → ∞) of the DoA estimation errors for

OCAB-MUSIC is obtained as

Eθk1 ,θk2 = <{zTk1TJ†E{(r̃− r)(r̃− r)H}J†HTHz∗k2}. (B.46)

Considering the fact that the diagonal elements of R̃ and R are equal to one, (B.46) is simplified

as

Eθk1 ,θk2 = <{zTk1TJ
† [E{˜̈r˜̈rH} − r̈r̈H

]
J
†H

T
H

z∗k2}. (B.47)

Substituting E{˜̈r˜̈rH} from (B.44) completes the proof.

B.10 Proof of Theorem 4.6

To derive limSNR→∞ Eθk , we need to calculate limSNR→∞(σ2+
∑K
k′=1 pk′)

2/p2k, W∞ = limSNR→∞W

and Γ∞ = limSNR→∞ Γ. It is obtained from (B.20) that

lim
SNR→∞

(σ2 +
∑K
k′=1 pk′)

2

p2k
= lim
SNR→∞

1

p2k
= K2. (B.48)

In addition, it follows from (4.55) and (4.56) that W and Γ depend on SNR through R, γ and r̈.

Hence, for calculating W∞ and Γ∞, it is sufficient to first compute R∞ = limSNR→∞R, γ∞ =

limSNR→∞ γ and r̈∞ = limSNR→∞ r̈, and then insert them back into the expressions of W and

Γ given in (4.55) and (4.56). R∞ is obtained in (B.20). Given R∞, γ∞ = limSNR→∞ γ is equal

to the (M2−M)× 1 vector containing the real and imaginary parts of the elements of R∞ above
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its main diagonal elements. Then, exploiting (4.38), we have r̈∞ = limSNR→∞Ψ−1J
†
F−1γ =

Ψ−1J
†
F−1γ∞. This completes the proof.

B.11

B.11.1 Preliminary to the Calculation of Σ

Let us first introduce the following lemma which pares the way for calculating Σ.

Lemma B.1. Assume that $1, $2, $3, $4 are zero-mean jointly Gaussian random variables with

correlation coefficients ϕi,j where 1 ≤ i 6= j ≤ 4. Define ωn = sgn($n), for 1 ≤ n ≤ 4. The

expected value of ω1ω2ω3ω4 is then given by

E{ω1ω2ω3ω4} =

4∑
n=2

∫ 1

0

ϕ1,n√
1− ϕ2

1,nu
2

arcsin(
τn(u)

ςn(u)υn(u)
)du, (B.49)

where

τ1(u) =ϕ3,4 − ϕ2,3ϕ2,4 −
[
ϕ1,3ϕ1,4 + ϕ1,2(ϕ1,2ϕ3,4 − ϕ1,4ϕ2,3 − ϕ1,3ϕ2,4)

]
u2, (B.50)

τ2(u) =ϕ2,4 − ϕ2,3ϕ3,4 −
[
ϕ1,2ϕ1,4 + ϕ1,3(ϕ1,3ϕ2,4 − ϕ1,4ϕ2,3 − ϕ1,2ϕ3,4)

]
u2, (B.51)

τ3(u) =ϕ2,3 − ϕ2,4ϕ3,4 −
[
ϕ1,2ϕ1,3 + ϕ1,4(ϕ1,4ϕ2,3 − ϕ1,3ϕ2,4 − ϕ1,2ϕ3,4)

]
u2, (B.52)

ς2(u) =ς3(u) =
√

1− ϕ2
2,3 −

[
ϕ2
1,2 + ϕ2

1,3 − 2ϕ1,2ϕ1,3ϕ2,3

]
u2, (B.53)

υ2(u) =ς4(u) =
√

1− ϕ2
2,4 −

(
ϕ2
1,2 + ϕ2

1,4 − 2ϕ1,2ϕ1,4ϕ2,4

)
u2, (B.54)

υ3(u) =υ4(u) =
√

1− ϕ2
3,4 −

(
ϕ2
1,3 + ϕ2

1,4 − 2ϕ1,3ϕ1,4ϕ3,4

)
u2. (B.55)

Proof. We refer the reader to [192].

B.11.2 Calculation of Σ

Define

H =
π2N

4
E{(r̂x − rx)(r̂x − rx)H} ∈ CM

2×M2

. (B.56)

Then, it is readily observed that

[Σ]p−d p
M+1 e,q−d

q
M+1 e = [H]p,q, (B.57)

for p, q ∈ W = {1, 2, · · · ,M2} \ {k | k = (i − 1)M + i, 1 ≤ i ≤ M}. Hence, instead of Σ, we

compute the elements of H for p, q ∈W in the following.
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The (p, q)th element of H is given as follows:

[H]p,q =
π2N

4
E{[r̂x]p[r̂x]∗q} −

π2N

4
[rx]p[rx]∗q . (B.58)

For any given 1 ≤ p, q ≤ M2, define m = p − bp−1M cM , i = 1 + bp−1M c, n = q − b q−1M cM and

l = 1 + bp−1M c. Then, considering R̂x = 1
NXXH = 1

N

∑N−1
t=0 x(t)xH(t) yields

E{[r̂x]p[r̂x]∗q} =
1

N2
E

{(
N−1∑
t=0

[x(t)]m[x(t)]∗i

)(
N−1∑
t=0

[x(t)]∗n[x(t)]l

)}

=
1

N2
E

{
N−1∑
t1=0

N−1∑
t2=0

[x(t1)]m[x(t1)]∗i [x(t2)]∗n[x(t2)]l

}

=
1

N
E {[x(t)]m[x(t)]∗i [x(t)]∗n[x(t)]l}

+
1

N2

N−1∑
t1=0

N−1∑
t2=0

E {[x(t1)]m[x(t1)]∗i }E{[x(t2)]∗n[x(t2)]l}

=
1

N
E{[x(t)]m[x(t)]∗i [x(t)]∗n[x(t)]l}+ (1− 1

N
)[rx]p[rx]∗q . (B.59)

Inserting (B.59) into (B.58) and considering that rx = 2
πarcsine(r) results in

[H]p,q =
π2

4
E{[x(t)]m[x(t)]∗i [x(t)]∗n[x(t)]l}

− arcsine([r]p)arcsine([r]q). (B.60)

Calculation of the expectation in (B.60) needs computing the forth-order moment of x(t). We

note that p, q ∈ W implies that 1 ≤ m 6= i ≤ M and 1 ≤ n 6= l ≤ M . In the following, we

calculate (B.60) through computing the forth-order moment of x(t) for all admissible values of

m, i, n and l.

1. Consider m = n and i = l. Then, we have

[H]p,p =
π2

4
E{|[x(t)]m|4} − |arcsine([r]p)|2

=
π2

4
− |arcsine([r]p)|2, (B.61)

where the last equality is obtained from the fact that [x(t)]m = ±1/
√

2± j/
√

2.

2. Consider m = n and i 6= l. Then, we have

[H]p,q =
π2

4
E{|[x(t)]m|2[x(t)]∗i [x(t)]l} − arcsine([r]p)arcsine([r]q)

=
π2

4
E{[x(t)]∗i [x(t)]l} − arcsine([r]p)arcsine([r]q)

=
π

2
arcsine([R

∗
]i,l)− arcsine([r]p)arcsine([r∗]q),

where the last equality is obtained from the arcsine law given in (4.7).
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3. Consider m 6= n and i = l. Then, we have

[H]p,q =
π2

4
E{|[x(t)]i|2[x(t)]m[x(t)]∗n} − arcsine([r]p)arcsine([r]q)

=
π2

4
E{[x(t)]m[x(t)]∗n} − arcsine([r]p)arcsine([r]q)

=
π

2
arcsine([R]m,n)− arcsine([r]p)arcsine([r∗]q). (B.62)

4. Consider m = l and i = n. Then, we have

[H]p,q =
π2

4
E
{

([x(t)]m)
2

([x(t)]∗i )
2
}
− arcsine([r]p)arcsine([r]q)

=
π2

4
E
{(
|<{[x(t)]m}|2 − |={[x(t)]m}|2

+ j2<{[x(t)]m}={[x(t)]m}
)(
|<{[x(t)]i}|2 − |={[x(t)]i}|2

+ 2j<{[x(t)]i}={[x(t)]i]}
)}
− arcsine([r]p)arcsine([r]q)

=π2E{<{[x(t)]m}={[x(t)]m}<{[x(t)]i}={[x(t)]i}}

− arcsine([r]p)arcsine([r]q). (B.63)

Making use of Lemma B.1, we obtain

[H]p,q =

∫ 1

0

µm,i(u) arcsin (ξm,i(u)) du−
∫ 1

0

µ̄m,i(u) arcsin
(
ξ̄m,i(u)

)
du

− arcsine([r]p)arcsine([r∗]q), (B.64)

where

µm,i(u) =
<{[R]m,i}√

1− |<{[R]m,i}|2u2
, (B.65)

µ̄m,i(u) =
={[R]m,i}√

1− |={[R]m,i}|2u2
, (B.66)

ξm,i(u) = <{[R]m,i}

√
1−

[
|<{[R]m,i}|2 + |={[R]m,i}|2

]
u2

1− |={[R]m,i}|2 − |<{[R]m,i}|2u2
,

ξ̄m,i(u) = ={[R]m,i}

√
1−

[
|<{[R]m,i}|2 + |={[R]m,i}|2

]
u2

1− |<{[R]m,i}|2 − |={[R]m,i}|2u2
.
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5. Consider m = l and i 6= n. Then, we obtain

[H]p,q =
π2

4
E{([x(t)]m)2[x(t)]∗i [x(t)]∗n} − arcsine([r]p)arcsine([r]q)

=
π2

2
E
{
<{[x(t)]m}={[x(t)]m}<{[x(t)]i}={[x(t)]n

+ ={[x(t)]m}<{[x(t)]m}={[x(t)]i}<{[x(t)]n}

+ j<{[x(t)]m}={[x(t)]m}<{[x(t)]i}<{[x(t)]n

− j={[x(t)]m}<{[x(t)]m}={[x(t)]i}={[x(t)]n

}
− arcsine([r]p)arcsine([r]q). (B.67)

Exploiting Lemma B.1 leads to

[H]p,q =

∫ 1

0

µm,i(u) arcsin

(
ϑm,i,n(u)

δm,i(u)κm,i,n(u)

)
du

−
∫ 1

0

µ̄m,n(u) arcsin

(
ϑ̄
m,i,n(u)

δ̄m,n(u)κm,i,n(u)

)
du

+ j

∫ 1

0

µm,i(u) arcsin

(
ϑ̃m,i,n(u)

δm,i(u)κ̄m,i,n(u)

)
du

+ j

∫ 1

0

µm,n(u) arcsin

(
ϑ̈m,i,n(u)

δ̃m,n(u)κ̄m,i,n(u)

)
du− arcsine([r]p)arcsine([r∗]q),

(B.68)

where

ϑm,i,n(u) =<{[R]m,n}+ ={[R]m,i}={[R]i,n} − <{[R]m,i}

×
[
<{[R]m,i}<{[R]m,n}+ ={[R]m,i}={[R]m,n}

]
u2, (B.69)

ϑ̄m,i,n(u) =={[R]m,i}+ <{[R]m,n}={[R]i,n} − ={[R]m,n}

×
[
={[R]m,n}={[R]m,i}+ <{[R]m,i}<{[R]m,n}

]
u2, (B.70)

ϑ̃m,i,n(u) =={[R]m,n} − ={[R]m,i}<{[R]i,n} − <{[R]m,i}

×
[
<{[R]m,i}={[R]m,n} − <{[R]m,n}={[R]m,i}

]
u2, (B.71)

ϑ̈m,i,n(u) =={[R]m,i} − ={[R]m,n}<{[R]i,n} − <{[R]m,n}

×
[
<{[R]m,n}={[R]m,i} − <{[R]m,i}={[R]m,n}

]
u2, (B.72)
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δm,i(u) =

√
1− |={[R]m,i}|2 − |<{[R]m,i}|2u2, (B.73)

δ̄m,n(u) =

√
1− |<{[R]m,n}|2 − |={[R]m,n}|2u2, (B.74)

δ̃m,n(u) =

√
1− |={[R]m,n}|2 − |<{[R]m,n}|2u2, (B.75)

κm,i,n(u) =
[
1− |={[R]i,n}|2 −

[
|<{[R]m,i}|2 (B.76)

+ |={[R]m,n}|2 − 2<{[R]m,i={[R]m,n}={[R]i,n}u2
]1/2

κ̄m,i,n(u) =
[
1− |<{[R]i,n}|2 −

[
|<{[R]m,i}|2 (B.77)

+ |<{[R]m,n}|2 − 2<{[R]m,i<{[R]m,n}<{[R]i,n}u2
]1/2

.

6. Consider m 6= l and i = n. Then, we obtain

[H]p,q =
π2

4
E{[x(t)]m[x(t)]l([x(t)]∗i )

2} − arcsine([r]p)arcsine([r]q) (B.78)

=
π2

2
E
{
<{[x(t)]i}={[x(t)]i}<{[x(t)]m}={[x(t)]l

+ ={[x(t)]i}<{[x(t)]i}={[x(t)]m}<{[x(t)]l}

− j<{[x(t)]i}={[x(t)]i}<{[x(t)]m}<{[x(t)]l

− j={[x(t)]i}<{[x(t)]i}={[x(t)]m}={[x(t)]l

}
− arcsine([r]p)arcsine([r]q).

Using Lemma B.1, we obtain

[H]p,q =

∫ 1

0

µm,i(u) arcsin

(
ϑi,m,l(u)

δm,i(u)κi,m,l(u)

)
du (B.79)

−
∫ 1

0

µ̄i,l(u) arcsin

(
ϑ̄i,m,l(u)

δ̄i,l(u)κi,m,l(u)

)
du

− j
∫ 1

0

µm,i(u) arcsin

(
ϑ̃i,m,l(u)

δm,i(u)κ̄i,m,l(u)

)
du

− j
∫ 1

0

µi,l(u) arcsin

(
ϑ̈i,m,l(u)

δ̃i,l(u)κ̄i,m,l(u)

)
du− arcsine([r]p)arcsine([r∗]q),

where ϑi,m,l(u), ϑ̄i,m,l(u), ϑ̃i,m,l(u), ϑ̈i,m,l(u), δm,i(u), δ̄m,i(u), δ̃m,i(u), κi,m,l(u) and

κ̄i,m,l(u) are defined from (B.69) to (B.77), respectively.
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7. If m 6= l 6= i 6= n, then we have

[H]p,q =
π2

4
E{[x(t)]m[x(t)]∗i [x(t)]∗n[x(t)]l} − arcsine([r]p)arcsine([r]q) (B.80)

=
π2

4
E{<{[x(t)]m}<{[x(t)]i}<{[x(t)]n}<{[x(t)]l}

+ ={[x(t)]m}={[x(t)]i}={[x(t)]n}={[x(t)]l}

+ <{[x(t)]m}<{[x(t)]i}={[x(t)]n}={[x(t)]l}

+ ={[x(t)]m}={[x(t)]i}<{[x(t)]n}<{[x(t)]l}

+ <{[x(t)]m}={[x(t)]i}<{[x(t)]n}={[x(t)]l}

− <{[x(t)]m}={[x(t)]i}={[x(t)]n}<{[x(t)]l}

− ={[x(t)]m}<{[x(t)]i}<{[x(t)]n}={[x(t)]l}

+ ={[x(t)]m}<{[x(t)]i}={[x(t)]n}<{[x(t)]l}}

+
jπ2

4
E{<{[x(t)]m}<{[x(t)]i}<{[x(t)]n}={[x(t)]l}

− <{[x(t)]m}<{[x(t)]i}={[x(t)]n}<{[x(t)]l}

+ ={[x(t)]m}={[x(t)]i}<{[x(t)]n}={[x(t)]l}

− ={[x(t)]m}={[x(t)]i}={[x(t)]n}<{[x(t)]l}

+ ={[x(t)]m}<{[x(t)]i}<{[x(t)]n}<{[x(t)]l}

+ ={[x(t)]m}<{[x(t)]i}={[x(t)]n}={[x(t)]l}

− <{[x(t)]m}={[x(t)]i}<{[x(t)]n}<{[x(t)]l}

− <{[x(t)]m}={[x(t)]i}={[x(t)]n}={[x(t)]l}} − arcsine([r]p)arcsine([r]q).
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Making use of Lemma B.1, [Σ]p,q is obtained as given in (B.81) as follows

[H]p,q =
1

2

[ ∫ 1

0

µm,i(u)

[
arcsin

(
ρm,i,n,l(u)

ηm,i,n,l(u)ηm,i,l,n(u)

)
+ arcsin

(
ρ̄m,i,n,l(u)

η̄m,i,n,l(u)η̄m,i,l,n(u)

)]
du

+

∫ 1

0

µ̄m,i(u)

[
arcsin

(
ρ̃m,n,i,l(u)

η̄m,n,i,l(u)η̃m,n,i,l(u)

)
− arcsin

(
ρ̃m,l,i,n(u)

η̄m,l,i,n(u)η̃m,l,i,n(u)

)]
du

+

∫ 1

0

µm,n(u)

[
arcsin

(
ρm,n,i,l(u)

ηm,i,n,l(u)ηm,n,l,i(u)

)
+ arcsin

(
ρ̄m,n,i,l(u)

η̄m,n,i,l(u)η̄m,n,l,i(u)

)]
du

+

∫ 1

0

µ̄m,n(u)

[
arcsin

(
ρ̃m,i,n,l(u)

η̄m,i,n,l(u)η̃m,i,n,l(u)

)
− arcsin

(
ρ̃m,l,n,i(u)

η̄m,l,n,i(u)η̃m,l,i,n(u)

)]
du

+

∫ 1

0

µm,l(u)

[
arcsin

(
ρm,l,i,n(u)

ηm,i,l,n(u)ηm,n,l,i(u)

)
− arcsin

(
ρ̄m,l,i,n(u)

η̄m,l,i,n(u)η̄m,l,n,i(u)

)]
du

+

∫ 1

0

µ̄m,l(u)

[
arcsin

(
ρ̃m,i,l,n(u)

η̄m,i,l,n(u)η̃m,i,n,l(u)

)
+ arcsin

(
ρ̃m,n,l,i(u)

η̄m,n,l,i(u)η̃m,n,i,l(u)

)]
du

]
+
j

2

[ ∫ 1

0

µm,i(u)

[
arcsin

(
ρ̈m,i,l,n(u)(u)

ηm,i,l,n(u)η̄m,i,n,l(u)

)
− arcsin

(
ρ̈m,i,n,l(u)(u)

ηm,i,n,l(u)η̄m,i,l,n(u)

)]
du

+

∫ 1

0

µ̄m,i(u)

[
arcsin

(
ρ̇m,i,n,l(u)(u)

η̃m,l,i,n(u)η̃m,n,i,l(u)

)
+ arcsin

(
ρ̆m,n,l,i(u)(u)

η̄m,n,i,l(u)η̄m,l,i,n(u)

)]
du

+

∫ 1

0

µm,n(u)

[
arcsin

(
ρ̈m,n,l,i(u)(u)

ηm,n,l,i(u)η̄m,n,i,l(u)

)
− arcsin

(
ρ̈m,n,i,l(u)(u)

ηm,i,n,l(u)η̄m,n,l,i(u)

)]
du

+

∫ 1

0

µ̄m,n(u)

[
arcsin

(
ρ̆m,i,l,n(u)(u)

η̄m,i,n,l(u)η̄m,l,n,i(u)

)
+ arcsin

(
ρ̇m,n,i,l(u)(u)

η̃m,l,i,n(u)η̃m,i,n,l(u)

)]
du

+

∫ 1

0

µm,l(u)

[
arcsin

(
ρ̈m,l,i,n(u)(u)

ηm,i,l,n(u)η̄m,l,n,i(u)

)
+ arcsin

(
ρ̈m,l,n,i(u)(u)

ηm,n,l,i(u)η̄m,l,i,n(u)

)]
du

+

∫ 1

0

µ̄m,l(u)

[
arcsin

(
ρ̇m,l,i,n(u)(u)

η̃m,n,i,l(u)η̃m,i,n,l(u)

)
− arcsin

(
ρ̆m,i,n,l(u)(u)

η̄m,i,l,n(u)η̄m,n,l,i(u)

)]
du

]
− arcsine([r]p)arcsine([r∗]q), (B.81)
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where

ρm,i,n,l(u) = <{[R]n,l} − <{[R]i,n}<{[R]i,l} −
[
<{[R]m,n}<{[R]m,l}

+ <{[R]m,i}
(
<{[R]m,i}<{[R]n,l} − <{[R]m,l}<{[R]i,n} − <{[R]m,n}<{[R]i,l}

) ]
u2,

(B.82)

ρ̄m,i,n,l(u) = <{[R]n,l} − ={[R]i,n}={[R]i,l} −
[
={[R]m,n}={[R]m,l}

+ <{[R]m,i}
(
<{[R]m,i}<{[R]n,l} − ={[R]m,l}={[R]i,n} − ={[R]m,n}={[R]i,l}

) ]
u2,

(B.83)

ρ̃m,i,n,l(u) = ={[R]i,l} − ={[R]i,n}<{[R]n,l} −
[
<{[R]m,i}={[R]m,l}

+ ={[R]m,n}
(
={[R]m,n}={[R]i,l} − ={[R]m,l}={[R]i,l} − <{[R]m,i}<{[R]n,l}

) ]
u2,

(B.84)

ρ̈m,i,n,l(u) = ={[R]n,l} − <{[R]i,n}={[R]i,l} −
[
<{[R]m,n}={[R]m,l}

+ <{[R]m,i}
(
<{[R]m,i}={[R]n,l} − ={[R]m,l}<{[R]i,n} − <{[R]m,n}={[R]i,l}

) ]
u2,

(B.85)

ρ̇m,i,n,l(u) = <{[R]n,l} − <{[R]i,n}<{[R]i,l} −
[
={[R]m,n}={[R]m,l}

+ ={[R]m,i}
(
={[R]m,i}<{[R]n,l} − ={[R]m,l}<{[R]i,n} − ={[R]m,n}<{[R]i,l}

) ]
u2,

(B.86)

ρ̆m,i,n,l(u) = <{[R]i,n} − ={[R]i,l}={[R]n,l} −
[
<{[R]m,i}<{[R]m,n}

+ ={[R]m,l}
(
={[R]m,l}<{[R]i,n} − <{[R]m,n}={[R]i,l} − <{[R]m,i}={[R]n,l}

] ]
u2,

(B.87)

ηm,i,n,l(u) =√
1− |<{[R]i,n}|2 −

[
|<{[R]m,i}|2 + |<{[R]m,n}|2 − 2<{[R]m,i}<{[R]m,n}<{[R]i,n}

]
u2,

(B.88)

η̄m,i,n,l(u) =√
1− |={[R]i,n}|2 −

[
|<{[R]m,i}|2 + |={[R]m,n}|2 − 2<{[R]m,i}={[R]m,n}={[R]i,n}

]
u2,

(B.89)

η̃m,i,n,l(u) =√
1− |<{[R]n,l}|2 −

[
|={[R]m,n}|2 + |={[R]m,l}|2 − 2={[R]m,n}={[R]m,l}<{[R]n,l}

]
u2.

(B.90)
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Appendices of Chapter 6

C.1 Proof of Lemma 6.1

The optimization problems (6.16) and (6.17) are equivalent. Hence, it suffices to prove this for

only (6.16). Define

y◦m = α̃◦ms(τ̃◦m) + α◦ms(τ◦m) + n◦m, (C.1)

where [α̃◦m, α
◦
m, τ̃

◦
m, τ

◦
m,n

◦
m]T 6= [α̃m, αm, τ̃m, τm,nm]T and thus, y◦m 6= ym. It suffices to show

that [Q(y◦m)]l 6= [Q(ym)]l at least for one l as L→∞. The previous statement holds only if, at

least for one l, the following occurs:
<{[ym]l} > <{[γm]l} > <{[y◦m]l}, or,

<{[ym]l} < <{[γm]l} < <{[y◦m]l}, or,

={[ym]l} > ={[γm]l} > ={[y◦m]l}, or,

={[ym]l} < ={[γm]l} < ={[y◦m]l}.

(C.2)

Let A denote the event described by (C.2) for a given l. In practice, the real and imaginary parts

of [ym]l and [y◦m]l are upper bounded by, say, Amax. Then, probability of A is [193]

Pr(A) =
|<{[ym]l} − <{[y◦m]l}|

2Amax
+
|={[ym]l} − ={[y◦m]l}|

2Amax
. (C.3)

The probability that (C.2) occurs at least for one l, denoted by H, is

Pr(H) = 1−
L∏
l=1

(
1− |<{[ym]l} − <{[y◦m]l}|

2Amax

− |={[ym]l} − ={[y◦m]l}|
2Amax

)
. (C.4)

From [193], 1− x ≤ e−x,∀x ∈ R. Hence, it follows that

179
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Pr(H) ≥ 1− e−
∑L
l=1

|<{[ym]l}−<{[y
◦
m]l}|

2Amax
− |={[ym]l}+={[y

◦
m]l}|

2Amax . (C.5)

But y◦m 6= ym. Thus, −
∑L
l=1

|<{[ym]l}−<{[y◦m]l}|
2Amax

− |={[ym]l}+={[y◦m]l}|
2Amax

→ ∞ as L → ∞, and

limL→∞ Pr(H) = 1. This implies that ym is the only point which satisfies the constraints in

(6.16) as L→∞. Accordingly, as L→∞, the optimization problem (6.16) reduces to the LASSO

estimator which has been shown to be consistent [194]. This completes the proof.

C.2 Proof of Theorem6.1

To show that (6.48) is equivalent to (6.47), we first prove that the global minimum of (6.47)

coincides with that of (6.48). Assume that r?o and
[
r?Te v?

]T
are the minimizers of (6.47) and

(6.48), respectively. Define a set K =
{
r ∈ RM≥0 | w � (r− λ) � 0

}
. Given J (r) ≥ 0 for r ∈ K,

it readily follows from the first constraint in (6.48) that
F(r?e)

J (r?e)
≤ v?. Considering that r?e belongs

to the feasible set of (6.47), i.e., r?e ∈ K, we obtain

F(r?o)

J (r?o)
≤ F(r?e)

J (r?e)
≤ v?. (C.6)

On the other hand, defining vo =
F(r?o)
J (r?o)

and considering r?o ∈ K, it follows that
[
r?To vo

]T
is in

the feasible set of (6.48). Therefore,

v? ≤ vo =
F(r?o)

J (r?o)
, (C.7)

Now, comparing (C.6) and (C.7) implies that (6.47) and (6.48) share the same global minimum,

i.e.,

v? =
F(r?o)

J (r?o)
. (C.8)

Further deduction from (C.6) and (C.8) yields

F(r?o)

J (r?o)
=
F(r?e)

J (r?e)
, (C.9)

indicating r?e is also a minimizer of (6.47). This completes the proof.

C.3 Proof of Theorem 6.2

C.3.1 Preliminaries to the Proof

Recall the definition of sum-of-squares (SOS) polynomial and a useful related result as follows.
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Definition C.1 (Sum-of-squares). A polynomial P(u) of degree 2q is sum-of-squares (SOS) if

and only if there exist polynomials Y1(u), · · · ,YI(u) of degree q such that P(u) =
∑I
i=1 Y2

i (u).

Lemma C.1. Given P as the set of SOS polynomials and polynomials Ei(u) for 1 ≤ i ≤ I, define

the sets

W={u ∈ Rn | Ei(u) ≥ 0,∀i ∈ {1, 2, · · · , I}} (C.10)

Gp=
{∑I

i=0 Pi(u)Ei(u) | E0(u)=1,Pi(u)∈P,deg (Pi(u)Ei(u))≤2p

}
, (C.11)

such that W is compact and there exists a polynomial U(u) ∈ Gp where {u ∈ Rn | U(u) ≥ 0} is

compact. Then, a polynomial B(u) of degree q is strictly positive on W, i.e., B(u) > 0 ∀u ∈W,

if and only if B(u) ∈ Gp for some integer p ≥ max
(
dqe,max

i

⌈
deg(Ei)

2

⌉)
.

Proof. We refer the reader to [195].

C.3.2 Proof of the Theorem

We first show that (6.48) satisfies the conditions stated in Lemma C.1 of Appendix C.3.1. In

consequence, it can be reformulated as minimization of a positive polynomial function on a

compact set. Lasserre has shown that minimizer of a positive polynomial function on a compact

set can be obtained through solving an equivalent SDP [152, Theorem 4.2]. Thus, we ultimately

resort to [152, Theorem 4.2] to recast the resulting optimization problem as an SDP.

Consider Ei’s to be the inequality constraints of (6.48). Then, we need to prove the following

three statements:

1. The feasible set of (6.48) is compact.

2. A polynomial U([r, v]T ) ∈ Gp exists such that {r ∈ RM , v ∈ R | U([r, v]T ) ≥ 0} is compact.

3. The objective function of (6.48) is strictly positive on its feasible set.

For the first statement, note that the feasible set contains all of its boundary points and is

therefore closed. From Heine-Borel Theorem [196], to show compactness of the feasible set,

it suffices to show that it is bounded. To this end, note the constraint on the value of r

which is limited by the maximum detectable range rmax ∈ R>0 of the NB-IoT nodes so that

rm ≤ rmax for all m ∈ M. This implies that the continuous function F(r)
J (r) is bounded on

T = {r ∈ RM | rm ≤ rmax, ∀m ∈ M} [196, Theorem 4.16]. In other words, F(r)
J (r) ≤ ϕ, where

ϕ = maximize
r∈T

F(r)
J (r) . The optimization problem in (6.48) is indeed a minimization of an upper

bound of F(r)
J (r) , i.e. v. Without loss of generality, assume v ≤ vmax where vmax ≥ ϕ. These

practical constraints on r and v do not change the solution of (6.48) but guarantee boundedness

and thereby compactness of the its feasible set. On the other hand, it is possible to show the

boundedness of v, in turn, entails the boundedness of r. To show that, let assume B to be an

arbitrary subset of {1, · · · ,M} and define c such that [c]k = [r]k for k ∈ B. When v ≤ vmax,

from (6.45) and (6.46), we get
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lim
c→∞

vJ (r)−F(r) =

− 1

4
lim
c→∞

(
‖Π⊥V(r− r11)‖22‖Π⊥V

[
(r− r11)� (r− r11)

]
‖22

−
([

(r− r11)� (r− r11)
]T

Π⊥V(r− r11)
)2)

, (C.12)

Using Cauchy–Schwarz inequality and idempotency of Π⊥V, we have

‖Π⊥V(r− r11)‖22‖Π⊥V
[
(r− r11)� (r− r11)

]
‖22 ≥([

(r− r11)� (r− r11)
]T

Π⊥V(r− r11)
)2
. (C.13)

It follows from (C.12) and (C.13) that, when v ≤ vmax and as each rm approaches infinity, the

constraint vJ (r)−F(r) becomes negative. Hence, when v ≤ vmax, to ensure vJ (r)−F(r) ≥ 0,

the ranges rm, m ∈ M must be bounded. This implies that v ≤ vmax is sufficient for the

compactness of the feasible set of (6.48). Accordingly, without loss of generality, the optimization

problem (6.48) becomes

minimize
v,r

v

s.t. vJ (r)−F(r) ≥ 0,

w � (r− λ) � 0,

r � 0,

vmax − v ≥ 0,

(C.14)

in which the feasible set is compact. Note that, in practice, the value of ϕ is unknown and, to

satisfy the condition vmax ≥ ϕ, vmax should be selected sufficiently large.

For the second statement, consider

Ei([r, v]T )=



1 if i = 0,

vJ (r)−F(r), if i = 1,

wi−1(ri−1 − λi−1), if i = 2, · · · ,M + 1,

ri−M − 1, if i = M + 2, · · · , 2M + 1,

vmax − v, if i = 2M + 2,

(C.15)

and that Gp is defined according to (C.11). Construct Pi([r, v]T ) = 0 for i = 0, 1, · · · , 2M + 1

and P2M+2([r, v]T ) = 1. It readily follows that vmax − v =
∑2M+2
i=0 Pi([r, v]T )Ei([r, v]T ), thus

vmax − v ∈ Gp with p ≥ 1. Further, the set {v ∈ R | vmax − v ≥ 0} is closed and bounded and,

therefore, compact. This proves the second statement.

The third statement requires establishing the strict positiveness of the objective on the feasible set

of (C.14), i.e., W = {r ∈ RM , v ∈ R | r � 0, w� (r−λ) � 0, vJ (r)−F(r) ≥ 0, vmax− v ≥ 0}.
Considering a ∈ R>0 as a constant parameter independent of r and v, it is always possible to

replace v with v + a in the cost function of (C.14) without affecting its solution. Then, it follows
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from (6.42) that v ≥ L(r) = F(r)
J (r) ≥ 0, thereby v + a > 0 on W for any constant a ∈ R>0. This

proves the third statement.

Consequently, according to Lemma C.1, (6.48) is equivalent to minimization of the positive

function v+a on the compact set W = {r ∈ RM , v ∈ R | Ei([r, v]T ) ≥ 0,∀i ∈ {1, 2, · · · , 2M+2}}
where Ei’s are given in (C.15). Now, resorting to [152, Theorem 4.2], the resulting minimization

problem can be equivalently recast as the SDP in (6.57). This completes the proof.





Bibliography

[1] H. Van Trees, Optimum Array Processing (Detection, Estimation, and Modulation Theory,

Part IV). New York: John Wiley and Sons Inc., 2002.

[2] B. Ottersten, “Array processing for wireless communications,” in Proceedings of 8th Work-

shop on Statistical Signal and Array Processing, Jun 1996, pp. 466–473.

[3] S. S. Haykin, J. Litva, , and T. J. Shepherd, Eds., Radar Array Processing. Berlin,

Germany: Springer-Verlag, 1993.

[4] N. Dey and A. S. Ashour, Direction of arrival estimation and localization of multi-speech

sources. Springer, 2018.

[5] S. F. Cotter and B. D. Rao, “Sparse channel estimation via matching pursuit with application

to equalization,” IEEE Transactions on Communications, vol. 50, no. 3, pp. 374–377, 2002.

[6] C. Carbonelli, S. Vedantam, and U. Mitra, “Sparse channel estimation with zero tap

detection,” IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp. 1743–1763,

2007.

[7] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selection for non-linear measurement

models,” IEEE Transactions on Signal Processing, vol. 63, no. 3, pp. 684–698, 2015.

[8] X. Wang, A. Hassanien, and M. G. Amin, “Dual-function mimo radar communications sys-

tem design via sparse array optimization,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 55, no. 3, pp. 1213–1226, 2019.

[9] E. Tohidi, M. Coutino, S. P. Chepuri, H. Behroozi, M. M. Nayebi, and G. Leus, “Sparse

antenna and pulse placement for colocated mimo radar,” IEEE Transactions on Signal

Processing, vol. 67, no. 3, pp. 579–593, 2019.

[10] X. Wang, A. Hassanien, and M. G. Amin, “Sparse transmit array design for dual-function

radar communications by antenna selection,” Digital Signal Processing, vol. 83, pp. 223 –

234, 2018.

[11] D. Cohen, D. Cohen, and Y. C. Eldar, “High resolution fdma mimo radar,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 56, no. 4, pp. 2806–2822, 2020.

[12] A. De Maio, Y. C. Eldar, and A. M. Haimovich, Compressed sensing in radar signal

processing. Cambridge University Press, 2019.

185



Appendices of Chapter 6 186

[13] G. Qin, M. G. Amin, and Y. D. Zhang, “Doa estimation exploiting sparse array motions,”

IEEE Transactions on Signal Processing, vol. 67, no. 11, pp. 3013–3027, 2019.

[14] S. A. Hamza and M. G. Amin, “Sparse array beamforming design for wideband signal

models,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1–1, 2020.

[15] Y. D. Zhang, M. G. Amin, and B. Himed, “Sparsity-based DoA estimation using co-prime

arrays,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,

May 2013, pp. 3967–3971.

[16] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array processing with

enhanced degrees of freedom,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp.

4167–4181, Aug 2010.

[17] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE

Trans. Signal Process., vol. 59, no. 2, pp. 573–586, Feb 2011.

[18] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations

over learned dictionaries,” IEEE Transactions on Image Processing, vol. 15, no. 12, pp.

3736–3745, 2006.

[19] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image restoration,”

IEEE Transactions on Image Processing, vol. 17, no. 1, pp. 53–69, 2008.

[20] M. Protter and M. Elad, “Image sequence denoising via sparse and redundant representa-

tions,” IEEE Transactions on Image Processing, vol. 18, no. 1, pp. 27–35, 2009.

[21] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected

Areas in Communications, vol. 17, no. 4, pp. 539–550, April 1999.

[22] H. Sun, A. Nallanathan, C. Wang, and Y. Chen, “Wideband spectrum sensing for cognitive

radio networks: a survey,” IEEE Wireless Communications, vol. 20, no. 2, pp. 74–81, 2013.

[23] J. Lunden, V. Koivunen, and H. V. Poor, “Spectrum exploration and exploitation for

cognitive radio: Recent advances,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp.

123–140, 2015.

[24] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-

wave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE

Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 845–860, 2012.

[25] B. F. Burke, F. Graham-Smith, and P. N. Wilkinson, An introduction to radio astronomy.

Cambridge University Press, 2019.

[26] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive

MIMO: Benefits and challenges,” IEEE Journal of Selected Topics in Signal Processing,

vol. 8, no. 5, pp. 742–758, Oct 2014.

[27] A. Gokceoglu, E. Björnson, E. G. Larsson, and M. Valkama, “Spatio-temporal waveform

design for multiuser massive MIMO downlink with 1-bit receivers,” IEEE Journal of

Selected Topics in Signal Processing, vol. 11, no. 2, pp. 347–362, 2017.



Appendices of Chapter 6 187

[28] A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, “Analysis of one-bit quantized precoding

for the multiuser massive MIMO downlink,” IEEE Transactions on Signal Processing,

vol. 65, no. 17, pp. 4624–4634, 2017.

[29] B. Zhao, L. Huang, J. Li, M. Liu, and J. Wang, “Deceptive SAR jamming based on 1-bit

sampling and time-varying thresholds,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 11, no. 3, pp. 939–950, 2018.

[30] X. Wang, G. Li, Y. Liu, and M. G. Amin, “Enhanced 1-bit radar imaging by exploiting

two-level block sparsity,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57,

no. 2, pp. 1131–1141, 2019.

[31] A. Ameri, A. Bose, J. Li, and M. Soltanalian, “One-bit radar processing with time-varying

sampling thresholds,” IEEE Transactions on Signal Processing, vol. 67, no. 20, pp. 5297–

5308, 2019.

[32] O. Bar-Shalom and A. J. Weiss, “DoA estimation using one-bit quantized measurements,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 3, pp. 868–884, July

2002.

[33] M. Stein, K. Barbe, and J. A. Nossek, “DoA parameter estimation with 1-bit quantization

bounds, methods and the exponential replacement,” in WSA 2016; 20th International ITG

Workshop on Smart Antennas, March 2016, pp. 1–6.

[34] M. J. Pelgrom, “Analog-to-digital conversion,” in Analog-to-Digital Conversion. Springer,

2013, pp. 325–418.

[35] Q. Shen, W. Liu, W. Cui, and S. Wu, “Underdetermined DoA estimation under the

compressive sensing framework: A review,” IEEE Access, vol. 4, pp. 8865–8878, 2016.

[36] P. Pal and P. P. Vaidyanathan, “Pushing the limits of sparse support recovery using

correlation information,” IEEE Transactions on Signal Processing, vol. 63, no. 3, pp.

711–726, Feb 2015.

[37] ——, “Correlation-aware techniques for sparse support recovery,” in 2012 IEEE Statistical

Signal Processing Workshop (SSP), Aug 2012, pp. 53–56.

[38] M. Wang and A. Nehorai, “Coarrays, MUSIC, and the Cramér-Rao bound,” IEEE Trans.

Signal Process., vol. 65, no. 4, pp. 933–946, Feb 2017.

[39] X. Huang, S. Bi, and B. Liao, “Direction-of-arrival estimation based on quantized matrix

recovery,” IEEE Communications Letters, vol. 24, no. 2, pp. 349–353, 2020.

[40] I. Yoffe, N. Regev, and D. Wulich, “On direction of arrival estimation with 1-bit quantizer,”

in 2019 IEEE Radar Conference (RadarConf), 2019, pp. 1–6.
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