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ABSTRACT 

Ag-circulant is a square matrix of rational numbers in which 

each row is obtained from the preceding row by shifting the elements 

cyclically g columns to the right. This work studies g-circulants 

A which satisfy the matrix equation A 
2 

= dI + \J, where I is the 

identity matrix and J is the matrix of 1 1 s. Necessary and sufficient 

conditions are given for the existence of solutions when g = 1. The 

existence of (0, 1) g-cir culant s satisfying A 
2 

= dI + \.J is shown to be 

equivalent to the existence of (v, k, A, g)-addition sets, which are gen 

eralizations of difference sets. It is proved that there are no non

trivial (v, k, \, 1 )-addition sets. Some examples of (v, k, A, g)-addition 

sets are given and the multiplier theorem for (v, k, A, g)-addition sets 

is also proved. 
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Chapter 1 

INTRODUCTION 

Ag-circulant matrix, or simply a g-circulant, is an n x n 

square matrix of rational numbers, in which each row (except the 

first) is obtained from the preceding row by shifting the elements 

cyclically g columns to the right. 

The connection between the elements a . . of the ith row and 
lJ 

elements of the preceding row is given by 

( 1. 1) 

where indices are reduced to their least positive remainders modulo n . 

A I -circulant will simply be called a circulant. 

A primitive g-circulant is a (0, 1) - n x n matrix P defined 
g 

as follows: 

( p .. = 1 if j = gi (mod n) I lJ 
p = 

! I 
, (1. 2) 

g p . . = 0 otherwise 
lJ 

where the indices run from 0 to n- 1. It can be ea sily seen t h at P is 
g 

indeed a g -circulant . 

Unless otherwise specified, the indices for an n x n matrix 

will run from O to n-1. 

The circulant with 1 1s in the (0, 1 ), (1, 2), •• • , (n-1, 0) positions 

and with O's elsewhere will be denoted by C. 

A generalized Hall polynomial, or simply a Hall polynomial, 

of a g-cir culant matrix A is the polynomial 

a.x 
1 

i 
( 1. 3) 
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where (a
0

, a
1

, ••• , an - l) is the first row of A . 

A (v, k, A) - difference set D = [ d
1

, d 2, •• • , dk} is a callee -

tion of k residues modulo v, such that for any residu e a -/=. 0 (mod v) , 

the congruence 

d. d. - a (mod v) 
l J 

( 1. 4) 

has exactly "- solution pairs (d., d.) with d. and d . in D. 
l J l J 

With every (v, k, 11.) - difference set D, we associate a rriatrix 

A given by 

k d. 
A = ~ G l 

i=l 
( 1. 5) 

This is called the incidence matrix 0£ the (v, k, 11.) - difference set . 

When the meaning is clear from the context, the incidence matrix will 

be called a difference set. 

The matrix J will denote the matrix with all 1 1s. The matrix 

I will be the identity matrix. 

G-circulants have appear e d in many recent combinatoria l 

problems . Knuth [ 1970 J inve sti gated t he (0, I) - matr i ces A wh ich 

satisfy the relation 

(1. 6) 

A necessary condition for a solution is that the order n of the matrix 

is a square. Indeed, when n is a square, there exists a $-circulant 

which satisfies (1. 6 ). 

Ryser [l 970J investigated (0, 1) - matrices A of order n which 

satisfy the matrix equation A 
2

=D +11.J, where D is a diagonal matrix. He 
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showed that apart from certain exceptional matrices, A must satisfy 

A 
2 

= dI + :\.J , ( 1 • 7 ) 

where in (1. 7) the matrix A has constant line sums c, and the param

eters satisfy the conditions 

2 
c = d + ),_n (1. 8) 

and 

-),_ < d ~ C - A. ( 1. 9) 

Again for d = 1, and any parameter set that satisfies (1. 8) and (1. 9) , a 

c-circulant exists, satisfying (1. 7). 

A g-circulant matrix can also be considered as an adjacency 

matrix of a graph. Such graphs have been given many names: cyclic 

graphs, starred polygons, etc. (El spas and Turner [ 1970 J; Turner 

[1967], Tuero [1961], and Berggren [1962]). 

Albow and Brenner [1963] have derived some elementary mul

tiplicative properties of g-circulants, . which will be summarized in 

Chapter 2. However, the main purpose of this work is to investigat e 

the existence of rational g-circulants which satisfy the matrix 

equation (1. 7). 

It should be pointed out that the eigenvalues of a g- circulant 

are especially easy to calculate. (Al bow and Brenner [1963 J ). Equa

tion (1. 7) puts a severe restriction on the possible eigenvalues of A. 

This 11eigenvalue II approach has been successful in the study of many 

combinatorial problems: Ryser [ 1970 ], Hoffman and Singleton [ 1960 J. 

However, in the study of g-circulants, the theory of polynomial 
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congruences is a more suitable and powerful technique. First of all, it 

implies the same conditions on the eigenvalues. But, more impor -

tantly, the Chinese remainder theorem is a powerful tool in constructing 

solutions. With this remark, we proceed with the study of g- circulants. 
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Chapter 2 

ELEMENTARY PROPERTIES OF G-CIRCULANTS 

The first two theorems are taken from Albow and Brenner 

[1963 ]. They are elementary and are quoted without proof. 

Theorem 2. 1 (Albow and Brenner) The equation 

(2. 1) 

characterizes the g-circulant property of A. That is, the matrix 

A is a g-circulant if and only if relation (2. 1) is valid. 

Corollary 2. 2 CP = P Cg. 
g g 

Proof: Since P is a g- circulant, Corollary 2. 2 follows from 
g 

Theorem 2. 1. 

Theorem 2. 3 (Albow and Brenner) If A is a g-circulant and B is 

an h-circulant, then AB is a gh-circulant. 

Corollary 2. 4 

Proof: By Theorem 2. 3, P gph is a gh-circulant. Moreover, its 

first row is identical to that of P gh' Thus P gph = P gh' Similarly 

for p hp g = p gh . 

Corollary 2. 5 If A is a g-circulant, with (a 0, a 1, ... , an-l) as its 

first row, then 
n-1 . 

A=P (~ a.c1 "i
1

• 
g i=O 1 

(2. 2) 
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Proof: It is easy to see that the first row of the right hand side of 

relation (2. 2) is (a
0

, a
1

, ••• , an-l ). Moreover, if we multiply the 

right hand side of (2. 2) by C on the left, we get 

n-1 . ~ 1 
CP (6 a.c

1
) = P cg i a.ci) 

g i=O 1 g i=O 1 

(
n-1 i \ g 

= P 6 a.C ) C • 
g ' i=O 1 

Thus, the right hand side of (2. 2) is a g-circulant. So, relation (2. 2) 

holds. 

Conversely, we note that a matrix of the form (2. 2) is a 

g -circulant because it is the product of a g - circulant and a 

I -circulant. 

Theorem 2. 6 If A is a g-circulant and if B is an h-circulant 

with 8 A (x) and 8B (x) as their respective generalized Hall polynomials, 

then the generalized Hall polynomial of AB is given by 

( 2. 3) 

Proof: Let (a 0, a
1

, ••• ,an_ 1 ) and (b 0, 6 1, ••• , bn_ 1 ) be the first 

rows of A and B, respectively. The generalized Hall polynomials 

of A and B are 

8 A (x) 

and 

respectively. 

n-1 
= 6 a.xi 

i=O 
1 

n-1 . 
6 b.x

1 

i=O 
1 
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By Corollary 2. 5, 

and 

Hence, 

n-1 . 
A = P 6 a . C

1 

g i=O 1 

( n -1 h. ) (n -1 -~ 
= P h 6 a.C 

1 6 b.c
1

1 g i=O 1 i=O 1 

Since circulants multiply like polynomials (mod xn-1) and 8 AB (x ) is 

(
n-1 h" \ (n-1 . ) 

defined by 6 a.C 
1 /\6 b . C

1 
, we have 

i=O 
1 1 i=O 

1 
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Chapter 3 

2 
RATIONAL G-CIRCULANTS SATISFYING A = dI + AJ 

In this chapter, we will be considering g-circulants which 

satisfy the matrix equation 

A 
2 

= dI + A.J , ( 3. 1 ) 

where d and A are rational numbers. By applying Corollary 2. 4 and 

Theorem 2. 6 to this special case, we obtain the following result. 

Theorem 3. 1 Let d and A be rational numbers. An n x n 

g - circulant A satisfies (3. 1) if/ and. only if 

(i) d -/- 0 implies g
2 = 1 (mod n) , 

(ii) 8A(xg) 8A(x) - d + A T(x) (mod xn-1) 

where T (x) = 1 + x + .•. n-1 
X 

(3. 2) 

Proof: If A satisfies (3. 1 ), then (ii) follows from Theorem 2. 6. 

Moreover, if d-/- 0, then dl + A.J is a I -circulant, and Theorem 2 . 3 

implies that g
2 = 1 (mod n). If a g-circulant A satisfies (3 . 2), (ii) 

implies that the first row of A
2 

is e qual to the first row of dI + A.J . 

2 
Now, if d = 0, (ii) is enough to assure that A = AJ. If d-/- 0, (i) 

implies that A
2 

is a I-circulant, and we have A
2 

= dI + AJ. 

Next, we want to look carefully at the polynomial c ongruence 

relation 

( 3. 3) 

In the remaining parts of this work, we are only concerned with the 

matrix equation A 
2 

= dl + A.J, and in this context, there is no 
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ambiguity in writing 8(x) for 8 A (x ). 

Let cp (x) be the monic polynomial satisfied by the primitive 
w 

w-th root of unity over the rational field, i.e. the w-th cyclotomic 

polynomial. It is well known that this polynomial is irreducible over 

the rationals, and that Q[x]/cp (x) is isomorphic to the cyclotomic 
w 

field Q(s J, where Q[x] is the polynomial ring with rational coef-

ficients, s is a primitive w-th root of unity, and Q is the field of 
w 

rational numbers. 

Let us look at equation (3. 3) modulo the various cp (x) 1 s, where 
w 

w divides n. These reduced polynomial congruence relations are 

easier to solve, and we will construct a solution to (3. 3) using the 

Chinese remainder theorem. 

We let the remainder of 8 {x) taken modulo cp (x) be 8 (x). w w 
As cp (x) divides cp (xg) when (g, w) = 1, we find that the remainder w w 
of 8(xg) taken modulo cp {x) is 8 (xg). Since w divides n, cp (x) 

w w w 
divides xn -1 . Relation (3. 3 ), when taken mod ulo cp (x), gives 

w 

For w= 1, cp (x) = x - 1, and Q[x]/(x-1) is m erely Q. Now, w 
(3. 4) becomes a numerical relationship, 

or 
2 

C = d + All J 

where c = 8(1 g) is the row sum of the g-circulant A. 
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For w-/- 1, cp (x) divides T(x ). Thus (3.4)becomes 
w 

8 (x g) 8 (x) - d (mod cp (x)) 
w w w ( 3. 5) 

It follows that (3. 5) induces a factorization of d 1n Q(sJ, namely 

e ( s g) e (s ) = d w w w w ( 3. 6 ) 

and vice v ersa. This is because the isomorphism between Q [ x ] / cp (x ) 
w 

and Q( s ) can be obtained by mapping f(x) of Q [x] / cp (x) onto f( s ) in w w w 
Q( SJ· Results in difference sets corresponding to (3. 5) and (3 . 6 ) have 

been noted in Baumert [1971 ] . 

The Chinese remainder theorem establishes the isomorphism 

( 3 . 7) 

Thus, if we are given a set of polynomials 8 (x) 1s corresponding to . w 
the various cp (x) 1 s, we can find a unique 8 (x) modulo xn -1 , such 

w 
that for all w\n, 

8 (x ) = 8 (x ) (mod cp (x) ) . w w 

In fact, Baumert gives an explicit formula for determining 0 (x ). Thu s 

e (x) 1 I n - - 8 (x) B (x) (mod x -1) , 
n · W n, W 

( 3. 8) 

win 

where 

B (x) n,w 

n 

l W X -1 
= µ(-) r--

r r 

I X -1 
r W 

( 3. 9) 

and µ is the Mobius function . 
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With the above observations, we can prove the following 

theorem. 

Theorem 3. 2 Let .J and :\ be rational numbers. Ann X n g-circulant 

A satisfies the matrix equation 

A
2 

= dl + :\J 

if and only if 

2 -(i) d '/- 0 implies g = 1 (mod n) 

(ii) the row sum c of A satisfies 

2 
C = d + All 

and 

(iii) for all divisors wof n, w'/- 1, 

( 3. 10) 

( 3. 11) 

(3. 12) 

where S is a primitive w-th root of unity, and 9 (x) is the remainder w w 
of the Hall polynomial of A taken modulo cp W(x). 

Proof: Assume that a g-circulant A satisfies the matrix equation 

2 
A = dl + 11.J. Condition (i) of Theorem 3. 1 implies (3. 10). Condition 

(ii) of the same theorem implies that the Hall polynomial of A satisfies 

( 3. 13) 

Let w be a divisor of n and cp (x) the w-th cyclotomic poly
W 

nomial. Relation (3. 13), when taken modulo cpw(x) becomes 

9 (xg) 8 (x) = d + AT (x) (mod cp (x)) , 
w w w 

(3. 14) 
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where 8 (x) is the remainder of 8 (x) taken modulo cp (x). w w 
For w = 1, (3. 14) gives the relationship (3. 11 ). 

For w f l, (3. 14) becomes 

(mod cp (x) ) . 
w 

( 3. 15) 

It follows that (3. 15) induces a factorization of d in Q( s ) of the form 
w 

(3. 12), and we have proved the necessary part of the theorem. 

Next, we assume that A is a g - circulant with 0 (x ) as its Hall 

polynomial. Be cause of the isomorphism between Q [x] / cp (x) and 
w 

Q(sw), (3. 12) induces the polynomial congruence 

8 (xg) 8 (x) = d (mod cp (x) ) , 
w w w ( 3. 16) 

for all divisors w of n not equal to 1. When w = 1, cp
1 

(x) = (x-1) and 

(3.11) implies that 

(3. 1 7) 

Since 8 (x) is merely the remainder of tre Hall polynomial of A taken w 
modulo cp (x), relation (3. 1 7) can b e written as 

w 

8 (xg) 8(x) - d + \.n (mod cp
1 

(x )) . 

And (3. 16) can be written as 

for all divisors w of n not equal to 1. 

(3. 18 ) 

(3. 19) 

Hence we find that 8(xg) 8 (x) satisfies all of the congruences in 

(3. 18) and (3. 19). Since cl + \.T(x) is a lso congruent lo cl mocluJo rr (x ) 
w 
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for w / l and congruent to d + An modulo cp (x), the Chinese re -
1 

mainder theorem implies that 

n 
(mod x -1) • 

Now, together with (3. 10), the conditions (i) and (ii) of Theorem 3. 1 

are satisfied, and hence A satisfies the matrix equation A
2 

= dl + AJ. 

In fact, Theorem 3. 2 gives us a method of constructing solu

tions for (3. 1) when the conditions of Theorem 3. 2 are satisfied. How

ever, we have to interpret (3. 12) carefully. 

In the field Q(sJ, every element can be represented as 

~ (w) -1 

\ a. S l , 
/_, l W 

i=O 

where a. E: Q, and 
l 

~ (w) is the Euler ~ -function. 

2 
If g = 1 (mod n), (g, w) = 1 for all divisors w of n. The map o 

sending s to s g is an automorphism of Q. Now (3. 12) can be inter -w w 
preted as saying that d factorizes in Q(sw) into a product of 8 w( S w) 

and its image 8 (s g) under the map a. 
w w 

We now prove the following theorem. 

Theorem 3. 3 2 -Let d and A be rational numbers, and g = 1 (mod n). 

Suppose we have 

(i) d + An is a rational square, and 

(ii) for every win not equal to 1, d factors in Q(s ) as 
w 

e (s g) e <s ) = d. , 
w w w I.If 

{3.20) 

(3.21) 
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Then there exists an n X n g-circulant A which satisfies (3. 1 ). 

Proof: Using the isomorphism between Q( s ) and Q[x] / C{J (x), for w w 
each w, we can define a polynomial 8 (x) such that 

w 

8 (xg) 8 (x) = d (mod C{J (x)). 
w w w 

(3. 22) 

Using the Chinese remainder theorem, we can define a polynomial 

8(x) in Q[x] / xn -1, such that 

8(x) = 8w (x) (mod C+Jw (x)) ( 3. 2 3) 

for all win not equal to 1, and 

8(x) - Jd + An (mod C+J
1 

(x )) • (3. 24) 

Putting xg for x in (3. 23 ), we obtain 

8 (xg) = 8 (xg) 
w 

(mod C{J (xg) ) • 
w (3. 25) 

But (g, w) = 1 
2 

1 (mod n); hence C{J (x) divides C,O (xg) . as g - w w 
Hence (3. 24) implies 

8 (xg) = 8 (xg) 
w 

(mod cp (x) ) • 
w 

(3 .26 ) 

We now define an n X n g-circulant A with 8(x) as its Hall polynomial. 

Then 8 (x) will be the remainder of the Hall polynomial of A taken 
w 

modulo C{J (x). The conditions of Theorem 3. 2 are satisfied and hence w 
A satisfies (3 . 1). 
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The problem of finding g-circulant solutions to (3. 1) now re -

duces to the problem of determining when d can be factorized into 

the special form of (3. 21 ). The problem involving general g 1s is very 

complicated. However, for g = 1, (3. 21) is equivalent to the require

ment that the polynomial x
2 

- d has both of its roots in Q(sJ, and in 

this case we say that d is a square in Q(l;W). The next chapter 

carries this investigation further. 
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Chapter 4 

THE CASE g = 1 

In this chapter we will solve the equation 

2 
A = dI + 11.J , ( 4. 1) 

where the matrix A is a rational circulant. Since g = 1 we auto-

matically have g
2 = 1 (mod n). Moreover, in condition (3. 21 ), 0 {I; g) w w 

is now simply 0 (S ). Thus, the conditions in Theorem 3. 3 are 
w w 

simplified to 

(i) d + 11.n is a rational square, and ( 4. 2) 

(ii) d is a square in every cyclotomic field Q(sw), where w is a 

divisor of n and not equal to 1. ( 4. 3) 

If d is itself a rational square, condition (4. 3) is automatically 

satisfied. The study of the case where d is not a rational square 

requires the following number theoretical lemma. Many of the facts 

quoted can be found in Lang [ 1965 J. 

1, 
Lemma 4. 1 Let p be an odd prime and let s k be a p' -th root of 

p 
unity, where k ~ 1. Then the cyclotomic field Q(s k) has a unique 

quadratic subfield a(f(-l)(p-l)/Z p). p 

Proof: When p is an odd prime, the Galois group of the cyclotomic 

field Q(s k) over Q is cyclic; in fact, it is isomorphic to the multi-

p k * k 
plicative group (Z/p Z) of residues modulo p that are relatively 

prime top • 
k 

The degree of the field extension is t (p ), where t (x) 

is the Euler ii> -function. It is well known that 

k k-1 
ip (p ) = (p-1 )p • 
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Since p is an odd prime, even. Thus, there exists a unique 

subgroup of index 2 in the Galois group, and correspondingly a unique 

quadratic subfield. It is well known that the quadratic subfield in Q( s ) . p 

is Q ( ✓ ( -1 ) (p -1 ) 7 2 p ) • As Q(s ) is a subfield in Q( s l ), this is the 
p p C 

unique quadratic subfield. 

The next theorem gives the necessary and sufficient condit i on 

for the- existenc e of a solution to (4 . 1). Moreover, it gives the numb e r 

of distinct solutions. Here two solutions are treated as distinct pro-

vided their Hall polynomials are different. 

We will use the Legendre symbol (~
1

) for 

T(n) will denote the number of divisors of n. 

-2.:..!. 
(-1) 2 J and 

Theorem 4. 2 Let A be a rational circulant matrix of order n > 1. 

The matrix equation 

A z = dI + 11.J ( 4 . 4 ) 

has a solution if and only if 

d + 11.n is a r ational square, and ( 4. 5) 

d is a ration square unless n is a power of an odd prime p , in whi ch 

case it can also be the product of a rational square with ( -l) p. (4 . 6 ) , Pf 

Moreover , if a solution exists, the number of distinct solutions 1s 

found as follows: 

if d = 0 and 11. = 0, then there is only one solution, A = 0; 

if d = 0 and A f. 0, then there are two solutions; 

( 4. 7) 

( 4. 8) 
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if d I- 0 and d + 11.n = 0, then there are 2'T"(n)-l solutions; and (4. 9) 

if d -/ 0 and d + 11.n -/ 0, then there are 2 'T (n) solutions. 

Proof: Assume that both conditions (4. 5) and (4. 6) are satisfied. 

Condition (4. 5) is the same as condition (4. 2). If d is a square, 

(4. 10) 

then condition (4. 3) is also satisfied. If d is not a rational square, 

condition (4.6) implies that n is a power of an odd prime, and that 

d is the product of a rational square with ( ~ ~p. In this case, we 

can show that d is still a square in all the cyclotomic fields of condi

tion (4. 3). This is because all the divisors of n are powers of the 

same odd prime. Hence, Lemma 4. 1 implies that all of these fields 

have the same quadratic subfield o(/( ;1
) p ). The fact that d is a 

square in this quadratic subfield implies that it is a square in all the 

cyclotomic fields in question. Hence, conditions ( 4. 5) and ( 4. 6) are 

equivalent to the conditions (4. 2) and (4. 3). Using the Chinese re

mainder theorem, we can construct a 0(x) such that 

( 4. 11) 

The existence of 0 (x) satisfying (4. 11) is equivalent to the existence 

of a rational circulant satisfying the matrix equation (4 . 4), and we have 

proved the sufficient part of the theorem. 

Next, we suppose that there exists a solution of (4. 4). Then 

(4. 5) must be satisfied. To prove (4. 6 ), we have to prove that if d 

is not a rational square, then n is a power of an odd prime p and d 

is a product of a rational square with ( -pl )p. 
If n is even, then by (4. 3), · d is a square in Q( s2 ). But 
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s2 = -1 and Q(!; 2 ) = Q. Thus (4. 3) implies that d is a square in Q, 
I 

contradicting the assumption that d is not a rational square. 

Let p be an odd prime dividing n. Then (4. 3) implies that d 

is a square in Q(!; ), 
p 

2 
that is d = a , a not in Q. But then Q(a) is 

a quadratic subfield of Q(!;p). By Lemma 4. 1, the quadratic subfield 

is unique. Hence 

a = a + b • {mp for some a, b in Q. 

Hence 

(4 . 12) 

Since d = a
2 

is in Q, we have 2ab = O. If b = O; then a = a and d 

would be a rational square. Hence a = 0 and 

(
-1 ) 2 d = p b p, (4.13) 

which is the required form. 

Suppose there exists another odd prime q /. p which divides n. 

By similar reasoning 

(-1) 2 d = q c q, where c E: Q. (4 . 14) 

But (4.13) and (4.14) together imply that either p/q or -p/q is a 

rational square, and this is impossible. Hence n must be the power 

of an odd prime. 

It still remains for us to count the number of distinct solutions. 

In constructing solutions, we use the Chinese remainder theorem to 

n 
construct a polynomial 8(x) in Q[x] /x -1 such that 

2 
8 (x) = d + 11.n (mod x-1) ( 4. 15) 
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and 
2 

8 (x) = d (4. 16) 

where w divides n and is not equal to 1. Hence 8(x) is congruent to 

the square roots of the right hand sides of (4. 15) and (4. 16). In taking 

square roots, different choice of sign will give us different 8(x) 1s, as 

long as the terms involved are not equal to O. So, we have to look at 

the cases involving O's separately. When both d and d+ An are 

non-zero, there are a total of 'r(n) square roots. Hence there are 

2-r(n) solutions in this case. 

If d = 0 and A = 0, the equation reduces to A 
2 = O. If 8 (x) is 

the Hall polynomial of A, 

8 (x) - O ( mod cp w(x)) 

for all divisors w of n. The only possible solution is for 8(x) = O. 

Hence there is only one solution, namely A = O. 

If d = 0 and A -:/ 0, there are two choices for the square root 

of An. The other square roots in condition (4 . 3) are all O's . Thus, 

there are only two solutions. 

If d -:/ 0 and d + An = 0, there are -r(n) - 1 cyclotomic fields in 

condition (4. 3), each of which gives two choices for the square root of 

-r(n)-1 
d. Thus, there are a total of 2 choices. 

Let us now look at some examples of the construction of solu

tions . Recall that 

8(x) = .!._ \ 8 (x) B . (x) 
n l W n, W 

( 4. 1 7) 

w\n 



21 

and 
n 

\ W (X -1 ) B (x) = L µ, ( - ) r -- • n, w r r 
1 I X -

r w 
4 3 2 

For n = 5, B
5 1 

(x) = x + x + x + x + 1, and 
' 

4 3 2 
B

5 5 
(x) = -x - x - x - x + 4 • 

' 

Example 1: d = 1, c = 4 and A = 3. 

Conditions (4.2 ) and (4 . 3) give 

8 l (x) = ± 4, and 

8 5 (x) = ± 1 • 

Consider the case 8
1

(x) = +4 and 8
5

(x) = +l. 

Using (4. 17), 

e (x) 
1 4 3 2 

= 5 ( 3x + 3x + 3x + 3x + 8) 

which satisfies 8(x/ = 1 + 3T (x) (mod x
5 

-1 ). 

(4.18) 

4 3 2 1 4 3 2 
The other 3 solutions are x + x + x + x, - 5 (3x + 3x + 3x + 3x + 8), 

4 3 2 
and -(x + x + x + x ). 

Example 2: d = 5, c = 15 and A= 44. 

4 3 2 2 
Observe that (I; s - S + I; ) = 5 where I; is a primitive 5th root 

of unity. Thus 

8
1 

(x) = ± 15, and 

4 3 2 
8

5
(x)=±(x -x -x +x). 

Taking the positive sign in both cases, (4. 15) gives 

4 3 2 
8 (x) = 4x + 2x + Zx + 4x + 3. 
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Again, 8 (x) satisfies 8 (x)
2 = 5 + 44T (x) 

5 
(mod x - 1 ). 

Once we obtain a rational circulant satisfying equation (4. 1 ), 

it is not difficult to get a non-negative integral circulant satisfying 

the equation, although possibly with a different d and 11.. Suppose that 

A is a rational circulant satisfying (4. 1 }. We can construct an integral 

circulant by multiplying A by an appropriate factor. Then we can 

add enough multiples of J to obtain a non-negative integral circulant. 

The resulting circulant still satisfies equation (4. 1) except possibly 

with a different d and 11.. 

The interesting case occurs when A is a (0, 1) circulant. In 

the next chapter, we will classify all the (0, 1) circulant solutions to 

equation (4. 1 ). 
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Chapter 5 

ADDITION SETS 

In chapter 4, we answered the question of the existence of 

rational 1-circulants A satisfying the matrix equation 

2 
A = dI + :\.J. 

In this chapter we restrict our attention to (0, 1) 1-circulants. 

There are some easy solutions to (5. 1): 

2 
I =I, 

2 
J = nJ, 

(J -I/ = I + (n -2) J , 

and if n is even, 

where C is the special I -circulant defined in Chapter 1. 

(5. 1) 

( 5. 2) 

(5. 3) · 

(5. 4) 

( 5. 5) 

(5. 6) 

The question now is whether there exist any other (0, 1 )

circulants which satisfy (5. 1 ). It turns
1 
out that in the (0, 1) case, the 

existence of such a circulant is equivalent to the existence of a math

. ematical object which is defined as follows. 

A (v, k, :\.)-addition set A= [a 1, a 2, ••• , aJ, or simply an 

a.ddition set, is a collection of k distinct residues modulo v, such 

that for any residue a F O modulo v, the congruence 

a. + a. = a (mod v) 
1 J 

( 5. 7) 
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has exactly A solution pairs (a., a.) with a. and a . in A. 
1 J 1 J 

To avoid degenerate configurations, we further require that 

k ~ 1 ( 5. 8) 

Remark 5. 1 It can be easily seen that every addition set corresponds 

to a (0, 1) circulant satisfying A 
2 

= dI + 11.J. Given an addition set A, 

we ca n define a v X v circulant A whose first row has l's in every 

a. -t h position, where a . belongs to the addition set A. The matrix 
1 1 

A will have line sums k and will satisfy (5. 1) with an appropriate d, 

but the s a me A. Conversely, given a (0, 1) circul ant A satisfying 

(5. 1 ), an adq.ition set can be formed fr om the first row of A. 

With the above remark, there is n o a mbiguity in defining a Hall 

p olynomial 8 (x) for an addition set A by 

k 

8 (x) = I 
i=l 

O bserve that 
k 

[ 8(x) J2 = I 
i, j 

a . 
l 

X 

a.+a. 
Xl J 

a . E: A. 
l 

= d + 11.T(x) (mod xv -1), 

2 3 v-1 
where T (x) = 1 + x + x + x + • • • x 

( 5. 9) 

(5. 10) 

Here, because of the similarity of addition sets with difference 

sets and block designs, we change the notation for the parameters 

(n, c, 11.) to (v, k, 11.). 

Corresponding to the solutions (5. 2) t o (5. 6 ), we have the 

following addition sets 



(i) 

(ii) 

(iii) 

(iv) 

(v) 
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A= [ 0} , 

A= [ 0, 1, .. . , v-1} , 

A= [ 1, 2, • 0 • , v-1} , (5 . 11) 

if v is even, 

if vis even, 

A = [ v /2} 

A - fo 1 ~2 -1, ~2 +1, ~+2 v-1} - l, , ••• , 2 , •••, • 

The question now is whether there are any other addition sets . 

The main purpose of this chapter~ to derive Theorem 5. 16 which 

asserts that (5 . 11) contains all ~the addition sets. 

Let us fi r st re stat e the various parameter relations . We h a v e 

2 
l :::: k =d+Av , (5 . 12) 

and 

-A< d :::: k - A • ( 5. 1 3) 

Let us state some definitions which are helpful in the develop

ment of this chapt er . 

sets of residue s modul o v . An a ddi tion table of A and B, d enote d 

by A EB B, is a k X k matr i x, wh ose (i, j)-th ent r y is (a. + b .) taken 
l J 

·modulo v . 

A shift of A ~ s , denote d by s + A , is 

s + A = {s +a.\ a . E: A} . (5 . 14) 
l l 

Similarly, a matrix M = (m . . ) is a shift of a matrix N = (n . . ) if the re 
lJ -- lJ 

exists an integer a such that for all i, j 

m . . = a+ n . . 
lJ lJ 

(mod v) • 
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Let 2r divide v (r need not be maximal). A basic r -set is a 

set A of 2r residues modulo v defined by 

A = 1 v \ i = 0, 1, ••• , 2r -1 'L 
'- 2r J 

The addition table AEB A is the basic r -block. 

Proposition 5. 2 The basic r -set A is closed under addition modulo v 

and each a E: A appears exactly 2r times in the basic r -block. 

Proof: It is easy to see that A is closed under addition modulo v and 

that the entries in each row of its addition table are distinct. Hence 

every a E: A appear s in each row of the basic r -block exactly once . 

Thus, each a E: A appears exactly 2r times in the addition table. 

Corollary 5. 3 Let A be the basic r -set and let B = b + A and 

C = c + A be shifts of A by b and c, respectively. Then every residue 

that appears in the addition table B EB C is from the set (b + c) + A, 

and each residue appears exactly 2r times in B EB C. 

Proof: Let M be B EB C. If we pre serve the same ordering in B and C 

as in A, M will be just a shift of the basic r -blo ck by (b + c). Hence, 

all the residues that appecl-r in M are from (b + c) + A and each appears 

exactly 2r times in M . 

It should be remarked that if A is any set of residues, the 

addition table A EB A is symmetric. li_ A is an addition set, then 

every non-zero residue occurs 11. times in the addition table, and 0 

occurs (d + \) times. 
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We will call any addition set that 1s not covered by those listed 

in (5. 11) a new solution. 

Theorem 5. 4 If 11. is odd, there is no new solution. 

Proof: Let A be an addition set, with 11. being odd, and let us con-

sider its addition table. Since the table is symmetric, every non-

zero residue o: that appears in an off diagonal position (i, j) also 

appears in the off diagonal position (j, i). Since 11. is odd, o: must 

appear on the main diagonal an odd number of times. But there are 

v-1 non-zero a 1s and k diagonal positions. Hence k ~ v-1. But 

k:.:;; v. Hence k = v or v-1. In both of these cases, the only solutions 

are the ones in (5. 11 ). 

Theorem 5. 5 Let A be a new solution. Then v is even. Moreover, 

if a E: A and a is not equal to O or v/2, then a+ v/2 E: A. 

Proof: If there does not exist an a E: A not equal to O or v /2, then 

A= [O}, [v/2}, or [O, v/2}. The only addition sets in these cases 

are given by (5. 11 ). 

Assume then that we can choose an a E: A not equal to O or v/2. 

Then 2a will be a non-zero entry in the main diagonal of the addition 

table for A. Since A is a new solution, Theorem 5. 4 implies that 

11. is even. Hence, the non-zero residues that appear in the main 

diagonal must appear there an even number of times. In particular, 

there exists b E: A not equal to a such that 

2a = Zb (mod v) , 

or 2(a-b) = 0 · (mod v) • (5.15) 
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If v is odd, (5. 15) implies that a= b, which contradicts the choice 

of b. Hence v is even, and the only b not equal to a which satisfies 

(5.15) is b = a + v/2. 

Lemma 5. 6 If r ::::: 1, Zr lv and tJ-ie addition set A is a union of 

distinct shifts of the basic r -set, then either 

(i) k = v, or 

(ii) zr+l Iv and the set A is a union of distinct shifts of the 

basic (r+ 1 )-set. 

Proof: We can rearrange A to group the shifts together, i.e. the 

first Zr elements of A will be the set d
1 

+ B, where B is the basic 

r -set, the second Zr elements will be d + B, and so on. 
Zr +l 

Since A is a union of distinct shifts, we have 

Let (5.16) 

With the above rearrangement, the addition table for A will be an 

s X s matrix of Zr X Zr blocks. Each of these blocks will be a shift 

of the basic r -block. Since every entry in a block appears Zr times, 

we have 

(5. 1 7) 

However, the s X s matrix of blocks is still a symmetric matrix. 

The . off diagonal blocks again appear in pairs, one on each side of the 

diagonal. An entry in the off diagonal block would then appear in 

multiples of zr+l. r r+l . If A = 2 (mod 2 ), every non-zero residue must 
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appear in some diagonal block. The total number of diagonal blocks 

is s and each block has 2r distinct entries. Hence 

or, k ~ v-1 • (5. 18) 

But 2r divides v and 2r divides k with r ~ 1. Hence 

k=v. 

If A== O(mod 2r+l), every non-zero residue a that appears in one 

diagonal block must appear again in another diagonal block. Suppose 

a appears in the block defined by the shifts x + B and y + B. Then 

a == 2x + i _:::_ (mod v) , (5. 19) 
2r 

and a == 2y + j _:::_ (mod v) , 
2r 

for some i and j between O and 2r -1. 

Hence, 

or 

2 +E - y r 
2 

2(x -y) == (j-i)v 
2r 

(mod v) , 

(mod v) • 

(5. 20) 

If 2 \ (j -i), x and y will be in the same shift, contradicting the fact 

that they represent different shifts of B. Hence 2 does not divide 

( . ·) d 2r+l d" .d M J-1, an 1v1 es v. oreover, 

x == y + (j -i )v (mod v /2) • 
2 r+l 



Hence either 

or 

X = y + (j -i)v 
r+l 

2 
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(mod v) , 

In either case, the two shifts x + B and y + B will differ only by :+l' 
2 . 

that is 

x+B 

Hence the two shifts x + B and y + B can be grouped together into a 

shift of the basic (r+l)-set. 

Suppose there exists another diagonal block which is defined 

by the shift z + B. Let f3 be a non-zero residue that appears in this 

diagonal block. We now show that f3 does not appear in the blocks 

defined by either x + B or y + B. Suppose f3 appears also in the block 

defined by x + B. Then the previous argument implies that the two 

shifts x + B and z + B differ only by (v /2r+l ). Thus the two shifts 

y + B and z + B will be identical, contrary to the choice of z + B. 

Hence the shift z + B will have to pair up with yet another shift to 

form a shift of the basic (r+l )-set. Continuing in this manner, we 

can show that the whole set A is a union of distinct shifts of the basic 

(r+l )-set. 

Let us consider the implications of Lemma 5. 6. If k = v, the 

only addition set is A= [O, 1, ••• , v-1} which is covered by (5. 11 ). 

The other alternative is an induction step. Since v is finite, there 

exists a maximum r such that 2r divides v and the induction must 
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terminate. Thus Lemma 5. 6 implies that if for some r ~ 1, Zr 

divides v and the addition set A is a union of distinct shifts of the 

basic r-set, then A= [O, 1, ••• , v-1 }. If k is even, the hypothesis 

of Lemma 5. 6 is satisfied with r = 1, and we obtain the next theorem. 

Theorem 5. 7 There is no new solution for k an even integer . 

Proof: Theorem 5. 5 established the fact that v is even. Hence, z 1 

divides v. Moreover, if a E: A and not equal to O or v/2, then 

a+v /2 E: A. The two elements a and a + v /2 togethe r are a shift of 

the basic 1 -set. Thus the elements of A, not equal to O or v /2, 

pair up as shifts of the basic 1--set. Now k is even which means that 

A has an even number of elements. Hence O and v /2 are either both 

in A or both not in A. In either case, A is a union of shifts of the 

basic 1-set. With the use of Lemma 5. 6, we obtain the result that 

there is no new solution for k an even integer. 

Let us summarize the results obtained up to this point. 

Theorem 5. 4 implies that we only have to consider the case of 11. an 

even integer. Theorem 5 . 5 implies that v is even, and if a E: A and 

not equal to O or v/2, then a+ v/2 E: A. Theorem 5. 7 settles the 

case of k an even integer, and we now proceed to consider the case 

of k an odd integer. 

Proposition 5. 8 If k is odd, then either O or v /2 is in A, but not 

both. 

Proof: Theorem 5. 5 says that those a I s in A not equal to O or v /2 

come in pairs. Since k is odd, the number of elements of A is odd. 
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Hence either O or v /2 is in A but not both. 

Remark 5. 9 If A is a new solution, then v /2 + A is again a new 

solution. Hence we can assume that O E: A without loss of generality. 

Remark 5. 10 If A is a new solution, so is the complement of A 

consisting of the residues modulo v that are not in A. Hence in the 

search for new solutions we can restrict our attention to the cases 

in which 

k ~ v /2 • 

Proposition 5. 11 Let A be a new solution with k odd and A = 2 

(mod 4 ). Then 

k ~ v /2 + 1. 

(5.21) 

Proof: With Proposition 5. 8 and Remark 5. 9, we can assume that 0 

is in A. Let us define a new set 

A'= A - [O}. 

Now, if a E: A', then a + v/2 E: A' . Hence A' is a union of shifts of 

the basic 1-set. With ·suitable rearrangement of the elements in A', 

the addition table for A' is again a matrix of 2 X 2 blocks. Entries 

in the off diagonal blocks appear in multiples of 4, and entries in the 

diagonal blocks appear in multiples of 2. 

Observe that the addition table for A is just the addition table 

for A' adjoined with an extra column and row which correspond to the 

0 in A. The entries in the column also appear in the row as the 

addition table is symmetric. Hence, in the addition table for A, the 
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only entries that appear with multiplicity 2 are those on the main 

diagonal block, or on the extra column and row. 

There are a total of (k-1) /2 main diagonal blocks, each with 

2 distinct elements. As for the extra column, there are (k-1) non-zero 

entries. Since all other non-zero entries occur in multiples of 4 and 

;\ = 2 (mod 4), every non-zero residue must appear in the main diagonal 

bh>cks or the extra column. Thus 

[(k-1 )/2] X 2 + k-1 :?: v-1 

or 2 (k - I ) ::?: v - I • (5. 22) 

Theorem 5. 5 implies that v is even. Hence (5. 22) can be refined to 

2(k-l)::?: v 

or k ::?: ~ + I 2 • 

Remark 5. IO and Proposition 5. 11 imply that we can assume 

;\ = 0 (mod 4). 

Theorem 5. I 2 Let A be a new solution with k odd, ;\ = 0 (mod 4 ), 

and O E: A. Then 

(i) v = 2 (mod 4), and 

(ii) d = I • 

Proof: In the proof of Proposition 5. 11, we studied the multiplicities 

of entries in the addition table for A. Now when ;\ = 0 (mod 4 ), the 

entries with multiplicity 2 must combine among themselves to give 

multiplicity 4. Let us consider the non-zero entries in the extra row. 

First of all, they are all distinct since they are exactly the entries in 
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A - [O }. Secondly, there are (k-1) non-zero entries in the row. 

Hence, all these (k-1) non-zero entries must appear as entries in 

the diagonal blocks. However, if v = O(mod 4), then v/2 is even and 

all the entries in the diagonal blocks are even. Hence all the non-zero 

entries in A are even, But then all the entries in the addition table 

will be even contradicting the fact that A is an addition set. Hence 

v = 2 (mod 4). 

Since v = 2 (mod 4), v/2 is odd. Then A contains k;l even 

k-1 elements and - 2 - odd elements. Since v is even, we can consider 

the addition table modulo 2. The numbers of entries congruent to 

0 modulo 2 is 

The number of entries congruent to 1 modulo 2 is 

However, by the remark following Corollary 5. 3 we observe that 

d is the difference of the number of entries congruent to O modulo 2 

and 1 modulo 2. Hence 

d = 

or d = 1 • 

Up to this point, all the results on addition sets are derived 

from the fact that the addition table is symmetric. To obtain further 

results, we will use the techniques developed in Chapter 4. Let us 

first summarize the results that we will need later on. 
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Theorem 5. 13 If a new solution exists, then one exists satisfying 

the following conditions: 

(i) v == 2 (mod 4) , 

(ii) d = 1, and (5.23) 

(iii) k ~ v /2. 

As in Chapter 4, we denote the Hall polynomial of an addition 

set by 8 (x). 

polynomial. 

Let w divide v, and let cp (x) be the w-th cyclotomic 
w 

Let 8 (x) be the remainder of 8 (x) taken modulo cp (x). w w 
Furthermore, we let 8 [w] (x) denote the remainder of 8(x) taken 

w ~l modulo (x -1 ), and we let T (x) = 1 + x + • • • + x • 
w 

If A is a new solution satisfying the conditions in Theorem 5. 13, 

then its Hall polynomial satisfies 

8(x)
2 

== 1 + AT (x) (mod xv -1) . 
V 

The results in Chapter 4 imply that 

e
1 

(x)= ±k, and 

8 (x) = ± 1, 
w 

(5. 24) 

(5.25) 

(5. 26) 

for w dividing v not equal to 1. Since 8(x) has non-negative coeffi-

cients, 

8
1

(x) = +k. (5.27) 

We now let p be an odd prime dividing v. Equation (5.24) 

taken modulo (xp -1) be comes 

2 
( 8 [p] (x)) == 1 + ~v T p (x) (mod xp -1). 
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Observe that 8[p](x) again has integral coefficients. Using the con

structions of Chapter 4, 8[p](x) is determined by 8 1 (x) and 8p(x). 

With the fact that 9
1 

(x) = +k, there are only two possibilities for 

8 [p J (x). The restriction that it has integral coefficients will give us 

a condition on the sign of 9 (x). 
p 

Theorem 5. 14 If A is a new solution satisfying the conditions in 

(5. 23) and p is an odd prime dividing v, then 

f
+l 

8 (x) = 
p '-1 

when p divides (k-1) { 

when p divides (k+l) f (5.28) 

Proof: We will use equations (4. 17) and (4. 18) to construct 8[p](x). 

It is easy to calculate that 

B l (x) = T (x) p, p 

and that 

B (x) = p - T (x). p,p p 

If 8 (x) = +l, then 
p 

e[p](x) = 1 +(k-1 )T (x) 
p p 

If 8 (x) = -1, then 
p 

=-l+(k+l)T (x). 
p p 

. (5 . 29) 

(5. 30) 

Since p is an odd prime, (5. 29) and (5. 30) cannot both have integral 

coefficients. However, as 

(k+l )(k'..l) = \v, 
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any odd prime dividing v will divide either k+l or k-1. If p divides 

k+l, then e[p](x) is given by (5. 30) and 

e[p](x) is given by (5. 29) and 8p(x) = 1. 

e (x) = -1. 
p 

If p divides k-1, 

Carrying the construction one step further, we obtain the 

following result. 

The or em 5. 15 If A is a new solution satisfying the conditions in 

(5. 23), then v/2 divides either k-1 or k+l. 

Proof: Condition (i) of (5. 2 3) implies that v /2 is odd. Let p be an 

odd prime dividing v/2. Then p divides either k-1 or k+l. Suppose 

p divides k-1. We will show that v/2 divides k-1. 

Assume that there exists another odd prime q dividing v/2 

such that q divides k+l. We now consider the possibilities for 

8[pq](x), which has integral coefficients. A little calculation gives 

B 
1 

(x) = T (x), 
pq, pq 

and 

Since p divides k-1 by Theorem 5. 14, we have 8 (x) = 1. Similarly 
p 

8p{x) = -1. Since e
1 

(x) is equal to k, the only choice in the formula 

(4. 17) is in the sign of 8 (x). If 8 (x) = 1, then 
pq pq 



e [pq] (x) 

If 8 (x) = -1, then 
pq 

= l + k+l 
pq 

k-1 
e[ J(x)=-1+-pq pq 
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q-1 
2 I . T (x) - - (xp )1 

• 
pq q 

i=O 

However, pq does not divide k+l or k-1. Hence 8[pq](x) cannot 

have integral coefficients, which is a contradiction. 

Thus, if there exists an odd prime divisor of v/2 that divides 

k-1, then all the odd prime divisors of v /2 divide k-1. Hence v /2 is 

co-prime to k+ 1. But since (k+ 1 )(k-1) = Av; we find that v /2 divides k-1. 

On the other hand, if there does not exist an odd prime divisor 

of v /2 that divides k-1, then v/2 is co-prime to k-1 and v/2 divides 

k+l. 

Finally, we can prove that there are no new solutions. 

Theorem 5.16 The list (5.11) contains all of the addition sets. 

Proof: We have shown that if a new solution exi sts, then one exists 

that satisfies all the conditions in (5. 23). Theorem 5 . 15 implies that 

v/2 divides either k-1 or k+l. 

If v/2 divides k+l, then we have 

k+l ;e:: v/2 • 

Since k and v /2 are both odd, (5. 31) implies that 

k 2: v /2 . 

With condition (iii) of (5. 23 ), we have 

k = v /2 • 

Since k
2 

= 1 + AV, we have 

(5. 31) 
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2 
V = 4 + 4 AV • (5. 32) 

The only integral solutions of (5. 32) are 11. = 0 and v = ±2. The addi

tion sets with these parameters are included in (5. 11 ). 

If v/2 divides k-1 , then either k=l or 

k-1 ~ v/2 • (5. 33) 

The addition sets with k=l are included in (5. 11). Relation (5. 33) 

contradicts condition (iii) of (5. 23). This finishes our proof. 

In the next chapter, we will look at a generalization of addition 

sets. Since the generalization will include all the difference sets, 

there will be non-trivial solutions. 
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Chapter 6 

(v, k, 11., g) - ADDITION SETS 

In Chapter 5, we considered (0, 1) 1-circulants satisfying the 

matrix equation 

2 
A = dI + 11.J , ( 6. 1) 

and we have shown that the existence of such matrices is connected 

with the existence of addition sets. In this chapter, we will consider 

(0, 1) g-circulants satisfying (6. 1 ). These matrices correspond to a 

generalized version of addition sets. 

A (v, k, 11., g)-addition set A = [a
1

, a 2, ••• , ak}, or simply 

a g-addition set, is a collection of k distinct residues modulo v, 

such that for any residue a t O (mod v) the congruence 

has exactly 11. solution pairs 

more, we require that 

a. + ga. = a(mod v) 
1 J 

(a., a.) with a. and a. in A. 
1 J 1 J 

k ::2: 1 • 

( 6. 2) 

Further -

( 6. 3) 

It should be pointed out that when g = -1, the ( -1) -addition sets 

are the previously defined difference sets, and when g = 1, the 

I -addition sets are those studied in Chapter 5. 

Remark 6. 1 Again, it can be easily seen that every g-addition set 

cor~esponds to a (0, 1) g-circulant satisfying A
2 

= dI + 11.J. Given 

a g-addition set A, we can define the fir st row of a g-circulant 

matrix A by placing 1 's in each of the a. -th positions, where the a. 1s 
1 l 
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belong to the g-addition set A . The complete g-circulant is then 

obtained by shifting. Conversely, given a (0, 1) g-circulant A 

satisfying (6. 1 ), we can form a g-addition set from the fir st row of A. 

We can define a Hall polynomial 8 (x) for a g-addition set A 

by 

Observe that 

k 

e (x) = I 
i=l 

a. 
1 

X 

k 

a. E: A. 
1 

\ . a.+ga. 
8 (x) 8 (xg) = L x 1 J 

i, j=l 

= d + 11. T (x) (mod xv -1 ). 

(6. 4) 

( 6. 5) 

One can prove some elementary results about (v, k, A, g)

addition sets. 

Theorem 6. 2 If d f. 0, then g
2 

- 1 (mod v). 

Proof: We have seen that a (v, k, 11., g)-addition set corresponds to a 

2 
(0, 1) g-circulant satisfying A = dl + 11.J. Using conclusion (i) of 

Theorem 3. 1, we obtain Theorem 6. 2. 

The multiplier theorem is important in the study of difference 

sets and a similar result can be proved for g-addition sets. Let us 

fir st make some definitions. 

Let A be a (v, k, A, g)-addition set. Define 

A+ x = [a + x \ a E: A} (6. 6) 

for each residue x modulo v. Then A +xis called a shift of A. 

If A is a (v, k, A, g)- addition set and x is any residue modulo v, 

define 



42 

xA = [ xa I a E: A} ( 6. 7) 

I£ xA is a shift of A, then x is a multiplier of A. In particular, if 

xA = A, then x fixes A. 

The trivial multiplier I always fixes a g-addition set. The 

following theorem is a generalization of the multiplier theorem for 

difference sets to addition sets. The proof is very similar to the 

original one given for difference sets. (Hall and Ryser [ 1951 J ). 

Theorem 6. 3 If A= (a 1, a 2, •.. , ak} is a (v, k, A, g)-addition set, 

2 
where k = d + AV, and if p is a prime dividing d such that (p, v) = 1 

and p > A, then p is a multiplier of the g-addition set. 

Proof: Since A is a g-addition set, its Hall polynomial satisfies 

V (mod x -1) • ( 6. 8) 

Observe that if f(x) is an arbitrary polynomial with integral coeffi

cients, then 

f(x)T (x) = f( I )T (x) 
V 

(mod x -1) . ( 6 . 9 ) 

By hypothesis p divides d but not v . Also p > A and k
2 

= d + AV. 

Thi-s implies p does not divide k . Thus 

(mod p) . (6.10) 

Since all the binomial coefficients(?), where 1 = 1, 2, ••• p-1, are 
1 

I 

divisible by p, we have 

(6. 11) 
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p-1 
We now multiply (6. 8) by 8(x) and apply (6. 9), (6.10) and (6. 11). 

The resulting relationship is 

(6. 12) 

where R(x) is a polynomial with integral coefficients. Pu.ting x = 1 

in (6. 12), we get 

k 
2 

= "Av + pR ( 1 ) 

Thus 
pR(l) = d • (6. 13) 

We now have four relations 

(6. 14) 

The first of these is (6 . 8) . The second uses the fact that pA i s again 

a g-addition set, since p is prime to v. The third one is (6. 12), and 

the fourth one is obtained by putting xg in (6. 12 ), and observing that 

2 
g = 1 (mod v), 

T(xg) = T(x) (mod xv -1) 

and 

In (6.14), the product of the left sides of the first two congruences is 

the same as the product of the third and fourth. Hence 
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[1c T(x) + pR(x)} [1c T(x) + pR(xg)} = (d+1cT(x))
2 

(mod xv -1). 

(6.15) 

Now, using pR(l) = d, together with (6. 9), we see that (6. 15) simplifies 

to 

2 g 2 V 
p R(x)R(x ) = d (mod x -1). (6. 16) 

The expression 8(~) 8(xg) of (6. 12) regarded as a polynomial 

of degree less than v has non-negative integral coefficients. Now 

p > 't.., and this implies that R(x) in (6. 12) has non-negative coeffi -

cients. The structure of (6. 16) implies that R(x) cannot have more than 

one positive term. Hence, R(x) is a monomial, (say wxs), and 

pR(x) = pwxs = dxs V (mod x -1) . ( 6. 1 7) 

We now multiply (6.11) by 8(x) and apply (6. 8), (6. 9) and (6. 17). This 

gives 

Dividing by d, 

s 
X 8(x) 

which implies that p is a multiplier. 

V (mod x -1) , (6. 18) 

Remark 6. 4 Observe that since R(x) is a monomial, by substituting 

it into (6. 16) we get 

Hence, 

2 2 · s+gs = d2 p W X 

v \ s(g+l) • 

V 
(mod x -1) . 

(6. 19) 

The multiplier theorem is useful in constructing difference 
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sets. It is hoped that new g-addition sets can also be constructed. 

Next we consider some examples of (v, k, A, g)-addition 

sets. The following result was fir st reported in Ryser [ 1970]. 

Theorem 6. 5 
2 

If k = 1 + \v, then the set A= [O, 1, •.• , k-1} is a 

(v, k, 11., k)-addition set with d = 1. 

Proof: Let 8(x) be the Hall polynomial for A. Then 

k k
2

-l 
8 (x) 8 (x ) = 1 + x + • • • + x • (6 . 20) 

V 
Equation (6. 20) taken modulo (x -1) becomes 

k v-1 v 
8(x)8(x ) = 1 + \(1 + x + ••• + x ) (mod x -1). (6. 21) 

Hence A is a (v, k, A, k)-addition set with d = 1. 

Remark 6. 6 In the case of difference sets, it is well known that -1 

is never a multiplier of a non-trivial difference set. (Johnsen [1964], 

Brualdi [1965] and Yates [1967]). Let us consider the (8, 3, 1, 3)

addition set constructed in Theorem 6. 5 . It can be easily checked 

that -1 is the only non-trivial multiplier for this 3-addition set. 

Theorem 6. 7 Let A be a (v, k, A, g}-addition set with d f. 0. Then 

it is also a (v, k, A, h)-addition set if and only if gh is a multiplier 

fixing A. 

Proof: Assume that A is both a g- and an h-addition set. Then 

V (mod x -1) , (6 . 22) 
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and 

h 
8(x)8(x ) = d + 11.T(x) V (mod x -1) . 

h 
Substituting x for x in (6. 22), we obtain 

Hence, (6. 24) implies 

Multiplying (6.25) by 8(x}, we have 

Using (6. 23}, we have 

Observing that 

8 (x
1

)T (x) = kT (x) (mod xv -1) , 

for any i, we have 

d 8 (xgh) + 11.kT (x) = d 8 (x) + 11.kT (x) (mod xv -1) • 

If d -/- 0, (6. 26) implies that 

gh -8(x ) = 8(x) (mod xv -1) , 

which is the same as saying that gh is a multiplier fixing A. 

Next we assume that A is a g-addition set with gh as a 

multiplier fixing A. Then 

(6. 23) 

(6. 24) 

(6 . 25) 

(6.26) 
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V 
(mod x -1) . (6. 2 7) 

Since gh is a multiplier fixing A, 8(x) = 8(xgh) (mod xv -1 ). Hence 

V 
(mo d x -1 ). (6. 28) 

Substituting xg for x in (6. 28), we have 

(6.29) 

We now use the fact that d (= 0 implies g
2 = 1 (mod v), that (xv-1) 

divides (xvg_l) and that T(xg) = T(x) (mod xv -1). Equation (6. 29) 

then implies that 

h - V 8(x )8(x) = d + \T(x) (mod x -1), 

which means that A is also an h-addition set. 

Corollary 6. 8 A (v, k, \)-difference set is also a (v, k, A, g)-addition 

set if -g fixes A. 

Corollary 6 . 8 implies the existence of many (v, k, A, g)-addition 

sets. The following is a list of those with g (= -l and v < 50. 

V 

15 

21 

3.5 

40 

k A 

7 3 

5 1 

17 8 

13 4 

g d 

11 4 

13 4 

6 9 

31 9 

A 

{O, 1, 2, 4, 5, 8, 10} 

{ 3, 6, 7, 12, 14} 

£ 0, 1, 3, 4, 7, 9, 11, 12, 13, 14, 16, 1 7, 

21, 27, 28, 29, 33} 

{1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25, 27, 

. 35} 
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There is still much that can be done concerning g-addition sets. 

The following are some suggestions. 

1) Construct solutions with d -/- 0, 1, or k-:\.. 

2) Find more non-existence results. 

3) Search for all possible g-addition sets for, say, v :-;; 100. 

4) Generalize the notion of g-addition sets to the notion of 

g-addition sets over an abelian group. 
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