
34th Midwest Symposium on Circuits and Systems; Monterey CA, 14-17 May 1991, pp.371-375.

Copyright c© 1991 IEEE (DOI 10.1109/MWSCAS.1991.252174).

TABLE–DRIVEN ANALYSES IN THE SPICE–PAC

CIRCUIT SIMULATION PACKAGE

W.M. Zuberek and M.S. Zuberek

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1C–5S7

A b s t r a c t

Recent applications of SPICE–PAC to transistor param-
eter extraction and hierarchical simulation require rather
flexible circuit analyses, performed for irregularly dis-
tributed values of independent variables. An implementa-
tion of table–driven analyses (DC, AC and time–domain)
is described in which tables of arbitrarily distributed in-
dependent variables (voltages, frequencies or timepoints)
are used rather than the fixed–step strategy implemented
in SPICE–like simulators. Simple examples are used to
illustrate applications of table-driven analyses.

1. INTRODUCTION

SPICE–PAC is a package of circuit simulation routines
derived from the popular SPICE–2G circuit simulator
from the University of California at Berkeley. It is upward
compatible with SPICE, i.e., it accepts the same circuit de-
scription language and provides the same set of analyses,
but it also contains a number of extensions and enhance-
ments that are not available in SPICE; a hierarchical nam-
ing scheme, static and dynamic circuit variables, parame-
terized subcircuit expansions and elements of higher–level
circuit specifications are a few examples of such enhance-
ments. The most distinctive feature of SPICE–PAC is,
however, its “open” structure, which means that all anal-
yses as well as (dynamic) definitions of parameters and
variables are performed “on demand”, as required by spe-
cific applications. This also means that SPICE–PAC can
easily be integrated with other CAD tools to provide cir-
cuit optimization, parameter extraction, statistical simu-
lation, mixed–mode simulation, etc..
Recent applications of SPICE–PAC to transistor param-

eter extraction and hierarchical simulation (with table–
driven specifications of functional blocks) require rather
flexible circuit analyses, performed for irregularly dis-
tributed values of independent variables. Since SPICE–
like simulators support fixed–step analyses only, the re-
quired flexibility could not be obtained without significant
degradation of the simulation performance. Therefore the
implementation of the three fundamental analyses, i.e.,
DC transfer curve analysis, frequency–domain (AC) analy-
sis and time–domain (TR) analysis, were modified in order
to allow specification of domains of independent variables

by tables of arbitrarily distributed values rather than a
fixed–step strategy. In parameter extraction, such table–
driven analyses must be performed at values (voltages, fre-
quencies or timepoints) determined by measurement data;
in table–driven specifications of functional blocks, variable
spacing of data points is needed for accurate but efficient
representation of nonlinearities.
The paper describes the extensions to the input lan-

guage required for specification of table–driven analyses,
and modifications of low–level interfaces for direct control
of simulation in integrated applications; it also discusses
changes in general organization of basic analyses. Sim-
ple examples of table–driven circuit simulation are used
as illustrations.

2. INPUT LANGUAGE EXTENSIONS

For DC transfer curve, time–domain and frequency–
domain analyses, table-driven options are described by
appropriate extensions of the .DC, .TRAN and .AC direc-
tives, respectively. The original syntax of these directives
is [Vlad]:

.DC source_name start_val stop_val increment

.TRAN time_step stop_val [start_val [max_step]] [UIC]

.AC type nrpoints start_val stop_val

where lower–case phrases denote user–supplied names
and/or values, upper–case fragments must be used ver-
batim (e.g., TRAN, UIC), and optional parts are enclosed
in square brackets “[” and “]”.
The table–driven specifications replace the “start”,

“stop” and “increment” values by a list of values, so the
additional formats of these directives are:

.DC source_name LIST(list_of_values)

.TRAN LIST(list_of_values) [max_step] [UIC]

.AC list_of_values

where list_of_values is a sequence of numbers (values
of the independent voltage or current source indicated by
source_name for the DC analysis, timepoints for TR anal-
ysis, or frequencies for AC analysis) separated by com-
mas “,”. For the time–domain analysis the values must
be strictly increasing. For DC analysis the values can be
specified in any order, however, preserving an increasing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/395081199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table–driven analyses in the SPICE-PAC circuit simulation package 372

or decreasing order oif values improves efficiency of analy-
sis, and may also improve convergence properties. For AC
analysis, the ordering of values is insignificant.
The following simple example illustrates table–driven

analyses:

VIN 1 0 AC(1) PWL(0.0 0.0,0.1 1.0,5.0 1.0)
R1 1 2 1.0
C2 2 0 1.0
R2 2 0 1.0
.DC VIN,LIST(0.0,0.2,0.5,1.0)
.PRINT DC V(2)
.TR LIST(0.0,0.1,0.2,0.3,0.5,0.7,1.0,2.0) 0.1
.PRINT TR V(1) V(2)
.AC 0.1,0.2,0.5,1,10,1K
.PRINT AC V(2)
.END

***** DC TRANSFER CURVE

VIN V(2)
0.000D+00 0.000D+00
2.000D-01 1.000D-01
5.000D-01 2.500D-01
1.000D+00 5.000D-01

***** TRANSIENT ANALYSIS

TIME V(1) V(2)
0.000D+00 0.000D+00 0.000D+00
1.000D-01 1.000D+00 4.670D-02
2.000D-01 1.000D+00 1.280D-01
3.000D-01 1.000D+00 1.950D-01
5.000D-01 1.000D+00 2.958D-01
7.000D-01 1.000D+00 3.633D-01
1.000D+00 1.000D+00 4.251D-01
2.000D+00 1.000D+00 4.900D-01

***** AC ANALYSIS

FREQ V(2)
1.000D-01 4.770D-01
2.000D-01 4.234D-01
5.000D-01 2.685D-01
1.000D+00 1.517D-01
1.000D+01 1.591D-02
1.000D+03 1.592D-04

Table–driven analyses can also be indicated in the ex-
tended circuit description [Z1]; in this case the lists of val-
ues are enclosed in parentheses, as shown in the following
example:

.END/EXT

.PAR/10 DCTC(VIN,(0.0,0.1,0.5,0.9,1.0))

.PAR/20 TR((0.0,0.1,0.2,0.3,0.5,0.7,1.0,1.5,2.0),0.1,0)

.PAR/30 AC((0.1,0.2,0.5,1.0,100.0))

.END

3. INTERNAL INTERFACES

SPICE–PAC is an “open” simulation tool that performs
simulation operations “on demand”, as required by a spe-
cific application [Z1]. SPICE–PAC’s operations (such as
“define parameters for an analysis”, “execute an analysis”,

etc.) are performed by invocations of corresponding inter-
facing routines with appropriate parameters [Z2]. Table–
driven analyses are indicated by modified invocations of
the SPICED, SPICET and SPICEF routines.

SPICED – define parameters for DC analysis

The invocation of SPICED must be equivalent to the
following Fortran statement [Z2]:

CALL SPICED (source,vistrt,vistop,nrstep,iflag

For table–driven DC analysis, vistrt is a double preci-

sion array that contains the list of values of an indepen-
dent voltage or current source indicated by source. The
vistop argument is immaterial in this case (although it
must be double precision as well). nrstep must be set
to the negative number of values in VISTRT, and iflg is
the return flag, as in the original invocation.

SPICET – define parameters for TR analysis

The invocation of SPICET must be equivalent to the
following Fortran statement [Z2]:

CALL SPICET (tmstrt,tmstop,nrstep,stpmax,incond,iflg)

For table–driven TR analysis, tmstrt is a double pre-

cision array that contains the list of required timepoints.
The tmstop argument is immaterial in this case (although
it must be double precision). nrstepmust be set to the
negative number of values in tmstrt, and the remaining
arguments are the same as in the original invocation.

SPICEF – define parameters for AC analysis

The invocation of SPICEF must be equivalent to the
following Fortran statement [Z2]:

CALL SPICEF (ittab,frtab,nrstep,iflg)

For table–driven AC analysis, frtab is a double preci-

sion array that contains the list of required frequencies.
The ittab argument is immaterial in this case (although
it must be integer). nrstep must be set to the negative
number of values in frtab, and iflg is the return flag, as
in the original invocation.

4. IMPLEMENTATION

DC transfer curve analysis

The DC transfer curve analysis is basically a repetitive
DC operating point solution performed for a range of val-
ues of one independent voltage or current source in the
circuit; the only difference is in starting point which – for
each new sweep point of DC analysis – is determined by a
linear extrapolation from the previous points.
The general outline of this analysis is as follows [Coh]

(VISRTR, VISTOP, VIINCR and SOURCE are DC analysis pa-
rameters, either defined by the .DC directive in the circuit
description, or by an invocation of the SPICED routine):



Table–driven analyses in the SPICE-PAC circuit simulation package 373

initialize;
time:=0;
update_time_dependent_functions_of_independent_

sources(time);
value:=VISTRT;
count:=0;
while count<NRSTEP do

update(SOURCE,value);
solve_the_system_of_circuit_equations;
if not converged then stop analysis end if;
store_results;
value:=value+VIINCR;
count:=count+1

end while;

The modified version uses a logical variable DCLIST

which is true if the analysis is table–driven, otherwise
it is false; VITAB is an array that stores the list of values
for a table–driven analysis:

initialize;
if not DCLIST then value:=VISTRT end if;
time:=0;
update_time_dependent_functions_of_independent_

sources(time);
count:=0;
while count<abs(NRSTEP) do

if DCLIST then value:=VITAB[count] end if;
update(SOURCE,value);
solve_the_system_of_circuit_equations;
if not converged then stop analysis end if;
store_results;
if not DCLIST then value:=value+VIINCR end if;
count:=count+1

end while;

Time-domain analysis

The time–domain analysis is controlled by a variable
timestep mechanism, so the actual timepoints selected for
analysis are quite different than the “output timepoints”
described in the parameters of this analysis. The (inter-
mediate) solutions, obtained for internal timepoints, are
simply stored in a temporary workspace, and in the final
stage of analysis are used for linear interpolation of output
timepoints. I order to use available workspace efficiently
and speed up the analysis, intermediate results are stored
for those timepoints only which are needed for final inter-
polation, i.e., those internal timepoints that “bracket” the
output timepoints:

initialize;
time:=0;
update_time_dependent_functions_of_independent_

sources(time);
find_initial_solution;
delta:=TMSTEP;
TIME:=TMSTRT;
advance:=true;
while time<=TMSTOP do

if time>=TMSTRT do
if time>TIME then

store_results;
TIME:=TIME+TMSTEP;
advance:=true

else if advance then
store_results;
advance:=false

else
replace_previous_results

end if
end if;
adjust_time_and_iterate_solution_until_converged_

or_timestep_too_small(time,delta)
end while;

The modified version uses a logical variable TMLIST

which is true if the analysis is table–driven, otherwise it
is false, and an array TMTAB that stores the list of values
for a table–driven analysis:

initialize;
time:=0;
update_time_dependent_functions_of_independent_

sources(time);
find_initial_solution;
delta:=TMSTEP;
if not TMLIST then TIME:=TMSTRT
else

count:=1;
TIME:=TMTAB[count]

end if;
advance:=true;
while time<=TMSTOP do

if time>=TMSTRT do
if time>TIME then

store_results;
if TMLIST then

count:=count+1;
TIME:=TMTAB[count]

else TIME:=TIME+TMSTEP end if
advance:=true

else if advance then
store_results;
advance:=false

else
replace_previous_results

end if
end if;
adjust_time_and_iterate_solution_until_converged_

or_timestep_too_small(time,delta)
end while;

Frequency-domain analysis

The frequency–domain analysis can be performed with
either linear or logarithmic variation; the actual choice
(the type argument of the .AC line) is represented by a
logical variable ACVAR which is true for the linear varia-
tion and is false otherwise:

initialize;
if ACVAR then delta:=(FRSTOP-FRSTEP)/(NRSTEP-1)
else delta:=exp(ln(FRSTOP/FRSTRT)/(NRSTEP-1)) end if;
freq:=FRSTRT;
count:=0;
while count<NRSTEP do

solve_the_system_of_linearized_circuit_
equations(freq);

store_results;
if ACVAR then freq:=freq+delta
else freq:=freq*delta end if;



Table–driven analyses in the SPICE-PAC circuit simulation package 374

count:=count+1
end while;

The modified version uses a logical variable ACLIST

which is true if the analysis is table–driven, otherwise
it is false; FRTAB is an array that stores the list of values
for a table–driven analysis:

initialize;
if not ACLIST then
if ACVAR then delta:=(FRSTOP-FRSTEP)/(NRSTEP-1)
else delta:=exp(ln(FRSTOP/FRSTRT)/(NRSTEP-1)) end if;
freq:=FRSTRT

end if;
count:=0;
while count<NRSTEP do

if ACLIST then freq:=FRTAB[count] end if;
solve_the_system_of_linearized_circuit_

equations(freq);
store_results;
if not ACLIST then

if ACVAR then freq:=freq+delta
else freq:=freq*delta end if

end if;
count:=count+1

end while;

5. EXAMPLE

The following example illustrates table–driven DC anal-
ysis used for characterization of the transfer curve of a
MOSFET inverter:

*The design and analysis of VLSI circuits (Glasser...)
.OPTIONS DEFL=2.25E-6
VIN 1 0 0
VDD 9 0 5
* MOS subcircuit
M1 2 1 0 0 NENHS W=11.2U AD=61P PD=42U
.MODEL NENHS NMOS LEVEL=3 RSH=0 TOX=330E-10 LD=0.19E-6
+ UO=650 XJ=0.27E-6 VMAX=13E4 ETA=0.25 KAPPA=0.5
+ NSUB=5E14 THETA=0.1 VTO=0.946 CGSO=2.43E-10
+ CGDO=2.43E-10 CJ=6.9E-5 CJSW=3.3E-10 PB=0.7
+ MJ=0.5 MJSW=0.3 NFS=1E10
M2 9 2 2 0 NDEPS W=4.2U L=6.25U
.MODEL NDEPS NMOS LEVEL=3 RSH=0 TOX=330E-10 LD=0.19E-6
+ UO=650 XJ=0.27E-6 VMAX=13E4 ETA=0.25 KAPPA=0.5
+ NSUB=50E14 THETA=0.04 VTO=-2.078 CGSO=2.43E-10
+ CGDO=2.43E-10 CJ=6.9E-5 CJSW=3.3E-10 PB=0.7
+ MJ=0.5 MJSW=0.3 NFS=1E10
.DC VIN,LIST(0.0,0.4,0.8,0.9,1.0,1.1,1.2,1.25,1.3,1.35,
+ 1.37,1.38,1.40,1.425,1.45,1.475,1.5,1.55,1.57,1.58,
+ 1.6,1.625,1.65,1.7,1.8,2.0,2.2,2.5,3.0,3.75,5.0)
.PRINT DC V(2)
.END

Fig.1 shows the transfer curve of this inverter and the
points used in table–driven DC analysis.
The results of this analysis are used in a table–driven

controlled source that models the behavior of the inverter
[ZZ], and compares the “reference” MOSFET results with
two table–driven controlled sources modeling the inverter,
(i) E1 that uses linear interpolation, and E2 that uses
quadratic interpolation:

Fig.1. MOS inverter’s transfer curve.

*MOSFET inverter as a table-driven source
.OPTIONS DEFL=2.25E-6 LIMPTS=501
VIN 1 0 0
VDD 9 0 5V
* MOS subcircuit (reference level)
M1 2 1 0 0 NENHS W=11.2U AD=61P PD=42U
.MODEL NENHS NMOS LEVEL=3 RSH=0 TOX=330E-10 LD=0.19E-6
+ UO=650 XJ=0.27E-6 VMAX=13E4 ETA=0.25 KAPPA=0.5
+ NSUB=5E14 THETA=0.1 VTO=0.946 CGSO=2.43E-10
+ CGDO=2.43E-10 CJ=6.9E-5 CJSW=3.3E-10 PB=0.7
+ MJ=0.5 MJSW=0.3 NFS=1E10
M2 9 2 2 0 NDEPS W=4.2U L=6.25U
.MODEL NDEPS NMOS LEVEL=3 RSH=0 TOX=330E-10 LD=0.19E-6
+ UO=650 XJ=0.27E-6 VMAX=13E4 ETA=0.25 KAPPA=0.5
+ NSUB=50E14 THETA=0.04 VTO=-2.078 CGSO=2.43E-10
+ CGDO=2.43E-10 CJ=6.9E-5 CJSW=3.3E-10 PB=0.7
+ MJ=0.5 MJSW=0.3 NFS=1E10
* table-driven voltage-controlled voltage sources
E1 3 0 PWL(1) 1 0 USE(Tdata)
R1 3 0 1K
E2 4 0 PWQ(1) 1 0 USE(Tdata)
R2 4 0 1K
.TABLE Tdata (0.00 5.0000,0.400 5.0000,0.800 4.9981,
+ 0.90 4.9578,1.00 4.8630,1.10 4.7075,1.20 4.4726,
+ 1.25 4.3109,1.30 4.1007,1.35 3.7945,1.37 3.5996,
+ 1.38 3.4456,1.4 3.1383,1.425 2.7442,1.45 2.3773,
+ 1.475 2.0058,1.5 1.6607,1.55 .99524,1.57 .74334,
+ 1.58 .61411,1.60 .50614,1.625 .44914,1.65 .41187,
+ 1.70 .35969,1.80 .29606,2.00 .22661,2.20 .18704,
+ 2.50 .15072,3.00 .11645,3.75 .08945,5.00 .06739)
.DC VIN 0 5 0.01
.PRINT DC V(2) V(3,2) V(4,2)
.END

The results of these comparisons, i.e., the differences be-
tween the original MOSFET inverter transfer characteris-
tic and the table–driven models, are shown in Fig.2 and
Fig.3, for linear and quadratic interpolation, respectively.

Fig.2. Approximation error for linear interpolation.



Table–driven analyses in the SPICE-PAC circuit simulation package 375

Fig.3. Approximation error for quadratic interpolation.

The approximation errors are at the level of 1 percent
or less, and for quadratic interpolation they are approxi-
mately two times smaller than for linear interpolation.

6. CONCLUDING REMARKS

Uniformly distributed simulation results, typical for
SPICE–like simulators, are inadequate for applications,
in which the values of independent variables are arbi-
trarily distributed. Examples of such applications in-
clude simulation–based parameter extraction and higher–
level simulation. In parameter extraction, measurement
data determine the values of independent variables (volt-
ages, currents, time or frequency) for which the simula-
tion results are needed, so the simulator must be flexi-
ble enough to accept arbitrarily distributed measurement
data. In higher–level simulation, characteristics of func-
tional blocks are represented by (multidimensional) data–
driven elements, in which the accuracy of representation
determines the distributions of data points, and the simu-
lators should be flexible enough to deal with such require-
ments. Table–driven analyses provide simulation flexibil-
ity that is required in these applications.
The simple example of MOS inverter modeling shows

that data-driven elements can provide accuracy needed in
practical applications, at the same time reducing signifi-
cantly the computational effort required for evaluation of
complex models of semiconductor devices [BVS,Rau].

Acknowledgement

The Natural Sciences and Engineering Research Coun-
cil of Canada partially supported this research through
Operating Grant A8222.

R e f e r e n c e s

[BVS] J. Barby, J. Vlach, K. Singhal, “Optimized polyno-
mial splines for FET models” Proc. 1984 Int. Symp.
on Circuits and Systems, Montreal, Canada, pp.1159-
1162.

[Coh] E. Cohen, “Program reference for SPICE 2”; Mem-
orandum UCB/ERL M592, University of California,
Berkeley, CA 94720, 1976.

[GD] L.A. Glasser, D.W. Dobberpuhl, “The design and
analysis of VLSI circuits”; Addison–Wesley 1985.

[Rau] K-G. Rauch, “A table model for circuit simula-
tion”; Proc. ESSCIRC ’86, pp.211–213, 1986.

[Vlad] A. Vladimirescu, K. Zhang, A.R. Newton, D.O.
Pederson, A.L. Sangiovanni-Vincentelli, “SPICE Ver-
sion 2G – User’s Guide”; Department of Electrical
Engineering and Computer Sciences, University of
California, Berkeley, CA 94720, 1981.

[Z1] W.M. Zuberek, “SPICE–PAC version 2G6c – an
overview”; Technical Report #8903, Department
of Computer Science, Memorial University of New-
foundland, St. John’s, Canada A1C–5S7, 1989.

[Z2] W.M. Zuberek, “SPICE-PAC version 2G6c – user’s
guide”; Technical Report #8902, Department of
Computer Science, Memorial University of New-
foundland, St. John’s, Canada A1C–5S7, 1989.

[ZK] W.M. Zuberek, A. Konczykowska, “FIT–2, an ex-
traction program based on the SPICE–PAC simula-
tion software”; Proc. 34th Midwest Symp. on Cir-
cuits and Systems, Monterey CA, pp.142-145, 1991,

[ZZ] M.S. Zuberek, W.M. Zuberek, “Enhanced controlled
sources as device models in the SPICE–PAC simula-
tion package”; Proc. 30th Midwest Symp. on Cir-
cuits and Systems, Syracuse NY, pp.603–606, North–
Holland 1988.


