
Nature’s Palette - An Open Access Repository of
Spectral Data

by
c©Rabeya Akhter

A thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland
August 2020

St. John’s Newfoundland

Abstract

Light environment, coloration, and color vision play an important role in nature by

affecting animal behavior and ecology. Projects that study these topics often re-

quire thousands of spectral measurements from light, animal/plant integuments,

and medium (air, water). However, substantial resources are wasted on reproduc-

ing the same data for different research projects because very few of these data are

made publicly available to other researchers. Our proposed open-access repository

allows researchers to share, search, and download spectral data. It offers a cura-

torial pipeline which will help to promote the digital preservation for easy discov-

ery, access, and usability of spectral data and their metadata. The repository will

provide an incredible resource of spectral measurements and encourage large-scale

projects through the reuse of existing data across an international scientific commu-

nity.

ii

Acknowledgements

First and foremost, I would like to express my gratitude to almighty Allah for his

greatness and for giving me the strength and courage to complete this thesis suc-

cessfully. I would like to take the opportunity to thank Memorial University of

Newfoundland for providing me such an opportunity to pursue the degree of Mas-

ter of Science in Computer Science here.

I am extremely grateful to my supervisors Dr. Adrian Fiech, Associate Professor

of Department of Computer Science for encouraging my research and helping me

with important suggestions, comments, and guidance and Dr. Pierre-Paul Bitton,

Assistant Professor of Psychology for his valuable time, co-operation, and generos-

ity which set this work possible. Throughout my thesis, they both have supported

me a lot with their patience and expertise. I also wish to show my appreciation to

everybody who was important to the successful realization of this thesis.

Finally, my deep and sincere gratitude to my family and friends for their continuous

support and encouragement throughout my years of study. It has been an amazing

experience for me. This achievement would not have been possible without them.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents viii

List of Figures x

List of Abbreviations and Symbols x

1 Introduction 1

1.1 Problem description . 1

1.2 Goals . 2

1.3 Background and Motivation . 2

1.4 Structure of the Thesis . 4

2 Literature Review 5

2.1 Open-access digital repository overview 5

2.2 Data preservation . 6

2.3 Metadata . 8

2.3.1 Choosing Metadata . 8

iv

2.3.1.1 Dublin Core . 9

2.3.1.2 Darwin Core . 9

2.3.2 Using Metadata . 9

2.4 Color measurement in Visual communication 14

2.4.1 Spectral data . 14

2.4.2 Spectral data file . 15

2.4.3 pavo: an R package for the analysis, visualization and organi-

zation of spectral data . 16

3 About the Project 19

3.1 Proposed open access digital repository 19

3.1.1 Upload data . 19

3.1.1.1 Data validation and analysis 20

3.1.2 Query repository . 21

3.1.3 Download Data . 21

3.2 Technical overview . 22

3.3 Related works . 23

4 Application Development 24

4.1 Software development life cycle (SDLC) 25

4.1.1 How SDLC Works . 25

4.1.2 Selecting a methodology . 26

4.2 Agile Methodology . 27

4.2.1 The Agile Iteration Workflow 28

4.2.1.1 Planning and Requirement Analysis 28

4.2.1.2 System Design . 28

4.2.1.3 Implementation . 29

v

4.2.1.4 Testing . 29

4.2.1.5 Delivery and Feedback 29

4.2.1.6 Maintenance . 29

4.2.2 Agile Model - Advantages . 30

5 Requirements Analysis 31

5.1 Requirements specification . 31

5.1.1 Functional requirements . 32

5.1.2 Non-Functional requirements 32

5.1.3 Target environment . 33

5.1.4 Use Case Diagram . 33

5.1.5 Use Case Description . 35

5.1.5.1 Identify User . 36

5.1.5.2 Register Researcher 36

5.1.5.3 Upload Data . 37

5.1.5.4 Query Repository . 39

5.1.5.5 Download Data . 40

5.1.5.6 Update Search Terms 41

5.1.5.7 Request Data Modification 42

5.2 Domain Modeling . 44

5.3 Class Diagram Analysis . 45

5.4 Sequence Diagram . 46

6 Design and Prototyping 50

6.1 Design Goals . 50

6.1.1 Ease of operation . 50

6.1.2 Flexibility . 51

vi

6.1.3 Scalability . 52

6.2 System Design and Architecture . 53

6.2.1 Logical Design . 53

6.2.2 Physical Architecture . 53

7 Implementation and coding 56

7.1 Implementation issues . 56

7.2 Version Management . 57

7.3 Development platform . 58

7.3.1 Prerequisites . 58

7.3.1.1 NodeJS and NPM 58

7.3.1.2 MongoDB . 59

7.3.1.3 R language . 59

7.3.2 Project Installation steps . 60

7.4 Project Structure . 60

7.5 Work Environment and Demo . 63

8 Hosting and Deploying 64

8.1 Application Deployment . 64

8.1.1 Cloud resources . 65

8.1.2 Setting up the Server . 65

8.2 Hosting our application . 69

8.2.1 File permission: . 69

9 Application Overview 72

9.1 Using Nature’s Palette . 72

9.1.1 Authentication . 73

9.1.2 Submit Data . 76

vii

9.1.2.1 Submission Form . 77

9.1.3 Search . 79

9.1.4 Download . 80

9.1.5 Contact Form . 81

9.1.6 About and Help . 81

10 Feedback and Implications 84

10.1 Researcher/public use of Nature’s Palette 84

10.1.1 Case 1 . 84

10.1.2 Case 2 . 85

10.1.3 Case 3 . 85

10.1.4 Case 4 . 86

10.1.5 Case 5 . 86

10.1.6 Case 6 . 87

11 Discussion and Conclusion 88

11.1 Future work . 88

11.2 Conclusions . 89

Bibliography 89

A Detail description of sequence diagram 94

A.1 Boundary, entity, and control classes 94

A.1.1 Boundary Objects: . 94

A.1.2 Entity Objects . 96

A.1.3 Control Objects: . 97

viii

List of Figures

2.1 Male peacock exhibits a visual display as a part of its courtship rituals 14

2.2 Spectral reflectance of specific color patches on Choerodon fasciatus. 15

2.3 There are two examples (right and left) and that in each there is

metadata followed by spectral data 16

2.4 Example pavo workflow, highlighting its main functions and plotting

capabilities . 17

3.1 Metadata file and raw files format . 20

3.2 Plots describing the curation proccess 21

3.3 ‘Systems architecture,’ a diagram demonstrating the different systems

involved. 22

4.1 Agile Model . 27

5.1 Use Case Diagram: two types of actors have extensive access to all

functions . 34

5.2 The UML class diagram of Nature’s Palette application 45

5.3 UploadFiles Sequence Diagram . 47

5.4 SearchData Sequence Diagram . 48

5.5 Download Sequence Diagram . 49

ix

6.1 Shows a detailed view on the system’s architecture, layering, and

components . 54

7.1 Project Structure . 61

9.1 Home page . 73

9.2 Login/Registration page . 74

9.3 ORCID Login . 75

9.4 User Profile . 75

9.5 Submission page . 76

9.6 Submission Step-1 . 77

9.7 Submission Step-2 . 78

9.8 Submission Step-3 . 79

9.9 Search filters . 80

9.10 Search result . 80

9.11 Contact Us Page . 81

9.12 About Page . 82

9.13 Help Section . 82

x

Chapter 1

Introduction

1.1 Problem description

Light affects aspects of almost all animals’ life. The coloration of plumage or body,

growth, reproduction, migration, diapause and color vision intrinsically rely on

light. Different species respond to light at different portions of the electromagnetic

spectrum, which raises questions about the behavioral uses of spectral information

in nature. In biology, the measurement of color has become increasingly popular.

These measurements are found in studies of color vision research, communication,

signaling, camouflage, evolution and the examination of light environment.

The availability and rising popularity of portable spectrometers have greatly ad-

vanced the study of animal coloration. These studies typically require thousands of

spectral measurements, yet not all data are publicly available to other researchers.

Furthermore, the datasets that are available through repositories are not curated in

a way that makes them accessible and discoverable. Poor and incomplete metadata

collection or lack of quality data can limit the opportunities for large scale studies.

1

2

As a result, substantial resources are wasted on duplicating data for similar research

projects. Understanding the importance and analysing the target audience, we aim

to develop a repository with samples of services that can be provided by the reposi-

tory specific for the analysis and extraction of spectral data.

1.2 Goals

The main objective of this project is to develop a proof-of-concept open-access spec-

tral data repository that will promote the digital preservation for easy discovery,

access, and usability of spectral data across an international community of users in

biology, ecology, and environmental sciences. Specifically, the target will be:

• Developing a curatorial pipeline that will allow researchers to easily supply

their spectral data without going through arduous data processing, a major

barrier to data sharing.

• Developing a pilot online repository of spectral data with advanced discovery

functions through enhanced metadata.

• Initiating the development of new database services that would be unique to

spectral data, but also advance analytical services offered by databases in gen-

eral.

• Making the repository easily accessible and scalable with data growth.

1.3 Background and Motivation

Due to lack of a cohesive framework for working with and analyzing spectral data

from ambient light and reflectance measurements, in 2013 Dr. Pierre-Paul Bitton

3

and two colleagues published a package for the R programming language, called

‘pavo’, which allows the import, exploration, processing, and analysis of spectral

colour data under a variety of user-defined models [1]. This package promoted pro-

tocol standardization across laboratories, batch processing, automation of work-

flows, and increased repeatability of colour and colour vision research. This package

is now the go-to software for handling spectral data in visual ecology (415 citations

since 2013; Google Scholar April 20th 2020) [1], with an increasing user base and no

real competitors.

The projects for which ‘pavo’ is used typically require lots of spectral measure-

ments. These measurements usually come from ambient natural or artificial light

sources (irradiance), transmittance properties of the medium (air, water), and re-

flective properties of animal integuments and the substrates in their environment.

Reflective properties can be acquired directly from the wild or from museum speci-

mens. Dr. Bitton and his colleagues estimate that comparative studies in birds, for

example, have characterised the plumage colours for over 40 % of described species

(4000+ taxa). Yet, a survey of the papers that cite pavo demonstrates that less

than 5 % of these data are publicly available to other researchers.

Furthermore, the datasets that are available through repositories are not curated

in a way that makes them searchable and/or does not provide the metadata that

would easily allow their inclusion in other studies. As a consequence, the opportu-

nities for large scale studies are limited, and substantial resources (time and money)

are wasted on reproducing similar data for different research projects [2] [3], [4], [5]

[6].

4

1.4 Structure of the Thesis

Each chapter presents a brief review of related literature, followed by a description

of how each stage has been realized. This thesis is organized as follows;

• In Chapter 2, we provide the review of literature, related to the project.

• In chapter 3, project is described

• In Chapter 4, the Application development is described.

• In Chapter 5, the requirements analysis stage is described.

• In Chapter 6, we describe design and prototyping stage.

• In Chapter 7, the implementation and coding stage is described.

• In Chapter 8, we present hosting and deployment stage of the project.

• In Chapter 9, we described user feedback and their implications.

• In Chapter 10, we provide an overview of the application.

• Finally, some discussion about the future work and a conclusion.

Chapter 2

Literature Review

2.1 Open-access digital repository overview

An open-access repository or open archive is a digital platform that holds research

output and provides free, immediate, and permanent access to research results for

anyone to use, download and distribute [7]. Digital repositories can fulfill multiple

purposes. The main goal is to provide open access to research data, articles, disser-

tations and support scholarly communication. In addition, they can be thought of

as a digital platform where,

• The content creator, owner or third party can share content.

• Content and metadata will be managed by repository architecture.

• Minimum set of basic services are offered e.g., search, access, control, share.

• The safeguarding of data will be supported and well-managed [8].

Repositories can take a variety of forms such as learning object repositories, e-print

repositories, institutional repositories, data repositories and support a range of pur-

poses such as publishing, research, learning, records management and preservation.

5

6

Thus repositories provide a number of targeted services depending on the purpose

of the repository, including:

• Easy access to resources

• new methods of peer review and publication

• corporate information management

• data sharing, including re-use of learning objects, re-use of research data

• preservation of digital resources

Developing a repository application can be patchy, difficult and very hard to main-

tain. There are some well maintained open access repository software that exist in

the market and among them the most popular repository applications are ’DSpace’

[9], a turnkey institutional repository application, and ’Fedora’ [10], a robust, flex-

ible, open-source repository platform. These software help to expand the amount

and diversity of scholarly material that is collected and preserved. But both of the

repository software do not offer any data curation process or tool that will help re-

searchers generate, categorize, find, analyse, and share spectral data.

2.2 Data preservation

Data can be described as the elements or units in which knowledge and information

are created and metadata are the summarizing subsets of the elements of data; or

the data about the data [11]. To prolong and maintain the existence and authen-

ticity of data and its metadata, several strategies can be followed such as digital

preservation, archives, catalogs, portals, and repositories. Repositories help archiv-

ing data and make sure that all protocols and requirements of storing and holdings

are being met to ensure data preservation and user access. Data preservation is a

process of maintaining, protecting the integrity and safety of data. It protects data

7

from being lost or destroyed and ensures persistent access to data by planning back-

up and recovery tactics, prior to the event of failure and technological change.

Policies and regulations govern formal activities that are used for data preserva-

tion. An initiative of the stakeholders within the research process including aca-

demics, industry, funders, and scholarly publishers aimed to design and implement

a set of principles that are called the FAIR (Findable, Accessible, Inter-operable,

and Reusable) Data Principles for preserving data. FAIR data is all about the reuse

of data and emphasizes the ability of computers to find and use data. The FAIR

Principles ensure that all data be Findable, Accessible, Interoperable, and Reusable.

This involves data management the proper collection, notation, and storing of data

but also preservation into the future of valuable digital assets [12].

• "Findable means that the data should be able to be found by an appropriate

person at an appropriate time.

• Accessible means that the data is accessible either internally through a license

or publicly available.

• Interoperable means that the data is formatted in a manner that is standard-

ized and annotated.

• Reusable means that the data has clear usage licenses and is useable by both

people and machines" [13].

Our proposed open-access spectral data repository strictly follows FAIR data princi-

ples which help digital preservation of spectral data with good data management.It

will produce high-quality digital content and can facilitate easy data sharing which

simplifies the process of data discovery, reuse, and evaluation.

FAIR data principles make sure that data collected during the research process will

be publicly available where possible and if not, such restrictions should be justifi-

8

able. Data users are expected to acknowledge the source when they use others’ data

and acknowledge the right of the data creator to reasonable first use.

2.3 Metadata

Metadata is data that describes other data. Metadata consists of properties, which

describe each dataset’s entities, and their values [14].

• Entities are particular resources with UUIDs, such as files, cases, samples, and

cell lines. These can be the subject of your query.

• Properties can either describe an entity or relate that entity to another entity.

For instance, properties include an entity’s vital status, gender, data format,

or experimental strategy.

Metadata can be used on the Platform to browse and query datasets. It can be

compared to effective cataloging, which includes identifying resources, defining them

by criteria, bringing similar resources together, and distinguishing among those that

are dissimilar. Metadata also facilitates digital identification via standard numbers

that uniquely identify the resource the metadata defines [15].

2.3.1 Choosing Metadata

Metadata is an important way to protect resources and their future accessibility. So

analyzing the metadata standard that best reflects the content of repository’s col-

lection and the needs of the community that will use the data, we have used Dublin

core and Darwin core standard in our application. These metadata will help to de-

scribe dataset’s entities, and their values such as the data source, how it was cap-

tured, and what it represents.

9

2.3.1.1 Dublin Core

The Dublin CoreTM, also known as the Dublin CoreTM Metadata Element Set, is a

set of fifteen "core" elements for describing resources and offer expanded cataloging

information and improved document indexing for search engine programs [16].

The 15 metadata elements used by Dublin Core are: title (the name given the re-

source), creator (the person or organization responsible for the content), subject

(the topic covered), description (a textual outline of the content), publisher (those

responsible for making the resource available), contributor (those who added to the

content), date (when the resource was made available), type (a category for the con-

tent), format (how the resource is presented), identifier (numerical identifier for the

content such as a URL), source (where the content originally derived from), lan-

guage (in what language the content is written), relation (how the content relates

to other resources, for instance, if it is a chapter in a book), coverage (where the

resource is physically located), and rights (a link to a copyright notice).

2.3.1.2 Darwin Core

Darwin Core (often abbreviated to DwC) is an extension of Dublin Core for biodi-

versity informatics [17]. It is meant to provide a stable standard reference for shar-

ing information on biological diversity. The Darwin Core is primarily based on taxa,

their occurrence in nature as documented by observations, specimens, and samples,

and related information.

2.3.2 Using Metadata

In order to make datasets available in Nature’s Palette repository, it will be curated

in a way that will enable them searchable, also storing related metadata will allow

10

their inclusion in other studies. The data will be saved in Nature’s Palette reposi-

tory in two-parts: one is the metadata, and another one is the raw data. The meta-

data must include a key Darwin’s core terms and Dublin core terms.

Terms that start with a lower case letter (e.g., genus) are defined in the Darwin

Core; for more information see (https://dwc.tdwg.org/terms/). These terms are

standardized and allow our database to crawl museum data to fill the metadata not

supplied by the user. Terms that are flagged with an asterix (*) are mandatory.

Only 10 fields are mandatory: FileName, UniqueID, genus, specificEpithet,Patch,

LightAngle1, LightAngle2, ProbeAngle1, ProbeAngle2, Replicate. The following ex-

plains the terms, and offers guidance on what is considered an appropriate entry in

Nature’s Palette repository.

• FileName*: The name of the file containing the raw spectral data. This name

should not contain the extension format (i.e., do not include ’.Master.Transmission’,

’.jaz’, ’.ProcSpec’, ’.ttt’). For now, submissions are asked to include only a sin-

gle file type.

• UniqueID*: A unique identifier for the specimen measured. Can include band

or permanent marking number, species info, location, etc... E.g., TRES1015.12345,

Buttercup1, VigoCarduelis1

• class: The full scientific name of the class in which the taxon is classified.

E.g., Mammalia, Hepaticopsida.

• order: The full scientific name of the order in which the taxon is classified.

E.g., Carnivora, Monocleales.

• family: The full scientific name of the family in which the taxon is classified.

E.g., Felidae, Monocleaceae.

• genus*: The full scientific name of the genus in which the taxon is classified.

11

E.g., Puma, Monoclea.

• specificEpithet*: The name of the first or species epithet of the scientific name

(the second part of a species name in binomial nomenclature.) E.g., concolor,

gottschei.

• infraspecificEpithet: The name of the lowest or terminal infraspecific epithet

of the scientific name, excluding any rank designation. For many species, this

would be the subspecies-level designation.

• sex: The sex of the biological individual. Use full word (not first letter) e.g.,

Female - NOT ’F’.

• lifeStage: The age class or life stage of the biological individual at the time of

collection. E.g., egg, eft, juvenile, adult, second-year.

• country: The name of the country or major administrative unit in which the

specimen was collected. Please use the Getty Thesaurus of Geographic Names-

for proper spelling. The list of countries can be found at

http://www.getty.edu/vow/TGNNationPopup

• locality: The specific description of the place. E.g., ’Bariloche, 25 km NNE

via Ruta Nacional 40 (=Ruta 237).’

• decimalLatitude: The geographic latitude (in decimal degrees, using the spa-

tial reference system given in geodeticDatum, see below) of the geographic

center of a Location. Positive values are north of the Equator, negative val-

ues are south of it. Legal values lie between -90 and 90, inclusive. If possible,

please use WGS84 coordinates.

• decimalLongitude:The geographic longitude (in decimal degrees, using the

spatial reference system given in geodeticDatum) of the geographic center of

a Location. Positive values are east of the Greenwich Meridian, negative val-

ues are west of it. Legal values lie between -180 and 180, inclusive. If possible,

12

please use WGS84 coordinates.

• geodeticDatum: The ellipsoid, geodetic datum, or spatial reference system

(SRS) upon which the geographic coordinates given in decimalLatitude and

decimalLongitude as based. E.g., EPSG:4326, WGS84, NAD27. If possible,

please use WGS84 coordinates.

• verbatimElevation: The original description of the elevation (altitude, usu-

ally above sea level) of the location. Please use a single value without the unit

(m). If the speciment indicates a range of values (e.g., between 300 and 400

m), indicate the middle point i.e., 350 m.

• eventDate: The date when the specimen was collected. Recommended best

practice is to use a date that conforms to ISO 8601:2004(E). As such, please

adhere to the following format: 1809-02-12 (some time during 12 February

1809). 1906-06 (some time in June 1906). 1971 (some time in the year 1971).

• measurementDeterminedDate: The date when the spectral measurement was

taken. Recommended best practice is to use a date that conforms to ISO

8601:2004(E). As such, please adhere to the following format: 1809-02-12

(some time during 12 February 1809). 1906-06 (some time in June 1906).

1971 (some time in the year 1971).

• Patch*: The location on the animal that was measured. Some class of animals

have standardized morphological descriptions (e.g., the International Commit-

tee on Avian Anatomical Nomenclature has published the Handbook on Avian

Anatomy). These terms are described in Latin, which is almost never used

by non-vetenarians. Therefore, we highly recommend the use of the English

names derived from these standardized treaties. In birds, for example, most

terms can be found in Chapter 3 of Proctor and Lynch, Manual of Ornithol-

ogy: Avian Structure and Function. Keep in mind that searches based on the

13

term ’Patch’ are possible.

• LightAngle1*: The angle of the light source in relation to normal (0) in the

MEDIAN PLANE with positive values (up to 90) towards the head, and neg-

ative values (down to −90) towards the rear of the animal. If measured on a

plant or circular animal, values should be explained in the comment section.

Measurements taken with a bifurcated probe should indicate ’0’.

• LightAngle2*: The angle of the light source in relation to normal (0) in the

TRANSVERSE PLANE with positive values (up to 90) towards the right,

and negative values (down to -90) towards the left of the animal. If measured

on a plant or circular animal, values should be explained in the comment sec-

tion. Measurements taken with a bifurcated probe should indicate ’0’.

• ProbeAngle1*: The angle of the probe in relation to normal (0) in the ME-

DIAN PLANE with positive values (up to 90) towards the head, and negative

values (down to -90) towards the rear of the animal. If measured on a plant or

circular animal, values should be explained in the comment section. Measure-

ments taken with a bifurcated probe should indicate ’0’.

• ProbeAngle2*: The angle of the PROBE in relation to normal (0) in the TRANS-

VERSE PLANE with positive values (up to 90) towards the right, and neg-

ative values (down to -90) towards the left of the animal. If measured on a

plant or circular animal, values should be explained in the comment section.

Measurements taken with a bifurcated probe should indicate ’0’.

• Replicate*: A value representing different measurement instances of the same

patch on the same specimen. If only one measurement was obtained per patch

fill the column with the value ’1’.

• Comments: Add comments spcific to the area measured if required only. E.g.,

’Colour showing sign of fading’

14

2.4 Color measurement in Visual communication

Communication is an adaptation that helps animals to survive. It can be visual,

tactile, auditory or chemical. Animals use communication to identify themselves,

attract mates, mark territory, warn off predators.

Many of the decisions in social interactions, mate choice, and intrasexual compe-

tition rely on information transfer in visual communication between senders and

receivers [18] [19].

2.4.1 Spectral data

Color measurements are often used to address ecological and evolutionary questions.

These measurements are found in studies of communication, signaling, color vision

research, camouflage, evolution and behavior, and in the examination of environ-

mental, artificial, and biogenic light [20].

Figure 2.1: Male peacock exhibits a visual display as a part of its courtship rituals

The measurement of color, is mainly measuring the variation in optical properties

such as intensity, reflectance and transmittance over a spectral range, the ultravio-

let or human-visible portions of the electromagnetic spectrum. The resulting data

15

are used to create an estimate of color as perceived by humans or other animals by

integrating into one of the various models of color vision.

Figure 2.2: Spectral reflectance of specific color patches on Choerodon fasciatus.

The recent improvements in spectrometers and cameras with a merger of biology

and physics make measurements of light and color in biology more common. The

growth of the field of visual ecology advanced the understanding of perception and

processing of colour measurement and have allowed analysis of reflectance data us-

ing visual models that estimate how animals see and differentiate these colours.

2.4.2 Spectral data file

Portable spectrometers have greatly advanced the study of animal coloration. Spec-

trophotometry generates a lot of spectral data from multiple measures like individ-

uals, patches, within patch. An average research project contains 1000’s of raw files

and a metadata file (see figure 2.3) that contains details about these raw files.

Spectra files mainly contains two columns X and Y.

• X: Wavelength

• Y: Reflectance or Transmission or Irradiance value

16

Figure 2.3: There are two examples (right and left) and that in each there is meta-
data followed by spectral data

Wavelength (X) includes spectral range usually a few broad spectral regions, the

ultraviolet or human-visible portions of the electromagnetic spectrum. The value

(Y) usually measured from ambient natural or artificial light sources (irradiance),

transmittance properties of the medium (air, water), and reflective properties of

animal integuments and the substrates in their environment.

2.4.3 pavo: an R package for the analysis, visualization and

organization of spectral data

pavo: an R package provides a replicable framework to organize, and analyse spec-

tral data. One of its strength is its ease with which it can help understand how an-

imals perceive these colors, providing important insights into ecological and evolu-

tionary aspects of animal visual communication [see figure 2.4].

17

Figure 2.4: Example pavo workflow, highlighting its main functions and plotting
capabilities. Adapted from Methods in Ecology and Evolution, Volume: 4, Issue:
10, Pages: 906-913, First published: 22 May 2013, DOI: (10.1111/2041-210X.12069)

pavo is highly flexible and allow users to:

• Organize and manipulate data from a variety of sources.

• Visualize data using R’s state-of-the-art graphics capabilities.

• Analyse data using spectral curve shape properties and visual system mod-

elling for a broad range of taxa.

pavo The package is developed for working with spectral and spatial colour data

with the goal of establishing a flexible and integrated workflow. It includes func-

tions that take advantage of new data classes to work seamlessly from importing

raw spectra and images, to visualisation and analysis [1]. Projects that use pavo

typically contain huge spectral measurements but not all datasets are easily accessi-

ble.

18

Poor and incomplete metadata collection or lack of quality data some times limit

the opportunities for large scale studies. To make these spectral measurements pub-

licly available and use them in large scale studies, we have proposed an open access

repository for spectral data.

Chapter 3

About the Project

3.1 Proposed open access digital repository

Our plan is to develop an open access repository that will provide resources of spec-

tral measurements which will encourage large-scale projects through the reuse of

existing data. The repository will permit researchers to:

• Upload their data

– Data will be curated and preserved

• Retrieve data based on complex queries

– Darwin Core terms

– Georeferencing

– Position in a colour space

• Download data related to the query

3.1.1 Upload data

Researcher can upload:

19

20

Figure 3.1: Metadata file and raw files format

• A ‘csv’ file with metadata that follows Darwin Core (Darwin Core is an ex-

tension of Dublin Core for biodiversity informatics and it is meant to provide

a stable standard reference for sharing information on biological diversity) def-

initions and some database specific terms also e.g., units, angle of measure-

ment, as well as the name of the raw data file it is associated with.

• A ‘zip’ file containing the raw spectral data files (from 1 file to maximum file

allowed by process, see figure 3.1).

3.1.1.1 Data validation and analysis

During the submission process, a validation process will confirm that,

• Column names in the metadata file matches those deemed mandatory by our

group.

• File names in metadata file are exact match with raw files name.

• Raw files are not corrupted.

When data submission is completed, curatorial pipeline will initiate the data analy-

sis and metrics calculation from spectral curves using multiple functions from pavo.

The curatorial pipeline includes,

• The extraction of usable spectral data from raw files using ‘getspec’ function.

21

• The elimination small negative values using ‘procspec’ function.

• Smoothing out electrical noise using ‘procspec’ function.

• The generation of visual model metrics thorugh the ’vismodel’ function and

‘colspace’ function.

• Extract metrics form visual models.

After the curation process, metrics calculated from raw files will be stored and pre-

served in the database.

(a) Plot-1 using getspec (b) Plot-2 using procspec (c) Calculated metrics

Figure 3.2: Plots describing the curation proccess

3.1.2 Query repository

Researchers can request to query the repository.

• Researchers can search the repository using the Darwin Core search terms or

terms specific to database.

• Based on search query, metadata of filtered raw files will be shown

• In display table, specific metadata fields will be displayed.

3.1.3 Download Data

The filtered result can be downloaded, if the researcher selects Download. Retrieval

of data has to supply the metadata file along with raw files for query results only.

22

Download will generate a package file consisting of:

• One file in tabular format containing all the metadata of the raw files relevant

to query result.

• All raw data files identified by the query.

• A file with all the submission information.

3.2 Technical overview

Digital repository systems have similar technical structure. The database is the

heart of a digital repository. The repositories built on databases ensure long term

support, flexibility, and easy migration process.

Figure 3.3: ‘Systems architecture,’ a diagram demonstrating the different systems
involved.

Data needs to be accessible and presentable to the user when necessary. So a user

interface is used to retrieve information from the database through the application

server. The database server could be different from the application server which de-

23

pends on the local environment (figure 3.3). It is recommended to use at least two

installations, one running on a production server and another on a test server. The

end-users will interact with the production server whereas testing and development

will occur on the testing server. Any new update or fix should be tested on a test-

ing server before releasing it for production. Instead of a physical machine, virtual

machines can be used to keep the cost down.

3.3 Related works

We are aware of a single repository that shares similarities with the proposed project.

FReD, the Floral Reflectance Database (see http://www.reflectance.co.uk/)., pro-

vides spectral reflectance data of the same nature as those that would be hosted

on Nature’s Palette. However, FReD contains 2231 spectra from 200 species of

plants after more than 6 years of existence. We anticipate that our repository will

hold 500,000 spectra from 500+ species by the end of the pilot phase. Within a few

years, this repository will hold millions of measurements. Furthermore, FReD only

archives plant reflectance data whereas our repository will accept reflectance, trans-

mittance, irradiance, and radiance data from all plant, animal, medium (air, water),

and light environments. This will increase the appeal and value of the repository.

Finally, FReD does not offer a curation service and only provides one analytical

search function; users can select spectra in the database that span a certain area of

the bee colour space e.g., all spectra that a bee would perceive as red. In contrast,

Nature’s Palette will provide a curatorial pipeline thus removing the largest barrier

to spectral data sharing, and offer search filters that will allow the use of spectral

data in novel ways.

Chapter 4

Application Development

Our target is developing a pilot digital repository software and for that, we must

follow certain procedures while developing the application. Software development

is the process of creating, designing, deploying and supporting applications that

involves a set of computer science activities. It is a set of instructions or program

that executes specific commands and tells the computer what to do. As it is inde-

pendent of hardware, it makes computer programmable. We can categorize software

in four basic types:

System Software: Usually provides core functionalities such as hardware manage-

ment, utilities, disk management, operating systems, and other operational necessi-

ties.

Programming Software: These are tools such as compilers, text editors, debug-

gers, linkers and others provided to the programmers to create programs.

Application Software: This can be referred to as web, or mobile application and

help users to perform particular tasks, such as data management software, media

24

25

players, office productivity suites.

Embedded Software: This type of software control machines and devices like

telecommunication networks, industrial machine, and robots, cars. These devices,

and their software, can be connected as part of the Internet of Things (IoT) [21].

Our open access digital repository of spectral data is a web based application soft-

ware, which allows researchers to upload their spectral data, retrieve data based on

complex queries using Darwin Core terms. The primary goal of a digital repository

is to ingest, store, manage, preserve, and provide access to digital content.

Development of such kind of application includes processes such as initial research,

data flow design, process flow design, flow charts, technical documentation, software

testing, debugging and other architecture techniques (SDLC). This is known as the

software development life cycle [22].

4.1 Software development life cycle (SDLC)

The software development life cycle aims to produce the highest quality software

with the lowest cost over the shortest time. SDLC [23] ensures a detailed plan for

software development like how to develop, update, maintain and test a software sys-

tem to guarantee quality. In SDLC there are several distinct stages like planning,

requirement gathering, and analysis, design, implementing, testing and deployment.

There are various SDLC models that follow the variation of these stages.

4.1.1 How SDLC Works

SDLC helps to remove the typical difficulty of software development by following a

specific plan to achieve divergent goals. In the initial stage, the plan starts by as-

26

sessing the existing system for deficiencies. In the next stage, the requirement of the

new system will be created. After analyzing the requirement, the software is devel-

oped through the stages of design, implementation, testing, deployment. SDLC can

eliminate redundant rework and fixes errors by anticipating costly mistakes.

Typical software engineering phases are:

• Requirements analysis

• Design and Prototyping

• Implementation and coding

• Testing and Deployment

• Maintenance

By following the above list or a combination of these ensures the software develop-

ment process works in an efficient productive and smooth way.

4.1.2 Selecting a methodology

SDLC model helps to establish a framework in which the steps of software devel-

opment are applied. It describes an overall plan and work process for the project.

Some factors to consider when deciding the model include:

• The size of the project and team

• Time-frame and deadlines to meet

• How complex the execution will be

• Clients, their availability, and their relationship with them

Based on those factors, we have used the Agile model [24]. The whole team is re-

sponsible for the whole process during the project and worked closely with each

other. The client was involved during each step of the project and communicated

27

feedback accordingly. In our case we leveraged a class and client was active in the

guidance process.

4.2 Agile Methodology

The agile model is a blend of incremental and iterative process model. Its main fo-

cus is customer satisfaction and process adaptability by rapid delivery of working

software products. The product is broken down with small incremental builds which

results in small iterative releases with each release building on previous functional-

ity. Each release is tested to maintain software quality. Typically each iteration can

last from one to three weeks and involves simultaneous work on various areas like

planning, requirements analysis, design, implementation, testing, and deploying.

1

2

3

4

5

6

Agile
Development
Methodology

Requirements
Collection

Analysis

Designing

Implementation

Testing

Maintenance

Figure 4.1: Agile Model

28

4.2.1 The Agile Iteration Workflow

The iterative process dominates the agile software development life cycle. Each it-

eration delivers working builds and supporting elements. Each iteration has fixed

completion time and due to this multiple iterations will take place during the life

cycle and each follows its own workflow. It is important that the stakeholders pro-

vide feedback to ensure that the features meet their needs during each release. Based

on our needs we have followed the following iteration process:

4.2.1.1 Planning and Requirement Analysis

Our plan was to deliver the prototype within a short period of time. So identifi-

cation of the risk associated with the project and quality assurance requirement is

also done in the planning stage. With the technical feasibility study, we success-

fully defined various technical approaches which helped us to implement the project

with minimum risk. Then we defined the requirements for the iteration based on

the product backlog, stakeholder feedback. During this phase, we methodically an-

alyzed the potential requirements of the application. Once the system is analyzed

next step is to properly generate the models and business logic that will be used in

our application.

4.2.1.2 System Design

In the system design stage, we worked with technical requirements such as system

architecture, application platform, programming language, services, etc. A design

specification was created that shows how the domain logic defined in analysis will

be technically implemented.

29

4.2.1.3 Implementation

The actual source code is finally written in this stage. We implemented all models,

service interactions, and business logic which were all specified in the prior stages.

We have used version control system GitLab to record changes to a file or set of

files. Versioning helps to keep track of application builds and identifies which ver-

sion is currently in development, QA, and production.

4.2.1.4 Testing

After testing each unit, all units that were developed in the previous phase are in-

tegrated into the system. To find out any faults and failures, the post-integration

of the entire system was tested. It is common at this stage to repeat and rework on

some previous coding phases to fix the bugs found in the testing process.

4.2.1.5 Delivery and Feedback

Once the testing process is done, we integrated and delivered the working iteration

into production. During this stage stakeholder usually gives the feedback to work

into the requirement of the next iteration.

4.2.1.6 Maintenance

Maintenance is required to keep the application functional and up-to-date. There

can be some issues that usually come up in the client environment. To fix those is-

sues, patches are released. Maintenance is done during the post-production period

to deliver the changes in the customer environment.

30

4.2.2 Agile Model - Advantages

During our product development process, the main advantage of using agile method-

ology was the ability to feed additional features into the product backlog as the rest

of the process is a matter of repeating the steps again and over until product back-

log is cleared and all items in the requirement stack are fulfilled.

The agile process uses an adaptive approach and is suitable for feature-driven de-

velopment. With each iteration, we adapted to the changing product requirements.

Through the release of iterations and minimizing the risk, the application was tested

very frequently to avoid major failures in the future.

Our application development demands more involvement of the stakeholder during

the whole process and agile is the perfect model for that. This model allows teams

to work in close collaboration.

In the next chapters, we have described in detail the important phases of the SDLC

model involved in the development of our Nature’s Palette application. Each chap-

ter demonstrates different phases of the development life cycle and covers the de-

tailed plan for building, deploying, and maintaining the application.

Chapter 5

Requirements Analysis

Our first step towards developing the application was to define the expectations of

stakeholders on this project. After researching and discovering the requirements of

a system from stakeholders, the next step was the requirement analysis which is a

significant and essential activity. To make it consistent and unambiguous, we an-

alyzed, refined, and scrutinized the gathered requirements. Once the analysis was

done, it provided a graphical view of the entire system which improved project un-

derstandability significantly.

5.1 Requirements specification

Software requirement needs to be implemented first in the system. There are two

types of requirements, functional and non-functional requirements.

31

32

5.1.1 Functional requirements

Functional requirement defines a service that the system must offer to the user. For

example, the functional requirement in context to our application will be when the

customer selects "Search" they must be able to see their search result. The func-

tional requirements for our project are:

• Allow users to upload raw measurement files and the metadata associated

with these files.

• Verify that the proper metadata are available and match raw data files.

• Compute visual modelling metrics from the raw files.

• Allow users to query the database using three approaches. Through:

– Metadata (subset of Dublin Core and Darwin Core terms), using Boolean

logical operators.

– Georeferencing of specimen provenance using polygon limits on a map.

– Regions within the color-spaces of key models, made possible through the

calculation of visual model metrics.

• Retrieval of data has to supply metadata along with raw files and also related

submission information for query results only.

5.1.2 Non-Functional requirements

Software requirement can also be a non-functional, it describes the operational re-

quirement. For example, a non-functional requirement is how responsive the web

application is. We identified the following non-functional requirements for our project:

• Ease of operation: The interface will be intuitive.

• Findability: Data and supplementary materials will have sufficiently rich meta-

data and a unique and persistent identifier.

33

• Flexibility: We have a current idea of search terms and functions users want

to use but these currently preferred options may change over time. We need

to consider the future addition of search terms and visual model metrics –

even those that would be user-defined.

• Accessibility: Metadata and data are understandable to humans and ma-

chines. Data will be deposited in a trusted repository.

• Interoperability: Metadata uses a formal, accessible, shared and broadly appli-

cable language for knowledge representation.

• Reusability: Data and collections will have a clear usage license and provide

accurate information on provenance.

• Scalability: We estimate that 1 million files will be uploaded over the first

year of service but could then support an additional 1-3 million files a year.

• Data Integrity: Completeness, accuracy and consistency of the data.

5.1.3 Target environment

• All users should be able to upload, download and search data with a web

browser.

• Also, administration functions (e.g., granting access, adding new search terms)

should be available through the web.

5.1.4 Use Case Diagram

Once we have the functional and non-functional expectations, we need to define the

list of actions or event steps with help of use cases. A use case diagram is a struc-

ture for documenting all the requirements for a system. It summarizes some of the

connections and relationships between use cases, actors, and systems. The order is

not shown in the diagram in which steps are followed to achieve each use case goal.

34

Typical use case contains,

Figure 5.1: Use Case Diagram: two types of actors have extensive access to all func-
tions

Actor: An actor is a person, organization, or external system that is an entity that

interacts with the system.

Use case: A use case represents a distinct functionality of a system.

Connection: Use case diagram shows connection and relationships between use

cases, actors, and systems. An association exists whenever an actor is involved with

an interaction described by a use case. Extending use cases are conditional.

In general, use case diagrams are used for analyzing the requirements and capturing

the functionalities of a system.

In our use case diagram, we have two actors, Administrators (admin) and Researchers.

There are a total of nine use cases that represent the specific functionality of our

repository system. Each actor interacts with particular use cases. A researcher ac-

35

tor can log in or register them-self into the repository, upload data. Once data is

submitted, researcher can request for data modification, and can query repository

for spectral data using filters. Further, the query can be extended using color space

and georeference. Researcher can download data related to the query.

Researcher can perform only these interactions with the system even though other

use cases are remaining in the system. It is not necessary that each actor should

interact with all the use cases, but it can happen. The second actor named admin

can interact with all the functionalities or use cases of the system. This actor can

also update the search terms of the repository.

In summary, use case modeling helps us design a system from the end user’s per-

spective. It describes the interactions between the users and the system, the user’s

goals, and the system’s behavior in satisfying these goals.

5.1.5 Use Case Description

A use case description depicts how users will perform tasks on a website. To iden-

tify, clarify and organize system requirements each use case is represented as a se-

quence of steps. It begins with a user goal and ends with the goal being met. It

provides a set of possible scenarios that describe the interaction between systems

and users in specific environments to achieve a particular goal.

Use cases typically describe a combination of the following elements:

• Actor – anyone or anything that initiates an interaction with system.

• Entry Condition – The cause that triggers the event to initiates the use case.

• Main success scenarios [Flow of Events] – use case in which nothing goes wrong.

• Exit Condition – It is the condition to be satisfied to complete the use case.

• Alternative paths [Alternative Flow] – these paths are a variation on the main

36

theme. When things go wrong at the system level these exceptions are exe-

cuted.

In next section we will be providing our main use cases which will describe possible

interaction between the user and the system.

5.1.5.1 Identify User

Name: Identify User

Participating actor: Researcher

Entry condition: Researcher is a member of the online repository.

Flow of events: 1. Researcher selects ‘Log in’.

2. System displays the log in screen.

3. Researcher enters their identification details.

4. System validates entered information.

5. The System authorizes the researcher

Exit condition: Researcher is identified.

Alternative flows: 4a. System finds errors because of invalid information.

- System informs Researcher about errors

- Researcher acknowledges the error message.

- System reverts to step 3.

Alternative sign in or registration using ORCID: Enabling researcher to register or

sign into the system using their ORCID credentials. This can save their time and

effort also they don’t have to keep track of multiple usernames and passwords.

5.1.5.2 Register Researcher

37

Name: Register Researcher

Participating actor: Researcher

Entry condition: Researcher is not a member of the online repository.

Flow of events: 1. Researcher selects ‘Register’.

2. System displays the registration screen.

3. Researcher enters their identification details.

4. System validates entered information.

(See registration validation rule RVR-1)

5. Systems stores the details and creates a new account.

6. System notifies Researcher about successful registration.

Exit condition: Researcher is registered.

Alternative flows: 4a. System finds errors because of invalid information.

- System informs Researcher about errors

- Researcher acknowledges the error message.

- System reverts to step 3.

5.1.5.3 Upload Data

Name: Upload Data

Participating actor: Researcher

Entry condition: Researcher must be identified.

38

Flow of events: 1. Researcher requests to upload data.

2. System presents submission instructions and conditions

with metadata file templates for researcher.

3. Researcher familiarizes themselves with the instructions

and accepts the conditions.

4. The System prompts for information about the submission.

5. Researcher fills the basic information (mostly Dublin core)

related to the submission.

6. System validates entered information.

(See validation rule UVR-1)

7. System requests Researcher to select files to be submitted

8. Researcher provides metadata file (template is provided)

and raw files (archive format) and submits the data.

9. System validates files.

(See validation rule UVR-2)

10. System uploads the data to the repository

(without releasing them)

11. System notifies Researcher about successful submission.

12. System computes metrics for uploaded raw files

(See validation rule UVR-3).

13. System stores the calculated metrics in the repository

and releases the data.

Exit condition: Files are released to the research community for search

and download.

39

Alternative flows: 6a. System finds errors during validation:

• System informs Researcher about specific errors

• Researcher acknowledges the error message.

• System reverts to step 4.

9a. System finds errors during metadata validation.

• System informs Researcher about specific errors

• Researcher acknowledges the error message.

• System reverts to step 7.

12a. System finds errors during metric calculations:

• System informs Researcher about specific errors

• Files without errors: System continues to 13

• Files with errors are not released

-System informs Researcher that ‘Request data modification’

needs to be performed

5.1.5.4 Query Repository

Name: Query Repository

Participating actor: Researcher

Entry condition: Researcher requested to query the Repository.

40

Flow of events: 1. System presents an advanced search interface.

2. Researcher enters search terms (Darwin Core) for the

query and submits the request.

3. System performs the search.

(See query rule QR-1)

4. System retrieves and returns the metadata that matches

the query.

5. Researcher selects advanced search criteria to further

refine the results. NOT IMPLEMENTED FOR NOW.

6. System provides the refined metadata for the raw files

that match the filters. NOT IMPLEMENTED FOR NOW.

Exit condition: Metadata of raw files that match Researcher’s query are

displayed.

Alternative flows: 4a. Search results not found based on search terms

- System displays a message to the Researcher that no

matching results were found.

- Researcher returns to step 1.

5.1.5.5 Download Data

Name: Download Data

Participating actor: Researcher

Entry condition: Researcher performed successful search query and related

metadata for the files is displayed.

41

Flow of events: 1. Researcher initiates download.

2. System retrieves the relevant raw files.

3. System generates metadata file containing all the

metadata values for each raw file.

4. System collects metadata file and all raw files into

a single package.

5. System initiates the download process and provides

the single package file to the Researcher.

Exit condition: Package file is downloaded.

Alternative flows: 5a. Download interrupted

- System informs Researcher that download was

unsuccessful.

- System offers to retry the download

- Researcher confirms the retry.

- System returns to step 5.

5.1.5.6 Update Search Terms

Name: Update Search Terms

Participating actor: Researcher

Entry condition: None

42

Flow of events: 1. Admin initiates update search terms.

2. System presents all the search terms.

3. Admin selects/ unselects the terms to enable or disable

for filter search.

4. System validates search terms.

(See search terms update rule UR-1)

5. Admin submit modified search terms to the system.

6. System updates the repository.

7. System provides confirmation message.

Exit condition: Search terms are updated for filter search.

Alternative flows: 4a. System finds errors and notifies Admin.

- System informs Admin that update was unsuccessful.

- System offers to retry the update

- Admin confirms the retry.

- System returns to step 3.

5.1.5.7 Request Data Modification

Name: Request Data Modification.

Participating actor: Researcher

Entry condition: Researcher already has the submission in the repository

for which researcher wants to request data modification.

43

Flow of events: 1. Researcher requests data modification.

2. System presents modification instructions and conditions.

3. System also provides customized metadata file template.

(See Data modification example package)

4. Researcher familiarizes themselves with the instructions

and accepts the conditions.

5. System presents previous submission list.

6. Researcher selects specific submission that they want

to modify.

7. System asks for the package that has the modified files.

8. Researcher provides the package which includes

- New metadata file.

- New raw files (if needed).

(See Data Modification README file)

9. Researcher uploads the package

10. System validates the package.

(See data modification rule DMR-1,2,3,4)

11. System notifies Researcher about successful modification.

12. System computes metrics for uploaded raw files

(Same as UVR-3).

13. System stores the calculated metrics in the repository

and releases the data.

Exit condition: Researcher is registered.

44

Alternative flows: 4a. System finds errors and notifies Admin.

- System informs Admin that update was unsuccessful.

- System offers to retry the update.

- Admin confirms the retry.

- System returns to step 3.

5.2 Domain Modeling

Domain model provides an overview of our application domain by describing the

objects and classes inside the domain and the relationships between them and the

operations and attributes of the classes. The Unified Modeling Language (UML)

Class diagram is a graphical notation used to construct and visualize object-oriented

systems. A class diagram in the Unified Modeling Language (UML) [14] is a type of

static structure diagram that describes the structure of a system by showing the

system’s:

• classes,

• their attributes,

• operations (or methods),

• and the relationships among objects.

An object is any person, place, thing, concept, event, screen, or report applicable

to your system. A class is a representation of an object and, it is simply a template

from which objects are created.

45

5.3 Class Diagram Analysis

Figure 5.2: The UML class diagram of Nature’s Palette application

In our domain model, we have an Admin class and Researcher class. So the User

class captures the similarities between these two classes and both classes inherit

their properties from user class. Admin and researchers are associated with other

classes. Admin can manage SearchTermDictionary which contains SearchTerm that

captures the similarities between admin defined terms and Darwin core terms.

We can see Researcher class has an association with Submission, SearchResult,

SearchQuery and has one to many cardinalities with them. When researcher sub-

mits data we can see, Submission contains Rawfile, SubmissionInfo, MetadataFile

and has one to many cardinalities with these cases. Metrics class is associated with

Rawfile with one to one cardinality. That means metrics will be calculated when

raw files is submitted. The main purpose of the diagram is to show and explain

repository concepts, objects and their relationships (see figure 5.2).

46

5.4 Sequence Diagram

UML sequence diagrams help us to document and validate our logic by modeling

the flow of logic within our system in a visual manner, and are commonly used for

both analysis and design purposes.

Sequence diagrams illustrate the interactions between objects in a single-use case.

Every use case has a corresponding boundary, entity, and control classes. When a

particular use case is executed, the sequence diagram demonstrates how the differ-

ent parts of the system interact to carry out a function and the order in which the

interactions occur. Figures 5.3, 5.4, 5.5 illustrate three main sequence diagram of

our system. For details please see Appendix A.

47

:UploadButton

:UploadDataControl

:RegisterdUser

press() <<create()>>

UploadFiles Sequence Diagram

:UploadTermsTemplate<<create()>>

:UploadFilesTemplate

fillTemplate()

submit()

setUploadTerms()

DataParser
AndVerifier

<<create()>>

selectMetaAndRawFiles()

FileDownloader
AndUploader

Database

Data Upload Successful

Data Upload Successful

Return True/False

saveToDatabase()

submit()

uploadFiles()

uploadMetaFiles()

VerifySelectedFiles()

File Upload Successful

Return True/False
uploadRawFiles()

Files Upload Successful
SaveFile()

Figure 5.3: UploadFiles Sequence Diagram

48

:SearchButton

:SearchDataControl
:user

press() <<create()>>

SearchData Sequence Diagram

:SearchBy
TermsTemplate<<create()>>

:SearchResult

fillSearchTerms()

submit()

searchByTerms() SQ:SearchQuery

<<create()>>

<<create()>>

setSearchQuery(SQ)

MetaData

Database

getSearchDataBy
Query()

List<MettaData>

getSearchDataBy
Query()

List<MettaData>

update(List<MettaData>)

showResult(List<MettaData>)

Figure 5.4: SearchData Sequence Diagram

49

:DownloadButton

:DownloadData
Control

:User

press() <<create()>>

Download Sequence Diagram

DataParser
AndVerifier

generateMetaFile()

:UploadFiles
Template

packageMetaAndRawFiles()

FileDownloader
AndUploader

Database

Package File

downloadPackageedFile()

packageFile

Meta File
setMetaData()

<<create()>>

getMetaData()

MetaData

Figure 5.5: Download Sequence Diagram

Chapter 6

Design and Prototyping

After gathering the requirements and analyzing the use cases and domain model,

software architecture is derived and used for implementing our application. During

this phase, we ensure the design goals are meet and application is able to deliver

each requirement efficiently.

6.1 Design Goals

In the initial stage, we defined our design goals to help us stay focused on the driv-

ing principles of our project. Design goals give clear direction, purpose, intent, and

serve as a quality check by making sure the designs met the intended goals. The

following are the main design goals of Nature’s Palette project.

6.1.1 Ease of operation

We have used a simple interface for all of the system functions; the main screen will

give the user simple access to the system main functionalities such as the search,

50

51

upload and registration functions. User interface is friendly and familiar; we used

Bootstrap, which produces simple, intuitive, responsive interfaces, and is one of the

most popular front-end framework, so the system’s look and feel very familiar to

most users.

Long processes such as file uploading and downloading is provided to users with

the ability to cancel at any time. All long processes such as uploading, download-

ing or parsing data are done asynchronously within the system in order to maintain

responsiveness of user interface (UI) at all times. Most system operations is accessi-

ble without any form of registration, users will be able to search and download any

data right away.

6.1.2 Flexibility

When designing the system special care was taken. To increase flexibility, modifia-

bility and maintainability of our system, we decoupled the user interface from the

business logic. The View (Client) run on the user’s system, it sends requests to the

controller (Server) using http requests such as a GET or POST request.

Our core system functionalities reside in the Controller and Models. We have used

Object Oriented style to create the various modules and functionalities within our

system. This reduces system complexity by mapping real world objects to system

objects, offer easier testing, maintainability, troubleshooting, and error handling.

Whenever possible, high cohesion was kept to maximum within classes and mod-

ules, so that each class/module has a specific purpose and any extra responsibilities

is delegated to other classes/modules. For example a special module is developed

to handle all operations relating to data parsing and verification, another one for

upload/download processes. This makes future modifications to the system simpler.

52

Another example is the creation of a special class to calculate the visual data met-

rics, this can be easily extended with new metrics definitions and gives the ability

to allow the addition of user-specified visual metrics to system in the future. Low

coupling was also an important issue, we made use of the Publish-Subscribe ar-

chitectural style to propagate change events from the Model to the Controller and

View, so that the model does not directly know or depend on neither the Controller

nor the View, offering high modifiability.

We have provided an interface for the admin to easily add new search terms to the

system, all Meta Terms will be defined and stored in a special class that will also

handle the verification of search and upload terms. Such setup will make it very

simple for the administrator to add, remove or change any mandatory search or up-

load terms, or specify a set of accepted terms within they system in just a few clicks

and the effects will be applied immediately.

6.1.3 Scalability

Scalability affected many of the design decisions in the system architecture. We will

use the node.js platform to develop the system, which allows for horizontal scaling

right out of the box by running multiple instances of the application on different

cores or different servers. We can scale the application very efficiently in the future

depending on load demands. This works by creating a master (load balancer) node

that creates multiple instances of the application on multiple cores, receives incom-

ing requests and distributes them on these instances. It also allows to add another

level of scaling if needed in the future by running the system on multiple machines

with a load balancing node distributing the load between them.

Another design decision to facilitate scalability was to keep the database decou-

53

pled from the application, this is why we chose a three layered system, where our

database will be deployed on separate servers which will allow us to scale the appli-

cation and the database separately as loads demand.

6.2 System Design and Architecture

After analyzing the use cases and class diagram, the system was carefully designed

to meet the design goals, functional and non functional requirements.

6.2.1 Logical Design

Functional requirements are met in logical design. There are 3 logical components;

Presentation (view), Controllers, and Models, plus the Database. All User Interface

responsibilities are assigned to the Views, all user interaction responsibilities are as-

signed to the controllers, and all data and business logic are assigned to the models.

Each of our component, we have an explicit interface so that other component can

send requests through this API, this will allow us to change each of their implemen-

tation or create new implementations without affecting the others.

The controller works as an intermediary that handles all requests between Views

and Models. It handles all requests from the view and sends appropriate requests to

the model, so that the view and model do not directly communicate, and no direct

dependency is needed. The controller binds the View and the Model at run-time, so

that multiple views can be used for the same model.

6.2.2 Physical Architecture

We have designed the physical layout of our system and its components by using

three-layers architecture (see figure 6.1). The layers are Client Machine (Web-

54

Database

Models Layer

Models
(Entity	Objects)

Download	Data
Module

Search	Data	
Module

Upload	Data
Module

Meta	Term
Management
Module	

User	Registration	
And	Access	

Control	Module

Data	Parsing	and
Verification
Module

Download	and
Upload	Services

Provider

Domain (Controller Layer)

Core Modules

Services

User

Presentation Layer

User	Interface Presentation	Logic

Client

Server

Client

Server

DataBase
Server

Web-host
(Application

Server)

Client
Machine

(Web Browser)

Figure 6.1: Shows a detailed view on the system’s architecture, layering, and com-
ponents

55

Browser), Web Host (Application Server), and Database Server. Each two consec-

utive layers will communicate through a client-server architecture through internet

protocols such as HTTP. Our Main logical layers and their mapping to physical lay-

ers are:

View: UI part of the application, it sends requests to the controller, and subscribes

to events in the model, it will run on the Client Machine (WebBrowser).

Controller: Handles user requests and invokes appropriate actions in models, and

also handles model events and requests needed changes in View, it will run on the

Web Host (Application Server).

Model: Represents the data and handles business logic, it notifies registered con-

trollers and views of data changes, it will run on the Web Host (Application Server).

Database: The Database runs on the Database Server. It returns the information

to the application server which in turn sends it to the client machine to view and

edit it.

Good architecture design supports better software development process. It is costly

in terms of time, effort, and money to improve software architecture at an advanced

stage, so proper designing is required at the initial stages of the project. It is al-

ways a better approach to think for the long term and make the architecture flexi-

ble enough to function the system efficiently.

Chapter 7

Implementation and coding

The third phase of the SDLC process is the implementation and coding phase. Af-

ter the project team obtains the customer’s requirements for the project, the second

phase starts, where the team designs the software. The project team then uses the

design to start the implementation and coding phase.

7.1 Implementation issues

System implementation is a crucial stage of software development, where one cre-

ates an executable version of the software. But during the implementation process

there are some aspects that are particularly important and which are language-

independent:

Reuse Most modern software is constructed by reusing existing components or sys-

tems. While developing software, one should make as much use as possible of exist-

ing code.

Configuration management In the configuration management system, we have

56

57

to keep track of the many different versions of each software component during the

development process.

Host-target development Software development environment is different from

Production environment because production software executes on different compute.

We usually develop software in one compute (host system) and execute it on a sepa-

rate computer(target system).

7.2 Version Management

To keep track of different versions of the software, we need to use a version manage-

ment system. The systems include facilities to coordinate development by several

programmers.

Git can be used to synchronize changes in code. During development, we used git

to store changes on "master" repository. We can work with git in a lot of ways. One

easy workflow is to first set up an account on GitLab, create a new repository there

and then clone it to your local machine.

To set up a git repository first visit https://gitlab.com/ and create an account. To

clone or download we have to select the "clone or download" button and copy the

text inside the dialog box. Should be something like:

https : // github . com/<your{_} g i t {_}user {_} id>/Nature ’ s_

Pa l e t t e . g i t) .

We can clone it on our local computer. To install git in local computer, open a

command prompt/terminal and clone the repository using the URL copied above.

g i t c l one https : // github . com/<your{_} g i t {_} user {_} id>/

Nature ’ s_Palette . g i t

58

7.3 Development platform

Once we set up our local repository we need to set up our local development envi-

ronment. In most cases, the host and target are different. We develop on one com-

puter but we deploy on a separate machine. So we need two kinds of platform, de-

velopment platform and execution platform. A platform is more than just hard-

ware. It comes with an installed operating system. Now depending on the platform,

we may need to install other supporting software like database system or interactive

development environment (IDE). There can be different architecture and installed

software differences between the development platform and the target platform.

7.3.1 Prerequisites

Our prerequisites for developing Nature’s Palette, a web application, we need a lo-

cal development machine or server running Ubuntu 18.04, along with a non-root

user with sudo privileges and an active firewall. Our web application also requires

Node.js and npm installed on our local machine or server, following these instruc-

tions on installing with the PPA managed by NodeSource. We have chosen Express,

most popular web framework for our application framework and MongoDB installed

on local machine or server, following How To Install MongoDB in Ubuntu 18.04 as

our database system. For data validation and metric calculation we will be using R

scripts. So our system also need R language installed.

7.3.1.1 NodeJS and NPM

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. It uses

an event-driven, non-blocking I/O model that makes it lightweight and efficient.

Node.js package ecosystem, npm, is the largest ecosystem of open source libraries in

https://www.npmjs.com/
https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-18-04#installing-using-a-ppa
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

59

the world [25]. There is a huge community that is helping built libraries, so most of

the generic problems can be solved. To make development faster and more efficient

npm (Node package manager) has packages we can use in our application. With the

help of npm we can load lots of third party software like Mongoose, Express easily.

7.3.1.2 MongoDB

In our application, we are integrating MongoDB database with our existing Node

application. When data requirements include scalability and flexibility NoSQL like

MongoDB is very useful. NodeJS is designed to work asynchronously with JSON

objects because of this MongoDB integrates really well with NodeJS. MongoDB can

be integrated into a project by using Object Document Mapper(ODM) Mongoose,

which helps to create schemas and models for application data. So we can easily

organize our application code following model-view-controller pattern.

7.3.1.3 R language

Our repository will be using R script for data validation and generating the met-

ric from submitted data files. All script is written in R which can be downloaded

here:https://cran.r-project.org. As for other languages, R has a large collection of

packages with specific functionality. These packages often rely on previously exist-

ing packages (dependencies).

The functions that will be most useful to us, are found in the packages ’pavo’ and

’lightR’. pavo does have dependencies so these need to be loaded as well. If pavo is

installed in R, the dependencies are automatically installed as well. Another pack-

age lightR is also very useful. It’s main function is to parse proprietary spectral file

formats. These functions would be used to extract values from the raw files to then

calculate metrics. This package is not yet available on CRAN so can follow the in-

60

struction provided here: https://github.com/Bisaloo/lightr to install this package.

In R, first install ’pavo’ and its dependencies: install.packages(’pavo’)

once installed packages need to be called before being used in the console.

library(pavo)

7.3.2 Project Installation steps

For any type of modification or update, nature’s palette project can be downloaded

from it’s git repository. To run the project locally we need to install our application

prerequisites first then we can follow these steps to execute the application in local

machine:

• Clone it

• Open models.js file and replace the mongoDB mongoose connection string

• Open command line terminal and change the path to project folder cd Na-

ture’s_Palette

• Use npm to install dependencies npm install

• The main file for the project is app.js. To run this file, type node app.js

The project runs at http://localhost:3000/

7.4 Project Structure

Our structure is based on the Model-View-Controller (MVC) design pattern. This

pattern helps in rapid and parallel development. and also is great for separating the

responsibility of the different parts of app and makes your code easier to maintain.

MVC design pattern can be effectively implemented with an Express web applica-

tion, which is a minimal and flexible Node.js web application framework that pro-

61

vides a robust set of features for web and mobile applications. It is the most popu-

lar Node web framework, and the underlying library for a number of other popular

Node web frameworks. It provides mechanisms to:

• Write handlers for requests with different HTTP verbs at different URL paths

(routes).

• Integrate with "view" rendering engines in order to generate responses by in-

serting data into templates.

• Set common web application settings like the port to use for connecting, and

the location of templates that are used for rendering the response.

• Add additional request processing "middle-ware" at any point within the re-

quest handling pipeline.

Figure 7.1: Project Structure

62

Let’s look at our application where a user can login, register. upload, search and

download spectral data. Below is the files and folders structure.

controllers: Define our app route handlers and business logic.

helper: Helper lets the Code and functionality to be shared by different parts of

the project. Writes utility/helper functions here which can be used by any con-

trollers.

middlewares: Before handling the incoming request to the routes express mid-

dlewares process them first. By writing middleware, we can interpret all incoming

requests to the route handler.

models: Models represent data, implements business logic and handles storage.

Between controller and database models act as middleware. We can define some

schema and do validation before writing anything to the database. We are using

Object Data Modeling (ODM) like Mongoose that comes with great methods and

features to use in the schema itself.

routes: It define our app routes, with HTTP methods. For example, we can define

everything related to the upload. router.post(’/upload/start’, controller.uploadStart)

router.put(’/upload/:submit’, controller.uploadSubmit) router.get(’/upload’, con-

troller.authenticate)

public: Public folder consist of all static files like styling, JavaScrip, images.

views: View folder contains templates for our application front-end. These tem-

plates are rendered and served by routes.

app.js: App.js is the entry point of our application. It initializes the application

and bind everything together.

63

package.json: This file takes care of the application dependencies, and the version

of your projectthe scripts to run with the npm command. It remembers all nodejs

packages that our app depends on also maintain their versions.

7.5 Work Environment and Demo

Nature’s Palette system is developed with node.js and express framework using the

Visual Studio integrated development environment (IDE). We are using GIT as our

version control system and our repository will be hosted on Gitlab for the duration

of the development.

The application can be accessed through this link:

https : // g i t l a b . com/nature−s−pa l e t t e /

The demo of the project will be hosted on Cloud Compute Canada. The project

can be accessed through this link:

http : / / 34 . 7 0 . 6 3 . 2 1 5/

Chapter 8

Hosting and Deploying

The application deployment and hosting process offers numerous complex chal-

lenges. Doing local development with Node Application is straightforward. Testing

the application in a local machine is easier at scale without hosting it on the public

staging environment. But things get complicated is when we want to put our app in

production, on a web server.

8.1 Application Deployment

Application deployments define the package of software components that make up

an application in a particular environment, e.g. development or production [26].

We can deploy our application in physical or virtual servers in the cloud. These

cloud infrastructures allow developers to build and deploy applications by provid-

ing Virtual Machines (VMs) which are composed of hardware elements simulated

with software. Simulated hardware runs on the different real underlying hardware.

64

65

8.1.1 Cloud resources

We are using Compute Canada Arbutus cloud resources as our online platform.

This can be thought of as Infrastructure as a Service, which is a form of cloud com-

puting that provides a virtual instance of a computer system in a layer abstracted

from the actual hardware. We have set up our cloud resource for production pur-

poses. The server computer provides the production environment where we can run

our application website for external consumption. The environment includes:

• Computer hardware on which the website runs.

• Operating system (Linux).

• Programming language run time and framework libraries on top of which our

website is written.

• Web server infrastructure that includes a web server, reverse proxy, load bal-

ancer, etc.

• Databases on which our website is dependent.

8.1.2 Setting up the Server

Once we know required software for our production environment, we need to setup

the server for production ready. Firstly we created and set up our virtual machines

in Arbutus cloud then we installed Linux (Ubuntu 18.04) as our operating system

for our server. After that we installed all necessary packages, to host and deploy a

production ready NodeJs application. Details follow:

SSH key: We used SSH Keys to Authenticate and connect to our server.

Node & NPM: To install NodeJS.

c u r l −sL https : // deb . nodesource . com/setup_12 . x | sudo −E bash −

66

sudo apt i n s t a l l node j s

node −−ve r s i on

This will install the latest versions of Node & NPM. The tools in build-essential are

required by some npm modules when installing.

Git: To clone our project from Git repository in our server, we installed Git.

sudo add−apt−r e p o s i t o r y ppa : g i t−core /ppa

sudo apt−get update

sudo apt−get i n s t a l l g i t

We have used textbf/app location in the server for our project folder, and followed

following commands to clone our git repository to the project folder.

sudo mkdir app

cd app

sudo g i t c l one https : // g i t l a b . com/nature−s−pa l e t t e /nature−

pa l e t t e−−−prototype−ve r s i on . g i t

npm i n s t a l l

Nginx: We used the Nginx webserver to handle all requests from the web. Ng-

inx will directly handle the request for static content. SSL certificates can also be

served through Nginx. All other requests, Nginx will forward to our application

server.

sudo −s

nginx=s t ab l e

add−apt−r e p o s i t o r y ppa : nginx/$nginx

apt−get update

67

apt−get i n s t a l l nginx

e x i t

Our application local server listening on port 3000 which allows us to host our web-

site online on our server local IP but by default, browsers are looking at port 80

where the server sends and receives HTML pages or data from a web client. So we

need to forward all requests from the web clients to our localhost and vice versa. To

do this we need to configure our Ngnix server. Here is our Nginx configuration.

upstream node_server {

s e r v e r 1 2 7 . 0 . 0 . 1 : 3 0 0 0 fa i l_t imeout =0;

}

s e r v e r {

l i s t e n 80 de f au l t_se rve r ;

l i s t e n [: :] : 8 0 de f au l t_se rve r ;

index index . html index . htm app . j s ;

server_name _;

l o c a t i o n / {

proxy_set_header Host $host ;

proxy_set_header X−Real−IP $remote_addr ;

proxy_red i rect o f f ;

proxy_buf fer ing o f f ;

proxy_pass http :// node_server ;

}

l o c a t i o n / pub l i c / {

root /app ;

}

68

}

This configuration will make available all static files from app/public/ at the /pub-

lic/ path. It will forward all other requests to the instance of our app listening at

the port 3000. To use the above configuration, we saved it in /etc/nginx/sites-available/app

and then did the following:

sudo rm / etc /nginx/ s i t e s −enabled / d e f au l t

sudo ln −s / e t c /nginx/ s i t e s −a v a i l a b l e /app/ e tc /nginx/

s i t e s −enabled /node−app

sudo / e tc / i n i t . d/nginx r e s t a r t

The above commands remove the default configuration, then it make active our

configuration and finally it restarts Nginx so the latest configuration will be loaded.

PM2: To ensure that our node application is always on, even when the application

crashes or the server is restarted, we used PM2. Note that we did not use the npm

start command to run our application. Instead, we have used PM2 that allows our

application to run in the background. Nginx will forward the appropriate requests

to our server. To install PM2 globally and to run the application with PM2, type

the following command while in our project directory,

npm i n s t a l l pm2 −g

pm2 s t a r t app . j s

To make sure that PM2 restarts when our server reboots, run the following com-

mand in server’s terminal,

pm2 star tup ubuntu

Firewall Setup: We have executed the following in server’s terminal, to enable the

69

firewall and to configure the firewall to allow HTTP, HTTPS and SSH access.

sudo ufw enable

sudo ufw al low http

sudo ufw al low https

sudo ufw al low ssh

8.2 Hosting our application

In order to host our application on server we need to adjust server’s file permission.

8.2.1 File permission:

To set up the right folder permissions for a website on a linux server which is run

by a web server like Nginx, we have followed several steps. Our website is made of

static content like HTML pages, CSS, images and some dynamic content which will

be generated by our webserver on the fly, for example, a JavaScript that manages

file upload. So in order to display the static content to the public Nginx needs the

read permission as well as the write permission to write data into the site folder

as instructed by the script files. In our scenario we have a user, called rabeya, the

website folder is located in /app/nautrepalette/ and the web server belongs to the

www-data user group.

So the user rabeya will be the owner of our website directory and also have the full

permissions like read, write, execute. Group owner will the webserver and initially

will have read and execute permissions but for some folder it will have the write

permission too. By doing this it will restrict other user and group to access so that

no one can alter the website directory.

70

Set user as the owner: To get started, first we need to login into the server and

run the following command,

chown −R rabeya /app/

Set the web server as the group owner: To set the www-data as the group

owner of website directory which includes every file and folder inside the directory,

we need to give the appropriate permission to the www-data group.

chgrp −R www−data /app/

750 permissions for everything: The third command sets the 750 permissions,

where 7 is read, write and execute for the owner (i.e. rabeya), 5 is read and execute

for the group owner (i.e. the web server), zero permissions for others.

chmod −R 750 /app/

Once again this is done recursively and applied on all files and folder in this direc-

tory. From the parent folder, new files and folders will inherit the group ownership.

Inherit group ownership: The last command makes new files and directories cre-

ated by the web server will have the same group ownership of app/ folder, which

we set to www-data with the second command. The s flags will set mode with setu-

id/setgid.

chmod g+s /var /www/html/app/

Give server write access: We have folders that need to be writable by the web

server, we modified the permission values for the group owner so that www-data

has write access. So we run this command on each writable folder. We have to be

careful to apply this only where necessary and for security reasons, we can not ap-

ply this on the whole website directory.

71

chmod g+w /var /www/html/app/<wr i tab le−f o l d e r >

Once the file permissions is setup, our website can be accessed and browsed from

internet. If all works as expected, we can visit our application by typing our public

IP on the browser.

Chapter 9

Application Overview

In this chapter, we will provide an overview of our pilot web application. The appli-

cation is called Nature’s Palette- an open-access digital repository for spectral data.

Nature’s Palette provides a prototype machine-readable and publicly accessible

spectral data repository. One of the biggest hurdles preventing the submission of

spectral data to archives, is the stressfull process of curating the data using stan-

dardized protocols. Therefore the main part of this project is curatorial pipeline

that enables researchers to provide their data in a flexible way (e.g., single file with

all metadata and thousands of raw files associated with it), which will then be stan-

dardized for consistent searches.

9.1 Using Nature’s Palette

Register: Only a registered researcher with valid ORCID can submit their spectral

data to the repository.

Login:For a user (Researcher) to upload their data into the portal, they must login

72

73

Figure 9.1: Home page

into the system using ORCID.

Upload: An authenticated researcher can upload their raw data and meta-data

into the repositories, which can be downloaded by a guest user.

Search: The search feature enables the researcher to search for data files using

search terms (Darwin core terms).

Download: Researcher will be able to download the data files based on the search

result.

Add new search term: Admin have the privilege to add new search term which

will assist the researcher to search for their desired data.

9.1.1 Authentication

Enabling users to register or sign into our system using their ORCID credentials

can save them time and effort; they don’t have to keep track of multiple usernames

and passwords, and we will immediately obtain an authenticated ORCID ID.

74

Figure 9.2: Login/Registration page

Like social sign-in, for instance, sign in using Facebook or Google, as offered on

many websites, ORCID sign-in is like that. The first thing that users will see is a

screen inviting them to sign in to our system using ORCID. Researchers will use

their ORCID username and password or linked alternate sign-in credentials to log

into the ORCID website or they can sign up if they don’t have an account with

ORCID. The sign-in options are displayed as illustrated below. When the user suc-

cessfully sign in to the system using ORCID sign-in and linked their accounts, their

ID is going to be displayed within our system with a hyperlinked HTTPS URI.

Overall ORCID Login is a simple process, with the following steps.

• The user enters your application and selects the desired social network provider.

• A login request is send to the ORCID API.

75

Figure 9.3: ORCID Login

• Once ORCID API confirms the user’s identity, a current user will get access

to our application.

• A new user will be registered as a new user and then logged into the applica-

tion.

Figure 9.4: User Profile

76

9.1.2 Submit Data

Data submission is only available to the registered researcher. Only a registered re-

searcher can upload spectral data into our system.

Submission of data is a simple process with the following steps: Researcher selects

submit data option.that will take the them to the submission instructions page.

• Before starting the submission process, the researcher will be advised with

instructions.

• Also template for metadata file will be provided to the researcher.

• Template represents prefered Darwin cores and metadata fields.

• If the researcher agrees and selects start, submission process will be begun.

Figure 9.5: Submission page

For now reflectance metadata templates for ’Field’ and ’Museum’ are available to

the researchers.

77

9.1.2.1 Submission Form

Basic Information:

Researchers will provide basic information related to the data files. Basic informa-

tion fields are Dublin core fields. Field details:

• Name- First and last name of the researcher. *Required by default.

• Email- The email address of the researcher. *Required by default

• Institution Affiliation- The researcher will list their affiliation, usually with a

university or research institution. Not required by default.

Figure 9.6: Submission Step-1

• Type of Data- Drop down (Reflectance, Transmittance, Irradiance). Only Re-

flectance type is accepted now. In fututre Transmittance, Irradiance will be

added.

• Data from- Drop down (Field, Museum). Where the data was collected from.

• Published- Yes/ No. If yes then enter,

– Reference- Citation of the publication

78

– DOI- Digital object identifier

Otherwise hide reference field.

• Embargo- Yes/No. The embargo is a period of time set by the researcher

where access to the archived data is restricted in a digital repository until the

embargo period expires.

– If yes then

∗ Date- date for publishing data (Max one year from submission).

– Hide Date field otherwise

• Submission Date- Collect the date from system.

• Next- After filling the required fields hit ’Next’ button to go to next page.

Figure 9.7: Submission Step-2

Upload Files

• First upload the metadata file and then attach compressed raw files.

• Complete submission by clicking submit button.

• Validate form’s data-

– Metadata name error

– File name error

– Match mandatory metadata field

79

Figure 9.8: Submission Step-3

The validation process passes the 1st check, a confirmation message will be dis-

played. After data submission following task will be performed by server:

• Calculates metrics using R script from submitted raw files.

• Notifies researcher via email if there any error during calculation.

• Stores metrics data into database.

9.1.3 Search

Researchers can search the repository using the following search terms (Darwin

core): institutionCode, collectionCode, catalogueNumber, class, order,

family, genus, specificEpithet, infraspecificEpithet, sex, lifeStage, coun-

try, (Database specific term: Patch). Following a query which returns > 0 files,

the system will display metadata for each matched unique measurement (should

display only one row per groups of repeated measurements). In display table only

below metadata fields will be shown. genus, specificEpithet, infraspecificEpi-

thet, sex, lifeStage, Patch

80

Figure 9.9: Search filters

Figure 9.10: Search result

9.1.4 Download

The filtered result can be downloaded, if the researcher selects ’Download All’ but-

ton. Retrieval of data has to supply metadata file along with raw files for query re-

81

sults only. So download will generate a package file consisting of:

• One file in tabular format containing all the metadata of the raw files relevant

to query result. Also includes an additional column with ‘SubmissionID’

• All raw data files identified by the query.

• A file with all the submission information from the identified ‘SubmissionID’.

9.1.5 Contact Form

Contact form helps engage research community, grow mailing list, and receive feed-

back straight form users to improve user experience.

Figure 9.11: Contact Us Page

9.1.6 About and Help

About: An About page is a special web page on a site where researchers/visitors

will learn more about the repository. This section helps to give researchers more

insight into who is involved with this repository and exactly what it does. The his-

tory of the repository is provided, and the histories of the people in charge are ex-

82

Figure 9.12: About Page

pressed through short articles, usually accompanied by photographs.

Figure 9.13: Help Section

Help: To provide assistance to users we developed ’FAQ’, ’Contact Us’. Also to as-

sist with data submission there’s a submission process option under "Help". Help

83

systems should be conveniently accessible in locations where users can possibly need

answers to their questions, e.g., once they start employing a website, and once they

may gain advantage from useful information. The effectiveness of a help system in-

cludes a direct relationship to the standard of the site’s design. A badly designed

help system could be a good its content but makes for poor quality user experience.

Nature’s Palette is an open-access digital repository for spectral data with advanced

search functions. It allows researchers to simply supply their spectral data without

rummaging onerous processing which could be a major barrier to data sharing. it’s

geared towards researchers from everywhere the globe who are capturing, publishing

and sharing animal ecology data. Nature’s Palette’s task is to amass an open access

repository and make it available to the general public. In this way, it makes open

access to research data for everyone.

Chapter 10

Feedback and Implications

User feedback and implications are information collected from users/customers

about their reactions to a product, service, or website experience. We used feed-

back and insight from the researcher and website visitors to improve the user expe-

rience of our application. Below are some examples of how Nature’s Palette meets

the needs of researchers across the country.

10.1 Researcher/public use of Nature’s Palette

10.1.1 Case 1

Jeremy is a student from Brazil who is conducting research for his MSc thesis on

the morphological variation in a species of bird called the Rufous Trogon. He knows

that there is much variation in plumage colouration and he has measured several

specimens at his nearby museum. However, this species of trogon is found across

all of Latin America and Jeremy does not have the funds to travel to other muse-

ums, or capture birds in the wild. Without Nature’s Palette, Jeremy would have

84

85

to contact individual researchers across the Americas and ask them individually

to share their data. Because of general poor data standardization, it would take

much time for Jeremy not only to obtain the data, but also to sort through it and

make sure he understands what he received from individual contributors. These

tasks would take a few months to complete. In contrast, by using Nature’s Palette,

Jeremy would simply conduct a search for his species and download all information

available, which has already been curated in a standardized way. This would take a

few minutes at most.

10.1.2 Case 2

Juan Pablo is an artist from Nicaragua. He has teamed up with a local frog en-

thusiast who wants to produce the first field guide to the frogs of Nicaragua. This

work would be of great interest to conservationists, local educators, tour guides,

and tourists. The problem with painting frogs, however, is that they are difficult to

find and those that have been captured and kept in museum collections loose their

colours. Painting the frogs using realistic colours then, is very challenging. Juan

Pablo could get some of the information he needs to paint accurate portraits by

searching Nature’s Palette, and comparing the spectral data obtained from the frogs

of interest to those for his paints. This would guarantee him an accurate representa-

tion of his subjects, even if he has never seen one before.

10.1.3 Case 3

Kevyn is a PhD student who will be conducting research on birds in Costa Rica.

She wants to present hand-built models with feathers dyed to make sure they look

as much as possible to her species of interest. The problem is that birds can see ul-

traviolet light, and their feathers reflect ultraviolet light, but Kevyn like all humans

86

cannot see these colours. To make her models as accurately as possible, she could 1)

travel to Costa Rica, capture a few birds and measure their colours, 2) find a mu-

seum collection that has these birds and measure them, or 3) find a researcher who

has these measurements. Alternatively, first looking in Nature’s Palette using a sim-

ple search would possibly allow her to find the data she needs, and avoid wasting

precious time and/or money obtaining what she needs to start her work.

10.1.4 Case 4

John is a leading researcher on the evolution of plumage coloration in Australia;

he has measured hundreds of species on the continent. He has now formed an in-

ternational collaboration that will ask planet-wide questions, a game changer in

his field. The main difficulty is to find a way to coordinate other researchers, po-

tentially hundreds, to share these data. How and where these data will be stored,

and who will have access and protect the valuable resource is already causing some

frictions among the initial potential contributors. The obvious solution now is to

encourage all those interested in the project to submit their data individually to

Nature’s Palette. The submissions will be secured, searchable, findable, and refer-

enceable. Such a project, BirdColourBase, has been in the works for 3 years with

little progress because of the scope, change in leadership, and group dynamics. Sev-

eral of its members are eagerly awaiting the release of Nature’s Palette.

10.1.5 Case 5

Luis just published a paper documenting the colour differences between male and

female butterflies of several species. The journal where he submitted his findings

requires that he makes all his data available before they publish his article. Tradi-

tionally, Luis would have 2 main options for these data: 1) include them in supple-

87

mental material associated with the article, or 2) submit them as part of a pack-

age to an online repository such as FigShare or Dryad. Luis is concerned that if

he includes his data as supplemental material, individuals who do not have a sub-

scription to the journal would not have access to his data, and even those who do

may not find his article. He also does not have the 120 $ USD needed to submit to

Dryad. With Nature’s Palette, Luis can now upload all the spectral data used for

his research for free, and other users will also have access to his data without cost.

Luis will receive a DOI for his submission so that others can reference his dataset.

This will fulfill the journal’s requirement for data availability, and make the data

easily accessible.

10.1.6 Case 6

Greg is an expert in red-bellied newts. He has observed them in the wild and com-

pleted several projects on their behaviour. Recently, Greg was asked to write a

species account for this newt (a summary of all known information). Much of the

information needed for writing this paper is found in articles, but the figure present-

ing the reflectance data from the newt is in a journal that does not allow reproduc-

tions. If Greg can find the raw data on Nature’s Palette, he could produce his own

figures without violating any international law on copyrights, and include features

that he thinks will be of interest to his audience.

Chapter 11

Discussion and Conclusion

11.1 Future work

The long-term vision of the project includes providing advanced searches based on

traditional functions (e.g., using georeferenced data, position in color space), and

specialised modular analytical tools that can be custom combined, as well as updat-

ing the package "pavo" to search and request data from the repository, providing a

seamless and repeatable workflow.

Finally, we aim to develop samples of services that can be provided by the repos-

itory specific for the analysis and extraction of spectral data. For example, the

database could be queried to provide all spectral cures that could be perceived as

"pink" by an animal with a specific visual system.

88

89

11.2 Conclusions

As spectral data, especially light measurements taken in different environment and

at different depths in lakes and ocean can provide information about the ecology of

species and ecosystems, the repository will have appeal for use by scientists in the

general fields of Biology and Ecology.

Our system is designed to provide researchers with an avenue to access repository

where they can upload their research data and find similar data to help with their

own research. Information provided by the researchers are curated and processed so

that search results are returned in a timely manner.

Easy discovery, open access and usability of this repository will create new compu-

tational research techniques and will be used in more advanced studies.

We predict that this repository will have tremendous success, could one day hold

data representing the colours of all animals in the world, and provide a tremendous

resource of natural light environment data.

Bibliography

[1] R. Maia, C. M. Eliason, P.-P. Bitton, S. M. Doucet, and M. D. Shawkey. pavo:

an R package for the analysis, visualization and organization of spectral data.

Methods in Ecology and Evolution, 4(10):906–913, 2013.

[2] M. D. Eaton. Human vision fails to distinguish widespread sexual dichro-

matism among sexually “monochromatic” birds. Proceedings of the National

Academy of Sciences, 102(31):10942–10946, 2005.

[3] M. D. Eaton and S. M. Lanyon. The ubiquity of avian ultraviolet plumage

reflectance. Proceedings of the Royal Society of London. Series B: Biological

Sciences, 270(1525):1721–1726, 2003.

[4] K. J. Burns and A. J. Shultz. Widespread cryptic dichromatism and ultravi-

olet reflectance in the largest radiation of Neotropical songbirds: Implications

of accounting for avian vision in the study of plumage evolution. The Auk,

129(2):211–221, 2012.

[5] P. O. Dunn, J. K. Armenta, and L. A. Whittingham. Natural and sexual selec-

tion act on different axes of variation in avian plumage color. Science advances,

1(2):e1400155, 2015.

[6] J. K. Armenta, P. O. Dunn, and L. A. Whittingham. Quantifying avian sexual

90

91

dichromatism: a comparison of methods. Journal of Experimental Biology,

211(15):2423–2430, 2008.

[7] Wikipedia. Open-access repository. https://en.wikipedia.org/wiki/

Open-access_repository, Last accessed on 2020-03-10.

[8] U. Rachel Heery and S. Anderson. Digital Repositories Review. 2005.

[9] https://duraspace.org/dspace/. Dspace. https://duraspace.org/dspace/

about/, Last accessed on 2020-08-20.

[10] https://duraspace.org/fedora/. Fedora. https://duraspace.org/fedora/

about/, Last accessed on 2020-08-20.

[11] Wikipedia. Data Preservation. https://en.wikipedia.org/wiki/Data_

preservation, Last accessed on 2020-04-10.

[12] https://www.dit.ie/. FAIR Data Principles. https://www.dit.ie/dsrh/data/

fairdata/, Last accessed on 2020-03-11.

[13] https://www.copyright.com/. What Are FAIR Data Principles? https://www.

copyright.com/blog/what-are-fair-data-principles/, Last accessed on

2020-03-11.

[14] https://www.uml.org/. Unified Modeling Languag. https://www.uml.org/,

Last accessed on 2020-08-22.

[15] https://www.villanovau.com/resources/bi/metadata-importance-in-data-driven-

world/. Metadata and Its Importance in a Data Driven World. , Last accessed

on 2020-08-22.

[16] https://whatis.techtarget.com/definition/Dublin-Core. Dublin Core. , Last

accessed on 2020-08-22.

https://en.wikipedia.org/wiki/Open-access_repository
https://en.wikipedia.org/wiki/Open-access_repository
https://duraspace.org/dspace/about/
https://duraspace.org/dspace/about/
https://duraspace.org/fedora/about/
https://duraspace.org/fedora/about/
https://en.wikipedia.org/wiki/Data_preservation
https://en.wikipedia.org/wiki/Data_preservation
https://www.dit.ie/dsrh/data/fairdata/
https://www.dit.ie/dsrh/data/fairdata/
https://www.copyright.com/blog/what-are-fair-data-principles/
https://www.copyright.com/blog/what-are-fair-data-principles/
https://www.uml.org/

92

[17] J. Wieczorek, D. Bloom, R. Guralnick, S. Blum, M. Döring, R. Gio-

vanni, T. Robertson, and D. Vieglais. Darwin Core: An Evolving

Community-Developed Biodiversity Data Standard. PLOS ONE, 7,

doi:10.1371/journal.pone.0029715.

[18] H. M. Schaefer. Visual communication: evolution, ecology, and functional

mechanisms. In P. Kappeler, editor, Animal Behaviour: Evolution and Mecha-

nisms, pages 3–28. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[19] D. Osorio and M. Vorobyev. A review of the evolution of animal colour vision

and visual communication signals. Vision research, 48(20):2042–2051, 2008.

[20] S. Johnsen. How to measure color using spectrometers and cali-

brated photographs. Journal of Experimental Biology, 219(6):772–778,

doi:10.1242/jeb.124008.

[21] IBM. Software development. https://www.ibm.com/topics/

software-development, Last accessed on 2020-03-10.

[22] Technopedia. Software development. https://www.techopedia.com/

definition/16431/software-development, Last accessed on 2020-03-10.

[23] https://www.guru99.com/software-development-life-cycle-tutorial.html. Sys-

tems development life cycle. , Last accessed on 2020-08-21.

[24] https://www.guru99.com/agile-scrum-extreme-testing.html. Agile Methodology

& Model: Guide for Software Development & Testing. , Last accessed on 2020-

08-21.

[25] Node.js. Node.js. https://nodejs.org/en/, Last accessed on 2020-04-4.

http://dx.doi.org/10.1371/journal.pone.0029715
http://dx.doi.org/10.1242/jeb.124008
https://www.ibm.com/topics/software-development
https://www.ibm.com/topics/software-development
https://www.techopedia.com/definition/16431/software-development
https://www.techopedia.com/definition/16431/software-development
https://nodejs.org/en/

93

[26] Essential Project Documentation & Tutorials. Essential Project Documentation

& Tutorials. https://enterprise-architecture.org/docs/application_

architecture/application_deployments/, Last accessed on 2020-04-4.

https://enterprise-architecture.org/docs/application_architecture/application_deployments/
https://enterprise-architecture.org/docs/application_architecture/application_deployments/

Appendix A

Detail description of sequence

diagram

A.1 Boundary, entity, and control classes

Every use case has corresponding boundary, entity, and control classes.

A.1.1 Boundary Objects:

UploadButton: Button used by a Registered User to initiate the UploadFiles use

case.

UploadTermsTemplate: Template used for the input of the Upload Terms in-

cluding User Details and uploaded files details. This template is presented to the

User when the “UploadFiles” function is selected. The “UploadTermsTemplate”

contains fields for specifying all needed attributes of the user and the uploaded files

and a button (or other control) for submitting the completed template.

94

95

UploadFilesTemplate: Template used for the selection of the meta file and raw

files. This template is presented to the User after the user submits the “Upload-

TermsTemplate” and the system verifies the validity of the entered values. “Upload-

FilesTemplate” contains fields for specifying the meta file and all associated raw

files, a button (or other control) for submitting the completed template, and a field

for displaying notices to the user (such as successful upload).

SearchButton:Button used by a User to initiate the SearchData use case.

SearchByTermsTemplate: Template used for the input of the SearchTerms. This

template is presented to the User when the “SearchData” function is selected. The

“SearchByTermsTemplate” contains fields for specifying all needed attributes of

the search query and a button (or other control) for submitting the completed tem-

plate.

SearchResult: Screen used for displaying the search results of the user. It is pre-

sented to the user after the “SearchByTerms” function is selected. The “SearchRe-

sult” contains fields to display Meta Data found by the search query, fields for se-

lecting files to be downloaded before starting the “DownloadData” use case, and a

field for displaying notices to the user (such as successful download).

DownloadButton: Button used by a User to initiate the DownloadData use case.

RegisterUserButton: Button used by a User to initiate the RegisterUser use

case.

UserDataTemplate: Template used for the input of the UserData. This template

is presented to the User when the “RegisterUser” function is selected. The “User-

DataTemplate” contains fields for specifying the attributes of user, a button (or

other control) for submitting the completed template, and a field for displaying no-

96

tices to the user (such as successful user creation).

ManageSearchTermsButton: Button used by an Admin to initiate the Manage-

SearchTerms use case.

ManageSearchTermsTemplate: Template used for the Addition, Removal or

Modification of the SearchTerms. This template is presented to the Admin when

the “ ManageSearchTerms ” function is selected. The “ManageSearchTermsTem-

plate” contains fields for displaying, modifying and removal of all current SearchTerms,

control for adding new SearchTerms, a button (or other control) for submitting the

completed template, anda field for displaying notices to the user (such as successful

SearchTerms Modification).

A.1.2 Entity Objects

User: Any person using the user system without registering, they will have limited

access to some system functions (such as not being able to upload files).

RegisteredUser: A user that has registered to the system, and have access to sys-

tem functionality except Admin functions, All registered users will be identified by

their unique credentials(such as email and password) created at registration.

Admin: A special Type of RegisteredUser with Admin privileges enabling access

to full system functionality including administrative functions such as “Manage-

SearchTerms”.

MetaTermsDictionary: Object that contains rules on required and accepted

MetaData Terms and their data types to be used for verification of SearchTerms,

Upload Terms and User Data.

MetaData: Holds the metadata for a single raw file in the system, it is extracted

97

from MetaFiles uploaded to the system, where each row in the MetaFile generates a

single MetaData instance.

RawFile: Holds measurements information from a single measurement process, can

be attached to a single MetaData object and a single VisualModelMetrics object. It

is uploaded to the system by a single user and is never modified after that. Can be

downloaded by any user.

VisualModelMetrics Holds Visual Models data calculated from a single raw file,

it is generated as soon as a raw file is added to the system.

SearchQuery: Holds the query for a single search process by a single user. Com-

posed of one to multiple SearchTerms, at most a single Geographical Region and at

most a single Color Region. It is responsible for aggregating the sub queries gener-

ated by each of it’s components and executing the search operation, holding the re-

sult, and refining it based on changes to its components. It can be attached to one

or more SearchResult Object and notifies all of them on each change to the search

result.

SearchTerm: Holds key, value parameters for a single Darwin or Dublin Core re-

lated to a single search query.

A.1.3 Control Objects:

UploadDataControl: Manages the “UploadData” function. This object is created

when the “RegisteredUser” selects the “UploadButton” button. It then creates an

“UploadTermsTemplate” object and presents it to user. After submitting the tem-

plate, this object then collects information from “UploadTermsTemplate” template,

validates submitted terms using “MetaTermsDictionary”, and creates an ”Upload-

FilesTemplate” object and presents it to user. After submitting the template, this

98

object then collects information from “UploadFilesTemplate” template, requests up-

load of submitted “MetaFile” from the “FileDownloaderAndUploader“ then waits

for an acknowledgment of successful upload. When the acknowledgment is received,

it requests verification of the selected “MetaFile” and “RawFiles” from the “Dat-

aParserAndVerifier” and if the verification is successful, it requests upload of the

submitted “RawFiles” from the “FileDownloaderAndUploader“ then waits for an

acknowledgment of successful upload. When the acknowledgment is received, it re-

quests the parsing of all data contained in the files from the “DataParserAndVer-

ifier” then waits for an acknowledgment of success. When the acknowledgment is

received, it notifies user of a successful upload operation.

SearchDataControl: Manages the “SearchData” function. This object is created

when the “User” selects the “SearchButton” button. It then creates an “Search-

ByTermsTemplate” object and presents it to the user. After submitting the tem-

plate, this object then collects the information from the “SearchByTermsTemplate”

template, validates the submitted terms using the “MetaTermsDictionary”, and cre-

ates an ”SearchQuery” object. It then creates a “SearchResult” object and passes it

a reference of the “SearchQuery” to facilitate its subscription to the “SearchQuery”

updates. It then passes the collected information from the “SearchByTermsTem-

plate” template to the “SearchQuery”, and requests the execution of search opera-

tion.

DownloadDataControl: Manages the “DownloadData” function. This object is

created when the “User” selects the “DownloadButton” button. It then requests the

generation of “MetaFile” of the selected “MetaData” from the “DataParserAndVer-

ifier“ then waits for an acknowledgment of success and reception of the “MetaFile”

object. When the acknowledgment is received, it requests the packaging of “MetaFile”

99

and the selected selected “RawFiles” into a single packaged file from the “FileDown-

loaderAndUploader“ then waits for an acknowledgment of success and reception of

the packaged file.When the acknowledgment is received, it requests the start of the

download process from the “FileDownloaderAndUploader“.

RegisterUserControl: Manages the “RegisterUser” function. This object is cre-

ated when the “User” selects the “RegisterUserButton” button. It then creates a

“UserDataTemplate” object and presents it to the user. After submitting the tem-

plate, this object then collects the information from the “UserDataTemplate” tem-

plate, validates the submitted terms using the “MetaTermsDictionary”. It then cre-

ates a ”RegisteredUser” object, sets its values from the information collected from

the “UserDataTemplate” template, and requests to save the newly created “Regis-

teredUser”. When the operation is successful, it requests from the “UserDataTem-

plate” to notify the user of successful user registration operation.

ManageSearchTermsControl: Manages the “ManageSearchTerms” function.

This object is created when the “Admin” selects the “ManageSearchTermsButton”

button. It then creates a “ManageSearchTermsTemplate ” object and presents it to

the user. After submitting the template, this object then collects the information

from the “ManageSearchTermsTemplate” template, validates the submitted terms

using the “MetaTermsDictionary”. It then requests to save the “SearchTerms” from

the ”MetaTermsDictionary” object. When the operation is successful, it requests

from the “ManageSearchTermsTemplate” to notify the user of successful user terms

modification operation.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Abbreviations and Symbols
	Introduction
	Problem description
	Goals
	Background and Motivation
	Structure of the Thesis

	Literature Review
	Open-access digital repository overview
	Data preservation
	Metadata
	Choosing Metadata
	Dublin Core
	Darwin Core

	Using Metadata

	Color measurement in Visual communication
	Spectral data
	Spectral data file
	pavo: an R package for the analysis, visualization and organization of spectral data

	About the Project
	Proposed open access digital repository
	Upload data
	Data validation and analysis

	Query repository
	Download Data

	Technical overview
	Related works

	Application Development
	Software development life cycle (SDLC)
	How SDLC Works
	Selecting a methodology

	Agile Methodology
	The Agile Iteration Workflow
	 Planning and Requirement Analysis
	System Design
	Implementation
	Testing
	Delivery and Feedback
	Maintenance

	Agile Model - Advantages

	Requirements Analysis
	Requirements specification
	Functional requirements
	Non-Functional requirements
	Target environment
	Use Case Diagram
	Use Case Description
	Identify User
	Register Researcher
	Upload Data
	Query Repository
	Download Data
	Update Search Terms
	Request Data Modification

	Domain Modeling
	Class Diagram Analysis
	Sequence Diagram

	Design and Prototyping
	Design Goals
	Ease of operation
	Flexibility
	Scalability

	System Design and Architecture
	Logical Design
	Physical Architecture

	Implementation and coding
	Implementation issues
	Version Management
	Development platform
	Prerequisites
	NodeJS and NPM
	MongoDB
	R language

	 Project Installation steps

	Project Structure
	Work Environment and Demo

	Hosting and Deploying
	Application Deployment
	Cloud resources
	Setting up the Server

	Hosting our application
	File permission:

	Application Overview
	Using Nature's Palette
	Authentication
	Submit Data
	Submission Form

	Search
	Download
	Contact Form
	About and Help

	Feedback and Implications
	Researcher/public use of Nature’s Palette
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6

	Discussion and Conclusion
	Future work
	Conclusions

	Bibliography
	Detail description of sequence diagram
	Boundary, entity, and control classes
	Boundary Objects:
	Entity Objects
	Control Objects:

