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Abstract. Timed Petri nets, a formalism developed specifically for representation
of concurrent activities, are popular models of discrete-event system. For net models
which can be decomposed into simple cyclic subnets, the performance can be deter-
mined on the basis of components, without the exhaustive analysis of the behavior
of the whole system; such an approach is known as structural analysis. The paper
overviews the formal basic concepts of structural methods and uses manufacturing
cells as an illustration of structural analysis.

Keywords. Timed Petri nets, structural methods, performance analysis.

1. INTRODUCTION

Discrete–event concurrent systems are often rep-
resented by Petri nets [10, 8], a formalism devel-
oped specifically for representation of concurrent
activities and their coordination, i.e., for ordering
specific actions or for synchronization of actions
performed by different components of the system.

In order to analyze the performance of such mod-
els, the durations of activities must also be taken
into account. Several types of nets “with time”
have been proposed by associating “time delays”
with places [11], or occurrence durations with
transitions [9, 14] of net models. Also, the in-
troduced temporal properties can be deterministic
[9, 11, 14], or can be random variables described
by probability distribution functions (the negative
exponential distribution being probably the most
popular choice) [1, 14].

Two basic approaches to analysis of net models
are known as reachability analysis and structural
analysis. Reachability analysis is based on the be-
havior of models, represented by the set of states
and transitions between the states. For complex
models, the exhaustive reachability analysis can
easily become difficult because of a very large
number of states (for some models, the number of
states grows exponentially with model parameters
which is known as the ‘state explosion problem’).
An alternative approach to reachability analysis is
known as structural analysis, which predicts the

performance of net models on the basis of model
structure, without analyzing the state–based be-
havior. The most popular example of this ap-
proach is analysis based on place–invariants for
models covered by families of simple cyclic sub-
nets (implied by the place–invariants).

The paper uses models of manufacturing cells [2, 3]
as an illustration of the use of structural approach.
Manufacturing cells are simple manufacturing sys-
tems in which a collection of (flexible) machines
and transportation systems are serviced by a robot
which moves the parts from one machine to an-
other, from the incoming transportation system
to the first machine, and from the last machine to
the outgoing transportation system. The (cyclic)
sequence of the operations performed by the robot
determines the performance (e.g., the throughput)
of the cell.

Section 2 recalls basic concepts of timed Petri nets.
Section 3 introduces Petri net models of manufac-
turing cells and uses the structural approach to
find the cycle time of a cell as its basic perfor-
mance indicator. Several concluding remarks are
given in Section 4.

2. PETRI NETS

Petri nets are known as a simple and convenient
formalism for modeling systems that exhibit par-
allel and concurrent activities [8], [10]. In Petri



nets, these activities are represented by the so
called tokens which can move within a (static)
graph–like structure of the net. More formally,
a marked place/transition Petri net M is defined
as M = (N ,m0), where the structure N is a bi-
partite directed graph, N = (P, T,A), with a set
of places P , a set of transitions T , a set of di-
rected arcs A connecting places with transitions
and transitions with places, A ⊆ T × P ∪ P × T ;
m0 is the initial marking function which assigns
nonnegative numbers of tokens to places of the
net, m0 : P → {0, 1, ...}.

A place is shared if it is connected to more than
one transition. A shared place p is free–choice if
the sets of places connected by directed arcs to all
transitions sharing p are identical. A net is free-
choice if all its shared places are free–choice. A
net is structurally (or statically) conflict–free if it
does not contain shared places. A marked net is
dynamically conflict–free if for any marking reach-
able from the initial marking, and for any shared
place, at most one of transitions sharing this place
is enabled. The models of manufacturing cells dis-
cussed in this paper are (statically or dynamically)
conflict–free nets.

In order to study performance aspects of Petri net
models, the duration of activities must also be
taken into account and included into model spec-
ifications. In timed nets [14], occurrence times
are associated with transitions, and transition oc-
currences are real–time events, i.e., tokens are re-
moved from input places at the beginning of the
occurrence period, and they are deposited to the
output places at the end of this period (some-
times this is also called a three–phase firing mech-
anism as opposed to one–phase instantaneous oc-
currences of transitions in stochastic nets [1] and
time nets [7]). All occurrences of enabled transi-
tions are initiated in the same instants of time in
which the transitions become enabled (although
some enabled transitions cannot initiate their oc-
currences). If, during the occurrence period of a
transition, the transition becomes enabled again,
a new, independent occurrence can be initiated,
which will overlap with the other occurrence(s).
There is no limit on the number of simultaneous
occurrences of the same transition. Similarly, if
a transition is enabled “several times” (i.e., it re-
mains enabled after initiating an occurrence), it
may start several independent occurrences in the
same time instant.

More formally, a conflict–free timed Petri net is a
pair, T = (M, f), where M is a marked net and
f is a timing function which assigns a (constant
or randomly distributed) occurrence time to each
transition of the net, f : T → R+, where R+ is
the set of nonnegative real numbers.

The occurrence times of transitions can be either
deterministic or stochastic (i.e., described by some

probability distribution function); in the first case,
the corresponding timed nets are referred to as D–
timed nets, in the second, for the (negative) expo-
nential distribution of firing times, the nets are
called M–timed nets (Markovian nets). In both
cases, the concepts of state and state transitions
have been formally defined and used in the deriva-
tion of different performance characteristics of the
model [14]. Only D–timed Petri nets are used in
this paper.

Each place/transition net N = (P, T,A) can be
conveniently represented by a connectivity (or in-
cidence) matrix C : P × T → {−1, 0, 1} in which
places correspond to rows, transitions to columns,
and the entries C[p, t], p ∈ P , t ∈ T , are defined
as:

C[p, t] =







−1, if (p, t) ∈ A ∧ (t, p) 6∈ A,

+1, if (t, p) ∈ A ∧ (p, t) 6∈ A,

0, otherwise.

Connectivity matrices disregard ‘selfloops’, that
is, pairs of arcs (p, t) and (t, p). Pure nets are
defined as nets without selfloops [10].

A P–invariant (place invariant, sometimes also
called S–invariant) of a net N is any nonnega-
tive, nonzero integer (column) vector I which is a
solution of the matrix equation

CT × I = 0,

where CT denotes the transpose of matrix C. It
follows immediately from this definition that if
I1 and I2 are P–invariants of N , then any lin-
ear (positive) combination of I1 and I2 is also a
P–invariant of N . A basic P–invariant of a net is
defined as a P–invariant which does not contain
simpler invariants.

Similarly, a T–invariant (transition invariant) of
a net N is any nonnegative, nonzero integer (col-
umn) vector J which is a solution of the matrix
equation

C× J = 0.

As before, a basic T–invariant of a net is defined
as a T–invariant which does not contain simpler
invariants.

Moreover, a net Ni = (Pi, Ti, Ai) is a Pi-implied
subnet of a net N = (P, T,A), Pi ⊂ P , if:

(1) Ai = A ∩ (Pi × T ∪ T × Pi);

(2) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ Ai ∨
(t, p) ∈ Ai}.

It should be observed that in a pure net N ,
each P–invariant I of a net N determines a PI -
implied (invariant) subnet of N , where PI = {p ∈



P | I(p) > 0}; PI is sometimes called the support
of the invariant I. All nonzero elements of I select
rows of C, and each selected row i corresponds to
a place pi with all its input and all output arcs
associated with it.

Finding basic invariants is a ‘classical’ problem of
linear algebra, and there are known algorithms to
solve this problem efficiently [5], [6].

Net invariants can be very useful in performance
evaluation of net models; if a net is covered by
a family of conflict–free cyclic subnets, the cycle
time of the net, τ0, is equal to the maximum cycle
time of the covering subnets [9], [11]:

τ0 = max(τ1, τ2, ..., τk)

where k is the number of subnets covering the orig-
inal net, and each τi, i = 1, ..., k, is the cycle time
of the subnet i, which is equal to the sum of oc-
currence times associated with the transitions, di-
vided by the total number of tokens assigned to
the subnet:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
m(p)

.

For net models which are conflict–free (or deter-
ministic), but are covered by a family of non–
conflict–free, the cycle time of the net, τ0, takes
into account the frequencies of transition fir-
ings, determined by the T–invariant (determinis-
tic models have only one T–invariant):

τi =

∑

t∈Ti
v(t)∗f(t)

∑

p∈Pi
m(p)

where v(t) is the element of the T–invariant cor-
responding to t (these elements are often called
“visit rates”).

In many cases, the number of basic P–invariants
can be reduced by removing from the analyzed net
the elements which do not affect the performance
of models [13]. Fig.1 shows one of such trans-
formations; it eliminates the so called “implicit
place” [4] which creates a parallel path that has
has no influence on the behavior of a timed net,
but which can increase the number of inessential
(basic) P–invariants.

Fig.1 part (a) shows a simple case of parallel
paths, while part (b) shows a more intricate case,
which still can be simplified without affecting the
performance of the model (in fact, the state space
in both cases is not affected by the transforma-
tion). It should be noted that the reduction of
simple parallel paths can be performed only if ei-
ther all paths are unmarked, as in Fig.1 (a), or
all are marked, as in Fig.1(b); the paths to be re-
duced cannot be “mixed”, i.e., one path marked
and the other unmarked.
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Fig.1. Reduction of implicit places.

3. MODELS OF MANUFACTURING
CELLS

A simple manufacturing cell with three machines,
M1, M2 and M3, an input conveyor In, an output
conveyor Out, and a robot, is outlined in Fig.2.
For simplicity, it is assumed that all part are pro-
cessed by consecutive machines of the cell, first
M1, then M2, and so on.

M1

M2

In Out

Robot

M3

Fig.2. An outline of a 3–machine cell.

The cyclic behavior of a cell can be described by
a sequence of operations performed by the robot,
such as picking a part from the input conveyor,
transporting it to a machine and loading it, then
(when the machine’s operation is finished) unload-
ing the part, transporting it to another machine,
and so on. A systematic approach to the deriva-
tion of all possible schedules is presented in [13].
For the case when the time of the operation per-
formed by M3 is comparable with the sum of the
times of operations performed by M1 and M2,
the following schedule can be appropriate (it is
assumed that each cycle of operations uniformly
begins by picking a new part from In, and that Pi
denotes the operation of picking a new part from
the input conveyor, Do - the operation of drop-
ping a part on the output conveyor, that Lj and
Uj denote the operations of loading a part on ma-
chine Mj and unloading the part from Mj, and, fi-
nally, Mjk denotes the “moves” of the robot from
position “j” to position “k”, so M13 denotes the
move from machine M1 to machine M3, M3o – the
move from machine M3 to the output conveyor,



and Mi1 – the move from the input conveyor to
machine M1):

Pi,Mi1, L1, U1,M12, L2,M23, U3,M3o,
Do,Mo2, U2,M23, L3,M3i

A timing diagram for this schedule is shown in
Fig.3.

M1

M2

M3

In

Out

Fig.3. Example timing diagram for schedule 1.

A different schedule may be needed if the relations
between the durations of operations performed by
the machines of the cell are different. Fig.4 illus-
trates the case when the time of M2’s operation
is comparable with the sum of the times of opera-
tions performed by M1 and M3. In this case, the
detailed (cyclic) sequence of robot operations is:

Pi,Mi1, L1,M12, U2,M23, L3,M31,
U1,M12, L2,M23, U3,M3o,Do,Moi

M2

M3

M1

In

Out

Fig.4. Example timing diagram for schedule 2.

Petri net models are direct representations of
the detailed schedules, with each machine repre-
sented by a “standard” model shown in Fig.5, in
which transition tia represents the “load” oper-
ation, transition tib the “unload” operation, and
transition ti the operation performed by machine
Mi.

pi

titia pia pib tib

Fig.5. Petri net model of a single machine.

The complete model is shown in Fig.6. It con-
tains three machine subnets (as in Fig.5) and the
remaining part is the robot subnet which follows
the sequence of robot steps. The transitions (and
times associated with them) represent the follow-
ing operations:

transition operation

t1 M1 operation
t2 M2 operation
t3 M3 operation
tin picking a part from Input
tout dropping a part in Output
t01 moving from Input to M1
t02 moving from Output to M2
t1a loading M1
t1b unloading M1
t12 moving from M1 to M2
t2a loading M2
t2b unloading M2
t23 moving from M2 to M3
t3a loading M3
t3b unloading M3
t3i moving from M3 to Input
t30 moving from M3 to Output
t32 moving from M2 to M3

After eliminating places p1, p2, p3 and p11 with
their arcs, the model has 3 P–invariants, with the
following transitions in the implied subnets:

invariant set of transitions

1 t1a, t1, t1b, t12, t2a, t2, t2b, t23, t3a,
t3i, tin, t01

2 t1a, t1, t1b, t12, t2a, t32, t3b, t30, tout,
t02, t2b, t23, t3a, t3i, tin, t01

3 t2b, t23, t3a, t3, t3b, t30, tout, t02

Since each of these subnets contains just one to-
ken, the cycle time is determined by the maximum
sum of times associated with transitions in each
subnet:

τ0 = max(τ1, τ2, τ3)

where:
τ1 = f(t1a) + f(t1) + f(t1b) + f(t12) + f(t2a)+

f(t2) + f(t2b) + ...+ f(t01),
τ2 = f(t1a) + f(t1) + f(t1b) + f(t12) + f(t2a)+

f(t32) + f(t3b) + ...+ f(t01),
τ3 = f(t2b) + f(t23) + f(t3a) + ...+ f(t02).

After eliminating p1, p2 and p3, the net shown in
Fig.7 has 5 P–invariants with the following sets of
transitions in the implied subnets:

invariant set of transitions

1 t1a, t1, t1b, t12, t2a, t2, t2b, t23, t3a,
t3, t3b, t30, tout, t0, tin, t01

2 t1a, t1, t1b, t12, t2a, t32, t3b, t30, tout,
t3i, tin, t01

3 t1a, t21, t2b, t23, t3a, t3, t3b, t30, tout,
t3i, tin, t01

4 t1a, t21, t2b, t23, t3a, t31, t1b, t12, t2a,
t32, t3b, t30, tout, t3i, tin, t01

5 t2a, t2, t2b, t23, t3a, t31, t1b, t12
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Fig.6. Petri net model of schedule 1.
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Fig.7. Petri net model of schedule 2.

The corresponding subnets can easily be traced in
Fig.7, and the cycle time is obtained, as before,
by adding times associated with transitions in the
subnets.

The two models shown in Fig.6 and Fig.7 can be
combined into a single model corresponding to
processing two different products, one according
to schedule shown in Fig.6 and the second accord-
ing to Fig.7. More detailed discussion of condi-
tions for such a “fusion” of schedules is given in
[15]. For the combined model the representation of
machines are slightly different to model processing
of two different products, with possibly different
load, unload and processing times, as shown in
Fig.8. Each machine model is a free–choice struc-
ture with the number of (parallel) branches equal
to the number of different products.

pi

tia’ pia’ ti’ pib’ tib’

tib"pib"ti"pia"tia"

Fig.8. Extended Petri net model of a single machine.

Fig.9 shows a complete model representing a cell
processing two different products, say A and B,
in a sequence ABABAB...; only minor change is
needed for implementation of other patterns such
as AABAAB..., ABBAABBA... and so on (the
subnet in upper right corner determines the pat-

tern of products).

The three machine models (as in Fig.8) are in
the central part of Fig.9, the upper part corre-
sponds schedule shown in Fig.6 (product A), and
the lower part to schedule shown in Fig.7 although
some details are different because of coordination
of the two schedules.

The model has one T–invariant which assigns the
value 1 to all transitions except of t30 and tout,
for which the invariant values are equal to 2 (i.e.,
in each cycle, which is comprised of schedule A
followed by schedule B, t30 and tout occur twice,
while all other transitions have a single occur-
rence). After elimination of place p11, the model
shown in Fig.9 has 4 essential P–invariant–implied
subnets (all other subnets have sets of transitions
which are subsets of the essential subnets).

4. CONCLUDING REMARKS

The paper illustrates the use of structural meth-
ods in performance analysis of manufacturing cells
represented by timed Petri nets. The approach is
applicable to conflict–free models (only such mod-
els have well–defined cyclic behavior) which are
covered by families of simple cyclic subnets. The
approach is based on invariant analysis and P–
invariant–implied subnets of the model.

Although in general, the number of P–invariants
can grow quickly with the size of the model, the
number of invariants can be often reduced by sim-
ple performance–preserving transformations of the
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Fig.9. Petri net model of schedule 1+2.

net model, resulting in a linear relationship be-
tween the number of P–invariants and the size of
the model; several such transformations are dis-
cussed in the literature [4, 13]. Moreover, P–
invariants of complex models can be derived from
the invariants of components, as shown in [16].
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