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ABSTRACT 

 

 Climate change is a global challenge with long-term implications. Human activities are 

changing the global climate system, and the warming of the climate system is undeniable. 

According to a roadway construction study, the construction of the surface layer of an asphalt 

pavement alone generates a carbon footprint of 65.8 kg of CO2 per km. Therefore, a sensible 

approach to study environmental impact from road pavement is crucial.  

 Pavement life cycle assessment (LCA) is a comprehensive method to evaluate the 

environmental impacts of a pavement section. It features a cradle-to-grave approach assessing 

critical stages of the pavement’s life. Material production, initial construction, maintenance, use 

and end of life phases exist in an entire pavement life cycle. The thesis consists of three 

components, which started with finding the environmental impact for different pavement 

maintenance and rehabilitation (M&R) techniques in the maintenance phase. The second 

component evaluated the environmental impact due to pavement vehicle interaction (PVI) in the 

use phase. Finally, the goal of the third component was to develop a set of pavement LCA models.  

 To evaluate environmental impact for four major M&R techniques: rout and sealing, 

patching, hot in-place recycling (HIR) and cold in-place recycling (CIR), initially a fractional 

factorial design approach was applied to determine which factors were significant. Considering 

those significant factors and other necessary data, a hypothetical LCA case study was performed 

for the city of St. John’s. It was found that the global warming potential (GWP) held the highest 

values among four M&R techniques.  CIR technique produced the lowest percentage of GWP 

(83.87%), and for asphalt patching, the CO2 emission resulted in the highest percentage (92.22%) 

which became the least suitable option.  

 To understand the PVI effect, the required data and information are collected from the 

Long-Term Pavement Performance (LTPP) program. Out of 141 Canadian road sections, 22 

sections were selected. Several climatic parameters, including annual precipitation, annual 

temperature, and annual freezing index data, were collected from these 22 sections and further 

processed for developing clusters using a hierarchical clustering approach. Finally, the Athena 

Pavement LCA tool was used to measure the environmental impact from the PVI effect for each 

cluster. It was found that cluster 2 (high annual precipitation, high annual freezing index, and 
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medium annual temperature) experienced the highest rate of IRI increase and therefore, high GWP 

value. The LCA result also indicated a relatively higher GWP due to pavement roughness from 

heavy vehicle traffic compared with light vehicle traffic. For the PVI effect due to pavement 

deflection, cluster 4 (maximum vehicle load and the minimum subgrade stiffness) emitted the 

highest GWP among all the clusters. 

 Pavement LCA tools require an extensive amount of data to estimate the environmental 

impact. In the first and second studies, all Canadian road pavement sections were not possible to 

consider because of the large quantity of time consumption for LCA of each section. Therefore, a 

database management software, Microsoft SQL Server Management Studio, was used for filtering 

and data manipulation of the LTPP database considering all Canadian road sections. The 

manipulated data were further used to develop the LCA models using machine learning algorithms: 

multiple linear regression, polynomial regression, decision tree regression and support vector 

regression. The models determined the significant contributors and quantified the CO2 emission in 

pavement material production, initial construction, maintenance and use phase. Model validation 

was also performed. The study also revealed the contribution of Canadian provinces’ CO2 

emission. The proposed LCA models will help the decision-makers in the pavement management 

system. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

 Addressing the leading factors of climate change is one of the major global issues in today’s 

time. Therefore, substantial research is being conducted to study the environmental impacts of 

road pavement designs and construction practices using life cycle assessment (LCA) 

methodologies. LCA proposes a cradle-to-grave approach, assessing critical stages of an asset’s 

life. This methodology can be used to evaluate the environmental impact of an entire road system, 

considering both project level and network level. As a result, highway and pavement management 

can make an environmentally friendly decision that has a lower impact on the environment. 

 Case study or project-based LCA was very common for transportation infrastructure in the 

early stage of LCA. Mainly case study based pavement LCA was highly focused for research 

purposes because pavement LCA was appropriate for questions relevant in a procurement situation 

(Azhar, Toller, & Birgisson, 2015). Initially in the 1900s, case study based pavement LCA aimed 

to find out which pavement type is better between asphalt and concrete pavement (Häkkinen & 

Mäkelä, 1996; Horvath & Hendrickson, 1998; Meil, 2006; Mroueh et al., 2000; Stripple, 2001; Yu 

& Lu, 2012). After that, at the beginning of the twenty-first century, studies focused specifically 

on asphalt or concrete pavements (Butt et al., 2014; Evangelista & De Brito, 2007; Loijos, 2011; 

Vidal et al., 2013).  

  In pavement LCA, a lot of information is required of each stage of the pavement life cycle: 

material production, construction, maintenance, use and end of life. As a model represents the 

collection of data and summarizes the data for present needs and predictions, an LCA model can 

analytically result the environmental assessment. Based on LCA framework, this model can 

estimate the emission from pavement projects within a shorter time than the conventional 

calculative method. From 2004 until now, several research have been performed to develop the 

framework, model and computer tools (Horvath, 2004; Huang, Bird, & Heidrich, 2009; João 

Santos, Ferreira, & Flintsch, 2015; Zhang, Keoleian, & Lepech, 2008).    
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 Canada is the second-largest country in the world and it has huge provinces and territories. 

Therefore, within a province, there are geometric regions that have completely different climates. 

Most of the North American LCA model based studies were performed in the US context. Athena 

Institute developed LCA tool for the Canadian context (Ahammed et al., 2016). However, only 

one project can be environmentally assessed at a time and requires a huge amount of processing 

time. Therefore, a modeling approach, specifically machine learning based modeling approach, 

can deal with a large amount of data and predict the emission report within a few seconds.  

 

1.2 Pavement LCA  

 As indicated above, pavement LCA is considered as the most comprehensive way to 

evaluate the environmental impact in the pavement for a given analysis period. This analysis period 

is not limited to a fixed year. It can be the lifetime of a pavement section. Material production, 

construction, maintenance and rehabilitation, use and end of life – all phases can be considered in 

LCA. Pavement LCA methodology is used to compare the impact of different pavement designs, 

mix designs, alternative maintenance & rehabilitation schedules, etc.    

 International Organization for Standardization (ISO) 14040 standard (International 

Standard, 1997) is the general foundation of LCA for each type of asset. Pavement LCA 

framework (Harvey et al., 2010)  from the University of California Pavement Research Center  is 

highly regarded. Their guidelines are organized and updated frequently. The framework and 

necessary data required are described elaborately in chapter 2.  

 

1.3 Research Problem 

 As indicated in the first section, most of the case studies of LCA were performed to 

compare asphalt pavement and concrete pavement. LCA case studies were also performed for 

comparing the performance of the addition of different types of material with asphalt binder. 

However, research related to environmental emission from pavement maintenance and 

rehabilitation (M&R) using LCA methodology is still rare.  

 Among pavement life cycle phases, the use phase accounts for significant environmental 

impacts through various factors including rolling resistance effect in increased fuel demand (i.e., 

pavement vehicle interaction), albedo (solar radiation reflectibility of pavement surface), 

carbonation (absorption of carbon dioxide in pavement structure), nighttime illumination of the 
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roads (energy demand) and generation of leachates from pavement materials (emission of chemical 

substances) (Ziyadi, Ozer, & Al-Qadi, 2017). The energy consumption during the pavement use 

phase is about 700 times higher than that of the construction phase (Paulo, Araújo, Oliveira, & 

Silva, 2014). A recent study of LCA in asphalt rubber pavement also revealed the dominant energy 

consumption in the usage stage (Cao, Leng, Yu, & Hsu, 2019). This high energy consumption in 

the use phase suppressed the energy-saving advantage of warm mix asphalt (WMA) additives 

during the entire life cycle of the pavement. Massachusetts Institution of Technology (MIT) 

research team found that most of the pavement’s use phase environmental impact results from 

pavement vehicle interaction (PVI). 58% of greenhouse gas (GHG) was reported from an urban 

interstate pavement in Missouri where 93% (out of 58% GHG) was reported from PVI (Gregory, 

2017). The MIT research team studied four states to understand the environmental impact over a 

50 years analysis period of the pavement life cycle. They considered four states representing four 

different climates: Missouri (wet freeze), Arizona (dry no freeze), Colorado (dry freeze) and 

Florida (wet no freeze) (Mack et al., 2018). As Canada is a big country with diverse climates, there 

was a need to study PVI effect for the Canadian climate condition. 

 As stated earlier, each phase of the pavement life cycle requires a large number of data 

inventory to estimate environmental impact. The material production and initial construction 

phases need material properties, percentage of material quantities and pavement layer thicknesses. 

The maintenance phase requires the pavement distress survey data, maintenance history and 

environmental condition. The use phase requires information on traffic conditions, pavement 

roughness and texture properties. As a result, a particular pavement project requires quite an ample 

time for LCA. The situation becomes worse and time-consuming when it is time to decide the best 

alternative from different combinations of pavement designs, construction and maintenance 

options. 

  

1.4 Research Objectives 

 The thesis consists of three components. In the beginning, an LCA of pavement M&R was 

performed. The second component was about LCA for the PVI effect. The third and final 

component was about the LCA model. 

 The goal of the first component is to determine the environmental impacts of major M&R 

techniques for asphalt pavements using LCA. The M&R techniques include asphalt patching, rout 
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and sealing, hot in-place recycling (HIR), and cold in-place recycling (CIR). For the LCA analysis, 

various project parameters were selected using a statistical sensitivity analysis technique. The 

parameters include but are not limited to the specifications of road pavement section and the 

evaluation of emission for each M&R in a 30-year life cycle. For the emission analysis, an Athena 

Institute’s LCA tool called the Athena Pavement LCA was used (Alam et al., 2019).  

 The overall goal of the second component of the thesis is to obtain a better understanding 

of the PVI impact on environmental effect in asphalt pavement using the LCA framework in the 

Canadian climate conditions. The required data and information are collected from the Long-Term 

Pavement Performance (LTPP) program to conduct this research. To understand the PVI effects 

for different road sections, the global warming potential (GWP) values are computed and 

compared.  

 The goal of the third and last component of the thesis is to develop a set of LCA models 

for each pavement life cycle phase in the Canadian context using database management tools and 

particularly machine learning algorithms. Machine learning algorithms were used to develop the 

model after filtering the LTPP data using Microsoft SQL Server Management Studio. This study 

also shows the emission across Canadian provinces as well as comparative analysis. 

 

1.5 Organization of the Thesis 

 This thesis consists of seven chapters. The first chapter introduces the motivation of this 

study and gives a brief overview of Pavement LCA, the research problem, and the specific 

objectives of this research. The second chapter provides an extensive literature review on 

pavement LCA framework, case study based LCA researches, PVI effect based researches and 

LCA model based researches. In addition, this chapter provides an overview of the tools and 

approaches that I implemented during research. The third chapter describes the methodology of 

three core studies of this thesis. In general, each component of study has two primary sections: 

data preparation and analysis approach. The fourth chapter provides the results from LCA for 

M&R. The fifth chapter presents the results from the second component, LCA for the PVI effect. 

The fifth chapter presents the result from the third and final component, the LCA models. 

Significance factors of model, parameter selection, model accuracy and comparative emission 

analysis for different provinces are described in this chapter. The seventh and final chapter 

provides the conclusion of this MEng thesis and outlines the future areas of research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background of Pavement LCA Framework  

 LCA proposes a cradle-to-grave approach, assessing critical stages of an asset’s life. LCA 

requires inventory data and provides an impact assessment system that reflects on the 

environmental footprint for each critical stage of the asset. For LCA of any asset or product, three 

major phases are goal and scope definition, inventory analysis, and impact analysis. Pavement 

LCA also follows the same phases in its analysis period. 

 

2.1.1 Goal and Scope  

 According to the International Organization for Standardization (ISO) 14040 standard, an 

LCA study’s goal and scope must be defined at the beginning of LCA. Defining the goal of LCA 

includes identifying its purpose. In general, three purposes can be listed as follows. 

 Project level: To take a decision for a particular project 

 Network level: To take a decision for an entire highway network combining several 

continuous projects 

 Combination of project and network level: To take a decision for any zone through 

a set of discrete projects which are sufficient to identify that zone 

 The goal is vital because the variables to be used in the assessment are usually dependent 

on what the intended goal is.  

 The scope helps to establish the system boundaries and the limits of the LCA. The scope 

of an LCA study also clarifies whether this will quantify the environmental impacts of one system 

or will compare alternative systems. In the former situation, all the components of all life cycle 

phases need to be considered, whereas the latter situation allows the reasonable elimination of 

some components. The reason for the elimination is to avoid any unnecessary complexity.   

 Under the goal and scope definition phase, a functional unit can be described. The ISO  

defines the functional unit as “quantified performance of a product system for use as a reference 

unit” (International Organization for Standardization, 2006). The functional unit for pavement 
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should represent physical dimensions and pavement performance. Performance requirements can 

include analysis period, traffic type, asphalt mixture composition, etc. The functional units 

considered in an LCA study can be categorized and presented into physical, structural and 

annualized functional units (Ziyadi et al., 2017). 

 Physical functional unit: Physical dimensions of pavements refer to length, width, and the 

number of lanes for a road. This physical dimension is contingent upon the road 

classification system. However, when LCA considers special features of a road (i.e., 

parking lots, intersections etc.), different types of related measurements may be more 

appropriate.  

 Structural functional unit:  The structural properties of pavement construction material 

(specific gravity, percentage of material) and traffic loading (both for heavy and light 

vehicle) can be considered structural functional unit.  This functional unit is attributed to 

structural performance variables. 

 Annualized functional unit: The analysis period of LCA is considered annualized 

functional unit. The analysis period is denoted by the time horizon from the inputs to the 

outputs. As different infrastructure has different functional ages and requires maintenance 

after different time periods, therefore analysis period is fixed at the beginning of LCA. 

 

2.1.2 Life Cycle Inventory  

 Life cycle inventory data can be organized in the life cycle phases concept. The life cycle 

phases of the pavement include pavement design, material production, construction, use, 

maintenance and rehabilitation, and end-of-life.  

 Pavement design: Structural design of each pavement in the analysis, including surface, 

base, subbase, subgrade, shoulder, and drainage. 

 Material production: Raw material production, mixing of hot mix asphalt (HMA) or 

portland cement concrete (PCC) in plants, feedstock energy of materials that are used as a 

fuel, transport of materials from plant to site and vice versa. 

 Initial construction: Transport of materials and equipment to site, using equipment at the 

site and construction according to the design 
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 Maintenance: Pavement distress study, selection of maintenance alternatives, transport of 

materials and equipment to site, using equipment at the site, implementation of the selected 

alternatives, fuel consumption due to traffic congestion during maintenance 

 Use: Fuel consumption, rolling resistance effect for excess fuel demand (i.e., pavement 

vehicle interaction), albedo (solar radiation reflectibility of pavement surface), carbonation 

(absorption of carbon dioxide in pavement structure), nighttime illumination of the roads 

(energy demand) and generation of leachates from pavement materials (emission of 

chemical substances) (Ziyadi et al., 2017).  

 End-of-Life Phase: Material landfilling, reusing, recycling before landfilling in material 

production and construction phase (Recycled Asphalt Pavement) along with maintenance 

phase (Hot In-Place Recycling, Cold In-Place Recycling). 

 

2.1.3 Environmental Impact Assessment 

 Impact assessment entails determining the environmental relevance of all the inputs and 

outputs of each phase in the pavement life. This includes the meaningful environmental impacts 

associated with the production, maintenance, use, and end of life (EOL) phase of the assets. The 

summary result includes specific environmental impact categories, including acidification 

potential (kg SO2 eq.), global warming potential (kg CO2 eq.), human health respiratory effect 

potential (kg PM2.5 eq.), ozone depletion potential (kg CFC-11 eq.), smog potential (kg O3 eq.), 

and eutrophication potential (kg N eq.) (Alam et al., 2019).  

 For example, to quantify global warming potential (GWP), the emissions in CO2 can be 

measured based on the equivalence from the International Panel on Climate Change’s 100-year 

time horizon variables (Meil, 2006) as shown in the following equation. 

𝐺𝑊𝑃(𝑘𝑔) = 𝐶𝑂2 (𝑘𝑔) + [𝐶𝐻4 (𝑘𝑔) ∗ 23] + [𝑁2𝑂 (𝑘𝑔) ∗ 296]                             … (2.1) 

 

2.2 Review of Case Study Based Research 

 This section reviews the research articles related to pavement LCA from conference 

proceedings, journals and technical reports. The review intends to find out the current practices of 

pavement LCA and identify the gaps from where we can develop. As there is a lot of case study-

based pavement LCA research available. The following Table 2.1 summarizes the cited asphalt 
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pavement related literatures which overcame new challenges in their case study. It was found that 

the goals and scopes are different, and there are different system boundaries in the research. 

However, the review is summarized in chronological order. 

Table 2-1: A brief review of cited literature on pavement LCAs 

Serial 

No. 

Author Year  Pavement Life 

Cycle Phases 

Considered  

Impacts 

Considered  

Objectives of The 

Study  

1 

 

Häkkinen 

and Mäkelä  

1996  Materials, 

construction, 

maintenance, use  

Energy, air 

emissions, raw 

materials, noise  

To compare 

environmental 

impacts between 

concrete and asphalt 

pavements 

2 Horvath and 

Hendrickson  

1998  Materials, 

construction and 

EOL  

Energy, air 

emissions, raw 

materials, water 

releases, 

hazardous waste, 

water use  

To compare 

environmental 

impacts from asphalt 

and Steel-Reinforced 

Concrete Pavements  

3 Mroueh et al.  2000  Materials, 

construction, 

maintenance  

Energy, air 

emissions, raw 

materials, 

leaching water 

use, noise  

To examine the use 

of industrial by-

products in asphalt 

and concrete roads  

4 Stripple 2001 Materials, 

construction, 

maintenance, use 

Energy, air 

emissions, raw 

materials 

To examine JPCP* 

and asphalt 

pavement using hot 

and cold production 

technique 
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Serial 

No. 

Author Year  Pavement Life 

Cycle Phases 

Considered  

Impacts 

Considered  

Objectives of The 

Study  

5 Park et al.  2003  Materials, 

construction, 

maintenance  

Energy, air 

emissions  

To produce 

estimates for the 

materials extraction 

and production 

phase 

6 Zapata et al.  2005  Materials, 

construction 

Energy  To analyze the 

energy consumption 

of a CRCP** and an 

asphalt pavement 

7 Athena 

Institute  

2006  Materials, 

maintenance  

Energy and air 

emissions  

To compares the 

energy and global 

warming potential of 

asphalt and JPCP*  

8 Huang et al.  2009  Material, 

construction, 

maintenance  

Energy and air 

emission  

To cite five reasons 

that current 

pavement (until 

2009) LCA tools are 

inadequate 

9 Yu and Lu  2012  Materials, 

construction, 

maintenance, use 

and end of life  

Energy and air 

emissions  

To compare three 

overlay systems 

10 Vidal et al.  2013  Materials, 

construction, 

maintenance, 

recycling, use and 

end of life  

Energy and air 

emissions  

To compare the 

impact of zeolite-

based WMA 

pavements  and 

HMA 
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Serial 

No. 

Author Year  Pavement Life 

Cycle Phases 

Considered  

Impacts 

Considered  

Objectives of The 

Study  

11 Butt et al.  2014  Materials, 

construction, 

maintenance, use 

and EOL  

Energy and air 

emissions  

To calculate and 

compare energy 

consumption of 

binder and additives 

12 Schlegel et 

al. 

2016 Materials, 

construction, 

maintenance, 

recycling, use and 

end of life 

energy 

consumption 

To compare LCA for 

the use of HMA 

without hydrated 

lime and with 

hydrated lime  

13 Farina et al. 2017 Production, 

construction and 

maintenance 

Energy and global 

warming potential 

To focus on LCA 

road paving 

technologies using 

asphalt mixtures 

containing recycled 

materials and 

reclaimed asphalt 

pavement 

14 Santos et al. 2017 Construction and 

maintenance 

Energy, climate 

change, 

acidification, 

eutrophication, 

and 

photochemical 

ozone creation 

To provide the 

comparison of using 

American and 

European LCA tools 
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Serial 

No. 

Author Year  Pavement Life 

Cycle Phases 

Considered  

Impacts 

Considered  

Objectives of The 

Study  

15 Valle et al. 2017 Material 

production, 

construction, 

maintenance, use 

GWP To calculate the life 

cycle GWP due to 

climate change 

16 Chen and 

Wang 

2018 Material 

production, 

construction, 

maintenance, use 

and EOL 

GHG emission To quantify GHG 

emission of asphalt 

pavements 

containing RAP 

17 Santos et al. 2018 Construction, 

maintenance and 

rehabilitation 

Air, water and 

soil emission 

To understand the 

environmental 

impact of reducing 

mixing temperature 

by WMA 

18 Wang et al. 2018 Material 

production, 

construction, 

maintenance, use 

and EOL 

Urban flooding, 

water recycling 

and water 

purification. 

To quantify the 

environmental 

impacts of pervious 

pavements 

19 Samieadel et 

al. 

2018 Material 

production, 

construction, 

maintenance, use 

and EOL 

Global warming 

potential index 

and energy 

consumption 

To compare LCA of 

bio-modified binder 

and conventional 

asphalt binder 
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Serial 

No. 

Author Year  Pavement Life 

Cycle Phases 

Considered  

Impacts 

Considered  

Objectives of The 

Study  

20 Cao et al. 2019 Material 

production, 

construction, use 

energy 

consumption 

To identify the long-

term energy-saving 

role of WMA 

technologies in AR 

pavement 

 

*JPCP = Jointed plain concrete pavement 

**CRCP = Continuously reinforced concrete pavement 

 The summary reveals that almost all of the LCA study is for comparison purpose. Initially, 

it started with regular asphalt and concrete pavement to compare their environmental impact 

(Häkkinen & Mäkelä, 1996; Horvath & Hendrickson, 1998). There are some research that 

considered different types of concrete pavement (JPCP, CRCP) for comparative analysis (Meil, 

2006; Stripple, 2001; Zapata & Gambatese, 2005). In 2009, Huang et al. studied the gap and 

inadequacy where pavement LCA can be developed for better life cycle assessment. Though few 

studies were using industrial by-product and cold production techniques in 2000 and 2001,  so 

many researchers studied environmental impact characterizing pavement material mixture design 

and construction process (Mroueh et al., 2000; Stripple, 2001). Three overlay system (HMA 

overlay, PCC overlay and crack, seal & overlay) had been studied to find out their environmental 

impact (Yu & Lu, 2012). Vidal et al. 2013  and Santos et al. 2018 studied the application of WMA 

in the pavement life cycle (Santos et al., 2018). Recently, there have been several studies on 

sustainable asphalt mixture using additives, hydrated lime and biomodified binder (Butt et al., 

2014; Samieadel, Schimmel, & Fini, 2018; Schlegel et al., 2016). Besides material 

characterization, the old recycled pavement application effect recently has also become an 

important topic of research using the pavement LCA approach (Farina, Zanetti, Santagata, & 

Blengini, 2017). The environmental impact of a new type of pavement for better drainage, pervious 

pavement is explained by Wang et al. 2018. 
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2.3 Review of PVI Effect Based Research 

The pavement vehicle interaction (PVI) effect includes three factors: pavement roughness, 

deflection, and texture depth. Velinsky and White performed the first investigation of fuel 

consumption due to pavement roughness in 1979. They developed a roughness model to predict 

fuel consumption based on field data (Velinsky & White, 1979). In their study, they found that 

vehicle rolling resistance increased with the increase in pavement roughness because of the energy 

dissipation in tire and vehicle suspension system. After Velinsky and White 1979, a great deal of 

research was conducted considering different types of vehicle classes (Bester, 1984; Delanne, 

1994; Plessis, Visser, & Curtayne, 1990), speed categories (Cenek, 1994; Sandberg, 1990) and 

experimental methodologies (i.e., laboratory prototype testing, test track, etc.) (Amos, 2006; A. 

M. A. Soliman, 2006).  

 In 1984, Bester (Bester, 1984) stated that pavement roughness has a strong correlation with 

PVI effect and consequent fuel consumption. In 1990, Sandberg (Sandberg, 1990) found that 

pavement roughness could affect vehicle fuel consumption as much as 12% for the surface 

condition tested. Cenek (Cenek, 1994) observed in 1994 that an increase in roughness level from 

1.4 to 2.3m/km could lead to a rise in PVI by 55%. The remaining researchers also found a linear 

relationship between energy consumption and pavement roughness.   

 Besides, some research were done to develop a model of excess fuel consumption because 

of pavement roughness. In 2006, Soliman, 2006 simulated vehicle motion on two roadway sections 

with a quarter car model. However, the most extensive study was performed in 2012 by Chatti and 

Zaabar (Zaabar & Chatti, 2010). They conducted a field investigation on five different roadways 

sections with five vehicle classes: passenger cars, sport utility vehicles, passenger vans, light trucks 

and articulated heavy trucks. Tests were performed in both winter and summer environmental 

conditions. Three vehicle speeds were involved: 35mph, 45mph, and 55mph. It was concluded that 

the increase in pavement roughness results in an increase in energy consumption using mechanistic 

model based Highway Development and Management software (HDM-4). For heavy vehicles, the 

consequences of fuel consumption are prevalent compared with light vehicles.  

 Deflection occurs after the immediate imposition of the dynamic load from vehicles on the 

asphalt surface. The tire sinks into the pavement surface, which is visually undeterminable. With 
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the increase in depth of the sink, an uphill slope shows up in front of a tire. Therefore, additional 

energy is required to compensate for this slope.  

 Compared with research on roughness-based PVI effect, deflection-related PVI research 

was less extensive due to less sophisticated technical supports. Zaniewski et al. 1985 conducted 

quantitative research on this topic. They concluded that 20% more fuel consumption was observed 

in asphalt pavement compared with concrete pavement (Zaniewski & Butler, 1985). The higher 

stiffness of concrete pavement compared with asphalt pavement was reported as the reason. They 

used the data that was developed by the Federal Highway Administration and Texas Research and 

Development Foundation from 1979-1982 for updating vehicle operating cost.      

 Recent research was done based on empirical observations and which relate pavement 

deflection to various factors such as pavement temperature, vehicle classes, speed variation and 

road grade (Benbow, Iaquinta, Lodge, & Wright, 2007; Hultqvist et al., 2002; Sumitsawan, 

Ardenkani, & Romanoschi, 2009; Taylor, Farrel, & Woodside, 2002). In 2010, Lenngrenn and 

Feldner (Lenngren & Faldner, 2011), using a falling weight deflectometer, stated that the energy 

losses for asphalt pavement deflection are almost four times greater than for concrete pavement. 

Even light and articulated trucks at low speed can cause a 5% increase in fuel consumption over 

asphalt pavement in summer conditions (Chatti & Zaabar, 2012). 

 More recently, Akbarian et al. 2012 conducted a state-of-the-art study of PVI based on a 

mechanistic approach. They developed a mechanistic based PVI model for pavement deflection 

(Akbarian et al., 2012). In their study, the viscoelastic pavement was considered on an elastic 

foundation. A new temperature-dependent factor, relaxation time has been introduced. Currently, 

several researchers are addressing the PVI effect on pavement LCA. In the United States, there 

have been studies of life cycle assessment considering the PVI effect in Virginia (Akbarian, 

Louhghalam, & Ulm, 2014), Florida, Arizona, Colorado and Missouri (Gregory, 2017).   

2.4 Review of LCA Model Based Research  

 This section aims to provide an in-depth literature review on pavement LCA modeling 

research. As one of the research objectives of this thesis is to develop the model of pavement LCA 

for Canadian road sections using machine learning approaches, most of the literature reviews 

below are related to pavement LCA modeling and machine learning algorithm.  
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 Several studies develop LCA models and tools for the life cycle of all or particular phases 

of the pavement life cycle. Dr. Horvath of the University of California Berkeley developed an 

LCA framework and computer-based tool for the Recycled Materials Resource Center, USA 

(Horvath, 2004). Pavement Life-cycle Assessment Tool for Environmental and Economic Effects 

(PaLATE) is a Microsoft Excel-based tool that estimates the environmental and economic impacts 

for a single project at a time. The use phase of the pavement life cycle was not considered in this 

tool. Zhang et al. proposed another model that combined four different external models: material 

environmental impact model, vehicle emissions model, construction equipment model, and a 

traffic flow model (Zhang et al., 2008).  

 Huang et al. described the development of an LCA model for pavement construction and 

maintenance that accommodates recycling and up-to-date research findings (Huang et al., 2009). 

Microsoft Excel was selected for the calculation and visualization of emission results in their 

model.  

 The studies mentioned above established a framework for LCA of a particular project, 

although some uncertainty issues became necessary to resolve. Baker and Lepech mentioned 

several significant uncertainties: database uncertainty, model uncertainty, measurement error and 

uncertainty in preferences (Baker & Lepech, 2009). To address such uncertainties, Kim et al. 

developed an artificial neural network model for a Korean project only for the material production 

and construction phases (Kim, Lee, Park, & Kim, 2013). They considered real-life asphalt 

pavement projects and input variables after interviews with domain experts. In their study, they 

examined only the greenhouse gas (GHG) emission from their project. Model accuracy was 

between -30% and 50%. Noshadravan et al. addressed the uncertainty due to the pavement 

roughness prediction in the pavement’s entire life (Noshadravan, Wildnauer, Gregory, & Kirchain, 

2013). This pavement roughness prediction value was retrieved from the pavement ME design 

tool. Global warming potential (GWP) value was measured using a Monte Carlo simulation to 

address uncertainty propagation in GWP. 

 Santos et al. stated that LCA tools using a spreadsheet approach has several limitations 

including issues with managing and storing a large amount of data, dealing with a variation of data 

that change over a project analysis period and addressing intrinsic sophistication for vehicle fuel 

consumption modeling using spreadsheet macros. Therefore, they proposed a pavement LCA 

model written in visual basic and SQL programming language (João Santos et al., 2015). 
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 Yu et al. found one limitation of the 2015 LCA model research by Santos et al. (Yu, Qiang, 

& Gu, 2016). Little attention was paid to the reliability of the data source in pavement LCA. As 

the energy intensity coefficient (EIC) (MJ/kg) of each material has a wide range in different 

literature, this can cause significant uncertainty in the impact assessment. For example, it was 

found in previous literature that asphalt’s energy intensity coefficient was 0.7-6.0 MJ/kg. 

Therefore, Yu et al. proposed the Pedigree Matrix method. In this method, each dataset was 

evaluated based on the data quality indicator (DQI) and converted to the probability density 

function of the modified beta distribution. Three weighting methods were employed to estimate 

weights for different datasets. Then, through a Monte Carlo simulation approach, the ultimate 

probability density function of EIC was determined. This approach helped to quantify the 

uncertainties in LCA results.  

 To quantify the uncertainty of input variability, Ziyadi and Al-qadi proposed a simple 

method in each source to account for model variable and model-form uncertainties (Ziyadi & Al-

qadi, 2019). Interval analysis was used to input variability uncertainty analysis. This interval 

analysis was performed through the Monte Carlo simulation. A Bayesian surrogate model was 

used to estimate model variable uncertainty. For the evaluation of model-form uncertainty, the 

orthogonal polynomial basis function concept was implemented. Using the three quantification 

approaches, uncertainties were analyzed for energy and GWP assessment for the Chicago 

metropolitan area. 

 

2.5 Tools and Approach 

 Several tools and mathematical approaches have been implemented to execute the life 

cycle assessment. Athena Pavement LCA tool was used to estimate GWP emission for M&R and 

PVI effect studies (Alam et al., 2020; Alam et al., 2019) . In the LCA modeling study, for managing 

large LTPP database SQL was used. Python language was used for applying different machine 

learning algorithms on SQL led LTPP data. The fractional factorial design approach was used for 

sensitivity test in M&R studies to find out the significant factors, which were then used in LCA. 

The hierarchical clustering method was introduced in the PVI effect study for the clustering of 

Canadian LTPP sections with different climatic conditions. 
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2.5.1 Athena Pavement LCA 

 The Athena Pavement LCA, developed by the Athena Sustainable Materials Institute in 

Canada, was designed for Canadian conditions and selected US regions, relating to roadway life 

cycles (Ahammed et al., 2016). The program includes an adequate material database and allows 

the user to select the design specification of pavement surface, granular sub-base and base 

materials and shoulder materials. Besides the material properties, the Athena Pavement LCA 

program comes equipped with a vast library of selectable machinery and practices. It also features 

quantifiable data, such as project pavement segment length, to adopt a functional unit on which 

the practices of the case study are compared. Based on this information, Athena Pavement LCA 

can analyze all the stages in a pavement’s life cycle except for the EOL stage.  

           After assessment of the specific M&R techniques, the project reports result in an array of 

impact categories including emission factors to air, water, and land. For the absolute value, there 

are options to select from all the listed measures which include energy consumption, air emissions, 

water emissions, land emissions, and resource use. The summary result includes more specific 

environmental impact categories including fossil fuel consumption, acidification potential, global 

warming potential, human health respiratory effect potential, ozone depletion potential, smog 

potential, and eutrophication potential. Similarly, pavement vehicle interaction (PVI) effects can 

be estimated by providing pavement roughness and deflection modulus values between major 

roadway rehabilitation. Moreover, for the maintenance phase, the sub-columns are labeled to 

separate material and equipment from transportation. There is also a total value table and the 

specified units for each impact category. 

 

2.5.2 SQL and Python 

 SQL stands for Structured Query Language. SQL is used to communicate with a database 

file. In the LCA modeling study, a large database of all Canadian road sections was filtered, 

manipulated and prepared for the modeling purpose. Data modeling was performed using python 

language. For this purpose, a free integrated development environment (IDE), Spyder, was used. 

Spyder IDE includes editing, interactive testing, debugging and introspection features. Under this 

IDE, pandas open-source data analysis and manipulation tools were used. During the preparation 

of the data for the machine learning algorithms, it was important to develop multidimensional 

arrays. The array development is performed using NumPy library. Scikit-learn machine learning 
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library was used for regression algorithms including multiple linear regression, polynomial 

regression, support vector regression (SVR) and decision tree regression. 

 

2.5.3 Fractional Factorial Design 

 A factorial design is one of the experimental design approaches which aims to find out how 

multiple factors or independent variable affect a dependent variable. A factorial design with two 

factors that each has two levels is called a 2×2 factorial design. There are two types of factorial 

design: full factorial design and fractional factorial design.  

 Full factorial design leads to experiments where all possible combinations 

of factors and levels are considered. Factors are the independent variables. In most of the 

experiences, we deal with factors. Factors affect the outcome or dependable variable of the 

experiment. In a factorial design, each treatment factor (the factor that is of interest in a 

study/experiment) in an experiment will have two levels. Two levels are the minimum and 

maximum values of the corresponding treatment factor. All factor interactions are considered in 

full factorial design which makes itself exhaustive, time-consuming and quite expensive approach.   

 Therefore, the fractional factorial design approach emerges to resolve the drawback of full 

factorial design. This design method considers only a subset of the possible permutations 

of factors and levels. The standard notation for fractional factorial designs is 𝑙𝑘−𝑝, where, l is the 

number of levels in a treatment factor, k is the number of treatment factors, p is the number of 

confounding interactions. Confounding occurs when nobody is sure which factors – or 

combinations of factors – are affecting the output. A blocking approach can help to minimize 

confounding. Design-Expert software can be used for the fractional factorial design of a large 

dataset. 

 

2.5.4 Hierarchical Clustering  

 Hierarchical clustering is an algorithm that groups similar objects into groups or clusters. 

In hierarchical clustering, a dendrogram is a tree diagram to illustrate the arrangement of clusters. 

It shows relationships among similar data. To interpret a dendrogram, it is necessary to examine 

the heights on the Y-axis at which any two data are joined together and will indicate whether they 

have similar descriptive characteristics. The height on the Y-axis is based on the Euclidean 

distance matrix which is estimated from the complete linkage method (when a cluster is formed, 

https://sixsigmastudyguide.com/factorial-design-terminology#factors
https://sixsigmastudyguide.com/factorial-design-terminology#level
https://sixsigmastudyguide.com/factorial-design-terminology#factors
https://sixsigmastudyguide.com/factorial-design-terminology#factors
https://sixsigmastudyguide.com/factorial-design-terminology#level
https://sixsigmastudyguide.com/factorial-design-terminology#level
https://sixsigmastudyguide.com/factorial-design-terminology#treatment-factor
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its distance to other objects is computed as the maximum Euclidean distance between any object 

in the cluster and the other object). In the dendrogram, the height denotes the value of this 

Euclidean distance metric between clusters. As a result, if two clusters merge at a height x, it means 

that the distance between those clusters is x. 

 

Figure 2-1: Dendrogram 

 The silhouette width value is a measure of how similar an object is to its own cluster (intra-

cluster) compared to other clusters (inter-cluster). The silhouette width value ranges from −1 to 

+1, where a high value indicates that the objects have similarity to its own cluster and less 

similarity with neighboring clusters. Silhouette plot is drawn using trial and error method for 

different numbers of clusters, i.e., 1, 2, 3, 4, 5, and more. 

 

2.5.5 Machine Learning Algorithm  

 Machine learning algorithms are programs combining math and logic that adjust 

themselves to learn the dataset and predict values for similar datasets. A machine learning 

algorithm performs better when it is exposed to a large dataset in the same way human learns over 

time. 

 

2.5.5.1 Conventional Regression 

 A multiple linear regression model can have the following mathematical form. 
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𝑦 =  𝛽0+𝛽1𝑥1+𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀                                                                … (2.2) 

 Here, y is the response or dependent variable with k number of regressor variables. The 

parameters 𝛽0 , 𝛽1 , 𝛽2, ……, 𝛽𝑘 are called regression coefficients. The least-squares method can 

be used to estimate the regression coefficients. Models that include interaction effects are called 

polynomial regression model. As linear and polynomial regressions are old and conventional 

regression techniques, we skipped the details.    

  

2.5.5.2 Support Vector Machine Regression 

 In linear regression, it is a goal to minimize the error rate, whereas, in support vector 

machine regression (SVR), it is the goal to fit the error within a certain threshold. In SVR, the 

important task is to keep all the points within the boundary line (dashed lines as shown in Figure 

4) and the best fit line indicated by the hyperplane (solid one) that has a maximum number of 

points. These two dashed lines are ε distance away from the reference data. This distance value is 

chosen by the user. 

 When there is a nonlinear relationship between the predictor variable and response, we 

consider to enlarge the feature (variable) space using function of the predictor variable in order to 

address non-linearity. This enlargement of feature space results in quadratic and cubic terms. The 

function which is used to do this is called kernels.  

 

 

Figure 2-2: Basic concept of support vector regression in 2D 
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 The optimization problem for SVR can be shown in the following mathematical form 

(Kleynhans, Montanaro, Gerace, & Kanan, 2017). 

 

Minimize 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖

∗ + 𝜉𝑖)
𝑛
𝑖=1  

Subject to {
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ ε + 𝜉𝑖

∗

⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ ε + 𝜉𝑖
 

 

 Where w is the learned weight vector, 𝑥𝑖is the ith observed variable value, 𝑦𝑖 is observed 

response value and 𝜉𝑖 is the distance between the boundary line and values outside the boundary 

line. C is another constraint value that controls the penalty imposed on the observations outside 

the boundary line. This penalty helps to prevent overfitting. 

  

2.5.5.3 Decision Tree Regression  

 Decision tree regression segments the predictor into a number of simple regions. In each 

region, there are observation values. The mean of these regions is decided as the predicted value 

for that individual region. The systematic method to build a decision tree follows two common 

steps. 

 

 The set of response variable values for corresponding independent variable values 

𝑋1, 𝑋2, … … , 𝑋𝑗 are divided into 𝐽 distinct and non-overlapping regions 𝑅1, 𝑅2, … … , 𝑅𝑗 

 Though the region 𝑅𝑗 could have a set of observations, there is only one prediction value 

which is the mean of the response values for the observations in 𝑅𝑗 

 

 In order to divide the predictor space into high dimensional rectangles (regions), recursive 

binary splitting approach can be used. The splitting begins at the top of the decision tree at which 

point all observations can be found in a single region and then successively segments the regions. 

According to recursive binary splitting, the predictor 𝑋𝑗 and the cut point s is selected such that 

splitting the predictor space into the regions {𝑋|𝑋𝑗 < 𝑠} and{ 𝑋|𝑋𝑗 ≥ 𝑠} and leads to the maximum 

possible reduction in the residual sum of squares (RSS). {𝑋|𝑋𝑗 < 𝑠} means the region of predictor 
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space in which 𝑋𝑗 takes a value less than s. For any𝑗 and 𝑠, the pair of half-planes and then for 

lowest RSS, the description can be written in a mathematical form as follows. 

 

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 < 𝑠} 

𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≥ 𝑠} 

𝑚𝑖𝑛 ∑ (𝑦𝑖 − �̂�𝑅1
)2

𝑖:𝑥𝑖∈𝑅1(𝑗,𝑠)

+ ∑ (𝑦𝑖 − �̂�𝑅2
)2

𝑖:𝑥𝑖∈𝑅2(𝑗,𝑠)

 

 

 Here, �̂�𝑅1
and �̂�𝑅2

  are the mean responses for the observations in 𝑅1(𝑗, 𝑠) and 𝑅2(𝑗, 𝑠), 

respectively. We split one of the two previously identified regions. We now have three regions. 

Again, we look to split one of these three regions further, so as to minimize the RSS. The 

segmentation continues until a stopping criterion is reached. Typically the stopping criterion is to 

continue segmentation until no region contains more than five observations.  
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CHAPTER 3 

METHODOLOGY 

 The methodology section includes the steps which were performed to complete the study. 

Each component of the study is described into two subsections: data preparation and analysis 

approach.   

 

3.1 Methodology I 

 Methodology I describes the methodology of environmental emission study for different 

maintenance and rehabilitation techniques in the city of St. John’s context. 

 

3.1.1 Data Preparation 

 The necessary data is prepared for the LCA study of M&R. This section describes which 

data has been used and how necessary data for LCA is filtered for the study. 

 

3.1.1.1 Data 

 To evaluate various M&R techniques in terms of environmental impacts, a statistical 

technique was considered to determine which factors are significant for environmental impact 

analysis. A sensitivity test was performed for CIR through fractional factorial design in Design 

Expert 11. Table 3-2 presents the factors that were considered for sensitivity test whereas Table 3-

1 describes the asphalt mixture information. Global warming potential (GWP) was chosen as a 

response variable.  After the sensitivity test, substantial experimental factors were attributed in the 

Athena Pavement LCA program along with the necessary specification of materials for the 

analysis. The objective of this hypothetical study is to compare different asphalt pavement M&R 

techniques using LCA. Therefore, this comparative study does not cover a road network, rather it 

is focused on an asphalt pavement project only. As a result, road traffic was not considered in the 

sensitivity analysis.  

Table 3-1: Asphalt mixture information 

Mix ID Binder Type 
Asphalt Content 

(% by weight) 
VMA (%) Density (ton/m3) 

Maximum 

Aggregate Size 

NL-1 PG 64-22 6 14 2.46 19mm 

HL-3 PG 64-28 4 16 2.24 16mm 
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3.1.1.2 Sensitivity Test 

 For the sensitivity analysis, two types of pavement surfaces were considered; one of which 

was titled HMA PG 64-22 indicated as “ NL-1”—a common mix design used in Newfoundland 

and Labrador and the other was “HL-3”—used in Ontario. Asphalt mix properties are summarized 

in Table 3-1. NL-1 was considered according to the mixture design specifications of 

Newfoundland Department of Transportation (Department of Transportation and Works, 2011). 

Similarly, HL-3 was considered according to the Ontario provincial standard specification (OPSS) 

310 ( Ministry of Transportation Ontario, 2017). The density of NL-1 is 2.46 ton/m3 which is 

greater than that of HL-3 (2.24 ton/m3) according to Athena Pavement LCA database. Two levels 

(generally low and high levels which are represented by -1 and +1 respectively), namely Granular 

A and reclaimed asphalt pavement (RAP) mixtures were considered as base/subbase material.  

 

Table 3-2: Factors for sensitivity test for statistical analysis 

Factor  Coding 

Considered LCA Design variable 
Letter 

designation 
  -1 1 

Avg. distance plant to site (km) A  1km 4km 

No. of pavement lift B  1 3 

Pavement surface asphalt mix type C  NL-1 HL-3 

Base/Subbase material type D  Granular A RAP 

% of affected road E  5% 20% 

Shoulder F   Unpaved Paved 

 

 Average distance of plant to site was assigned with two levels: 1 km and 4 km. If the factor 

“distance of plant to site” becomes significant for the small values of distance, certainly for the 

large value, this factor would be significant. Therefore, the average distance of plant to site was 

considered small (1 and 4 km) for the sensitivity test. Two levels of pavement lift were used: 1 and 

3. For this test, the shoulder of road pavement also had two levels: paved and unpaved. Finally, 

the percentage of affected road was considered to be 5% and 20%. Global warming potential 
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(GWP) was chosen as a response variable. All of the considered six factors with two levels 

represented by -1 and +1 for each factor are shown in Table 3-2. After the execution of projects 

for 32 combinations of assigned factors through the LCA software, a half fractional factorial design 

was implemented in Design Expert 11 using GWP values from LCA report results. Based on the 

half normal probability plot (Figure 3-1) and the p values of the ANOVA results (Table 3-3), it 

was concluded that the LCA system was highly sensitive to the change of average transport 

distance between the plant to site, the percentage of affected road, and the number of pavement 

lifts. 

 

 

Figure 3-1: Half-Normal percentage probability plot 
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Table 3-3: ANOVA summary 

Source 
Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 
F-value p-value 

Model 3.20E+08 3 1.07E+08 1266.31 < 0.0001 

A-Avg. distance plant to 

site 
2.51E+07 1 2.51E+07 297.71 < 0.0001 

B-No. of pavement lift 2.24E+07 1 2.24E+07 265.75 < 0.0001 

E-% of affected road 2.73E+08 1 2.73E+08 3235.49 < 0.0001 

Residual 2.36E+06 28 84269.16     

R² 0.9927      

Adjusted R² 0.9919      

Predicted R² 0.9904      
Adequacy of Precision 90.4373    

  
 

3.1.2 Analysis Approach  

3.1.2.1 Assumptions and Functional Units  

 To quantify the environmental impacts of various M&R techniques in Athena Pavement 

LCA, a number of input parameters are required including project size (in terms of road length) 

and project life. A functional unit of a 1 km two-lane asphalt roadway pavement was considered 

for a 30-year project life span in St. John’s, NL. The pavement included one pavement lift with 

two granular layers (base and subbase), and an unpaved shoulder on both side of the roadway. For 

transporting materials, the average distance of plant to site, site to stockpile and equipment depot 

to site was considered to be 30 km in another Canadian study [Manitoba case study (Ahammed et 

al. 2016)]. A study in the Netherlands considered distance from plant to site within a range of 44 

to 120 km. 30 km distance was considered reasonable to assume, hence was decided to be used for 

this study as well. According to updated provincial design and construction standard (Highway 

Design Division, Department of Transportation and Works, Government of Newfoundland and 

Labrador) issued in April 2017, HMA PG 64-22 (referred as NL1) was considered in the LCA 

design section as pavement surface material where base material was granular A and subbase 

material was granular C. Granular A was used for the construction of the unpaved shoulder.  
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Table 3-4: Road section design dimensions 

Element name Material 

Width 

(m) 

Thickness 

(mm) 

Lane 1 Lift 1 NL-1 3.5 60 

Lane 2 Lift 1 NL-1 3.5 60 

Left Unpaved Shoulder Granular A 0.5 40 

Right Unpaved Shoulder Granular A 0.5 40 

Granular Layer 1 (Base) Granular A 8 100 

Granular Layer 2 

(Subbase) Granular C 8 100 

 

 In this component of the study, pavement distress was considered 20% of total surface area. 

In order to compare the LCA for M&R techniques, expected life of each M&R technique was kept 

same (5 years). As a result, during 30 years of study period, maintenance and rehabilitation was 

performed five times.  

 

3.1.2.2 Life Cycle Phase and System Boundaries 

 As the objective of this LCA study for M&R is attributed to the comparative analysis of 

different M&R techniques, use phase and end of life phase were exempted. Material production, 

initial construction and maintenance phase were considered during LCA data inventory. For the 

analysis purpose, only the emission report for M&R were the points of interest. 

 

3.2 Methodology II 

 Methodology II describes the methodology of environmental emission study for the PVI 

effect in the Canadian context. 

 

3.2.1 Data Preparation 

 The necessary data collection and preparation technique for the study is explained in this 

section. LTPP road sections of Canada is grouped first using a clustering approach. When the 

clustering was prepared, LCA was performed in each cluster to understand the PVI effect in LCA.  
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3.2.1.1 LTPP Data 

The Federal Highway Administration’s (FHWA) Long-Term Pavement Performance 

(LTPP) program collects and stores pavement performance data from in-service test sections 

across the United States and Canada (FHWA, 2018). Out of 2,581 LTPP road sections named as 

strategic highway research program (SHRP) ID, 141 sections exist in different provinces in 

Canada. Since it was excessively time-consuming to consider all 141 test sections, in this present 

component of the study, 22 test sections were selected, as shown in Table . It was also very 

challenging for us to find a road section with all the necessary information (values of international 

roughness index or IRI, traffic data, etc.).  

Table 3-5: Canadian LTPP road sections 

Province  SHRP ID Road 

Number/Name 

Selected 

Test Section 

Test Section 

ID 

Newfoundland 1801, 1803, 1808 Trans-Canada 

Highway 

1801, 1803 TS09, TS12 

New 

Brunswick 

6804 Highway 102 6804 TS18 

 
1684 Trans-Canada 

Highway 

1684 TS08 

 
3803, 1802 Highway 11 1802 TS11 

Ontario 1622, B310, B320, B330, 

B340, B360-62, B322 

Highway 11 B310 TS22 

 
AA01-03, BA01-03, 

BA61-62, AA62 

Highway 48 
 

 

 
A310-11, A320, A330, 

A340, A350, A311, 1620 

Highway 400 
 

 

 
2811, 2812 Highway 402 2812 TS13 

 
1680, 1806 Highway 404 

 
 

 
0901-03, 0960-62 Trans-Canada 

Highway 

0960 TS04 

Quebec 9018, 3001 Highway 30 
 

 
 

1021, 1125, 3015-16, 

A310, A320, A330, A340, 

A350 

Highway 40 1021 TS06 
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Province  SHRP ID Road 

Number/Name 

Selected 

Test Section 

Test Section 

ID 

Quebec 0903, A901-03 Highway 170 0903 TS03 
 

1127 Highway 73 1127 TS07 
 

2011 Highway 212 
 

 
 

3002 Highway 440 
 

 

Manitoba 0501-09, 6450-51, 6452, 

6454, 1801, A310, A331, 

A320, A330, A340, A350-

51 

Trans-Canada 

Highway 

1801 TS10 

 
3802 Highway 75 

 
 

 
AA01-03, AA61 Highway 16 AA01 TS21 

Saskatchewan 0901-03, 0959-62, 6405, 

B310, B320, B330-31, 

B340, B350-51 

Trans-Canada 

Highway 

0901 TS02 

 
6410, 6412 Highway 11 6410 TS17 

 
A310, A320, A330, A340, 

A350-52, A6400, A6420, 

A6801 

Highway 9 A310 TS19 

Alberta A901-03 Crownest 

Highway 

A901 TS20 

 
1803, 0501-09 Highway 16 0501 TS01 

 
1805 Highway 201 

 
 

 
8529 Trans-Canada 

Highway 

 
 

 
2812 Highway 21 2812 

(Alberta) 

TS14 

 
1804 19 

 
 

British 

Columbia 

6006 99 6006 TS15 

 
6007 Trans-Canada 

Highway 

6007 TS16 

  9017, 1005 5 1005 TS05 
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It was found that there were several test sections in each major road and in the same climate 

conditions. From each road, at least one representative test section was selected which had 

sufficient data for the LCA. To cover a wide variety of climatic conditions and to reduce 

unnecessary road sections, representative road sections were selected for this component of the 

study.  

In Table 3-5, it can be seen that all 22 selected test sections were labeled as Test Section 

(TS) for more easily processing and presenting them visually in the data analysis. Note that in the 

selection process, it was considered that representative road sections from each province were 

available. However, Prince Edward Island and Nova Scotia were excluded since they did not have 

any LTPP sections or lacked the available data needed for this component of the study.   

 The climate module of the LTPP database contains general environmental information 

from weather stations located near the test sections. In addition, a road section-specific statistical 

estimate based on as many as five nearby weather stations is available. These statistical estimates 

are called "virtual weather stations (VWS)” The following equation is used to weight the influence 

of operational weather station values based on the distance from the operational weather station to 

the virtual weather station. 

                                                               𝑉𝑚 =
∑

𝑉𝑚𝑖

𝑅𝑖
2

𝑘
𝑖=1

∑
1

𝑅𝑖
2

𝑘
𝑖=1

                            … (3.1)                                

Where 

𝑉𝑚= calculated data element for day 𝑚 for the VWS  

𝑉𝑚𝑖= value of data element on day 𝑚 for operational weather station 𝑖  

𝑅𝑖= distance between operational weather station 𝑖 and pavement project site  

𝑘 = number of weather stations associated with the project site (up to 5)  

 

 To compute the annual freezing index, the following equation is used: 

    

                                                           𝐹𝐼 = ∑ (0 − 𝑇𝑖)𝑛
𝑖=1                      … (3.2) 

 

Where 

𝐹𝐼 = freezing index, degrees Celsius (°C) degree-days  
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𝑇𝑖= average daily air temperature on day 𝑖, °C  

𝑛 = days in the specified period when the average daily temperature is below freezing  

i = number of days below freezing 

 When using this equation, only the days where the average daily temperature is below 

freezing are used. Therefore, the freezing index is the negative of the sum of all average daily 

temperatures below 0°C within the given period. 

Table 3-6: Summary of climate characteristics for the road sections  

Test Section ID  SHRP ID Annual 

Precipitation 

(mm) 

Annual 

Temperature 

(℃) 

Annual Freezing 

Index  

(℃ degree days) 

TS01 0501 496.2 2.6 1265 

TS02 0901 432.1 2.2 1697 

TS03 0903 971.3 2.7 1558 

TS04 0960 820.1 4.9 1120 

TS05 1005 414.4 5.8 530 

TS06 1021 1063.9 5.1 1031 

TS07 1127 1188 4.8 1113 

TS08 1684 1060.8 5.9 840 

TS09 1801 

(Newfoundland) 

1424.1 5.6 421 

TS10 1801 (Manitoba) 513.8 2.5 1722 

TS11 1802 1103.3 5.8 795 

TS12 1803 1434.6 4 787 

TS13 2812 (Ontario) 963.6 8.3 489 

TS14 2812 (Alberta) 378.1 3.6 1174 

TS15 6006 1342.7 10.5 25 

TS16 6007 1676.6 10.3 56 

TS17 6410 378.1 3.1 1582 

TS18 6804 1115.3 5.3 885 

TS19 A310 

(Saskatchewan) 

499.1 2.3 1660 

TS20 A901 420.9 5.2 864 

TS21 AA01 507.1 2.8 1677 

TS22 B310 1137.6 5.1 976 

 

After selecting road sections based on representation and data availability, these were 

clustered to create a group of road sections with similar climatic conditions. Again, to create 

clusters from these road sections, the main consideration was the similarity in climatic conditions 

between the test sections although they are spatially located in different regions or provinces. To 
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this end, a number of climatic parameters including annual precipitation, annual temperature, and 

annual freezing index data were collected from the LTPP database and further processed for 

developing clusters using statistical techniques including dendrogram and silhouette plot. 

 

3.2.1.2 Hierarchical Clustering 

 For this component of the study, with climatic data from all the test sections, a dendrogram 

was developed and shown in Figure 3-1. It can be seen that some test sections with the similar 

climatic condition are in the same province. For example, TS1 and TS14 share the same climatic 

conditions (same height, 0.8 in the dendrogram) and they are both in the same province of Alberta; 

TS9 and TS12 also share the same climatic conditions (same height, almost 1 in the dendrogram) 

and are both in the same province of Newfoundland and Labrador. 

 

 

Figure 3-2: Cluster of test sections using a dendrogram 

 The same climatic conditions were not always found in the same province during this 

analysis. For example, TS5 and TS20, though they have the same climatic conditions (same height, 

0.7). They are located in British Columbia and Alberta, respectively.   

 Furthermore, the dendrogram provides a hint of a cluster with similar climatic conditions 

through an approach known as the “cutting approach” (the analyst cuts the tree with an imaginary 
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straight line horizontally along the same height). In our cluster dendrogram, if an imaginary line 

is drawn horizontally with a height of 5, it can produce two clusters: 

 TS15-TS16 are in one cluster (British Columbia) 

 The Remaining test sections are in a second cluster (Saskatchewan, Quebec, 

Ontario, Manitoba, Alberta, Newfoundland, and one section from British 

Columbia) 

This shows that both clusters have a similar condition within their own cluster. But, one 

cluster has dissimilarity with another cluster. This means that there could be the same climatic 

condition in different provinces. If another imaginary line with a height of 3 is drawn, it can 

produce three clusters:  

 TS15-TS16 (British Columbia) 

 TS3,4 and 17 (Quebec), 2 and19 (Saskatchewan), 21 and 10 (Manitoba), 1 

(Alberta)  

 TS5 (British Columbia), 20 (Alberta), 9 and 12 (Newfoundland), 13, 4 and 22 

(Ontario), 8, 18 and 11 (New Brunswick), 6 and 7 (Quebec)  

In the same way, for any two clusters among these above three clusters, one will have 

different climatic conditions from the others. However, test sections in the same cluster have close 

similarities among themselves. Using this cutting approach different numbers of the cluster can be 

produced. The number of cluster will be based on optimum similarities within the cluster. This is 

estimated by the silhouette plot which has been described in the following subsection.   
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Figure 3-3: Refinement of clusters using Silhouette plot technique 
 

 Silhouette plot is drawn using trial and error method for different numbers of cluster i.e., 

1, 2, 3, 4, 5 and more. When the number of cluster was 4, the silhouette width was optimum (0.53) 

as shown in Figure 3-2. Therefore, optimum similarities within cluster was available when four 

clusters were selected. 

 A question may arise as to why the silhouette width of TS13 and TS04 (both from Ontario) 

has less value compared with the rest of road sections in Cluster 2, in other words, TS13 and TS04 

has a less intra-cluster similarity. If these two sections make another cluster, then the inter-cluster 

dissimilarity becomes much weaker which is not desired for good clustering. 

 The same phenomenon also happened for TS14 (Alberta) of Cluster 1. Therefore, optimum 

silhouette width was achieved which satisfied the desirable conditions for both inter-cluster and 

intra-cluster. Table 3-7 shows the threshold values of climate parameters used for classifying each 
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cluster into a severity group based on overall climate conditions of the cluster. Climatic parameters 

of different clusters are classified in terms of severity (Table 3-8). The Canadian historical climate 

data from 1976-2005 is available through the climateatlas.ca web portal. Average annual values 

of precipitation, temperature and freezing index for major cities were collected from the portal. 

This information pattern helped to choose the severity classification threshold values for this 

component of the study. The average values of these factors in each cluster are summarized in 

Table 3-8, while the final severity level of each cluster is shown in Table 3-9.  

 

Table 2-7: Climate severity classification  

Climate Parameter Unit Low Medium High 

Annual Precipitation  mm < 400 400-1000 >1000 

Annual Temperature ℃ < 3 3-10 >10 

Annual Freezing 

Index 

℃ degree days < 100 100-800 >800 

    

Table 3-8: Average value of climate parameter for each cluster 
 

Average Annual 

Precipitation (mm) 

Average Annual 

Temperature (℃) 

 Average Annual 

Freezing Index (℃ 

degree days) 

Cluster 1 523.14 2.76  1516.14 

Cluster 2 1132.30 5.55  824.50 

Cluster 3 417.65 5.50  697.00 

Cluster 4 1509.65 10.40  40.50  

 

Table 3-9: Overall climate conditions for each cluster 
 

Average Annual 

Precipitation 

Average Annual 

Temperature 

Average Annual Freezing 

Index 

Cluster 1 Medium Low High 

Cluster 2 High Medium High 

Cluster 3 Medium Medium Medium 

Cluster 4 High High Low 
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3.2.2 Analysis Approach  

3.2.2.1 Assumptions and Functional Units  

 In a comparative study, a consistent functional unit must be chosen. The functional unit for 

pavements should represent physical dimensions and pavement performance. Performance 

requirements can include analysis period, traffic type, asphalt mixture composition, etc. The 

functional units considered in this component of the study were categorized and presented into 

physical, structural and annualized functional units (Ziyadi et al., 2017)  

 Physical functional unit: In this component of the study, 1 km length of road was 

considered with a lane width of 3.7 m and all of the roads considered for analysis were 

major arterial roads (equivalent to US Interstate). 

 Structural functional unit: Hot-laid asphalt mixture was considered in asphalt bound 

layers, while Granular A (a well-graded mixture of crushed gravel, sand and fines) was 

considered for unbound layers. Traffic loading considered for this component of the study 

included both light-duty vehicles (LV) and heavy-duty vehicles (HV), independently. HV 

included the vehicles which had a single-unit 2-axle and 6-tire or more, and the vehicles 

that had less than 6-tire considered as LV. 

 Annualized functional unit: The time when the road is initially constructed is considered 

as the beginning year. During road usage, IRI value increases until minor rehabilitation 

(surface patching, overlay etc.) is performed. When this rehabilitation is finished, IRI value 

is significantly reduced. The time period from the beginning to immediately before this 

rehabilitation is considered the analysis period. In summary, the analysis period for the 

roughness impact from PVI (consequence of GWP) was considered as the elapsed time 

period from the initial construction to immediately before the rehabilitation, when the IRI 

values were dramatically reduced. In this component of the study, the range of this analysis 

period is 7-16 years. The GWP values were measured for each year and per 1000 AADT. 
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3.2.2.2 Life Cycle Phase and System Boundaries 

 For this component of the study, the LCA analysis was limited to the use phase. The use 

phase data was collected only from the Canadian LTPP database. The GWP values were 

considered as a result of PVI which again were the consequence of pavement roughness and 

deflection (pavement structural issue). Albedo was not considered because of their lesser 

significance in asphalt pavement (Kaloush, Carlson, Golden, & Phelan, 2008). Implementation of 

a carbonation scheme is also not applicable in asphalt pavement, therefore, this was also left out 

of the analysis.  

 

3.3 Methodology III 

 Methodology III describes the methodology of the LCA model study in the Canadian 

context. The machine learning based LCA model for different phases of the pavement life cycle 

was developed.  

   

3.3.1 Data Preparation 

 The necessary data collection and preparation technique for the component of the study is 

explained in this section. All LTPP road sections of Canada was used to find out the CO2 emission.  

In order to get emission results, the pavement LCA framework was followed. The necessary 

calculation of formula is also described here. 

 

3.3.1.1 LTPP Data 

 There are 141 Canadian road sections available in the LTPP database. This component of 

the study aims to use data of these road sections to develop the LCA model. Figure 3-4 shows the 

map of LTPP road sections. Almost all of the LTPP road sections are in the southern part of 

provinces. Yukon, Northern territories and Nunavut don’t have any LTPP road sections. 
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Figure 3-4: All (141) Canadian road sections from LTPP database 

 

3.3.1.2 Formulation 

Material Production and Initial Construction 

 Material production and initial construction is the first step we consider in an LCA study. 

For the modeling purpose, material production and initial construction phase is again classified in 

the asphalt layer and granular layer.  The predictor variables considered for asphalt layers were: 

representative thickness, specific gravity of aggregate, asphalt binder, filler, percentage of coarse 

aggregate, fine aggregate, binder and filler. On the other hand, the predictor variables considered 

for granular layers were: representative thickness, specific gravity of aggregate, percentage of 

coarse aggregate and fine aggregate. CO2 emission (gram) for material production was calculated 

based on Equation 3.3 which required volume (ft3), density (lb/ft3) and CO2 emission rate 

(gram/ton).  

 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

=  ∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑖 ∗  𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∗𝑖=𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖       …(3.3) 

 

 Specific gravity from data Table 3-10 was multiplied by 62.4 lb/ft3 to convert to density. 

The CO2 emission rate is measured by the Equation 3.4. Carbon di-oxide emission from each dollar 
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expenditure, 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛/$ 𝑖 was retrieved from the PaLATE database, which imported the 

original data from Economic Input-Output (EIO) LCA (Zimmerman, 1997). 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑖 =   𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛/$ 𝑖 ∗
$

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠
𝑖

     … (3.4) 

  For construction purposes, the equipment model, fuel consumption rate and utility rate of 

that equipment model are important components. The density of diesel was considered constant, 

852gram/litre. 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑓𝑢𝑒𝑙 𝑚𝑎𝑠𝑠 for diesel was also constant, 3.16 gram of CO2 

per 1 gram of diesel. The general Equation 3.5 was used to calculate the emission. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

= ∑ ∑ (𝑉𝑜𝑙𝑢𝑚𝑒𝑖 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∗ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑗

𝑗=𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 
𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑖=𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 
𝑙𝑎𝑦𝑒𝑟

∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑢𝑒𝑙𝑗

∗ 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑓𝑢𝑒𝑙 𝑚𝑎𝑠𝑠 𝑗)/ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒𝑗              … (3.5) 

 

Maintenance Phase   

 As the pavement distress in Canadian road sections was experienced in the surface layer of 

pavement, only surface layer thickness was considered for the study. Crack filling for pavement 

cracks was considered. Crack filler material can be applied either hot or cold. Asphalt cement was 

applied using uncut flush fill configuration. The flush fill configuration was completed by placing 

into an uncut track. The sealant quantities for crack sealing was measured according to Equation 

3.6. 

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑒𝑎𝑙𝑎𝑛𝑡 = 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝑊𝑎𝑠𝑡𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑟𝑎𝑐𝑘 𝑠𝑒𝑎𝑙𝑎𝑛𝑡 … (3.6) 

 

 A 15% wastage factor and 1.12 specific gravity of crack sealant is usually considered. 

Another maintenance, patching was implemented in Canadian road sections. Patching mixture 

from the back of a dump truck is thrown into the distressed area. The usually used mixture is a 

stockpile patch. In “throw and roll”- the dump truck rolls over the patch one or two times to 

compact the patching mixtures. Residue asphalt binder content for the patching material was 
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considered as 4%. The residue content is the asphalt binder that is left over after the water or 

solvent has evaporated from the asphalt emulsion or cutback. According to the typical stockpile 

mixture gradation, 57.6% coarse aggregate and 38.4% fine aggregate of total mixture was 

considered. Uniform thickness for all patching areas was 1 inch. Patching material density was the 

same as the density of asphalt mixture, 1.23 ton/yd3.  

Use phase 

 The use phase accounts for significant environmental impacts through various variables 

including rolling resistance effect in increased fuel demand (i.e., pavement vehicle interaction), 

albedo (solar radiation reflectibility of pavement surface), carbonation (absorption of carbon 

dioxide in pavement structure), night time illumination of the roads (energy demand) and 

generation of leachates from pavement materials (emission of chemical substances) (Ziyadi et al., 

2017).In the pavement vehicle interaction (PVI) phenomenon, three pavement related variables 

are considered responsible for the PVI effect: pavement roughness, surface texture, and deflection.   

 From TRB special report 286, 2 m/km reduction in IRI value can reduce 1 to 2% of fuel 

consumption (National Research Council (US)., 2006). When considered texture depth, 0.71% of 

fuel consumption can be decreased from 0.44 mm texture depth reduction for cars with a 20mpg 

fuel economy (Benbow et al., 2007). Therefore, excess fuel consumption due to roughness and 

texture depth was measured based on the following Equations 3.7 and 3.8. 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

= ( 𝐼𝑅𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐼𝑅𝐼) ∗ 0.0075 ∗ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛    … (3.7) 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑑𝑒𝑝𝑡ℎ

= ( 𝑇𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑇𝐷) ∗ 0.0161 ∗ 𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛    … (3.8) 
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3.3.2 Analysis Approach  

3.3.2.1 Assumptions and Functional Units  

 There are 141 Canadian LTPP road sections which are functionally arterial road sections. 

Asphalt layer (original surface layer and AC layer below surface layer) and unbound granular layer 

(base and subbase) on the subgrade were considered in material production and initial construction.  

 From gradation report, aggregate that passes through 9.5 mm sieve and retained on 4.75 

mm were considered coarse aggregate (CA). On the other side, aggregate that passes through 4.75 

mm sieve were considered as fine aggregate (FA) and filler is mineral dust passing 0.074mm sieve. 

The volumetric percentages and specific gravity of the asphalt mixture materials were shown in 

Table 3-10 (Garber & Hoel, 2009; Kallas, Puzinauskas, & Krieger, 1962; U.S. Department of 

Transportation, 2009). Volumetric percentage ranges were different for initial construction and 

maintenance. The different  ranges for different phase resulted from a trial and error method, which 

led to the best performance level (Lavin, 2003). 

Table 3-10: Volumetric percentages and the specific gravity of asphalt mixture components  

 

 

Components of Asphalt 

Mixture 

 

Volumetric Percentage Limits 

 

 

Specific 

Gravity 

Initial 

Construction 

 

Maintenance  

Asphalt binder 4-6 3.5-4 1 

CA 48-55 20-30 3 

FA 35-40 60-80 3 

Filler (limestone) 5-8 0-2 2.6  

 

 Percentage of CA and FA for unbound granular layers (base and subbase) were selected as 

shown in Table 3-11. The recommended values of aggregate percentage are specified in provincial 

road construction specifications. The different values are recommended by transportation agencies 

based on the availability of materials, climatic conditions, and function in corresponding 

provinces. 
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Table 3-11: Volumetric percentages of aggregates in unbound granular layers (H. Soliman et al., 

2014) 

Canadian Provinces CA(%) FA(%) 

Alberta 58 42 

British Columbia 67.5 32.5 

Manitoba 75 25 

New Brunswick, 

Newfoundland and Labrador, 

Nova Scotia, Prince Edward 

Island 

66.1 33.9 

Ontario 61.5 38.5 

Quebec 66.1 33.9 

Saskatchewan 68.5 31.5 

 

 In both construction and maintenance phases, equipment were used for asphalt paving, 

milling, excavation, placing and compaction. For this component of the study, a specific model of 

diesel-fueled equipment was considered. Engine capacity, productivity and fuel consumption are 

summarized in Table 3-12.  
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Table 3-12: Equipment properties for construction and maintenance 

Activity Equipment Model Engine 

Capacity 

(horsepower) 

Utility Rate 

(ton/hr) 

Fuel 

Consumption 

rate (liter/hr) 

Asphalt 

Paving 

Paver Dynapac F30C 196 2400 49.11 

Pneumatic 

roller 

Dynapac CP132 100 668 26.12 

Tandem roller Ingersol Rand 

DD110 

125 285 32.65 

Milling Milling 

machine 

Wirtgen W2200 875 1100 156.20 

Excavation, 

placing and 

compaction 

Excavator John Deere 690E 131 315 34.22 

Vibratory soil 

compactor 

Dynapac CA 262D 174 1832 27.56 

 

 Longitudinal and transverse cracking were very common pavement distress in arterial road 

sections in Canada. Crack sealing and patching was usually used for low and medium severity. 

The following Table 3-13 describes the crack width value that was considered for this component 

of the study. The value was selected as the median of the range of each severity of the crack. 

 

Table 3-13: Pavement distress and considered crack width for this component of the study 

Distress Type 
Severity 

Level 

 Range of Crack 

Width 

Crack Width 

Considered in This 

Component of The 

Study 
Minimum Maximum 

Longitudinal/transverse 

cracking 

Low 0 6mm 3mm 

Medium 6.1mm 19mm 12.5mm 

High 19.1mm - 20mm 
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3.3.2.2 Life Cycle Phase and System Boundaries  

 Material production, initial construction, maintenance and use phase were considered in 

this component of the study as shown in Figure 3-5. For the modeling purpose, material production 

and initial construction phase is again classified in asphalt layer and granular layer.  The predictor 

variables considered for asphalt layers were: representative thickness, specific gravity of 

aggregate, asphalt binder, filler, percentage of coarse aggregate, fine aggregate, binder and filler. 

On the other hand, the predictor variables considered for granular layers were: representative 

thickness, specific gravity of aggregate, percentage of coarse aggregate and fine aggregate. 

Material and equipment transportation distance from plant (mixing plant) to site (road construction 

location) was not considered in this component of the study because of data unavailability in the 

LTPP database.  

 Time schedule of maintenance activity was different for different road sections. Therefore, 

frequency of maintenance in 20 years is taken as functional unit in this component of the study. 

The predictor variables considered in this phase were surface layer thickness, average monthly 

precipitation, temperature, freezing index, maintenance frequency (number of maintenance per 20 

years), pavement age at first maintenance, patching area, length of crack sealing, crack severity 

and traffic load.  

 Three predictor variables were considered for the use phase, which are average IRI, average 

texture depth and traffic load. International roughness index (IRI) predictor variable was 

considered for pavement roughness. The sensor measured texture depth was considered to 

represent surface texture. Due to the unavailability of field-measured deflection value in Canadian 

road sections, deflection was not considered. Albedo measures the ability of a pavement surface 

to reflect solar radiation. Albedo was not considered because of their lesser significance in asphalt 

pavement (Kaloush et al., 2008). Carbonation is the process of absorption and storage of carbon 

dioxide in pavement structure, while forming a bond with calcium oxide or calcium hydroxide. 

Implementation of a carbonation scheme is also not applicable in asphalt pavement. Therefore, 

this was also left out in this component of the study. Electrical energy is required to illuminate the 

roadways at night, for enhancing road safety. If the pavement type and composition can affect the 

energy demand for illumination, this component can play a significant role in the overall emission 

footprint of the pavement. Furthermore, some pavements can adversely affect groundwater and 
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soil through the leaching of pollutants (Santero, Masanet, & Horvath, 2010). These two variables 

are excluded to keep our model simple and due to data unavailability in the LTPP database.  
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    Figure 3-5: Pavement LCA framework considered in the study
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3.3.3 Data Modelling  

 The generated data (predictor variables and CO2 emission) for 141 LTPP sections through 

SQL coding were used for data modeling. Before applying the machine learning algorithms, 

further data preparation was required. In the development of machine learning model, the major 

task is to preprocess the data.  

 

3.3.3.1 Importing Libraries 

 The first step of the data preprocessing template is to import the essential python libraries. 

A library is a tool that can be used to perform a specific job. The first one was numpy. This library 

contains mathematical tools. Basically, this library was used to include any types of mathematics 

in the code. The second essential library is matplotlib.pyplot. This library helped to plot graphs. 

The last library that was essential for the template is pandas library which aims to import data sets 

and manage datasets.   

 

3.3.3.2 Importing Dataset 

 Before importing the dataset, there needs to specify the working directory. The data that 

will be used to code should be stored in that working directory of the computer. The data should 

be saved as comma-separated value (.csv) file. Pandas library was used to import the dataset.

 After importing the dataset, it is important to distinguish the matrix of independent variable 

(predictor) and the dependent variable (response). A new matrix X was created which had all of 

the columns of independent variables. Following the similar syntax, the matrix of the dependent 

variable named y was created. Here, it needs to remember that the indexing in python starts at zero.  

  

3.3.3.3 Handling Missing Values 

 Missing data is highly expected in real life dataset. To make the model as efficient as 

possible, it is required to handle missing data. If there are very few observations with missing data 

compared with a lot of observations, the removal of such observation can be one method. Another 

idea which can be the better idea is to take the mean of the existing values of the column. In python, 

using imputer class from scikit learn or sklearn preprocessing library, the missing data can be filled 
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up by the mean of the existing column values. As in this component of the study, the handling of 

missing values was performed already in SQL, the python code was not required. 

  

3.3.3.4 Encoding Categorical Variable 

 Typically, any categorical data refers to discrete values. These discrete values are normally 

a specific finite set of categories or classes. These discrete values can be text or numeric or even 

unstructured data like images. There are two major classes of categorical data, nominal and ordinal. 

Movie, music and video game genres, country names, food and cuisine types are few examples of 

nominal categorical attributes. The ordinal categorical variable could be shoe sizes, education level 

and employment roles, etc. As machine learning model is one kind of mathematical model, 

intuitively it can be understood that the categorical value will create a problem. Therefore, it is 

important to code categorical variables into meaningful numbers. 

 In order to encode the categorical variables, LabelEncoder class from 

sklearn.preprocessing library was imported. After that an object named labelencoder_X using 

LabelEncoder class was created. Using this object, the column of the categorical variable was 

transformed into numbers. For example, if the pavement layer column had four categorical values: 

surface, base, subbase and subgrade. The object would transform it to 0,1,2 and 3, respectively. 

However, the model would understand that the subgrade has a higher value than the subbase or 

surface has a lower value than base. But this was not the real case, these were just four categories 

that didn’t have any relational order among them. In order to resolve this issue, a dummy variable 

concept was used. As a result, four columns would be generated instead of one column. Each 

column would have binary values. OneHoteEncoder class was used to create such dummy 

variables.  

 

3.3.3.5 Splitting Dataset into Train and Test Set 

 The dataset which is used for developing machine learning model needs to be split into 

training set and test set. As the name of machine learning itself refers to the machine which will 

learn something. In other words, the model will learn from the data to make predictions. Machine 

learning model will try to understand the correlations of the data using the training data set. After 

that using the slightly different test set users eventually test the performance of the model. 

Therefore, there needs two datasets. The performance of the test set should not be much different 
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from the training set performance. Train_test_split class was imported from 

sklearn.model_selection library. The test set was chosen 20% of the entire dataset and 80% as 

training data set. In this component of the study, we compared the performance of the different 

models. For comparison purpose, the test dataset needs to be similar. Therefore, 20% of dataset 

was kept similar for developing different models for the same primary dataset. That’s why, in the 

code, the random state value was zero. 

 

3.3.3.6 Creating Model Template 

 Particular classes for linear regression, decision tree regression and support vector 

regression were imported from sklearn machine learning library. For polynomial regression, linear 

regression class was used. Before using the linear class for polynomial regression, the numpy array 

was reset according to second-order polynomial. For decision tree regression, supported criteria 

was “mse”. Hence, the mean squared error was kept minimum for feature selection. Besides, the 

minimum number of samples at a leaf node was considered 5 which is widely accepted. For SVR, 

linear kernel was taken because of better performance for pavement LCA rather than rbf kernel. 

Regularization value C was kept 1 and epsilon value was 0.1. After modeling operation was 

performed, coefficient values using the ordinary least square method was calculated for linear and 

polynomial regression. The weight values of a hyperplane in SVR was also calculated. Thus, the 

template for different algorithms were set up which was used further with little modification for 

each phase of pavement life cycle. 
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CHAPTER 4  

ENVIRONMENTAL IMPACT ASSESSMENT FOR M&R 

 Environmental impact assessment for four maintenance and rehabilitation (M&R) is 

described in this chapter. Environmental emissions from LCA for each M&R are initially reported 

from section 4.1-4.4 and in the following section 4.5 shows and explains the comparative 

assessment among M&R techniques. 

 

4.1 Emission for Rout and Sealing 

 The first M&R practice analyzed was the rout and sealing technique which produced 

35,186 kg of CO2 equivalent as GWP, as summarized in Table 4-1. As the compound-measured 

impact category, GWP became the highest emissions and the lowest value was for ozone depletion 

potential, 6.94 × 10−6 kg, measured as released Chlorofluorocarbon-11 (CFC-11) in kg.  

 

4.2 Emission for Asphalt Patching  

 Similar to the rout and sealing technique, the compound-measured environmental impact 

category with the highest emission value was GWP for asphalt patching (50,396 kg). As it can be 

seen in Table 4-1, the lowest impact category was ozone depletion potential, which resulted in 

3.367 × 10−6 kg of Chlorofluorocarbon-11 (CFC-11). 

 

4.3 Emission for HIR 

 The third M&R technique analyzed for the case study was HIR (Table 4-1). When 

reviewing the results in the compound-measured environmental impact categories, the GWP 

produced the highest emissions, and the lowest emission was the ozone depletion potential. As the 

representative of GWP, 14,416 kg of CO2 was emitted out whereas ozone depletion potential 

occupied 3.83 × 10−7 kg of CFC-11. 

 

4.4 Emission for CIR 

 The fourth M&R technique to be analyzed for the case study was CIR. Similar to all 

methods studied, the CIR produced higher values for the GWP category and lowest values for the 

ODP category as shown in Table 4-1. The GWP emissions for CIR technology equated to 10,450 

kg of CO2 equivalent. For the ODP, the CIR technology equated to 2.24 × 10−7 kg of CFC-11.  



 

63 
 

 

Table 4-1: Assessment of the environmental impact categories for different M&Rs 

 

 

 

Impact 
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Rout and sealing Asphalt patching HIR CIR 
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GWP  

(kg CO2 eq.) 
34,931 255 35,186 48,453 1,943 50,396 12,244 2,173 14,416 8,135 2,315 10,450 

Acidification 

Potential  

(kg SO2 eq.) 

376 2.5 378 2267 19 245 108 21 129 97 22 119 

HH Particulate 

(kg PM2.5 eq.) 
29.36 0.13 29.50 14.69 1.03 15.72 7.59 1.16 8.75 6.97 1.23 8.21 

Eutrophication 

Potential  

(kg N eq.) 

14.75 0.16 14.91 10.24 1.16 11.40 5.17 1.30 6.47 4.54 1.38 5.92 

Ozone 

Depletion 

Potential (kg 

CFC-11 eq.) 

6.94
× 10−6 

8.93
× 10−9 

6.94
× 10−6 

3.299
× 10−6 

6.78
× 10−8 

3.367
× 10−6 

3.08
× 10−7 

7.58
× 10−8 

3.83
× 10−7 

1.44
× 10−7 

8.08
× 10−8 

2.24
× 10−7 

Smog Potential 

(kg O3 eq.) 
3,771 80 3,851 3,391 585 3,980 1,422 659 2,082 1,173 703 1,876 
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4.5 Comparative Analysis among M&R 

 The results show that the GWP and ODP were the highest and lowest impacts, respectively, 

for all the M&R techniques. Since the project used diesel as the energy source for operation, CO2 

equivalent showed a significant amount in the results because of 2.68 kg CO2 production per liter 

diesel consumption. However, the emissions of CFC-11 were minimal in the project. 

 

Figure 4-1: Global Warming Potential percentage values of the four analyzed M&R practices 

 Figure 4-1 presents GWP contribution as the highest compound-measured emission 

category among the selected four maintenance processes. The CIR technique produced the lowest 

CO2 eq. emissions, 83.87% during its project life closely followed by HIR technique, which 

produced 86.63% of CO2 eq. emissions. For asphalt patching, the CO2 emission resulted the 

highest percentage (92.22%) and thus became the least suitable option among four studied M&R 

methods in terms of GWP. 
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Figure 4-2: The Smog Potential percentage values of the four analyzed M&R practices 

 The results from the pavement patching and HIR techniques can be explained based on the 

total number of equipment and equipment time used. Both included technology that used more 

diesel as fuel consumption and produced high temperatures during manufacturing materials and 

thus resulted in a higher emission of CO2. For the CIR methods, less machinery was used and no 

on-site heating machinery was required, leading to less diesel fuel required for operation, hence 

producing lower CO2 emissions. Smog potential was the second largest contributor of emissions 

for each practice. In addition, 15.06% emission of smog potential was from CIR followed by HIR 

(12.51%), rout and sealing (9.76%) and finally asphalt patching (7.28%) as shown in Figure 4-2. 

The reasons behind the higher smog potential of CIR rather than HIR need to be investigated in 

further research.  

 Besides GWP and smog potential, the other emission factors combined to carry 

approximately 1% of the environmental burden, where rout and sealing and CIR had the greatest 

impact on the percentage of acidification potential (0.96%) followed by HIR (0.78%) and asphalt 

patching (0.45%). HH particulate and eutrophication potential percentages were very low for all 

of the four M&R techniques (less than 0.1%). 
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Figure 4-3: Acidification Potential, Human Health Particulate, and Eutrophication Potential 

Emissions: The percentages of three compound-measured impact categories 
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CHAPTER 5 

ENVIRONMENTAL IMPACT ASSESSMENT FOR PVI 

 

 Environmental impact assessment for pavement vehicle interaction (PVI) of the pavement 

use phase is described in this chapter. Two major components for PVI are pavement roughness 

and deflection during traffic load. Environmental emission, particularly GWP emission from LCA 

for pavement roughness and pavement deflection are described from section 5.1-5.2. PVI effect is 

explained through the clustering of Canadian LTPP sections.  

 

5.1 Pavement Roughness Effect 

 Pavement roughness is an important factor in determining the PVI effect. GWP value was 

selected to measure and compare the PVI effect. Usually, pavement IRI rises gradually after initial 

construction.  

 Figure 5-1 (a-d) shows the IRI value for the road sections of each cluster. It was noticed 

Cluster 2 had, in general, the highest IRI values, followed in this mathematical form: Cluster 2 > 

Cluster 1 > Cluster 3 > Cluster 4 

 

                                           (a) 

 

                                             (b) 

0

1

2

3

4

5

1990 1995 2000 2005 2010

IR
I 

(m
/k

m
)

Year

Cluster 1

TS01 TS02 TS14 TS17 TS19

0

1

2

3

4

5

1990 1995 2000 2005 2010

IR
I(

m
/k

m
)

Year

Cluster 2

TS04 TS13 TS06 TS07 TS08

TS09 TS11 TS12 TS18



 

68 
 

 

                                          (c) 

 

                                           (d) 

 

Figure 5-1: IRI over time for each cluster (a-d) and GWP emission due to roughness based PVI 
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In Cluster 2 regions, please recall that the climate parameter included high annual 

precipitation, high annual freezing index, and medium annual temperature. It means that there was 

a high probability that the air void in the soil layers in the pavement structure was filled and 

saturated with water because of high annual precipitation. Afterward, in the winter months, these 

waters became frozen and caused frost heave. This frost heave can lead to an expansion of volume 

by 9% due to phase change from water to ice and can affect the smoothness of pavement and ride 

quality. In the spring season, these frosts melted and could cause other pavement distresses such 

as pothole and differential settlement. Furthermore, these melted waters from the top layers went 

to the bottom layers. These trapped liquid waters weakened the base and subgrade layers which 

eventually deteriorated the performance of the entire pavement structure. This deterioration was 

accelerated by the dynamic loading of vehicles and resulted in an increase of IRI, significantly. 

Cluster 1 road sections were located in a region where comparatively there was less 

probability of water saturation in the pavement layer because of medium annual precipitation. 

However, these road sections were located where the annual average temperature was relatively 

low. This probably led to having a high freezing index in this cluster. Therefore, the IRI increase 

rate in Cluster 1 is relatively less than Cluster 2.  

On the other hand, because of medium precipitation, temperature and freezing index, the 

increase rate of IRI for Cluster 3 was relatively less compared with Cluster 3 and 4.  

The IRI was increased at a very slow rate which was found in Cluster 4. The annual 

temperature was high and freezing index was low. This indicates that the road sections in this 

cluster experienced longer spring and summer seasons. As a result of the long sunny periods, the 

precipitated rain waters could easily either evaporate or drain out from the pavement structure as 

there was less chance of freezing.  

The GWP values estimated using the model described in the previous section are 

summarized in Figure 4. It can be seen on this figure that road sections of Cluster 2 had emitted 

the highest amount of GWP, which was due to the high IRI values of these roads. The GWP values 

for other clusters, for the analysis period per 1000 AADT light vehicles follows this pattern: 

Cluster 2 > Cluster 1 > Cluster 3 > Cluster 4, the same hierarchy of IRI increase rate.  
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When the GWP values are compared among the traffic loading type, it can be seen that, 

among the heavy and light vehicles, the heavy vehicle had significantly high GWP emission than 

light vehicle. 

 

5.2 Pavement Deflection Effect 

 According to PVI Gen II model, vehicle load has a strong direct relationship with 

deflection. On the contrary, subgrade stiffness, surface layer elastic modulus and thickness of the 

asphalt layer have an inverse and comparatively less strong relationship. Among these inverse 

factors of deflection, the thickness of the asphalt surface layer has comparatively higher 

significance. 

 As shown in Figure 5-2, the GWP emission gradually increases from Cluster 1 to Cluster 

4. Cluster 4 has the maximum vehicle load both for HV and LV, and the minimum subgrade 

stiffness. These properties, when combined, make the highest GWP emission for Cluster 4. 
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                              (c)                                                          

                                  

                                        (d) 

 

Figure 5-2: Deflection parameters in different clusters (a-d) and GWP due to deflection based 

PVI (e) 
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 As for Cluster 3, though it has the lowest number of vehicle loads for both types, it has the 

minimum surface layer elastic modulus and asphalt layer thickness, which make Cluster 3 the 

second highest zone for the GWP emission.  

 As pavement material engineers do not have control over growing traffic loading, only 

material properties and pavement design can be improved to restrict pavement deflection based 

PVI. Therefore, subgrade stiffness can be increased in Cluster 4 to reduce high GWP emission. 

For Cluster 3, the elastic modulus of the asphalt layer and pavement design thickness can be 

upgraded to reduce further emission.  
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CHAPTER 6 

LIFE CYCLE ASSESSMENT MODELS 

  

 This chapter describes the significance of model predictor variables, model parameter 

values and model accuracy for each phase of the pavement life cycle. In the last section of this 

chapter, a comparative analysis of CO2 emission for different provinces using the models is also 

described.   

 

6.1 Significance of Predictor Variables of Models 

 Four different types of models were developed for each pavement life cycle phase. P-

values were considered for Conventional regression models (i.e., multiple linear and polynomial 

regression) in order to understand the significance of predictor variables. For SVR and decision 

tree regression, importance values were considered to understand the significance of predictor 

variables. In SVR, the squares of weights were used as importance values, whereas feature 

importance/ Gini importance values were used for decision tree regression.  

  

6.1.1 Material Production and Initial Construction Phase 

 For material production and initial construction phase of asphalt layer in Canadian LTPP 

sections, three models are developed: multiple linear regression, SVR and decision tree regression. 

10 predictor variables could generate 65 terms considering a second-degree polynomial regression. 

In order to avoid such complexity, polynomial regression is not considered in models for asphalt 

layer. 

 According to Figure 6-1(i) for multiple linear regression of the asphalt layer, only asphalt 

layer thickness shows significant (p-value less than 0.05) CO2 emission. From the SVR model 

hyperplane, it was found the weight of thickness (0.898) is maximum compared with other 

predictor variables. Therefore, the square of weight of thickness (0.8065) will be the highest and 

as a result, thickness of asphalt layer has the largest relevance with the emission. From the decision 

tree regression, thickness and filler percentage have a large impact on emission according to 

importance feature values. The thickness layer has the largest impact (0.8399) among the predictor 

variables.  
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 According to Figure 6-2(i) for multiple linear regression, all of the base predictor variables 

are significant (p-value less than 0.05). Except for base layer-coarse aggregate interaction, the 

second degree of thickness and subbase-coarse aggregate percentage interaction (p-values much 

higher than 0.05), the rest of the interactions show significance according to the polynomial 

regression model. 

 

 

(i) p-value of predictor variables in multiple linear regression model 

 

 

(ii) Importance value of predictor variables in SVR and decision tree regression model  

Figure 6-1: Visualization of importance value of models’ predictor variables for asphalt layer in 

material production and initial construction of pavement  
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(i) p-value of predictor variables in multiple linear regression model 

 

 

(ii) p-value of predictor variables in polynomial regression model 
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(iii) Importance value of predictor variables in SVR and decision tree regression model  

 

Figure 6-2: Visualization of importance value of models’ predictor variables for granular layer in 

material production and initial construction of pavement.  

 

 From the SVR model hyperplane, it is found the weight of thickness (0.962) has a large 

contribution to emission. The square of weight for thickness (0.925) becomes the highest and as a 

result, the thickness of the asphalt layer has the largest relevance with the emission. From decision 

tree regression, thickness has a large impact on emission according to importance feature values 

(0.999).  

 

6.1.2 Maintenance Phase 

 The patching area and length of crack sealing (p-value less than 0.05) are significant. 

Unlike multiple linear models, SVR and decision tree regression model describe that the patching 

area has a much higher significance than the total length of crack sealing. The decision tree 

regression model shows that precipitation and traffic load has a larger impact on CO2 emission 

next to patching area. 



 

77 
 

 

(i) p-value of predictor variables in multiple linear regression model 

 

 

 (ii) Importance value of predictor variables in SVR and decision tree regression model  

Figure 6-3: Visualization of significance of models’ predictor variables in pavement maintenance 

phase 
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6.1.3 Use Phase 

 According to Figure 6-4(i) for multiple linear regression, IRI value and traffic load are 

significant (p-value less than 0.05). Except for IRI-texture depth, base predictor variable and rest 

of the interactions are significant according to the polynomial regression model. 

 

 

(i) p-value of predictor variables in multiple linear regression model 

 

 

(ii) p-value of predictor variables in polynomial regression model 

 

 

(iii) Importance value of predictor variables in SVR and decision tree regression model 

Figure 6-4: Visualization of significance of models’ predictor variables in pavement use phase 
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6.2 Estimation of Model Parameters 

6.2.1 Material Production and Initial Construction Phase 

 From the coefficient values in Table 6-1, the thickness of asphalt layer, percentage of 

aggregate, binder and filler have a direct relationship for CO2 emission. Among these, thickness 

has the highest impact on increasing CO2 emission. For one inch increase of asphalt layer, CO2 

emission increases by 4336000 gram. For one unit increase of asphalt binder percentage, CO2 

emission increases by 2453000 gram. On the other hand, the specific gravity of construction 

material shows an inverse relation with emission. In other words, if the density of aggregate, filler 

and binder increases the emission will decrease. When the specific gravity of coarse aggregate, 

binder and filler material is increased by one, CO2 decreases by 52240000 (maximum reduction), 

17410000 and 45280000 gram, respectively.    

 From the coefficient values of the multiple linear regression model, thickness of asphalt 

layer and coarse aggregate percentage have a direct relationship for CO2 emission. For one inch 

increase of granular layer, CO2 emission increases by 510200 gram. This emission rate is 8.5 times 

less than that of the asphalt layer.  For one unit increase of coarse percentage, CO2 emission 

increases by 734.941 gram. A similar relation is found in polynomial regression. In addition, very 

high interaction value of aggregate percentage (both for coarse and fine aggregate) with thickness 

value has been found in this model. The specific gravity of aggregate shows inverse relation with 

emission in multiple linear regression model. In other words, if the density of aggregate increases 

the emission will decrease. When the specific gravity of coarse aggregate is increased by one, CO2 

decreases by 27.383 gram. In polynomial regression, the coefficient values for specific gravity and 

its interaction terms are close to zero.    
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Table 6-1: Parameter values of LCA models for asphalt layers in material production and initial 

construction phase 

 

Model 

Algorithm 

Parameter 

Type 
Constant X1 X2 X3 X4 X5 

Multiple 

linear 

regression Coefficient 

-

1741000

0 

-8661000 -8753000 4336000 

-

5224000

0 

2453000 

  
 X6 X7 X8 X9 X10 

    

  

-

1741000

0 

-

4528000

0 

3089000 3181000 3914000 

SVR 

Hyperplane 

coefficient 
 X1 X2 X3 X4 X5 

  
 -0.003 0.003 0.898 0 0.05 

  
 X6 X7 X8 X9 X10 

      0 0.106 -0.116 -0.067 0 

Decision tree 

regression 

Number of 

leaves 
  25         

 

Material Production and Initial Construction  

(Asphalt Layer) Phase Predictor Variable  

X1 Surface layer 

X2 Intermediate layer 

X3 Thickness 

X4 Aggregate sp. gravity 

X5 Binder percentage 

X6 Binder sp. gravity 

X7 Filler sp. gravity 

X8 Coarse aggregate percentage 

X9 Fine aggregate percentage 

X10 Filler percentage 
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Table 6-2: Parameter values of different models for granular layers in material production and 

initial construction phase of pavement 

Model 

Algorithm 

Model 

Parameter 
Constant X1 X2 X3 X4 X5 

Multiple 

linear 

regression 

Coefficient -9.128 1682.936 -1692.064 510200 -27.383 734.941 

   X6     

      -1565.331         

Polynomial 

Regression 
Coefficient Constant X1 X2 X3 X4 X5 

  0.000 0.014 -0.014 106.334 0.000 0.012 
   X6 X7 X8 X9 X10 
   -0.002 0.014 0.0000 48.870 0.042 
   X11 X12 X13 X14 X15 
   0.080 1.254 -0.014 57.464 -0.042 
   X16 X17 X18 X19 X20 
   -0.068 -1.256 0.014 319.003 5178.288 
   X21 X22 X23 X24 X25 
   5182.397 0.001 0.037 -0.005 -0.336 
   X26 X27    

   1.481 -1.569    

SVR 
Hyperplane 

coefficient 
  X1 X2 X3 X4 X5 

   -0.001 0.001 0.962 0.000 0.001 
   X6     

      -0.001         

Decision 

tree 

regression 

Number of 

leaves 
  21         

 

Material Production and Initial Construction 

(Granular Layer) Phase Predictor Variables 

X1 Base 

X2 Subbase 

X3 Thickness 

X4 Aggregate sp. gravity 

X5 Coarse aggregate percentage 

X6 Fine aggregate percentage 
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6.2.2 Maintenance Phase 

 For one unit (ft2) increase of patching area, CO2 emission increases by 201.661 gram. 

Moreover, for one unit (ft) increase of coarse percentage, CO2 emission increases by 144.277 gram. 

The rest of the predictors show coefficient values almost zero.  

 

Table 6-3: Parameter values of different models for maintenance phase of pavement 

Model 

Algorithm 

Parameter 

Type 
Constant X1 X2 X3 X4 X5 

Multiple 

linear 

regression 

Coefficient -0.000011 -0.0000023 -0.000009 0.000001 0.0000001 -0.0000013 

  
 X6 X7 X8 X9 X10 

  
 0.0000001 -0.00000263 0.0000002 201.661 144.277 

  
 X11     

  
 0.00000001     

SVR 

Hyperplane 

coefficient 
  X1 X2 X3 X4 X5 

  
 0.016 -0.016 -0.023 -0.008 0.014 

  
 X6 X7 X8 X9 X10 

  
 0.009 0.052 0.011 0.913 0.292 

  
 X11     

      -0.021     

Decision 

tree 

regression 

Number of 

leaves 

  6         

 

Maintenance Phase Predictor Variables 

X1 Medium severity  

X2 Low severity 

X3 Surface thickness    

X4 Average monthly precipitation 

X5 Average monthly temperature 

X6 Average monthly freezing index 

X7 Maintenance frequency  

X8 Pavement age at initial maintenance 

X9 Patching area 

X10 Length of crack sealing 

X11 Traffic load 

   



 

83 
 

6.2.3 Use Phase 

 From the coefficient values of the multiple linear regression model, for one m/km increase 

of mean IRI, CO2 emission increases by 28790 gram. This emission rate is 3.4 times more than 

that of one kESAL/year increase of traffic load. Unlike multiple linear regression, traffic load has 

the highest contribution to CO2 emission in polynomial regression, followed by the interaction 

IRI-traffic load. For one unit kESAL increase, CO2 emission increases by 8208.7 gram and for the 

IRI-traffic load interaction, this emission value is 198.408 gram. According to SVR and decision 

tree regression model, traffic load has a large contribution for emission.  

 

Table 6-4: Parameter values of different models for use phase of pavement 

Model 

Algorithm 

Parameter 

Type 
Constant X1 X2 X3     

Multiple 

linear 

regression 

Coefficient -42700 28790 670.855 8500.804     

Polynomial 

Regression 
Coefficient Constant X1 X2 X3 X4 X5 

  0.001 0.001 0.004 8208.698 -0.00005 0.00006 
   X6 X7 X8 X9  

   198.408 0.004 0.000 0.000   

SVR 
Hyperplane 

coefficient 
  X1 X2 X3     

   0.027 0.000 0.971     

Decision 

tree 

regression 

Number of 

leaves 
  20         

 

Use Phase Predictor Variables 

X1 Average IRI 

X2 Average texture depth 

X3 Traffic load 

      

6.3 Model Accuracy  

 In this component of the study, 20% of observations were selected as test data to estimate 

the performance of the model. Among the models, SVR shows the least root mean square error 

(RMSE) value which represents the highest prediction accuracy in the asphalt layer of first phase 
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of this study. For the granular layer of the same phase, the polynomial regression model shows the 

least RMSE value (63.63) which represents the highest prediction accuracy, as shown in Table 6-

5. 

 Among the models, multiple linear regression model shows the least RMSE value (zero) 

which represents the highest prediction accuracy for maintenance phase, whereas, polynomial and 

decision tree regression model shows the highest prediction accuracy as shown in Table 6-5. 

 

Table 6-5: Summary of prediction accuracy of models 

 

Pavement 

Structural 

Layer 

 

Pavement Life 

Cycle Phase 

RMSE 

Multiple 

Linear 

Regression 

 

Polynomial 

Regression 

Decision 

Tree 

Regression 

Support 

Vector 

Regression 

Asphalt layer Material production  

and initial 

construction 

1612959.71 - 1754641.16 877422 

Unbound 

granular layer 
7907.20 63.63 355206.70 582648.96 

Both layer Maintenance 0 - 143006.82 13444.61 

Both layer Use 3857.41 0 0 35791.05 

  

6.4 Comparative Analysis for Canadian Provinces 

 Before developing the machine learning based LCA model, CO2 emission was estimated 

for all Canadian LTPP road sections. The emission report is summarized for different phases and 

provinces in a filled map as shown in Figure 6-5. More than 90% of emission in total pavement 

LCA goes to use phase from vehicle fuel emission including fuel loss from roughness and texture 

depth. Fuel loss from roughness and texture carries only 2% of CO2 emission in total use phase 

emission. Because of data inadequacy, only Manitoba province was studied for the use phase. 

Besides use phase, material production and initial construction phase contributes a high quantity 

of emission of which material production carries the largest quantity as shown in Figure 6-5. 
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Figure 6-5: Geographical comparison of CO2 emission (gram) phase-wise contribution from 

Canadian provinces  

   

  Material production and initial construction phase were also studied for asphalt and 

granular layer separately.  Alberta emits the highest average CO2 in asphalt layer whereas Quebec 

emits the highest one for granular layer. According to the SVR model (best fit model for material 

production and initial construction - asphalt layer), design asphalt layer thickness reduction, coarse 

aggregate percentage reduction and filler density increase can reduce the CO2 emission in asphalt 

layer. According to the best fit model for the granular layer (polynomial regression model), both 

aggregate percentage and granular layer thickness combined reduction can reduce Quebec’s 

maximum emission.  
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  Ontario and Quebec both provinces emit less CO2 emission for the maintenance phase, 

though they emit a high quantity of CO2 in material production and initial construction. Proper 

pavement and material design and initial construction may reduce the requirement of frequent 

maintenance. However, sustainable material production and construction method is needed to be 

introduced to reduce the emission as much as possible.  

 Alberta, Manitoba and Saskatchewan consume a lot of fuel from material production to 

maintenance phase. Nova Scotia emits the maximum for the maintenance phase. The necessity to 

patching area and length of crack sealing reduction can reduce the emission in this province 

according to best fit multiple linear regression model. Actions need to be undertaken to reduce the 

generation of a higher amount of pavement distress area.   

 

Figure 6-6: Comparison of asphalt and granular layer emission for different Canadian provinces 

in material production and initial construction phase 
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CHAPTER 7  

CONCLUSIONS 

 

7.1 Major Findings from Environmental Impact Assessment for M&R 

 Among six compound-measured environmental impact categories, the global warming 

potential category, measured in emissions of CO2-eq. in kg, held the highest values for all 

four M&R techniques including asphalt patching, rout and sealing, HIR and CIR.  

 Based on GWP, the CIR technique produced the lowest percentage of CO2-eq. (83.87%), 

and for asphalt patching, the CO2 emission resulted in the highest percentage (92.22%) 

which is the least suitable option for M&R methods in light of GWP.  

 CIR method which requires less machinery with no heating machinery leads to less diesel 

fuel for operation, and therefore, causes less reduction of CO2 emissions. 

 In terms of smog potential, asphalt patching (7.28%) appears as the most promising 

approach for pavement maintenance. 

 Rout and sealing and CIR had the most significant impact on the percentage of acidification 

potential (0.96% each), whereas the contribution of HH particulate and eutrophication 

potential was minimal for each M&R technique. 

  

7.2 Major Findings from Environmental Impact Assessment for PVI 

 This component of the study adopted a statistical approach employing dendrogram and 

silhouette plotting techniques for clustering. Then, the GWP emission as a result of 

pavement vehicle interaction from pavement roughness and deflection was estimated for 

each cluster member. The main factors contributing to the GWP emission were also 

determined for each cluster.  

 The combined impact of various climate factors including precipitation, temperature, and 

freezing index on PVI was estimated. IRI trend was significantly varying within and 

between the clusters. Overall, based on GWP emission from the IRI perspective, the 

clusters can be ranked as follows Cluster 2 > Cluster 1 > Cluster 3 > Cluster 4. 
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 In Cluster 2, the climate parameters included high annual precipitation, high annual 

freezing index, and medium annual temperature. It means that there was a high probability 

that the air voids in the soil layers in the pavement structure was filled and saturated with 

water because of high annual precipitation, which resulted in frost heave in winter. In the 

spring season, the frost melted and the trapped water weakened the base layer. This 

deterioration was accelerated by the dynamic loading of vehicles and resulted in increase 

of IRI, significantly. 

 For light vehicles, the clusters can be ranked as follows: Cluster 2 > Cluster 1 > Cluster 3 

> Cluster 4, the same hierarchy of IRI increase rate. 

 For the heavy vehicles, GWP value follows: Cluster 2 > Cluster 1 > Cluster 4 > Cluster 3. 

For the same number of heavy vehicles, the GWP value was much higher. This result 

indicates that a relatively high impact from heavy vehicle traffic because of PVI for 

pavement roughness when compared with light vehicle traffic.  

 For deflection based PVI effects, Cluster 4 had the maximum vehicle load both for HV and 

LV, and the minimum subgrade stiffness. These factors combined emitted the highest GWP 

in Cluster 4 among all the clusters  

 As for Cluster 3, though it had the lowest number of vehicle load for both types, it had the 

minimum surface layer elastic modulus and asphalt layer thickness, which made Cluster 3 

the second highest group in terms of GWP emission. 

 For the same number of vehicles (1000 AADT), heavy vehicles are dominant rather than 

LV for GWP emission, considering both cases, roughness and deflection based PVI. 

 In new pavement design analysis, attention can be given to increase subgrade stiffness 

(through soil stabilization) in Cluster 4 to reduce GWP emission due to deflection based 

PVI. 

 For Cluster 3, the elastic modulus of the asphalt layer and pavement design thickness can 

be enhanced to reduce further emission. 
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7.3 Major Findings from Life Cycle Assessment Models 

 Multiple linear regression, polynomial regression, SVR and decision tree regression 

algorithm were implemented to find out the best fit model for each LCA phase. SVR is the 

best fitted for material production and initial construction phase in asphalt layer. Thickness 

has the highest impact on increasing CO2 emission. For one inch increase of asphalt layer, 

CO2 emission increases by 4336000 gram. It was also found that if the density of aggregate, 

filler and binder increases the emission will decrease.  

 For the granular layer in the same phase, the polynomial regression model is selected as 

the best one. A strong significant interaction of aggregate percentage (both for coarse and 

fine aggregate) with thickness value for emission has been found in this model.  

 Patching area and length of crack sealing were significant factors for the maintenance 

phase. According to multiple linear regression (best fit) model, for one unit (ft2) increase 

of patching area CO2 emission increases by 201.661 gram. Moreover, for one unit (ft) 

increase of coarse percentage, CO2 emission increases by 144.277 gram. 

 Traffic load has the highest contribution to CO2 emission according to polynomial 

regression, followed by the interaction IRI-traffic load. For one unit (kESAL) increase in 

traffic load, CO2 emission increases by 8208.7 gram and for the IRI-traffic load interaction 

the emission becomes 198.408 gram. 

 More than 90% of emission in total pavement LCA goes to use phase considering both 

vehicle fuel usage and extra fuel needed due to roughness and texture depth.  The extra fuel 

is responsible for only 2% of CO2 emission only in the use phase. Besides the use phase, 

material production and initial construction phase contributes a high quantity of emission 

of which material production accounts for the larger emission. 

 From province-wise it is found that Ontario and Quebec both provinces emits less CO2 

emission for the maintenance phase, though they emit a high quantity of CO2 in material 

production and initial construction. Moreover, provinces can take effective measures to 

reduce their emission. 
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7.4 Major Contributions 

 Based on our first and small-scale study of M&Rs in St. John’s, it can be concluded that 

the LCA approach works effectively to comprehend the environmental impact of major 

maintenance and rehabilitation techniques of asphalt pavement. Furthermore, environmentally 

friendly road treatment was selected through the quantitative analysis of comparison among those 

M&R techniques. This methodology can be implemented to understand the environmental impact 

for rest of the M&Rs. 

 Canada is the second-largest country in the world and it has very large provinces and 

territories. Therefore, within a province, there are geometric regions that have completely different 

climates. As a result, in our second component of the study, a new systematic “climate-based 

clustering” approach is introduced rather than considering geometric boundaries for environmental 

impact analysis from the road system.  

 LCA of a particular pavement section needs lots of inventory data and lengthy calculation 

time, even using any LCA software. When there is a need to produce LCA results for different 

alternatives, it becomes more complex and time-consuming. As a result, in order to resolve this 

issue, a model is developed in the third component of the study. As the proposed LCA model can 

predict the emission for pavement projects and alternatives within a short time, this advantage 

allows the decision-makers to think better and eventually make the right decision.  

 

7.5 Limitations and Recommendations for future research 

7.5.1 LCA study of M&R 

 In the LCA study of M&R, the structural failure was not addressed.  The reclamation depth 

for HIR and CIR also was kept constant at a 4inch depth to circumvent the complexity issue. The 

structural design for maintenance and rehabilitation was based upon the distress condition of the 

pavement infrastructure. Therefore, in future research, the proper remedy for structural failure and 

different reclamation depths can be considered.  

  The properties of asphalt mixture and its component materials are different depending on 

the provinces and their design guidelines. Based on the available data, an in-depth sensitivity 

analysis should be performed to find out the material properties which are significant for each type 

of environmental emission in future research. 
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 The technology associated with the M&R used diesel fuel as an energy source. Athena 

LCA tool considered construction equipment from the default system. Instead of using default 

technology, the equipment and their specifications can be updated based on actual equipments in 

future LCA study.  

 The procedure of asphalt pavement M&R alternatives is emerging day by day. New 

technology is introduced for better performance and a more sustainable solution. Environmental 

emission study for different new M&R can be performed based on emerging technology in future 

research. 

 Pavement infrastructure susceptibility includes three essential elements: environmental 

protection, economic prosperity and social acceptability (Reza et al. 2014). Therefore, further LCA 

study should be multi-attributed which will evaluate the cost-effectiveness and performance of 

M&R along with environmental impact (Giustozzi et al. 2012; Yu et al. 2013). Notably, life-cycle 

cost analysis (LCCA) could be recommended to integrate with LCA researches. Considering both 

LCA and LCCA, a priority-based pavement management tool can be developed for decision-

makers of the pavement management system. 

 In the case study-based LCA of pavement M&R, only four conventional techniques were 

considered. In future research, the consideration of all categories of pavement M&R techniques 

can be considered. An optimization study based on LCA and LCCA to find out the best preventive 

maintenance, minor and major rehabilitation might be another interesting future study. 

 

7.5.2 LCA study for PVI 

 In the second component of the study, the annual climate data of only 22 road sections 

from LTPP had been used for clustering purposes. It can be recommended in a future study to 

consider monthly climate data, which could be more effective for clustering and understanding the 

PVI effect.  

 In this study, two built-in models (HDM IV and PVI Gen II) were used to find out emission 

due to PVI. For the Canadian climate condition, the calibration of these models can be done for 

future works. The calibration factor for the Canadian climate will be effective for increasing the 

accuracy of the research output.    
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 The severity of climate factors are classified intuitively based on historical survey data. 

Probabilistic methodology for the estimation of climate severity threshold values may increase the 

acceptability of the severity classification and eventually increase the effectiveness of the study.  

 In our study, fixed linear relation of the increased rate of IRI was considered over the time 

period during LCA input. A new model can be developed in which the IRI increase rate from prior 

data can be added each year for a better understanding of PVI due to roughness. The probabilistic 

approach can be implemented to comprehend the pattern of IRI increase rate over the time. 

 The study reveals the effect of traffic load, material properties of subgrade and asphalt 

layer and design thickness of the asphalt layer based on the data analytics. However, the real 

mechanism of this significant factor needs to be discovered both for light vehicle and heavy 

vehicle.  

 

7.5.3 LCA Models 

 A set of the machine learning model had been developed using calculated CO2 emission as 

a response variable. Instead of using calculated CO2 emission, field data using CO2 meter can be 

used. As the proposed model is a prototype for a machine learning-based model, a new and 

calibrated model using field emission data could be a better research.  

 The proposed models from this thesis can be further developed by tuning model hyper-

parameter (model hyper-parameter is a configuration that is external to the model and whose value 

cannot be estimated from data). Besides, k fold cross-validation can be used instead of a simple 

train-test split. K fold cross-validation will mitigate the overfitting of the model and therefore will 

increase the performance of the model.              

 Transportation distance from the plant to the site was not considered because of data 

inadequacy. This factor has a significant effect (concluded from the first component of the study) 

on the model in material production and the initial construction phase. In collaboration with the 

department of transportation of each province, the necessary data can be achieved for future 

research. 

 The LTPP data includes the arterial road section for the Canadian region. In city areas, 

collector roads have massive traffic and therefore road usage is higher. Besides, pavement 
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maintenance and rehabilitation are more frequent in this type of roads in urban areas. Therefore, a 

new study considering collector roads can be performed over several years in future research.  

 The emission result from LCA models can be added as a geographical information system 

(GIS) over the road networks. An application of an automated GIS-based LCA model could be 

another research project for smart infrastructure management.  

 This LCA models have the potential to interact with the life cycle cost analysis (LCCA) 

models. Optimization of LCA and LCCA models could be extensively helpful for pavement 

management system decision-makers. Optimization research of LCA and LCCA can be another 

scope for future research. 
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Appendix A: R Coding 

A.1 Hierarchical clustering      

#read CSV file from working directory 
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roadsection<-read.csv(file="clustering by environment.csv",header=TRUE, sep=",") 

 

#normalization 

z1<- roadsection[,-c(1,1)] 

m<-apply(z1,2,mean) #2 denotes column, 1 denotes row (not considered here) 

s<-apply(z1,2,sd) 

z2<-scale(z1,m,s) 

 

#calculating Euclidian distance 

distance<-dist(z2) 

print(distance,digits=3) 

 

#hierarchical clustering by cluster dendrogram by complete linkage 

hc.c<-hclust(distance) 

plot(hc.c, labels=roadsection$consid,hang=-1) 

 

#cluster membership 

member.c<-cutree(hc.c,3) 

member.a<-cutree(hc.a,3) 

table(member.c,member.a) 

 

#cluster Means 

aggregate(z2,list(member.c),mean) #z2=standardized value 

aggregate(roadsection[,-c(1,1)],list(member.c),mean)#original values 

 

#silhouette plot 

library(cluster) 

plot(silhouette(cutree(hc.c,4),distance))
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Appendix B: PVI Input data for LCA 

Province  SHRP 
AC 

(mm) 

Base 

(mm) 

Subbase 

(mm) 

Mean 

AADT 

LV 

Mean 

AADT 

HV 

Analysis 

Period 

(years) 

Pavement 

Lift 

Subgrade 

Stiffness, 

k 

AC 

Modulus, 

E 

AB 0501 165.1 73.66 294.64 4138 1477 16 1 129.33 3066.62 

AB 2812 152.4 165.1 - 2154 385 16 1 155.7 9815 

AB 0903 134.62 566.42 2565.4 11749 1709 6 2 469.07 5776.78 

SK 0901 121.92 182.88 233.68 4096 1056 10 2 182.8 7784.74 

SK 6410 116.84 132.08 106.68 4991 816 13 2 146.48 4337.08 

NL 1801 81.28 251 284 10051 943 16 2 562.09 11299.6 

NL 1803 81.28 157.5 381 2266 517 16 1 511.17 9039.68 

ON 0960 129.5 228.6 50.8 7526 1225 16 2 191.95 4695.5 

ON 2812 241.3 127 - 11790 3325 9 3 236.05 16480 

QC 1021 287.02 386.08 1905 15169 2480 14 2 223.51 4233.91 

QC 1127 188 416.56 594.36 11175 1523 9 2 254.93 4090.6 

NB 6804 154.94 81.28 937.26 4406 1392 7 3 506.2 3348.82 

NB 1684 127 83.82 543.56 9895 1479 10 2 149.31 2515.37 

NB 1802 276.86 63.5 472.44 4824 681 13 2 223.17 2235.25 

AB A901 119.38 350.52 - 5200 990 14 1 112.86 3132 

BC 1005 124.46 238.76 309.88 3867 532 12 2 224.06 7131 

BC 6006 134.62 208.28 604.52 19653 1664 9 2 100.53 6782.52 

BC 6007 149.86 314.96 - 9311 2356 13 2 110.65 6745.31 
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Appendix C: SQL Coding                                                                                                                               

 

C.1 Check the functional class of Canadian LTPP road sections 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[FUNCTIONAL_CLASS] 

FROM [Bucket_30922].[dbo].[PROJECT_ID_EXP] 

 

C.2 Retrieve lane width and section length and find missing values as well 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[MONITORED_LANE] 

      ,ISNULL([LANE_WIDTH],0) AS Study_Lane_Width/*ft*/ 

      ,ISNULL([SECTION_LENGTH],0) AS Study_Section_Length/*ft*/ 

  FROM [Bucket_30922].[dbo].[SECTION_GENERAL_EXP] 

 

C.3 Retrieve initial and final construction year with thickness of particular layer we 

considered in this study  

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,datepart(yyyy,[START_DATE]) AS Initial_Year 

      ,datepart(yyyy,[END_DATE]) AS Final_Year 

      ,[DESCRIPTION] AS Layer_Code_No 

      ,[REPR_THICKNESS] 

      ,[MATL_CODE] 

   INTO Layer_Thickness_Table/*Create new table based on query results*/ 

  FROM [Bucket_30922].[dbo].[TRF_ESAL_AC_THICK] 

  where [DESCRIPTION] like '3'  

  OR [DESCRIPTION] LIKE '4' 

  OR [DESCRIPTION] LIKE '5' 
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  OR [DESCRIPTION] LIKE '6' 

  OR [DESCRIPTION] LIKE '7' 

ORDER BY SHRP_ID, CAST([DESCRIPTION] AS Varchar(1000)); 

 

C.4 Retrieve material properties 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[LAYER_NO] AS Layer_Code_No 

      ,ISNULL([BINDER_SPEC_GRAV],0) AS BINDER_SPEC_GRAV 

      ,ISNULL([BINDER_PCT],0) AS BINDER_PCT 

      ,ISNULL([AGG_COARSE_SPEC_GRAV],0) AS AGG_COARSE_SPEC_GRAV  

      ,ISNULL([AGG_COARSE_PCT],0) AS AGG_COARSE_PCT 

      ,ISNULL([AGG_FINE_SPEC_GRAV],0) AS AGG_FINE_SPEC_GRAV 

      ,ISNULL([AGG_FINE_PCT],0) AS AGG_FINE_PCT 

      ,ISNULL([AGG_FILLER_SPEC_GRAV],0) AS AGG_FILLER_SPEC_GRAV 

      ,ISNULL([AGG_FILLER_PCT],0) AS AGG_FILLER_PCT 

FROM [Bucket_30922].[dbo].[TST_SP02] 

GROUP BY  

[STATE_CODE_EXP],[SHRP_ID],[LAYER_NO],[BINDER_SPEC_GRAV],[BINDER_PCT] 

        ,[AGG_COARSE_SPEC_GRAV],[AGG_COARSE_PCT],[AGG_FINE_SPEC_GRAV] 

 ,[AGG_FINE_PCT],[AGG_FILLER_SPEC_GRAV],[AGG_FILLER_PCT] 

ORDER BY [STATE_CODE_EXP],[SHRP_ID],[LAYER_NO] 

 

C.5 Merge material properties and thickness table 

SELECT * 

FROM [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness] 

LEFT JOIN [LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1] 

ON [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].STATE_CODE_EXP 

=[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].STATE_CODE_EXP 

 

AND [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].SHRP_ID 



 

106 
 

 =[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].SHRP_ID 

 

AND [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].Layer_Code_No 

=[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].Layer_Code_No 

    

  UPDATE [LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1] 

 SET 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='Origin

al Surface Layer' 

  WHERE 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='3' 

  UPDATE [LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1] 

 SET 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='AC 

layer below surface (binder course)' 

  WHERE 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='4' 

  UPDATE [LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1] 

 SET 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='Base' 

  WHERE 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='5' 

  UPDATE [LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1] 

 SET 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='Subba

se' 

  WHERE 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='6' 

  UPDATE [LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1] 



 

107 
 

 SET 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='Subgra

de' 

  WHERE 

[LCA_thesis].[dbo].[Asphalt_Agg_Filler_Percent_Spgravity_Info_1].[Layer_Code_No]='7' 

UPDATE [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness] 

 SET 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='Original 

Surface Layer' 

  WHERE 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='3' 

  UPDATE [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness] 

 SET 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='AC layer 

below surface (binder course)' 

  WHERE 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='4' 

  UPDATE [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness] 

 SET 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='Base' 

  WHERE 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='5' 

  UPDATE [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness] 

 SET 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='Subbase' 

  WHERE 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='6' 

  UPDATE [LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness] 

 SET 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='Subgrade' 



 

108 
 

  WHERE 

[LCA_thesis].[dbo].[Ini_Final_Year_Layer_Code_Thickness].[Layer_Code_No]='7' 

 

C.6 Missing values are replaced with random value generated within real life range   

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT]=FLOOR(RAND(CHECKSUM(N

EWID()))*(6-4+1)+4) 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Original 

Surface Layer' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT] IS NULL; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT]=FLOOR(RAND(CHECKSUM(N

EWID()))*(6-4+1)+4) 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Original 

Surface Layer' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT] = 0; 

  

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT]=FLOOR(RAND(CHECKSUM(N

EWID()))*(6-4+1)+4) 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'AC layer 

below surface (binder course)' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT] IS NULL; 

  

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 
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 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=FLOOR(RAND(CHECKS

UM(NEWID()))*(55-48+1)+48) 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Original 

Surface Layer' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=FLOOR(RAND(CHECKS

UM(NEWID()))*(55-48+1)+48) 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Original 

Surface Layer' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] LIKE '0'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=FLOOR(RAND(CHECKS

UM(NEWID()))*(55-48+1)+48) 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'AC layer 

below surface (binder course)' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT]=FLOOR(RAND(CHECKSUM(

NEWID()))*(40-35+1)+35) 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Original 

Surface Layer' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT] IS NULL; 
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UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT]=FLOOR(RAND(CHECKSUM(

NEWID()))*(40-35+1)+35) 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Original 

Surface Layer' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT] LIKE '0'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT]=FLOOR(RAND(CHECKSUM(

NEWID()))*(40-35+1)+35) 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'AC layer 

below surface (binder course)' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT] IS NULL; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=61.5 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Ontario'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=67.5 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'British 

Columbia'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 
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 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=58 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Alberta'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=58 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] LIKE '0 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'Alberta' 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=68.5 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Saskatchewan'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=75 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Manitoba'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 
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 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'New 

Brunswick'; 

   

 UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Newfoundland'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'NovaScotia'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'Prince 

Edward Island'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Quebec'; 
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UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=61.5 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Ontario'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=67.5 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'British 

Columbia'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=58 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Alberta'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=58 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] LIKE '0' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Alberta'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=68.5 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 
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 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Saskatchewan'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=75 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Manitoba'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'New 

Brunswick'; 

   

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Newfoundland'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'NovaScotia'; 
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UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 'Prince 

Edward Island'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT]=66.1 

 WHERE  [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] IS NULL 

 AND [LCA_thesis].[dbo].[Intial_Construction_2].[STATE_CODE_EXP] LIKE 

'Quebec'; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

 SET [LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_PCT]=0 

 WHERE [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Subbase' 

 OR [LCA_thesis].[dbo].[Intial_Construction_2].[Layer_Code_No] LIKE 'Base' 

 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

  SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FILLER_PCT] 

  =100-CAST([LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_PCT] 

AS decimal(4,2)) 

   CAST([LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_PCT] 

AS decimal(4,2)) 

 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 
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  SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_COARSE_SPEC_GRAV]=3; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

  SET [LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FINE_SPEC_GRAV]=3; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

  SET 

[LCA_thesis].[dbo].[Intial_Construction_2].[AGG_FILLER_SPEC_GRAV]=2.6; 

 

UPDATE [LCA_thesis].[dbo].[Intial_Construction_2] 

  SET [LCA_thesis].[dbo].[Intial_Construction_2].[BINDER_SPEC_GRAV]=1; 

 

C.7 Remove the column with similar value 

ALTER TABLE [LCA_thesis].[dbo].[INITIAL CONSTRUCTION_2] 

DROP COLUMN 

[MATL_CODE],[,[AGG_COARSE_PCT],[AGG_FINE_PCT],[AGG_FILLER_PCT]; 

 

  ALTER TABLE [LCA_thesis].[dbo].[INITIAL CONSTRUCTION_2] 

  DROP COLUMN [AGG_COARSE_PCT],[AGG_FINE_PCT],[AGG_FILLER_PCT];  

 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[Initial_Yr] 

      ,[Final_Yr] 

      ,[Layer_Code_No] 

      ,[REPR_THICKNESS] 

      ,[AGG_COARSE_SPEC_GRAV] 

      ,[AGG_FINE_SPEC_GRAV] 

      ,[BINDER_PCT] 

      ,[BINDER_SPEC_GRAV] 
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      ,[AGG_FILLER_SPEC_GRAV] 

      ,[Aggregate_Pct] 

      ,[CA_Pct] 

      ,[FA_Pct] 

      ,[Filler_Pct] 

  INTO Initial_Construction_3 

  FROM [LCA_thesis].[dbo].[INITIAL CONSTRUCTION_2]; 

 

ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_3] 

  ADD Volume decimal(10,2); 

 

C.8 Measure volume of each material 

UPDATE [LCA_thesis].[dbo].[Initial_Construction_3] 

SET Volume = 12*499.90* [REPR_THICKNESS]/12; 

 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[Initial_Yr] 

      ,[Final_Yr] 

      ,[Layer_Code_No] 

      ,[REPR_THICKNESS] 

      ,[AGG_COARSE_SPEC_GRAV] 

      ,[AGG_FINE_SPEC_GRAV] 

      ,[BINDER_PCT] 

      ,[BINDER_SPEC_GRAV] 

      ,[AGG_FILLER_SPEC_GRAV] 

      ,[Aggregate_Pct] 

      ,[CA_Pct] 

      ,[FA_Pct] 

      ,[Filler_Pct] 

      ,[Volume] 
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      ,([Volume]*.01* (TRY_CAST([CA_Pct] as decimal(5,2)))) as Coarse_Agg_Volume 

      ,([Volume]*.01* (TRY_CAST([FA_Pct] as decimal(5,2)))) as Fine_Agg_Volume 

      ,([Volume]*.01* (TRY_CAST([Filler_Pct] as decimal(5,2)))) as Filler_Volume 

Into Initial_Construction_4 

FROM [LCA_thesis].[dbo].[Initial_Construction_3] 

 

C.9  Find emission for each material 

ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_4] 

ADD CO2EMISSION_CA DECIMAL(10,2); 

    

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_4] 

  set CO2EMISSION_CA=[Coarse_Agg_Volume]*62.4*5.46*[AGG_COARSE_SPEC_GRAV] 

   

ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_4] 

  ADD CO2EMISSION_FA DECIMAL(10,2); 

   

   

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_4] 

  set CO2EMISSION_FA=[Fine_Agg_Volume]*62.4*5.46*[AGG_FINE_SPEC_GRAV]; 

 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_4] 

  ADD CO2EMISSION_Filler DECIMAL(10,2); 

 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_4] 

  set CO2EMISSION_Filler=[Filler_Volume]*62.4*340*[AGG_FILLER_SPEC_GRAV]; 

 

 ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_4] 

  ADD Binder_Volume DECIMAL(10,2); 

  

 UPDATE [LCA_thesis].[dbo].[Initial_Construction_4] 
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  set Binder_Volume=[Volume]*.01*(TRY_CAST([BINDER_PCT] AS DECIMAL(5,2))); 

  

 ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_4] 

  ADD CO2EMISSION_Binder DECIMAL(10,2); 

  

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_4] 

  set CO2EMISSION_Binder=[Binder_Volume]*62.4*560.98*[BINDER_SPEC_GRAV]; 

 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_4] 

  ADD TOTAL_CO2_EMISSION DECIMAL(10,2); 

  

 UPDATE [LCA_thesis].[dbo].[Initial_Construction_4] 

 Set 

TOTAL_CO2_EMISSION=[CO2EMISSION_CA]+[CO2EMISSION_FA]+[CO2EMISSION_F

ILLER]+[CO2EMISSION_BINDER] 

 

C.10  Find emission for construction process 

SELECT *   

Into Initial_Construction_6 

  FROM [LCA_thesis].[dbo].[Initial_Construction_5]; 

 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_5] 

  ADD CO2_EMISSION_ASPHALT_PAVER decimal(10,2); 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_ASPHALT_PAVER/*gram*/ = [Volume]*0.046*49.1*852*3.16/2400 

  WHERE [Layer_Code_No] LIKE 'Original Surface Layer'; 

 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_5] 

  ADD CO2_EMISSION_Pneumatic_Roller decimal(10,2); 
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  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_Pneumatic_Roller/*gram*/ = [Volume]*0.046*26.1*852*3.16/668 

  WHERE [Layer_Code_No] LIKE 'Original Surface Layer'; 

 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_5] 

  ADD CO2_EMISSION_Tandem_Roller decimal(10,2); 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_Tandem_Roller/*gram*/ = [Volume]*0.046*32.7*852*3.16/285 

  WHERE [Layer_Code_No] LIKE 'Original Surface Layer'; 

   

/* below codes for AC layer below surface (binder course)*/ 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_ASPHALT_PAVER/*gram*/ = [Volume]*0.046*49.1*852*3.16/2400 

  WHERE [Layer_Code_No] LIKE 'AC layer below surface (binder course)'; 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_Pneumatic_Roller/*gram*/ = [Volume]*0.046*26.1*852*3.16/668 

  WHERE [Layer_Code_No] LIKE 'AC layer below surface (binder course)'; 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_Tandem_Roller/*gram*/ = [Volume]*0.046*32.7*852*3.16/285 

  WHERE [Layer_Code_No] LIKE 'AC layer below surface (binder course)'; 

 

  /* below codes for granular unbound layer*/ 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_5] 

  ADD CO2_EMISSION_Excavator decimal(10,2); 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_Excavator/*gram*/ = [Volume]*0.048*34.2*852*3.16/315 

  WHERE [Layer_Code_No] LIKE 'Base' 
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 OR [Layer_Code_No] LIKE 'Subbase' 

 

  ALTER TABLE [LCA_thesis].[dbo].[Initial_Construction_5] 

  ADD CO2_EMISSION_Vibratory_Compactor decimal(10,2); 

 

  UPDATE [LCA_thesis].[dbo].[Initial_Construction_5] 

  SET CO2_EMISSION_Vibratory_Compactor/*gram*/ = 

[Volume]*0.048*27.6*852*3.16/1832 

  WHERE [Layer_Code_No] LIKE 'Base' 

 OR [Layer_Code_No] LIKE 'Subbase' 

 

C.11  Climate data 

SELECT ISNULL([TOTAL_MON_PRECIP],0) AS TOTAL_MON_PRECIP 

     ISNULL([TOTAL_SNOWFALL_MONTH],0) AS 

[TOTAL_SNOWFALL_MONTHs] 

      INTO PrecipitationTable1 

FROM [Bucket_33198].[dbo].[CLM_VWS_PRECIP_MONTH] 

 

ALTER TABLE [Bucket_33198].[dbo].[PrecipitationTable1] 

ADD Total_Month_Precipitation Decimal (10,5); 

 

UPDATE [Bucket_33198].[dbo].[PrecipitationTable1] 

SET Total_Month_Precipitation = 

[TOTAL_MON_PRECIPITATION]+[TOTAL_SNOWFALL_MONTHS] 

 

SELECT * 

 INTO LCA_thesis.dbo.Total_Monthly_Precipitation 

  FROM [Bucket_33198].[dbo].[PrecipitationTable1] 

 

SELECT [STATE_CODE_EXP] 

  ,[SHRP_ID] 
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  ,AVG(CAST([Total_Month_Precipitation] AS DECIMAL (10,5))) AS 

AVG_Month_Precipitation 

  INTO Total_Monthly_Precipitation2 

  FROM [LCA_thesis].[dbo].[Total_Monthly_Precipitation] 

  GROUP BY [STATE_CODE_EXP] 

  ,[SHRP_ID] 

  ORDER BY [STATE_CODE_EXP] 

  ,[SHRP_ID] 

 

/*Tempereature*/ 

 

SELECT [SHRP_ID] 

      ,[STATE_CODE_EXP] 

      ,AVG (CAST ([MEAN_MON_TEMP_AVG] AS DECIMAL (10,5))) AS 

AVG_MON_TEMP 

      ,AVG (CAST ([FREEZE_INDEX_MONTH] AS DECIMAL (10,5))) AS 

AVG_MON_FREEZINDEX 

  INTO  LCA_thesis.dbo.Monthly_Temperture 

  FROM [Bucket_33215].[dbo].[CLM_VWS_TEMP_MONTH] 

 

  GROUP BY [SHRP_ID] 

      ,[STATE_CODE_EXP] 

  ORDER BY [SHRP_ID] 

      ,[STATE_CODE_EXP] 

 

C.12  Join three column of surface layer thickness, precipitation and temperature 

SELECT * 

FROM [LCA_thesis].[dbo].[Original_Surface_Thickness2]  

  surfthickness inner join [LCA_thesis].[dbo].[Total_Monthly_Precipitation2]  

  preci on surfthickness.SHRP_ID=preci.SHRP_ID 
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    AND 

surfthickness.STATE_CODE_EXP=preci.STATE_CODE_EXP 

    inner join [LCA_thesis].[dbo].[Monthly_Temperture]  

    temp on temp.SHRP_ID=preci.SHRP_ID 

     AND 

temp.STATE_CODE_EXP=preci.STATE_CODE_EXP 

 

C.13 Calculate mean texture and combine tables of IRI and texture depth 

SELECT  datepart(yyyy,[VISIT_DATE]) AS Year 

      ,[STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[MRI] 

   INTO Roughness_Table 

  FROM [Bucket_33775].[dbo].[MON_HSS_PROFILE_SECTION] 

 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,datepart(yyyy,[VISIT_DATE]) AS Year 

      ,[Mean_MTD] 

   INTO Texture_Depth_Table 

  FROM [Bucket_33775].[dbo].[MON_HSS_TEXTURE_SECTION]  

 

SELECT [STATE_CODE_EXP] 

      ,[SHRP_ID] 

      ,[YEAR] 

      ,[KESAL_YEAR] 

   INTO ESAL_Table 

  FROM [Bucket_33775].[dbo].[TRF_ESAL_COMPUTED] 

 

SELECT * 

FROM [Bucket_33775].[dbo].[ESAL_Table] ET 
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 INNER JOIN [Bucket_33775].[dbo].[Roughness_Table] RT 

 ON ET.STATE_CODE_EXP = RT.STATE_CODE_EXP 

 AND ET.SHRP_ID = RT.SHRP_ID 

 AND ET.[YEAR] = RT.[YEAR] 

  

 INNER JOIN [Bucket_33775].[dbo].[Texture_Depth_Table] TT 

 ON TT.STATE_CODE_EXP = RT.STATE_CODE_EXP 

 AND TT.SHRP_ID = RT.SHRP_ID 

 AND TT.[YEAR] = RT.[YEAR] 
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Appendix D: Python Coding 

 

Material Production and Initial construction 

D.1 Multiple linear regression (asphalt layer) 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#importing the datatset 

dataset=pd.read_csv('Initial_construction_asphalt_layer_final_version.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,9].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting multiple linear regression with train data 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 
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#predict values 

y_predict = regressor.predict(X_test) 

 

D.2 Decision tree regression (asphalt layer) 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from IPython.display import Image   

from sklearn import tree 

import pydotplus 

 

#importing the datatset 

dataset=pd.read_csv('Initial_construction_asphalt_layer_final_version.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,9].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

            

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting decision tree regression to the dataset 

from sklearn.tree import DecisionTreeRegressor 

regressor = DecisionTreeRegressor(min_samples_leaf=5,random_state = 0) 
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regressor.fit(X_train,y_train) 

 

regressor.feature_importances_ 

regressor.get_n_leaves() 

 

# Create DOT data 

dot_data = tree.export_graphviz(regressor, out_file=None) 

 

# Draw graph 

graph = pydotplus.graph_from_dot_data(dot_data)   

 

# Create PNG 

graph.write_png("iris.png") 

 

#predict 

predictedval=regressor.predict(X_test) 

 

D.3 SVR (asphalt layer) 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#importing the dataset 

dataset=pd.read_csv('Initial_construction_asphalt_layer_final_version.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,9].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 



 

128 
 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#feature scaling  

from sklearn.preprocessing import StandardScaler 

sc_X = StandardScaler() 

sc_Y = StandardScaler() 

X_train_scaled=sc_X.fit_transform(X_train) 

y_train_scaled=sc_Y.fit_transform(y_train.reshape(-1,1)) 

 

#fitting SVR  

from sklearn import svm 

regressor = svm.SVR(kernel = 'linear') 

regressor.fit(X_train_scaled,y_train_scaled) 

 

#predicting a new result 

y_pred = sc_Y.inverse_transform(regressor.predict(sc_X.transform(X_test))) 

 

#weight vectors 

regressor.coef_ 

 

D.4 Multiple linear regression (granular layer) 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 
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#importing the dataset 

dataset=pd.read_csv('INIT_CONSTR_6_Granular_layer_prepared.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,6].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting multiple linear regression with train data 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

#predict values 

y_predict = regressor.predict(X_test) 

 

D.5 Polynomial regression (granular layer) 

#importing the datatset 

dataset=pd.read_csv('INIT_CONSTR_6_Granular_layer_prepared.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,6].values 

 

#encoding categorical data 
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from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting polynomial regression with train data 

from sklearn.preprocessing import PolynomialFeatures 

poly_reg= PolynomialFeatures(degree=2) 

X_poly = poly_reg.fit_transform(X_train) 

 

from sklearn.linear_model import LinearRegression 

lin_reg2 = LinearRegression() 

lin_reg2.fit(X_poly,y_train) 

 

#predict values 

y_predict = lin_reg2.predict(poly_reg.fit_transform(X_test)) 

 

D.6 Decision tree regression (granular layer) 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#importing the datatset 

dataset=pd.read_csv('INIT_CONSTR_6_Granular_layer_prepared.csv') 

X = dataset.iloc[:,:-1].values 
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y = dataset.iloc[:,6].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting decision tree regression to the dataset 

from sklearn.tree import DecisionTreeRegressor 

regressor = DecisionTreeRegressor(random_state = 0) 

regressor.fit(X_train,y_train) 

 

#predict 

predictedval=regressor.predict(X_test) 

 

D.7 SVR (granular layer) 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#importing the datatset 

dataset=pd.read_csv('INIT_CONSTR_6_Granular_layer_prepared.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,6].values 
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#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,0]=labelencoder_X.fit_transform(X[:,0]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [0]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#feature scaling  

from sklearn.preprocessing import StandardScaler 

sc_X = StandardScaler() 

sc_Y = StandardScaler() 

X_train_scaled=sc_X.fit_transform(X_train) 

y_train_scaled=sc_Y.fit_transform(y_train.reshape(-1,1)) 

 

#fitting SVR to the dataset 

from sklearn import svm 

regressor = svm.SVR(kernel = 'linear') 

regressor.fit(X_train_scaled,y_train_scaled) 

 

#predicting a new result 

y_pred = sc_Y.inverse_transform(regressor.predict(sc_X.transform(X_test))) 

 

#weight vectors 

regressor.coef_ 

 

Maintenance Phase 
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D.8 Multiple linear regression  

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#importing the datatset 

dataset=pd.read_csv('MAINTENANCE_PHASE.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,10].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,8]=labelencoder_X.fit_transform(X[:,8]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [8]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

                                              

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting multiple linear regression with train data 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

 

#predict values 

y_predict = regressor.predict(X_test) 

 

#OLS 
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import statsmodels.regression.linear_model as sm 

X = np.append(arr= np.ones((47,1)).astype(int), values = X, axis =1) 

X_opt= X[:,:] 

regressor_OLS = sm.OLS(endog= y, exog = X_opt).fit() 

regressor_OLS.summary() 

 

D.9 Decision tree regression 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from IPython.display import Image   

from sklearn import tree 

import pydotplus 

 

#importing the datatset 

dataset=pd.read_csv('MAINTENANCE_PHASE.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,10].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,8]=labelencoder_X.fit_transform(X[:,8]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [8]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

                                                                                

#splittting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 
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#fitting decisiontree regression to the dataset 

from sklearn.tree import DecisionTreeRegressor 

regressor = DecisionTreeRegressor(min_samples_leaf=5, 

                                  random_state = 0) 

regressor.fit(X_train,y_train) 

 

regressor.feature_importances_ 

regressor.get_n_leaves() 

 

#create DOT data 

dot_data = tree.export_graphviz(regressor, out_file=None) 

 

#draw graph 

graph = pydotplus.graph_from_dot_data(dot_data)   

 

#show graph 

Image(graph.create_png()) 

 

#create PDF 

graph.write_pdf("MAINTENACEPHASE.pdf") 

 

#create PNG 

graph.write_png("MAINTENACEPHASE.png") 

#predict 

predictedval=regressor.predict(X_test) 

 

D.10 SVR 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 
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#importing the datatset 

dataset=pd.read_csv('MAINTENANCE_PHASE.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,10].values 

 

#encoding categorical data 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_X = LabelEncoder() 

X[:,8]=labelencoder_X.fit_transform(X[:,8]) #different label assigned  

onehotencoder = OneHotEncoder(categorical_features = [8]) 

X = onehotencoder.fit_transform(X).toarray()  #different column for diff. label  

 

#splittting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#feature scaling  

from sklearn.preprocessing import StandardScaler 

sc_X = StandardScaler() 

sc_Y = StandardScaler() 

X_train_scaled=sc_X.fit_transform(X_train) 

y_train_scaled=sc_Y.fit_transform(y_train.reshape(-1,1)) 

 

#fitting SVR ro the dataset 

from sklearn import svm 

regressor = svm.SVR(kernel = 'linear') 

regressor.fit(X_train_scaled,y_train_scaled) 

 

#predicting a new result 

y_pred = sc_Y.inverse_transform(regressor.predict(sc_X.transform(X_test))) 
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Use Phase 

D.11 Multiple linear regression  

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#Importing the datatset 

dataset=pd.read_csv('USE_PHASE_READY_FOR_MODEL.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,3].values 

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting multiple linear regression with train data 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

 

#predict values 

y_predict = regressor.predict(X_test) 

 

D.12 Polynomial regression 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 
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#Importing the datatset 

dataset=pd.read_csv('USE_PHASE.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,3].values 

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting polynomial regression with train data 

from sklearn.preprocessing import PolynomialFeatures 

poly_reg= PolynomialFeatures(degree=2) 

X_poly = poly_reg.fit_transform(X_train) 

 

from sklearn.linear_model import LinearRegression 

lin_reg2 = LinearRegression() 

lin_reg2.fit(X_poly,y_train) 

 

#predict values 

y_predict = lin_reg2.predict(poly_reg.fit_transform(X_test)) 

 

#OLS 

import statsmodels.regression.linear_model as sm 

X_opt= X_poly[:,:] 

regressor_OLS = sm.OLS(endog= y_train, exog = X_opt).fit() 

regressor_OLS.summary() 

 

D.13 Decision tree regression 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 
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import pandas as pd 

from IPython.display import Image   

from sklearn import tree 

import pydotplus 

 

#importing the datatset 

dataset=pd.read_csv('USE_PHASE.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,3].values 

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#fitting decision tree regression to the dataset 

from sklearn.tree import DecisionTreeRegressor 

regressor = DecisionTreeRegressor(min_samples_leaf=5, random_state = 0) 

regressor.fit(X_train,y_train) 

 

regressor.feature_importances_ 

regressor.get_n_leaves() 

 

# Create DOT data 

dot_data = tree.export_graphviz(regressor, out_file=None) 

 

# Draw graph 

graph = pydotplus.graph_from_dot_data(dot_data)   

 

# Show graph 

Image(graph.create_png()) 
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# Create PDF 

graph.write_pdf("MAINTENACEPHASE.pdf") 

 

# Create PNG 

graph.write_png("MAINTENACEPHASE.png") 

 

#predict 

predictedval=regressor.predict(X_test) 

 

D.14 SVR 

#importing libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

#importing the datatset 

dataset=pd.read_csv('USE_PHASE.csv') 

X = dataset.iloc[:,:-1].values 

y = dataset.iloc[:,3].values 

 

#splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 

 

#feature scaling  

from sklearn.preprocessing import StandardScaler 

sc_X = StandardScaler() 

sc_Y = StandardScaler() 

X_train_scaled=sc_X.fit_transform(X_train) 

y_train_scaled=sc_Y.fit_transform(y_train.reshape(-1,1)) 
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#fitting SVR to the dataset 

from sklearn import svm 

regressor = svm.SVR(kernel = 'linear') 

regressor.fit(X_train_scaled,y_train_scaled) 

 

#predicting a new result 

y_pred = sc_Y.inverse_transform(regressor.predict(sc_X.transform(X_test))) 

 

#weight vectors 

regressor.coef_ 

 

 

 

 


