
IEEE Int. Conference on Systems, Man, and Cybernetics, Tokyo, Japan, 12-15 October 1999, pp.775-780.

Copyright c© 1999 IEEE (DOI 10.1109/ICSMC.1999.823326).

Hierarchical Derivation of Petri Net Models of

Composite Schedules for Manufacturing Cells

W.M. Zuberek

Department of Computer Science

Memorial University of Newfoundland

St.John’s, Canada A1B 3X5

Abstract
Composite schedules for manufacturing cells (or robotic
cells) are schedules in which several parts enter and leave
the cell in each cycle (although the parts which leave the
cell are not necessarily the same as the ones that enter
the cell). It appears that composite schedules can eas-
ily be transformed into timed Petri net models in which
the timed transitions represent the actions (including
the durations) of the robot and the machines of the
cell. Moreover, such models can be derived using step-
wise refinements of net models. Hierarchical modeling
is obtained by systematic application of the refinement
steps.

1. Introduction

Quite often manufacturing systems are composed of
clusters of machines arranged in manufacturing cells (or
robotic cells), connected by a common transportation
system which moves the machined or assembled parts
between the cells or between the cells and storage areas
[1].

Each manufacturing cell is composed of a number of
machines and a robot (or a robotic arm) which moves
the parts from one machine to another, from the input
conveyor to the first machine and from the last machine
to the output conveyor. The (cyclic) sequence of oper-
ations performed by the robot is called a schedule. The
throughput of a cell depends on the sequence of robot
moves as well as on the sequence in which parts enter
the cell [6]. Maximizing the throughput of a robotic cell
is thus equivalent to finding a schedule with the minimal
cycle time.

The behavior of a manufacturing cell can be rep-
resented by ‘events’ and ‘activities’; an activity corre-
sponds to an operation performed by a machine or a
robot, and an event corresponds to any change of the
cell’s activities. Different sets of activities determine the
‘states’ of the system, and in each state, several activ-
ities can occur concurrently, for example, an operation
can be performed by one of the machines, and the robot
can also transport a part from one machine to another.
Petri nets provide a simple and convenient formalism
for modeling system that exhibit concurrent activities
[8, 7]; they have been successfully used in modeling and
analysis of manufacturing systems [2, 3, 5, 4].

Place/transition Petri nets are composed of two types
of elements, called ‘places’ and ‘transitions’; places rep-

resent conditions (in a very general sense) and transi-
tions – events. If all ‘input conditions’ of an event are
satisfied, the event can occur. The dynamic behavior
of a net is represented by ‘tokens’ which are assigned to
places, and which represent conditions that are satisfied
(‘marked places’). These tokens – when an event occurs
– change their assignments. The new distribution of to-
kens creates a new set of satisfied conditions, new events
that can occur, and so on.

In timed Petri nets, the durations of modeled ac-
tivities are also taken into account, and then the be-
havior of a net is represented by an embedded Markov
chain which can be used for performance analysis of the
model. For special classes of nets, structural properties
can be used for a simple evaluation of basic performance
characteristics. It appears that net models of schedules
for manufacturing cells belong to this special class of
nets; their its performance can be evaluated on the ba-
sis of place invariants [12, 13].

In composite schedules, several different parts can be
assembled or machined during one (more complex) cycle
of operations. The paper shows how simple schedules
can be combined into composite ones, by using refine-
ment operations; this refinement is used for a hierarchi-
cal development of schedules. The refinement operation
used in this paper is a generalization of simple transi-
tion refinements used previously [13, 14]; it replaces a
collection of net elements in one refinement step. Conse-
quently, an operation of ‘fusion’ of places or transitions
becomes a special case of this refinement. Many other
net transformations can also be specified by these gen-
eralized net refinements.

Section 2 briefly introduces descriptions of manufac-
turing cells and their schedules. Section 3 recalls basic
concepts of Petri nets and defines the refinement oper-
ation used in this paper, while Section 4 applies this
refinement to systematic derivation of composite sched-
ules. Section 5 concludes the paper.

2. Schedules for manufacturing cells

A simple manufacturing cell with three machines,
M1, M2 and M3, an input conveyor In, an output
conveyor Out, and a robot, is outlined in Fig.2.1.

It is known [9] that for a cell with m machines, there
are m! different schedules. These schedules can be de-
scribed by sequences of ‘move’ operations (performed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/395081075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hierarchical derivation of Petri met models of composite schedules ... 776

M1

M2

In Out

Robot

M3

Fig.2.1. Layout of a 3–machine cell.

by the robot) such as picking a part from the input
conveyor, transporting it to a machine and loading it,
then (when the machine’s operation is finished) unload-
ing the part, transporting it to another machine, and so
on.

Assuming (for simplicity) that all parts follow the
same path through the cell, and that this path is from
the input conveyor to the first machine, then from the
first machine to the second, and so on, the six 3–machine
schedules, denoted here A, B, ..., F, can be represented
by sequences of cell “states”. Each state describes the
distribution of parts over the machines of the cell, so, for
an m–machine cell, it can be represented by a sequence
of m (binary) digits, each digit describing one machine
of the cell (with the value “0” if the machine is ‘empty’,
and “1” if a part is loaded on the machine; so, ‘010’ is
the state in which M1 and M3 are empty and there is
a part loaded on M2):

A: 000 – 100 – 010 – 001 – 000
B: 001 – 101 – 011 – 010 – 001
C: 001 – 101 – 100 – 010 – 001
D: 010 – 110 – 101 – 011 – 010
E: 010 – 110 – 101 – 100 – 010
F: 011 – 111 – 110 – 101 – 011

It is (arbitrarily) assumed that all schedules begin in
a uniform way by the operation of picking a new part
from the input, transporting it and loading on the first
machine of the cell (this is why for all schedules the
first component of the first state description, i.e., the
machine M1, is always “0”).

Each of these schedules can easily be transformed
into a complete sequence of robot’s operations [12] by
adding all those robot’s moves which are necessary to
perform the required state transitions. For example, the
schedule D, “010 – 110 – 101 – 011 – 010”, requires that
the robot, after loading the new part on machine M1
(state transition 010 – 110), moves to machine M2 to
unload it, transport the unloaded part to machine M3
and load the part (state transition 110 – 101); then the
robot moves back to M1, unloads it, transports the un-
loaded part to M2 and loads it (transition 101 – 011);
next the robot moves to M3, unloads the part, trans-
ports is to the output conveyor and drops it there (state

transition 011 – 010), after which the robot moves to the
input conveyor to start another cycle. Such a detailed
schedule is a sequence of steps in which the robot carries
a part from one component of the cell to another (such
steps are denoted by ⇒), or performs ‘empty’ moves,
without carrying a part (such steps are denoted by →).
The discussed schedule D is a (cyclic) sequence of the
following steps:

In⇒M1→M2⇒M3→M1⇒
M2→M3⇒ Out→ In

while for schedule A the sequence is simply:

In⇒M1⇒M2⇒M3⇒ Out→ In.

These sequences can be further refined by explicitly
showing all operations performed by the robot. Let P0
and D0 denote the operations of picking a new part
from the input conveyor and dropping a part on the
output conveyor, respectively; let also Li and Ui denote
the operations of loading a part on machine Mi and
unloading the part fromMi; then the detailed sequence
for schedule D is:

P0⇒M1, L1→M2, U2⇒M3, L3→M1, U1
⇒M2, L2→M3, U3⇒ Out,D0→ In

and the sequence for schedule A is:

P0⇒M1, L1, U1⇒M2, L2, U2⇒
M3, L3, U3⇒ Out,D0→ In.

It appears that composite schedules, in which sev-
eral parts enter the cell (and several parts leave the
cell) in one cycle, are extension of the same approach;
for composite schedules, the robot executes operations
of several simple schedules. Not surprisingly, compos-
ite schedules can be represented by embedding simple
schedules one into another in a way that preserves the
consistency of state descriptions [12]. For example, it
can be observed that the initial state of schedule D (010)
is also one of the states in schedule A, so it is possible,
in state 010 of schedule A, to “switch” to schedule D,
execute it and return to continuation of schedule A, as
shown in the following outline:

schedule A schedule D

000
100
010 −→ 010

110
101
011

010 ←− 010
001
000

A complete sequence of robot operations is a com-
bination of the sequence for schedule A with that for
schedule D, with (possibly) some additional moves at
the transition from one schedule to another. For the
composite schedule A+D this detailed sequence is:

Hierarchical derivation of Petri met models of composite schedules ... 777

P0⇒M1, L1, U1⇒M2, L2
→ In, P0⇒M1, L1→M2, U2
⇒M3, L3→M1, U1⇒M2, L2
→M3, U3⇒ Out,D0→M2,

U2⇒M3, L3, U3⇒ Out,D0→ In.

Although it is possible to derive composite sched-
ules from the detailed state descriptions [12], there is a
more intuitively appealing approach which derives mod-
els of composite schedules by combining models of sim-
ple schedules.

3. Petri nets and net refinements

This section recalls basic concepts of timed Petri nets
and net refinements. A more detailed discussion can be
found in [7, 8, 11, 12].

A place/transition (ordinary, i.e., with no arc
weights) net N is a triple N = (P, T,A) where P is
a finite, nonempty set of places, T is a finite, nonempty
set of transitions, A is a set of directed arcs, and
A ⊆ P × T ∪ T × P , such that for each transition there
exists at least one place connected with it. For each
place p (and each transition t) the input set, Inp(p) (or
Inp(t)), is the set of transitions (or places) connected
by directed arcs to p (or t). The output sets, Out(p)
and Out(t), are defined similarly. The Inp and Out no-
tation is extended in the natural way to sets of places
and transitions.

A marked Petri net M is a pair M = (N,m0) where
N is a Petri net, N = (P, T,A), and m0 is an initial
marking function, m0 : P → {0, 1, ...} which assigns a
(nonnegative) integer number of tokens to each place of
the net.

Let any function m : P → {0, 1, ...} be called a mark-
ing in a net N = (P, T,A).

A transition t is enabled by a marking m iff every
input place of this transition contains at least one token.
Every transition enabled by a markingm can fire. When
a transition fires, a token is removed from each of its
input places and a token is added to each of its output
places. This determines a new marking in a net, a new
set of enabled transitions, and so on. The set of all
markings that can be derived from the initial marking
is called the set of reachable markings. If this set if
finite, the net is bounded.

A place p is shared iff it is an input place for more
than one transition. A net is free–choice if the input
sets of all transitions sharing the same place are identi-
cal. A net is (structurally or statically) conflict–free if
it does not contain shared places. A marked net is (dy-
namically) conflict–free if for any marking in the set of
reachable markings, and for any shared place, at most
one of transitions sharing this place is enabled. Only
bounded conflict–free nets are considered in this paper.

Refinements in Petri nets can be defined in several
ways; a convenient approach, proposed in [13], refines a
net by replacing a single element (a transition or a place)
by a subnet connected to the input and output sets of

the replaced element. A more general refinement oper-
ations are used in this paper in order to refine a number
of elements in a single step. Consequently, more gen-
eral net transformations can be described by this refine-
ment operation, with the previously used refinements of
places and transitions [13, 14] as special cases.

A refinement system R is defined as a 5–tuple, R =
(M0,M, ρ, φ, ψ), where:

M0 is a marked (initial) place/transition net, M0 =
(N0,m0), N0 = (P0, T0, A0);

M is a family of (marked) place/transition refinement
nets,M = {M1, ...,Mk};

ρ is a (partial) refinement function which associates
subsets of elements of P0 ∪ T0 with nets from M,
ρ : 2P0∪T0 → {1, ..., k} such that:

∀Xi ∈ Dom(ρ) ∀Xj ∈ Dom(ρ)− {Xi} :
Xi ∩Xj = ∅ ∧ Xi ∩ (Inp(Xj) ∪Out(Xj)) ∪
Xj ∩ (Inp(Xi) ∪Out(Xi)) = ∅,

i.e., if X ∈ Dom(ρ), than all elements of X are
replaced by the same net Mρ(X), and different sub-
sets Xi, Xj ∈ Dom(ρ) are disjoint and do not con-
tain adjacent elements of M0;

φ and ψ are (input and output) interface functions
which define the interconnections between the in-
put and output sets of the refined elements and
their refinement nets determined by ρ; for each
X ∈ Dom(ρ), φ(X) : T0 → 2Pρ(p) ∪ P0 → 2Tρ(t)

such that φ(X)(t) is undefined if t /∈ Inp(X) and
φ(X)(p) is undefined if p /∈ Inp(X); similarly, for
each X ∈ Dom(ρ), ψ(p) : T0 → 2Pρ(p) ∪P0 → 2Tρ(t)

such that ψ(X)(t) is undefined if t /∈ Out(X) and
ψ(X)(p) is undefined if p /∈ Out(X).

p1

p1a p1bt1a t1bt1

p2

t2t2a p2a p2b t2b

Fig.3.1. Net models of two machines, M1 and M2.

For example, Fig.3.1 shows two simple cyclic nets
which model two machines of a (very simple) cell. Places
p1 and p2 indicate (if marked) that the corresponding
machine is available for operation (that it is “free”);
for each machine Mi, i = 1, 2, transition ti represents
the machine’s operation, transition tia the loading of a
part on the machine Mi, and transition tib – unloading
the part, after which the machine becomes available for
another operation.

Fig.3.2 shows another cyclic net which represents the
sequence of robot moves for one of the schedules for a
two–machine cell; this sequence is:

P0⇒M1, L1, U1⇒M2, L2, U2⇒ Out,D0→ In.

Hierarchical derivation of Petri met models of composite schedules ... 778

t1a t1b t12 t2a t2b

p11 p22p12 p21

t01

p20

t0

t20

pout

tout

p02

p10

p01

tin

pin

Fig.3.2. Net model of the robot, M0.

The transitions represent consecutive steps of the se-
quence, so t0 represents the move from Out to In, tin –
picking a new part from the input conveyor, t01 – move
from In to M1, and so on.

The two shaded areas in Fig.3.2 indicate the transi-
tions which are common for the robot and the machines
(loading and unloading the parts). In a complete model,
these transitions should be “fused” with the correspond-
ing transitions of machine models (Fig.3.1).

Fig.3.3 shows the refinement of net M0 (shown in
Fig.3.2) by the two netsM1 andM2 shown in Fig.3.1; in
this caseM = {M1,M2}, and the refinement functions
are:

∀ x ∈ P0 ∪ T0 : ρ(x) =

1, if x ∈ {t1a, t1b};
2, if x ∈ {t2a, t2b};
undefined otherwise;

∀ p ∈ P0 : φ(t1a, t1b)(p) =

{t1a}, if p = p10;
{t1b}, if p = p11;
undefined otherwise;

∀ p ∈ P0 : φ(t2a, t2b)(p) =

{t2a}, if p = p21;
{t2b}, if p = p22;
undefined otherwise;

∀ p ∈ P0 : ψ(t1a, t1b)(p) =

{t1a}, if p = p11;
{t1b}, if p = p12;
undefined otherwise;

∀ p ∈ P0 : ψ(t2a, t2b)(p) =

{t2a}, if p = p22;
{t2b}, if p = p20;
undefined otherwise.

t12

p11 p22p12 p21

t01

p20

t0

t20

t1a t1b

t1

p1

p1a
p1b

t2a t2b

p2

t2

p2a
p2b

p10

tin

pinp01 pout

tout

p02

Fig.3.3. Net model of a 2–machine schedule.

In timed Petri nets there is a ‘firing time’ associated
with each transition of a net which determines the du-
ration of transition’s firings.

A conflict–free timed Petri netT is a pairT = (M, f)
where M is a conflict–free marked Petri net, M =

(N,m0), N = (P, T,A), and f is a firing time func-
tion which assigns the nonnegative (average) firing time
f(t) to each transition t of the net, f : T → R

⊕, and
R

⊕ denotes the set of nonnegative real numbers.
The behavior of a timed Petri net can be represented

by a set of states and state transitions [11] which can be
combined into a graph of reachable states; this graph is
a semi–Markov process defined by the timed net T. For
cyclic conflict–free timed nets, such reachability graphs
are simple cycles which represent the cyclic behavior of
conflict–free nets. Each such timed Petri net contains
a basic invariant subnet with the cycle time equal to
the cycle time of the whole net. All other subnets, with
smaller cycle times, will be subjected to some synchro-
nization delays, imposed by the ‘slowest’ subnet that
determines the cycle time of the whole net. The cycle
time of the net is thus equal to the maximum cycle time
if its basic invariant subnets [12]. This property can
be used for a very efficient structural method of per-
formance evaluation, based on place invariants of net
models [12, 14].

4. Net models of composite schedules

Petri net models of simple schedules can easily be de-
rived from detailed sequences of the robot operations as
an extension of the example given in Section 3. Fig.4.1
shows a net model of the previously (Section 2) dis-
cussed schedule A for a 3–machine cell, and Fig.4.2
shows a model of schedule D.

In composite schedules, several (possibly different)
parts enter the cell in each cycle, so the models of ma-
chines must be generalized to represent possibly differ-
ent operations performed on different parts by the same
machine. A simple extension of the model shown in
Fig.3.1 uses a free–choice structure with a branch for
each part of the composite schedule. For schedules com-
posed of pairs of simple schedules, the machine model
can be as in Fig.4.3. It should be observed that this
model can be created by a refinement of a single machine
model (e.g., the first model shown in Fig.3.1), replacing
place p1 by another net model of a single machine (e.g.,
the second net model in Fig.3.1).

p1

t1a"

t1a’ p1a’ t1’ p1b’ t1b’

p1a" p1b" t1b"t1"

Fig.4.3. Net model of a single machine, M1.

A detailed sequence of robot’s moves, shown in
Fig.4.4, is a generalization of the model from Fig.3.2:

(t′in, p
′
01, t

′
01, p

′
10, t

′
1a, p

′
11, t

′

1b, p
′
12, t

′
12, p

′
21, t

′
2a, p2c,

t20, p
′′
in, t

′′
in, p

′′
01, t

′′
01, p

′′
10, t

′′
1a, p

′′
1c, t

′′
21, p

′′

2d, t
′′

2b, p
′′
23, t

′′
23,

p′′32, t
′′
3a, p

′′
31, t

′′
31, p

′′
13, t

′′

1b, p
′′
12, t

′′
12, p

′′
21, t

′′
2a, p

′′
2c, t

′′
32, p

′′
3c,

t′′3b, p
′′
30, t

′′
30, p

′′
03, t

′′
out, p

′′
out, t02, p20, t

′

2b, p
′
23, t

′
23, p

′
32,

t′3a, p
′
33, t

′

3b, p
′
30, t

′
30, p

′
03, t

′
out, p

′
out, t

′
0, p

′
in, t

′
in)

Hierarchical derivation of Petri met models of composite schedules ... 779

p11

p22

p33

t12 t23

p1

t1t1a p1a p1b t1b

p2

t2t2a p2a p2b t2b

p3

t3t3a p3a p3b t3b

p12 p21 p23 p32

t0

pout

tout

t01

p10

p01

tin

pin

p30

t30

p03

Fig.4.1. Net model of schedule A.

p1

t1t1a t1bp1a p1b t12

t21
p2c p2d

p2

t2t2a t2bp2a p2b

t31

t23

t32

p3

t3p3at3a p3b t3b

t0

t01

p10

p01

tin

pin

p30

t30

pout

tout

p03

p12 p21 p23 p32

p31p13p1c p3c

Fig.4.2. Net model of schedule D.

The shaded areas in Fig.4.4 indicate two of three sub-
sets of transitions to be refined by the machine models
M1, M2 and M3 (all as shown in Fig.4.3).

X1

X3

t1a"

t1a’ t1b’

p11’p10’ p12’

t12’

p21’

t2a’

p2c

t20

pin"

tin"

p01"

t01"

p10"

t2a" t32" t3b" t30" tout" t02

p21" p2c" p3c" p30" p03" pout" p20
t2b’

p1c"

t21"

p2d"

t2b"t23"

p23"p31"p13"p12" p32"

t3a"t31"t1b"

t23’

p23’p32’

t3a’

p33’

t3b’

p30’

t30’

p03’

tout’

pout’

t0’

pin’

tin’

t12"

X3

t01’

p01’

Fig.4.4. Robot’s cycle for schedule A+D.

The refining functions ρ, φ and ψ are:

∀ x ∈ P0 ∪ T0 : ρ(x) =

1, if x ∈ {t′1a, t
′

1b, t
′′
1a, t

′′

1b};
2, if x ∈ {t′2a, t

′

2b, t
′′
2a, t

′′

2b};
3, if x ∈ {t′3a, t

′

3b, t
′′
3a, t

′′

3b};
undefined otherwise;

Let X1 = {t′1a, t
′

1b, t
′′
1a, t

′′

1b}, X2 = {t′2a, t
′

2b, t
′′
2a, t

′′

2b},
and X3 = {t′3a, t

′

3b, t
′′
3a, t

′′

3b}; then:

∀ p ∈ P0 : φ(X1)(p) =

{t′1a}, if p = p′10;
{t′1b}, if p = p′11;
{t′′1a}, if p = p′′10;
{t′′1b}, if p = p′′13;
undefined otherwise;

∀ p ∈ P0 : φ(X2)(p) =

{t′2a}, if p = p′′21;
{t′2b}, if p = p′2c;
{t′′2a}, if p = p′21;
{t′′2b}, if p = p′′2d;
undefined otherwise;

∀ p ∈ P0 : φ(X3)(p) =

{t′3a}, if p = p′32;
{t′3b}, if p = p′33;
{t′′3a}, if p = p′′32;
{t′′3b}, if p = p′′3c;
undefined otherwise;

∀ p ∈ P0 : ψ(X1)(p) =

{t′1a}, if p = p′11;
{t′1b}, if p = p′12;
{t′′1a}, if p = p′′1c;
{t′′1b}, if p = p′′12;
undefined otherwise;

∀ p ∈ P0 : ψ(X2)(p) =

{t′2a}, if p = p′22;
{t′2b}, if p = p′23;
{t′′2a}, if p = p′′2c;
{t′′2b}, if p = p′′23;
undefined otherwise;

∀ p ∈ P0 : ψ(X3)(p) =

{t′3a}, if p = p′33;
{t′3b}, if p = p′30;
{t′′3a}, if p = p′′31;
{t′′3b}, if p = p′′30;
undefined otherwise;

The result of this refinement is shown in Fig.4.5 as
the schedule A+D.

5. Concluding remarks

The paper shows that composite schedules for manu-
facturing cells can be derived by applying (generalized)
net refinement operations to simple schedules. System-
atic application of such refinements results in hierar-
chical models of schedules with a clear identification of
components, so model complexity can be controlled in
a better way than in ‘monolithic’ (or ‘flat’) approaches.

The models derived in the proposed way are covered
by simple subnets implied by place invariants of the the

Hierarchical derivation of Petri met models of composite schedules ... 780

p2

p33

p1

t1bp1b

t12

p3

p11’

p12"

p12’

p21’

p21"

p13"p1c"

t21"

t31"

p2c" p2d"
p23"

t12’

t1a" p1a" t1"

t1a’

p1a’ p1b’

t1b’ t2a’ t2’

p2a" t2"t2a"

t1’

t01

t20"

t32"

p30"

t30"

p03"

t02 pout" tout"

p20

p23’ p32’

t23’

p2b’p2a’

t1b’

p2b" t2b"

p2c’

p3a’ p3b’

t3b’t3a’

t3a" p3a" t3"

t3’

p3b" t3b"

p3c"

t23"

p3c"

p32"

p30’

t30’

p03’

t0’ pout’ tout’

p10’

p10"

p01"

tin"

pin"

t01’

pin’

tin’

p01’

Fig.4.5. Net model of schedule A+D.

model. Performance properties of such models can be
easily derived from these implied subnets [13], without
the exhaustive reachability analysis.

The paper assumed that all machine operations are
performed by single machines. It should be noted, how-
ever, that the same approach can be used if some op-
erations are performed by more than one machine; the
only modification is that the initial marking should as-
sign more than one token to the corresponding machine
model.

The proposed approach can be used to derive and
analyze quite complex models because there is no need
to deal directly with such models; since the models can
be generated from a few basic components by system-
atic application of the refinement operations, the only
information that is actually needed is how these basic
components are combined together. However, more re-
search is needed to transform these observations into
practical methods.

References

[1] Ayres, R.U., Butcher, D.C., “The flexible factory re-
visited”; American Scientist, vol.81, no.5, pp.448–459,
1993.

[2] Banaszak, Z., “Modeling of manufacturing systems”;
in: Modern Manufacturing, pp.253–286, Springer–
Verlag 1994.

[3] Cavalieri, S., Mirabella, O., Zingarino, G., “A Petri
net based approach for FMS performance evaluation”;
Proc. 23-rd Int. Conf. on Industrial Electronics, Con-
trol, and Instrumentation (IECON’97), New Orleans,
LA, vol.3, pp.1204–1209, 1997.

[4] Desrochers, A.A., Al-Jaar, R.Y., Applications of Petri
nets in manufacturing systems; IEEE Press 1995.

[5] DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M.,
Vernadat, F.B., Practice of Petri nets in manufactur-
ing; Chapman & Hall 1993.

[6] Dixon, C., Hill, S.D., “Work–cell cycle–time analysis in
a flexible manufacturing system”; Proc. Pacific Conf. on
Manufacturing, Sydney–Melbourne, Australia, vol.1,
pp.182–189, 1990.

[7] Murata, T., “Petri nets: properties, analysis and appli-
cations”; Proceedings of IEEE, vol.77, no.4, pp.541–580,
1989.

[8] Reisig, W., Petri nets - an introduction (EATCS Mono-
graphs on Theoretical Computer Science 4); Springer–
Verlag 1985.

[9] Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz,
J., Kubiak, W., “Sequencing of parts and robot moves
in a robotic cell”; Int. Journal of Flexible Manufactur-
ing Systems, vol.4, pp.331–358, 1992.

[10] Silva, M., Valette, R., “Petri nets and flexible manufac-
turing”; in: Advances in Petri nets 1989 (Lecture Notes
in Computer Science 424), pp.374–417, Springer–Verlag
1989.

[11] Zuberek, W.M., “Timed Petri nets – definitions, prop-
erties and applications”; Microelectronics and Reliabil-
ity (Special Issue on Petri Nets and Related Graph
Models), vol.31, no.4, pp.627–644, 1991.

[12] Zuberek, W.M., “Application of timed Petri nets
to modeling and analysis of flexible manufac-
turing cells”; Technical Report #9503, Depart-
ment of Computer Science, Memorial University
of Newfoundland, St.John’s, NF, Canada A1B
3X5, 1995 (available through anonymous ftp at
ftp.cs.mun.ca/pub/techreports/tr-9503.ps.Z).

[13] Zuberek, W.M., “Hierarchical derivation of schedules
for manufacturing cells”; Proc. 9-th Symp. on Infor-
mation Control in Manufacturing (INCOM’98), Nancy-
Metz, France, pp.423-428, 1998.

[14] Zuberek, W.M., “Stepwise refinements of net models
and their place invariants”; Proc. 8-th Int. Workshop
on Petri Nets and Performance Models (PNPM’99),
Williamsburg, VA, June 1999.

