
35-th Annual Simulation Symp. of Advanced Simulation Technologies Conf., San Diego, CA, 14-18 April 2002, pp.107-113.

Copyright c© 2002 IEEE (DOI 10.1109/SIMSYM.2002.1000105).

Approximate Simulation of Distributed–Memory

Multithreaded Multiprocessors

W.M. Zuberek

Department of Computer Science
Memorial University of Nfld
St.John’s, Canada A1B 3X5

wlodek@cs.mun.ca

Abstract

The performance of modern computer systems is in-
creasingly limited by long latencies of accesses to their
memory systems. Instruction–level multithreading is a
technique to tolerate long latencies of memory accesses
by switching from one instruction thread to another. The
paper shows that the simulation–based performance evalu-
ation of distributed–memory multithreaded multiprocessor
systems can be significantly simplified by using approxi-
mate models, composed of only a few processors, but with
some parameters adjusted to represent the behavior of the
original system.

1 Introduction

In modern computer systems, the performance of mem-
ory is increasingly often becoming the factor limiting the
performance of the system. Due to continuous progress
in manufacturing technologies, the performance of pro-
cessors has been doubling every 18 months (the so–called
Moore’s law [6]). However, the performance of memory
chips has been improving by only 10% per year [12], cre-
ating a “performance gap” in matching processor’s per-
formance with the required memory bandwidth. In effect,
it is becoming more and more often the case that the per-
formance of applications depends on the performance of
machine’s memory hierarchy.

Memory hierarchies, and in particular multi–level
cache memories, have been introduced to reduce the ef-
fective latency of memory accesses. Cache memories pro-
vide efficient access to information when the information
is available at lower levels of memory hierarchy; occa-
sionally, however, long–latency memory operations are
needed to transfer the information from the higher levels
of memory hierarchy to the lower ones. Much research has
focused on reducing and tolerating these large memory
access latencies. Techniques for reducing the frequency
and impact of cache misses include hardware and soft-
ware prefetching [4, 8], speculative loads and execution
[13] and multithreading [1, 3].

Instruction–level multithreading, and in particular
block–multithreading [1, 2, 3], tolerates long–latency
memory accesses and synchronization delays by switch-
ing to another thread rather than waiting for the comple-
tion of a long–latency operation which, in a distributed–

memory system, can require hundreds or even thousands
of processor cycles. A combination of multithreading and
superscalar architecture is also an approach used in high–
performance microprocessors [9].

The purpose of this paper is to study a simpli-
fication of the simulation–based performance evalua-
tion of distributed–memory multithreaded multiproces-
sors which is based on the symmetries that exist in such
systems. More specifically, the paper shows that a simpli-
fied model, using only a few processors, provides a good
approximation of the complete system if some modeling
parameters are adjusted to the values representing the
original system. The simulation–time reduction achieved
in this way, for a 16–processor system presented in this
paper, is more than five times; for analysis of larger sys-
tems the gain is even more significant.

Timed Petri nets [14] are used to model multithreaded
multiprocessor systems at the instruction execution level.
Temporal characteristics of the original system are repre-
sented by time attributes associated with the transitions
of the net model. Free–choice net structures are used to
model probabilistic aspects of the system. Performance
characteristics of the analyzed system are obtained by
discrete–event simulation of its net model.

A multiprocessor system with 16 processors connected
by a 2–dimensional torus–like network is used as a run-
ning example in this paper. An outline of such a system
is shown in Fig.1.

Fig.1. Outline of a 16–processor system.

It is usually assumed that the memory access requests
sent from one node to another are routed along the short-
est paths. It is also assumed that this routing is done in
a nondeterministic way, i.e., if there are several shortests

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/395081074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Approximate Simulation of Distributed–Memory Multithreaded Multiprocessors 108

paths between two nodes, each of them is equally likely to
be used. Consequently, the traffic is assumed to be uni-
formly distributed in the interconnecting network. The
average length of the shortest path between two nodes, or
the average number of hops (from one node to another)
that a request must perform to reach its destination, nh,
is usually determined assuming that the memory accesses
are uniformly distributed over the nodes of the system.

Although many specific details refer to this 16–
processor system, most of them can easily be adjusted
to other systems by changing the values of a few param-
eters.

Each node in the system shown in Fig.1 is a mul-
tithreaded processor which contains a processor, local
memory, and two network interfaces, as shown in Fig.2.

ProcessorReady
Queue

Interconnecting
Network

Memory
Queue Memory

Outbound
Interface

Inbound
Interface

Fig.2. Outline of a single multithreaded processor.

The outbound switch handles outgoing traffic, i.e., re-
quests to remote memories originating at this node as
well as results of remote accesses to the memory at this
node; the inbound interface handles incoming traffic, i.e.,
results of remote requests that ‘return’ to this node and
remote requests to access memory at this node.

Fig.2 also shows a queue of ready threads; whenever
the processor performs a context switching (i.e., switches
from one thread to another), a thread from this queue is
selected for execution and the execution continues un-
til another context switching is performed. In block
multithreading, context switching is performed for all
long–latency memory accesses by ‘suspending’ the cur-
rent thread, forwarding the memory access request to the
relevant memory module (local, or remote using the in-
terconnecting network) and selecting another thread for
execution; when the result of this request is received, the
status of the thread changes from ‘suspended’ to ‘ready’,
and the thread joins the queue of ready threads, waiting
for another execution phase on the processor.

The average number of instructions executed between
context switching is called the runlength of a thread, ℓt,
and is one of important modeling parameters. It is di-
rectly related to the probability that an instruction re-
quests a long–latency memory operation.

Another important modeling parameter is the proba-
bility of long–latency accesses to local, pℓ, (or remote,
pr = 1 − pℓ) memory (in Fig.2 it corresponds to the

“decision point” between the Processor and the Memory
Queue); as the value of pℓ decreases (or pr increases), the
effects of communication overhead and congestion in the
interconnecting network (and its switches) become more
pronounced; for pℓ close to 1, the nodes can be practically
considered in isolation.

The (average) number of available threads, nt, is yet
another basic modeling parameter. For very small values
of nt, queueing effects can be practically neglected, so the
performance can be predicted by taking into account only
the delays of system’s components. On the other hand,
for large values of nt, the system can be considered in sat-
uration, which means that one of its components will be
utilized in almost 100 %, limiting the utilization of other
components as well as the whole system. Identification of
such limiting components (called the bottlenecks [7]) and
improving their performance is the key to the improved
performance of the entire system.

2 Petri net model

Petri nets [11, 10] are popular models of systems that ex-
hibit concurrent and parallel activities. In timed Petri
nets [14], the durations of modeled activities are also
taken into account in order to study the performance
characteristics of the systems.

A timed Petri net model of a multithreaded processor
at the level of instruction execution is shown in Fig.3 [15].
As usual, timed transitions are represented by “thick”
bars, and immediate ones, by “thin” bars.

The execution of each instruction of the ‘running’
thread is modeled by transition Trun, a timed transi-
tion with the firing time representing one processor cy-
cle. Place Proc represents the (available) processor (if
marked) and place Ready – the queue of threads waiting
for execution. The initial marking of Ready represents the
average number of available threads, nt. It is assumed
that this number does not change in time.

If the processor is available (i.e., Proc is marked) and
Ready is not empty, a thread is selected for execution by
firing the immediate transition Tsel. Execution of con-
secutive instructions of the selected thread is performed
in the loop Pnxt, Trun, Pend and Tnxt. Pend is a free–
choice place with the choice probabilities reflecting the
runlength, ℓt, of the thread. In general, the free–choice
probability assigned to Tnxt is equal to (ℓt−1)/ℓt, so if ℓt
is equal to 10, the probability of Tnxt is 0.9; if ℓt is equal
to 5, this probability is 0.8, and so on. The free–choice
probability of Tend is just 1/ℓt.

If Tend is chosen for firing rather than Tnxt, the ex-
ecution of the thread ends, a request for a long–latency
access to (local or remote) memory is placed in Mem,
and a token is also deposited in Pcsw. The timed tran-
sition Tcsw represents the context switching. When its
firing is finished, another thread is selected for execution
(if it is available).

Mem is a free–choice place, with a random choice of
either accessing local memory (T loc) or remote memory
(Trem); in the first case, the request is directed to Lmem



Approximate Simulation of Distributed–Memory Multithreaded Multiprocessors 109

Inp

Ready

Trun Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Proc

Memory

Sout
Tsout

Dec

Sinp
Tsinp

Tgo

Mem

to Inp

to Inp

to Inp

to Inp

Tret

Tsel Tend

Tnxt

Pnxt Pend

Out

Rem

Tcsw Pcsw

from Out

from Out

from Out

from Out

Tmem

Fig.3. Instruction–level Petri net model of a multithreaded processor.

where it waits for availability of Memory, and after ac-
cessing the memory, the thread returns to the queue of
waiting threads, Ready. Memory is a shared place with
two conflicting transitions, Trmem (for remote accesses)
and T lmem (for local accesses); the resolution of this con-
flict (if both accesses are waiting) is based on marking–
dependent (relative) frequencies determined by the num-
bers of tokens in Lmem and Rmem, respectively.

The free–choice probability of Trem, pr, is the prob-
ability of long–latency accesses to remote memory; the
free–choice probability of T loc is pℓ = 1− pr.

Requests for remote accesses are directed to Rem, and
then, after a sequential delay (the outbound switch mod-
eled by Sout and Tsout), forwarded to Out, where a ran-
dom selection is made of one of the four (in this case)
adjacent nodes (all nodes are selected with equal proba-
bilities). Similarly, the incoming traffic is collected from
all neighboring nodes in Inp, and, after a sequential delay
(the inbound switch Sinp and Tsinp), forwarded to Dec.
Dec is a free–choice place with three transitions sharing

it: Tret, which represents the satisfied requests reach-
ing their ‘home’ nodes; Tgo, which represents requests
as well as responses forwarded to another node (another
‘hop’ in the interconnecting network); and Tmem, which
represents remote requests accessing the memory at the
destination node; these remote requests are queued in
Rmem and served by Trmem when the memory module
Memory becomes available. The free–choice probabilities
associated with Tret, Tgo and Tmem characterize the in-
terconnecting network [5]. For a 16–processor system (as
in Fig.1), and for memory accesses uniformly distributed
among the nodes of the system, the free–choice probabil-
ities of Tmem and Tgo are 0.5 for forward moving re-
quests, and 0.5 for Tret and Tgo for returning requests.

The traffic outgoing from a node (place Out) is com-
posed of requests and responses forwarded to another
node (transition Tgo), responses to requests from other
nodes (transition Trmem) and remote memory requests
originating in this node (transition Trem).



Approximate Simulation of Distributed–Memory Multithreaded Multiprocessors 110

3 Simplified model

Since, in the model of a complete system, each processor
is represented by the net shown in Fig.3, the complete
model can easily become rather complex. Therefore, its
performance characteristics are typically obtained by a
simulation. However, since all processors are identical,
the simulation of the complete system may not be neces-
sary; the simulation time could be reduced significantly
is only a small subsystem, for example with 4 processors,
as shown in Fig.4, could be used providing a reasonable
approximation of the original system.

Fig.4. Outline of a 4–processor system.

Each processor interacts with the remaining system
through its four neighboring nodes; each processor sends
a stream of requests for remote memory accesses, and re-
ceives (in the steady state) an identical stream of requests
from its neighbors. So, if these streams of requests in the
simplified model can be made the same as in the original
system, the simulation model could be restricted to just a
4–processor system providing a reasonable approximation
of the original system.

The stream of requests for remote memory accesses de-
pends on the number of processors, and this dependency
is not a straightforward one; if the number of processors
increases, the average number of hops in the interconnect-
ing networks that a request needs to perform to reach its
destination, also increases, so the effective latency of ac-
cessing remote memory increases, and the utilization of
the processor decreases (especially for values of the prob-
ability pr close to 1).

To obtain the same effect in a simplified model, two
conditions should be satisfied: (i) the average number of
hops, nh, should be adjusted to the same value as in the
original model (this is needed to preserve the latency of
each remote memory access request), and (ii) the average
number of transfers in each link of the interconnecting
network needs to be the same as in the original system
(which is needed to preserve the traffic in the network
and the delays which are introduced by this traffic). It
appears that requirement (ii) is closely related to (i). In
a multiprocessor system with np nodes connected by a
two–dimensional torus-like network, there are 2np links
connecting the nodes. In a steady–state, in each (aver-
age) time period of executing instructions and issuing a
long–latency operation, each node issues (on average) pr
requests to access remote memory, and each such request
performs (on average) nh hops in the interconnecting net-
work. Taking into account that (remote) requests are fol-
lowed by their results sent back to “home” nodes, the

total number of transfers in the interconnecting network
is 2prnhnp, so the (average) number of transfers per link
is prnh. Consequently, if nh in the simplified model is
adjusted to the value in the original system, the aver-
age number of transfers in each link will also follow the
original system.

If the model shown in Fig.4 is supposed to approximate
the 16–processor model, the average number of hops in
the interconnecting network should be made equal to 2
(the average number of hops can be approximated reason-
ably well by

√
np/2 [16]). In the model shown in Fig.3,

the average number of hops is controlled by the free–
choice probabilities associated with transitions Tgo, Tret
and Tmem. In particular, if the free–choice probability
associated with Tgo is equal to q, the average number of
hops that requests (and responses) perform before reach-
ing their destination nodes is equal to 1/(1 − q); for nh

equal to 2, this probability should be equal to 0.5 (and
then the free–choice probabilities of Tret and Tmem are
both equal to 1− q).

In order to simulate the performance of a 16–processor
system using a 4–processor model, the free–choice proba-
bilities associated with transitions Tgo, Tret and Tmem
(Fig.3) need to be adjusted to the values representing the
original, 16–processor system (i.e., 0.5).

4 Performance results

It is convenient to assume that all timing characteristics
are expressed in processor cycles (which is assumed to be
1 unit of time). The basic model parameters and their
typical values are as follows:

symbol parameter typical values

nt the number of threads 2,...,20
ℓt thread runlength 5,10,15
tcs context switching time 1,2
tm memory cycle time 10
ts switch delay 10,5

pℓ, pr probability of accesses
to local/remote memory 0.1,...,0.9

Fig.5 shows the utilization of the processor, in a 16–
processor system, as a function of the number of available
threads, nt, and the probability of long–latency accesses
to local memory, pℓ, for fixed values of other parameters.

Fig.6 shows the utilization of the processor, in a 4–
processor system with the adjusted value of nh, also as a
function of the number of available threads, nt, and the
probability of long–latency accesses to local memory, pℓ.
It should be observed that the difference are not signifi-
cant, and are within a few percent of the values obtained
by simulation of the 16–processor system.

The utilization of the processor in an unmodified 4–
processor system is shown in Fig.7. The processor’s uti-
lization is significantly different than in Fig.5 and Fig.6
because the influence of the interconnecting network is
different; in this case, the service demand for the switches



Approximate Simulation of Distributed–Memory Multithreaded Multiprocessors 111

in the interconnection network is one half of that in a 16–
processor system [16], so the effect of the switch delays
is much less significant than in the 16–processor system
(Fig.5).

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (16 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.5. Processor utilization – 16 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 10.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (4 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.6. Processor utilization – adjusted 4 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 10.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (4 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.7. Processor utilization – original 4 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 10.

The strong influence of the switch delay in Fig.5 and
Fig.6 (for larger values of pr, the probability of accessing
remote memory) is an indication that the switches are the
bottleneck in this system as they are utilized in almost
100% and they limit the performance of the entire system.
Indeed, Fig.8 shows the utilization of the (input) switches
in the 16–processor system as a function of the number of
available threads, nt, and the probability of long–latency
accesses to remote (not local) memory, pr (so the front
part of Fig.8 corresponds to the back part of Fig.5).

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Switch utilization (16 proc)

prob to access remote mem

sw
itc

h 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.8. Switch utilization – 16 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 10.

Fig.9 and Fig.10 show the utilization of the proces-
sors in the 16–processor system and in the adjusted 4–
processor system, respectively, for the case when the
switch delay is reduced two times.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.9. Processor utilization – 16 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 5.

It should be observed that the performance is sig-
nificantly better than in the original system (Fig.5 and
Fig.6), and that the region in which the switch is the
bottleneck, is substantially reduced (although it could be
reduced even more). As before, the agreement of the re-
sults obtained for the original 16–processor model and the
simplified 4-processor one, is quite good. Further reduc-
tion of the switch delay would extend the “flat” region of
the performance surface in Fig.9 and Fig.10.



Approximate Simulation of Distributed–Memory Multithreaded Multiprocessors 112

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (4 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.10. Processor utilization – adjusted 4 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 5.

Fig.11 and Fig.12 show the influence of another pa-
rameter, the runlength of a thread, ℓt.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

number of threads

Processor utilization (16 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 5 units
Context swch: 1 unit

Fig.11. Processor utilization – 16 processors;
tcs = 1, ℓt = 5, tm = 10, ts = 10.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

number of threads

Processor utilization (4 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 5 units
Context swch: 1 unit

Fig.12. Processor utilization – adjusted 4 processors;
tcs = 1, ℓt = 5, tm = 10, ts = 10.

It can be shown [16] that when the value of ℓt is smaller
than tm, the utilization of the processor has an upper
bound of ℓt/tm, so in this case the bound is 0.5. Indeed,

the plots are very similar one to another (which again
indicates that the simplified model is a good approxima-
tion of the complete model), and are also similar to the
plots in Fig.5 and Fig.6, but with a different scale (the
utilization in Fig.11 and Fig.12 is one half of that in Fig.5
and Fig.6).

5 Concluding remarks

The presented performance results for distributed–
memory multithreaded multiprocessor systems indicate
that significant simulation time reductions can be
achieved by using simplified models with some param-
eters adjusted to the values corresponding to the original
systems. Since the simulation time of Petri net models
increases more than linearly with the size of the model,
the gains in the simulation time also increase more than
linearly with the size of the (original) model.

Moreover, an improved accuracy of simulation results
can be obtained using (simplified) models with larger
number of nodes; for example, a model of a 9–processor
system with parameters adjusted to 16–processor values
can be used to provide results more accurate than the
4–processor model but still requiring much less simula-
tion time than the complete 16–processor model. Fig.13,
Fig.14 and Fig.15 show the utilizations of processors for
the three sets of modeling parameters that correspond to
results in Fig.5 and Fig.6, Fig.10 and Fig.11, and Fig.12
and Fig.13, respectively.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (9 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.13. Processor utilization – adjusted 9 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 10.

The derived models assume that accesses to memory
are uniformly distributed over the nodes of the system. If
this assumption is not realistic and some sort of ‘locality’
is present, the only change that needs to be done is an
adjustment of the value of nh; for example, if the proba-
bility of accessing nodes decreases with the distance (i.e.,
nodes which are close are more likely to be accessed that
the distant ones), the value of nh will be smaller than
that determined for the uniform distribution of accesses,
and will result in improved performance.



Approximate Simulation of Distributed–Memory Multithreaded Multiprocessors 113

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (9 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.14. Processor utilization – adjusted 9 processors;
tcs = 1, ℓt = 10, tm = 10, ts = 5.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

number of threads

Processor utilization (9 proc)

prob to access local mem

pr
oc

es
so

r 
ut

ili
za

tio
n

Fig.15. Processor utilization – adjusted 9 processors;
tcs = 1, ℓt = 5, tm = 10, ts = 10.

Finally, it should be noted that the presented results
provide only some insight into the behavior of multi-
threaded systems; in the real systems some of the as-
sumptions are not satisfied – for example, the number of
threads is rarely constant, the probabilities of accessing
local or remote memory may significantly change during
the executions of programs, and so on.

Acknowledgment

The Natural Sciences and Engineering Research Coun-
cil of Canada partially supported this research through
grant RGPIN–8222.

References

[1] Agarwal, A., “Performance tradeoffs in multi-
threaded processors”; IEEE Trans. on Parallel and
Distributed Systems, vol.3, no.5, pp.525-539, 1992.

[2] Boothe, B. and Ranade, A., “Improved multithread-
ing techniques for hiding communication latency in

multiprocessors”; Proc. 19-th Annual Int. Symp.
on Computer Architecture, Gold Coast, Australia,
pp.214-223, 1992.

[3] Byrd, G.T. and Holliday, M.A., “Multithreaded pro-
cessor architecture”; IEEE Spectrum, vol.32, no.8,
pp.38-46, 1995.

[4] Chen, T-F. and Baer, J-L., “A performance study
of software and hardware data prefetching scheme”;
Proc. 21-st Annual Int. Symp. on Computer Archi-
tecture, Chicago, IL, pp.223-232, 1994.

[5] Govindarajan, R., Suciu, F. and Zuberek, W.M.,
“Timed Petri net models of multithreaded multi-
processor architectures”; Proc. 7-th Int. Workshop
on Petri Nets and Performance Models, St. Malo,
France, pp.153-162, 1997.

[6] Hamilton, S., “Taking Moore’s law into the next
century”; IEEE Computer Magazine, vol.32, no.1,
pp.43-48, 1999.

[7] Jain, R., “The art of computer systems performance
analysis”; J. Wiley & Sons 1991.

[8] Klaiber, A.C. and Levy, H.M., “An architecture
for software-controlled data prefetching”; Proc. 18-
th Annual Int. Symp. on Computer Architecture,
Toronto, Canada, pp.43-53, 1991.

[9] Loh, K.S. and Wong, W.F., “Multiple context multi-
threaded superscalar processor architecture”; Jour-
nal of Systems Architecture, vol.46, pp.243-258,
2000.

[10] Murata, T., “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541–580, 1989.

[11] Reisig, W., “Petri nets - an introduction” (EATCS
Monographs on Theoretical Computer Science 4);
Springer–Verlag 1985.

[12] Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P.
and Ovens, J.D., “Memory access scheduling”; Proc.
27-th Annual Int. Symp. on Computer Architecture,
Vancouver, Canada, pp.128-138, 2000.

[13] Rogers, A. and Li, K., “Software support for spec-
ulative loads”; Proc. 5-th Symp. on Architectural
Support for Programming Languages and Operating
Systems, pp.38-50, 1992.

[14] Zuberek, W.M., “Timed Petri nets – definitions,
properties and applications”; Microelectronics and
Reliability, vol.31, no.4, pp.627–644, 1991.

[15] Zuberek, W.M., “Performance modeling of multi-
threaded distributed memory architectures”, Proc.
2-nd Workshop on Hardware Design and Petri Nets,
Williamsburg, VA, pp.63–82, 1999.

[16] Zuberek, W.M. and Govindarajan, R., “Performance
balancing in multithreaded multiprocessor systems”;
Proc. 4-th Australasian Conf. on Parallel and Real-
Time Systems (PART’97), Newcastle, Australia,
pp.15-26, 1997.


