
8-th Int. Conf. on Emerging Technologies and Factory Automation, Juan–les–Pins, France, 15-18 Oct. 2001, pp.105-112.

Copyright c© 2001 IEEE (DOI 10.1109/ETFA.2001.997676).

Petri Net Modeling and Performance Analysis of Cluster Tools

with Chamber Revisiting

W.M. Zuberek

Department of Computer Science
Memorial University of Nfld
St.John’s, Canada A1B 3X5

Abstract. Timed Petri nets are convenient models

of cluster tools as they represent the flow of wafers

through the chambers of the tool as well as consec-

utive actions performed by the robotic transporter.

Since the durations of all activities are also repre-

sented in such model, performance characteristics

can be derived for steady–state as well as for tran-

sient behaviors. Steady–state performance of tools

with chamber revisiting is investigated in this paper.

A general description of cluster tools is proposed for

systematic derivation of schedules, and a Petri net

model is automatically derived from this description.

The performance of the modeled system is derived

by using place invariants, without exhaustive reach-

ability analysis.

I. INTRODUCTION

A cluster tool is an integrated manufacturing sys-
tem consisting of process, transport, and cassette mod-
ules, mechanically linked together [3]. The factors which
stimulate an increased use of clustered tools in recent
years include improved yield and throughput, reduced
contamination, better utilization of the floor space, and
reduced human intervention [12].

Because of high throughput requirements, cluster
tools perform a number of activities concurrently, for ex-
ample, different wafers are processed in different cham-
bers at the same time, and also the robotic transporter
can be moving to a position required by the next step.
Petri nets [9, 4] are formal models developed specifi-
cally for representation of concurrent activities and for
their coordination, i.e., for ordering specific actions or
for performing actions simultaneously by more than one
component of a system.

In order to analyze the performance of modeled sys-
tems, the durations of all activities must also be taken
ito account. Several types of nets “with time” have been
proposed by associating “time delays” with places [10],
or occurrence durations with transitions [1, 7, 16] of net
models. Also, the introduced temporal properties can be
deterministic [7, 8, 10, 16], or can be random variables
described by probability distribution functions (the neg-
ative exponential distribution being probably the most
popular choice) [1, 2, 16].

Analysis of timed net models based on their behavior
(represented by the set of states and transitions between
states) is known as reachability analysis. For complex
models, the exhaustive reachability analysis can easily
become difficult because of a very large number of states
(the state explosion problem). Several approaches can
be used to deal with the excessive numbers of states.
One approach reduces the number of states by using
state aggregation (i.e., by combining groups of states
into single ‘superstates’); another uses symmetries of the
state space; state reduction methods eliminate all these
states which are inessential for performance properties of
the model. For some classes of net models, performance
properties can be derived from the structure of the net
models; this approach is known as structural analysis.
The most popular example of this approach is analysis
based on place–invariants (or P–invariants) for models
covered by families of simple cyclic subnets (implied by
the P–invariants).

Traditionally, performance of cluster tools was ana-
lyzed by using timing diagrams representing typical se-
quences of events, and deriving performance formulas
from a critical path that determined the cyclic behavior
of a tool [6, 5, 14]; such an approach is highly depen-
dent on the analyzed cluster tool and its properties, and
becomes quite complicated for tools which are complex.
This paper presents an approach based on timed Petri
nets which can be used to modeling and evaluation of a
large variety of cluster tools, including single–blade and
dual–blade ones, tools with multiple loadlocks, redun-
dant chambers and multiple robots. Cluster tools with
chamber revisiting are discussed in greater detail; the
paper presents a systematic derivation of Petri net mod-
els for such tools and then performance analysis based
on place invariants.

The approach presented in this paper is derived from
earlier work on modeling and analysis of schedules for
manufacturing cells [18].

Section 2 introduces simple models of steady–state
behavior of single–blade cluster tools without chamber
revisiting. Section 3 proposes a state descriptions of
cluster tools which takes chamber revisiting into account
and which is the basis for systematic derivation of pos-
sible schedules for cluster tools. Derivation of Petri net
models from the schedules is presented in Section 4, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/395081058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 106

several concluding remarks are given in Section 5.

II. SIMPLE CLUSTER TOOLS

The tools analyzed in this paper are m–chamber clus-
ter tools with a single–blade robotic transporter. Each
of the chambers performs a unique process, and there
is a single chamber for each process. The only explicit
storage facility is the loadlock. For single–blade tools,
the robotic transporter can carry only one wafer at a
time. The model assumes that all wafers have the same
process sequence, and that no chambers are revisited, as
in [5].

A sketch of a 4–chamber cluster tool is shown in
Fig.1, where LL denotes the loadlock to store cassettes of
wafers; C1, C2, C3 and C4 are process chambers which
modify the properties of the wafers, and R is a robotic
transporter (or simply a robot) which moves the wafers
between the loadlock and the chambers as well as from
one chamber to another.

C1

C2 C3

R

C4

LL

Fig.1. An outline of a 4–chamber cluster tool.

When a batch of wafers arrives at an empty cluster
tool, it is placed in the loadlock which is then typically
pumped down to vacuum. All the time required to get
a batch into the cluster and ready for processing is de-
noted as τload. The robot, assumed to be idle at the
loadlock, moves the first wafer to the first chamber. For
simplicity, it is assumed that the chambers are num-
bered as they appear in the process sequence. When
the process in the first chamber is finished, the wafer
is moved to the second chamber, after which the second
wafer can be moved into the first chamber. After a num-
ber of such wafer transports, the first wafer arrives back
at the loadlock. When all wafers have been processed
and returned to the loadlock, the loadlock is raised to
atmospheric pressure and the batch is removed. The
time interval between when the last wafer arrives at the
loadlock and when the batch is removed is denoted as
τunload.

In general, the time to process a batch consists of the
following [5]: τload, the time τinit to reach steady state,
the time spent in steady state τsteady, the time τend to
process final wafers, and τunload, as sketched in Fig.2.

The initial transient period τinit is due to the fact that
the tool is empty at the beginning of each batch, and
the final transient period τend processes the final wafers
until the tool becomes empty. The steady part of the
batch processing typically includes n −m + 1 identical
cycles, where n is the number of wafers in the batch,
and m – the number of chambers.

It is assumed that all chambers are used concurrently,
i.e., when the i-th wafer is moved to chamber 1, the
(i − 1)-th wafer is processed in chamber 2, and (i − 2)-
th wafer is processed in chamber 3, and so on. The
sequence of the operations in each cycle of the steady–
state behavior is as follows (it is assumed that the cycle
begins when a new wafer is moved to chamber 1, which
must be empty at this stage):

• pick next wafer from loadlock, transport it to cham-
ber 1 and load it into the chamber; chamber 1 can
start its process;

• move to chamber 4, unload the wafer (when ready),
transport it to loadlock and drop it there;

• move to chamber 3, unload the wafer (when ready),
transport it to chamber 4 and load it into the cham-
ber; chamber 4 can start its process;

• move to chamber 2, unload the wafer (when ready),
transport it to chamber 3 and load it into the cham-
ber; chamber 3 can start its process;

• move to chamber 1, unload the wafer (when ready),
transport it to chamber 2 and load it into the cham-
ber; chamber 2 can start its process;

• return to loadlock to begin another cycle.

A Petri net modeling this sequence of operations is
shown in Fig.3.

The model shown in Fig.3 contains four sections mod-
eling the four chambers, each represented by one tran-
sition (t1, t2, t3 and t4, respectively). Each of these
transitions has one input and one output place to model
the conditions “chamber is loaded” (so its operation can
begin), and “chamber operation is completed” (so the
wafer can be unloaded). The remaining part of Fig.3
represents the sequence of steps of one complete cycle
of the robot. This sequence begins (as indicated by the
initial marking) by picking a wafer from the loadlock
(transition t01). The initial marking of places p21, p34
and p43 indicates that the chambers (except of cham-
ber 1), in the moment of picking a new wafer from the
loadlock, are loaded with (previous) wafers.

The operations represented by transitions are as fol-
lows:



Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 107

C2

C1

C3

C4

load steadyinit

time

end unload

Fig.2. A sketch of batch processing.

t1 t2 p23p12 p21

p1a p1b p2a p2b p3a p3b

t12 t23t01 t34

p4a p4b

p10 

t20 t31 t42

t3p32 p34 t4p43 p45

p5bp5a

t45

t53

p50

t14

Fig.3. Petri net model for the steady-state behavior.

transition operations

t01 pick next wafer from the loadlock,
move it to chamber 1 and load;

t14 move the robot to chamber 4;
t45 unload the wafer from chamber 4,

move it to loadlock and drop;
t53 move the robot to chamber 3;
t34 unload the wafer from chamber 3,

move it to chamber 4 and load;
t42 move the robot to chamber 2;
t23 unload the wafer from chamber 2,

move it to chamber 3 and load;
t31 move the robot to chamber 1;
t12 unload the wafer from chamber 1,

move it to chamber 2 and load;
t20 move the robot to loadlock.

In order to obtain the effect of steady–state, place
p50 is used as “input” and “output” of the cluster tool.
When a wafer is finished, a token is deposited in p50, and
the same token is used as the next wafer a moment later.
The initial marking of p50 is irrelevant (as long as it is
nonzero), and the behavior is exactly the same if more
than one token is assigned initially to p50. Moreover,
it can be shown that this place has no effect on the
performance of the model; if it is removed (with the
two arcs shown in broken lines), the state graph of the
simplified net is isomorphic to the state graph of the
original neti shown in Fig.3.

All transitions are timed transitions, and the occur-
rence times associated with them represent the (average)

times of the corresponding operations.
The net shown in Fig.3, after removal of place p50, has

five basic P–invariants; the sets of transitions of subnets
implied by these P–invariants are:

invariant set of transitions

1 t1, t01, t12, t20
2 t2, t12, t23, t31
3 t3, t23, t34, t42
4 t4, t34, t45, t53
5 t01, t14, t45, t53, t34, t42, t23, t31, t12, t20

It can be observed that the first four P–invariants
(and their implied subnets) correspond to simple cycles
of consecutive machines and their load and unload op-
erations. The last invariant represents the cyclic oper-
ations of the robot. Consequently, for net models of
the type presented in Fig.3, the number of basic P–
invariants increases linearly with the number of cham-
bers, and the P–invariant–implied subnets can easily be
predicted directly from the net model.

It is known [10] that if a net is covered by a fam-
ily of conflict–free cyclic subnets, the cycle time of the
net is equal to the maximum cycle time of the covering
subnets:

τ0 = max(τ1, τ2, ..., τk)

where k is the number of subnets covering the original
net, and each τi, i = 1, ..., k is the cycle time of the sub-
net i, which is equal to the sum of occurrence times asso-
ciated with the transitions, divided by the total number
of tokens assigned to the subnet:



Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 108

τi =

∑
t∈Ti

f(t)
∑

p∈Pi
m(p)

.

Since the P–invariant implied subnets cover the
model shown in Fig.3, its cycle time τ0 is:

τ0 = max(τ1, τ2, τ3, τ4, τ5)

where τi denotes the cycle time of the subnet i (all
invariant–implied subnets contain exactly one token):

τ1 = f(t1) + f(t01) + f(t12) + f(t20),
τ2 = f(t2) + f(t12) + f(t23) + f(t31),
τ3 = f(t3) + f(t23) + f(t34) + f(t42),
τ4 = f(t4) + f(t34) + f(t45) + f(t53),
τ5 = f(t01) + f(t14) + f(t45) + f(t53) + f(t34)+

f(t42) + f(t23) + f(t31) + f(t12) + f(t20).

If τ0 is equal to any one of the first four terms, the
model is called “process bound” because the duration
of the process performed by the corresponding chamber
determines the cycle time (and the throughput) of the
tool; if the cycle time is equal to the last term, the model
is called “transport bound” [14]. The performance of
process bound tools can be improved by replicating the
critical chambers, while for transport bound tools the
performance can be improved by using multiple robots,
each serving a subset of chambers.

III. TOOLS WITH CHAMBER REVISITING

In cluster tools with chamber revisiting wafers pass
through some chambers more than once. Coordinating
the flow of wafers is more complicated in this case than
for processing without chamber revisiting.

The steady–state, cyclic behavior of cluster tool can
be described by a sequence of tool configurations that
characterize the distributions of wafers in the chambers
of the tool. For a sequence of operation used in the
previous section, such a description uses a vector of four
variables corresponding to the four processing steps per-
formed by the four chambers of the tool, each variable
indicating whether the chamber is empty (value “0”)
or busy (value “1”). The initial configuration shown in
Fig.3 is thus represented by vector [0,1,1,1], and load-
ing of the next wafer into C1 changes this configuration
to [1,1,1,1]. The only possible operation in this new
configuration is to unload C4 (when its operation is fin-
ished), which changes the configuration to [1,1,1,0], so
the next operation is to move the wafer from C3 to C4
(when C3 has finished its operation), and this creates
configuration [1,1,0,1]. The remaining operations of the
cycle create configurations [1,0,1,1] and [0,1,1,1], which
completes the cycle of configurations.

For processing with chamber revisiting, such tool de-
scription needs to be extended to include the revisiting
of chambers. The extended configuration is a vector

with components corresponding to all steps of the pro-
cessing cycle, including the revisiting of (some) cham-
bers. For example, if the sequence of processing steps
is 1–2–3–4–2–3, which means that each wafer first visits
C1, then C2, then C3 and C4, then revisit C2 and fi-
nally C3, the configurations are described by 6 variables,
but some variables are “coupled” because they refer to
the same chamber; for the sequence 1–2–3–4–2–3, vari-
ables 2 and 5 as well as 3 and 6 are coupled because
they correspond to the first and second visits to C2 and
C3, respectively. If any one of the coupled variable be-
comes non-zero, all remaining coupled variables become
marked by “x” to indicate that the corresponding cham-
ber is busy. So, for an implementation of the process 1–
2–3–4–2–3, an initial configuration (i.e., a configuration
just before loading a new wafer into the first chamber)
can be [0,1,x,1,x,1] or [0,x,x,1,1,1]; [0,1,1,1,x,x] is yet
another initial configuration but it is of little interest
because, after loading chamber C1, no further continu-
ation is possible.

The possible changes of configurations can be de-
scribed by the following rules.

• A configuration [k1, ..., ki−1, 1, 0, ..., km] derives a
configuration [k1, ..., ki−1, 0, 1, ..., km]; all variables
coupled with variable i + 1 become marked by x,
and all variables coupled with variable i become 0.

• For the steady–state consideration, the cycle is as-
sumed to begin with loading new wafer into the
first chamber; the starting configuration is thus
[0, k2, ..., km], and this configuration always derives
the configuration [1, k2, ..., km]; all variables cou-
pled with the first variable become marked by x.

• A configuration [k1, ..., km−1, 1] always derives con-
figuration [k1, ..., km−1, 0]; this change of configura-
tions corresponds to unloading the wafer (after the
last operation) and returning it to the loadlock.

For the 4–chamber tool and for the processing se-
quence 1–2–3–4–2–3, the sequence of configurations can
be as follows:

configuration next operation

[0,1,x,1,x,1] pick new wafer and load into C1
[1,1,x,1,x,1] unload C3 and return wafer to LL
[1,1,0,1,x,0] unload C2, move and load into C3
[1,0,1,1,0,x] unload C4, move and load into C2
[1,x,1,0,1,x] unload C3, move and load into C4
[1,x,0,1,1,0] unload C2, move and load into C3
[1,0,x,1,0,1] unload C1, move and load into C2
[0,1,x,1,x,1] the initial configuration.

For some configurations there may be more than one
possible next operation, which leads to several differ-
ent schedules with possibly different performances. It
is also possible that a configuration has no possible op-
eration, which indicates that the corresponding initial
configuration leads to a deadlock. For example, for the



Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 109

previously discussed processing sequence 1–2–3–4–2–3,
the initial configuration [0,0,1,1,0,x] leads to a deadlock:

configuration next operation

[0,0,1,1,0,x] pick new wafer and load into C1
[1,0,1,1,0,x] unload C1, move and load into C2
[0,1,1,1,x,x] deadlock.

Sequences of operations leading to a deadlock can eas-
ily be identified at the level of changes of configurations.
Consequently, the deadlocks can be eliminated at a very
early design stages.

The initial configuration [0,x,x,1,1,1] is acyclic, i.e., it
is never repeated in the sequence of configurations which
can be derived from it:

configuration next operation

[0,x,x,1,1,1] pick new wafer and load into C1
[1,x,x,1,1,1] unload C3 and return wafer to LL
[1,x,0,1,1,0] unload C2, move and load into C3
[1,0,x,1,0,1] unload C1, move and load into C2
[0,1,x,1,x,1] the previous initial configuration.

IV. PETRI NET MODELS

The general Petri net model is composed of models
of all chambers and the model of robot. Each chamber
is represented, similarly as in Fig.3, by a (timed) tran-
sition with one input and one output place. For revis-
ited chambers, chamber model is slightly more complex
because it should allow different temporal characteriza-
tions for each visit. Therefore it is in the form of a free–
choice structure with the number of choices representing
the number of visits of the same wafer to the particular
chamber (this number can be different for each cham-
ber).

The model of the sequence of robot operations is de-
rived from the sequence of configuration changes. For
the example presented in the previous section, the robot
follows the cycle (⇒ indicates that the robot carries a
wafer, and → that it moves empty):

LL ⇒ C1 → C3 ⇒ LL → C2 ⇒ C3 → C4 ⇒ C2 →

C3 ⇒ C4 → C2 ⇒ C3 → C1 ⇒ C2 → LL.

The complete model is shown in Fig.4. The 4 cham-
ber models are represented by subnets associated with
places p1, p2, p3 and p4. The subnets for C2 and C3 are
free–choice structures with the upper parts represent-
ing the first visits and the lower parts representing the
second visits of the wafers. Places p1 and p4 could be re-
moved (together with incident arcs) as they do not con-
tribute to the performance characteristics of the models;
they are preserved exclusively for the consistency of the
representation. The subnet representing the robot seems
to be convoluted but it is quite straightforward to see
its correspondence to the sequence of operations given
above.

p
2

t1p
1

p
3

t3
’’

t3
’

t2
’

t2
’’

t1
2

t1
b

t2
c

t2
d

t3
c

t3
d

t3
a

t3
b

t2
a

t2
b

t0
t1

a

t2
0

t3
1

t1
3

t4
2’

t4
2’

’

p
4 t4

t4
a

t4
b

t2
3’

t2
3’

’

t3
4’

’ t3
4’

t2
3

t3
2

Fig.4. Petri net model.

In order to evaluate the cycle time of the model shown



Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 110

in Fig.4, the durations of all operations must be asso-
ciated with the transitions of the model. This duration
times can be composed of just a few elementary op-
erations, such as ‘load a chamber’, ‘unload a chamber’,
‘move to the next chamber’, and so on. In order to make
the presentation as simple as possible, it is assumed that
the loading and unloading times for all chambers (and
for all visits to the same chambers) are equal, and that
the time required for the move from one chamber to an-
other is the same for all pairs of adjacent chambers, as
well as for the move from the loadlock to the first cham-
ber, and from the last chamber to the loadlock. Also, all
other moves (between non–adjacent chambers) are sim-
ply composed of several elementary moves. Any changes
of these assumptions can easily be taken into account by
changing the occurrence times assigned to appropriate
transitions.

There are five elementary operations:

v – time needed to pick a new wafer from the loadlock,
w – time needed to deposit a wafer in the loadlock,
x – time needed to load a wafer into a chamber,
y – time needed to unload a wafer from a chamber,
z – time needed to move between adjacent chambers.

The operations represented by transitions in Fig.4,
and their execution times, are as follows (all chamber
operation times are denoted by oi where i is the chamber
number, and by oij for revisited chambers, where j is the
visit number):

trans. operations exec time

t0 pick a new wafer and move to C1 v + z
t1 perform C1 operation o1
t′
2

perform first C2 operation o21
t′′
2

perform second C2 operation o22
t′
3

perform first C3 operation o31
t′′
3

perform second C3 operation o32
t4 perform C4 operation o4
t1a load C1 x
t1b unload C1 y
t2a load C2 (first visit) x
t2b unload C2 (first visit) y
t2c load C2 (second visit) x
t2d unload C2 (second visit) y
t3a load C3 (first visit) x
t3b unload C3 (first visit) y
t3c load C3 (second visit) x
t3d unload C3 (second visit) y
t4a load C4 x
t4b unload C4 y
t12 move from C1 to C2 z
t13 move from C1 to C3 2z
t20 move from C2 to LL 2z
t23 move from C2 to C3 z
t′
23

move from C2 to C3 z
t′′
23

move from C2 to C3 z

trans. operations exec time

t31 move from C3 to C1 2z
t32 move to LL, drop the wafer,

move to C2 2z + w + 2z
t′
34

move from C3 to C4 z
t′′
34

move from C3 to C4 z
t′
42

move from C4 to C2 2z
t′′
42

move from C4 to C3 2z

Places p1 and p4 in Fig.4 can be removed without
any effect on the performance of the model (in [11] such
places are called “implicit places”). After removal of
these two places, the net shown in Fig.4 has 14 ba-
sic place invariants; subnets implied by these invariants
have the following sets of transitions:

invariant transitions

1 t0, t1a, t1b, t2a, t2b, t2c, t2d, t3a, t3b, t3c,
t3d, t4a, t4b, t12, t13, t20, t23, t

′

23
, t′′

23
, t31,

t32, t
′

34
, t′′

23
, t′

42
, t′′

42
;

2 t′′
3
, t2b, t2c, t2d, t3a, t3b, t3c, t3d, t4a, t4b,

t23, t
′

23
, t′′

23
, t32, t

′

34
, t′′

34
, t′

42
, t′′

42
;

3 t′
2
, t1b, t2a, t2b, t2c, t2d, t3a, t3b, t3c, t4a,

t4b, t12, t23, t
′

23
, t′′

23
, t31, t

′

34
, t′′

34
, t′

42
, t′′

42
;

4 t0, t
′′

2
, t1a, t1b, t2a, t2b, t2c, t2d, t3a, t3c,

t3d, t4b, t12, t13, t20, t
′

23
, t′′

23
, t31, t32, t

′′

34
,

t′′
42
;

5 t′′
2
, t′′

3
, t2b, t2c, t2d, t3a, t3c, t3d, t4b, t

′

23
,

t′′
23
, t32, t

′′

34
, t′′

42
;

6 t′
2
, t′′

2
, t1b, t2a, t2b, t2c, t2d, t3a, t3c, t4b,

t12, t
′

23
, t′′

23
, t31, t

′′

34
, t′′

42
;

7 t0, t
′′

2
, t′

3
, t4, t1a, t1b, t2a, t2b, t2c, t2d, t3a,

t3b, t3c, t3d, t4a, t4b, t12, t13, t20, t
′

23
, t′′

23
,

t31, t32, t
′

34
, t′′

42
;

8 t′′
2
, t′

3
, t′′

3
, t4, t2b, t2c, t2d, t3a, t3b, t3c, t3d,

t4a, t4b, t
′

23
, t′′

23
, t32, t

′

34
, t′′

42
;

9 t′
2
, t′′

2
, t′

3
, t4, t1b, t2a, t2b, t2c, t2d, t3a, t3b,

t3c, t4a, t4b, t12, t
′

23
, t′′

23
, t31, t

′

34
, t′′

42
;

10 t4, t2c, t3b, t4a, t4b, t23, t
′

34
, t′′

42
;

11 t0, t
′

3
, t1a, t1b, t2a, t2b, t2d, t3a, t3b, t3c,

t3d, t4a, t12, t13, t20, t
′

23
, t′′

23
, t31, t32,

t′
34
, t′

42
;

12 t′
3
, t′′

3
, t2b, t2d, t3a, t3b, t3c, t3d, t4a, t

′

23
,

t′′
23
, t32, t

′

34
, t′

42
;

13 t′
2
, t′

3
, t1b, t2a, t2b, t2d, t3a, t3b, t3c, t4a,

t12, t
′

23
, t′′

23
, t31, t

′

34
, t′

42
;

14 t0, t1, t1a, t1b, t2a, t12, t20.

The cycle time is thus

τ0 = max(τ1, τ2, ..., τ14)

and the cycle times of the implied subnets are obtained
by adding the execution times associated with the tran-
sitions and dividing this sum by the total count of tokens
in the subnet (if it is greater than one):



Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 111

τ1 = v + w + 6x+ 6y + 21z;
τ2 = o32 + w + 4x+ 5y + 13z;
τ3 = o21 + 5x+ 5y + 12z;
τ4 = o22 + v + w + 5x+ 5y + 17z;
τ5 = o22 + o32 + w + 3x+ 4y + 9z;
τ6 = o21 + o22 + 4x+ 4y + 8z;
τ7 = (o22 + o31 + o4 + v + 6x+ 6y + 14z)/2;
τ8 = (o22 + o31 + o32 + o4 + w + 4x+ 4y + 9z)/2;
τ9 = (o21 + o22 + o31 + o4 + 5x+ 5y + 8z)/2;
τ10 = o4 + 2x+ 2y + 4z;
τ11 = o31 + v + w + 5x+ 5y + 16z;
τ12 = o31 + o32 + 3x+ 4y + 6z;
τ13 = o21 + o31 + 4x+ 4y + 8z;
τ14 = o1 + v + 2x+ y + 4z.

The cycle time τ1 corresponds to the robot’s sub-
model, so if τ0 is equal to τ1, the model is “transport
bound” and a different schedule should be considered
to reduce the robot operations, otherwise the model is
“process bound” and one of the chambers limits the per-
formance of the tool.

V. CONCLUDING REMARKS

Realistic cluster tools are much more complicated
than the one presented in this paper. Modern semicon-
ductor devices are composed of many layers of different
materials, with complex technological processes creat-
ing these layers in consecutive processing steps. Con-
sequently, there are tens of processing steps, and the
scheduling problems for such tools are correspondingly
complex.

The solution discussed in this paper is derived with
the assumption that maximum concurrency of chamber
operations is required. The obtained results are relevant
to the “process bound” case in which the operation times
of the chambers are comparable (for chambers which are
revisited, the total time for all visits is used), as shown
in Fig.5.

time

C1

C2

C3

C4

Fig.5. A sketch of chamber occupancy times.

If this is not the case, the most heavily used chambers
could be duplicated to improve the performance of the
whole tool. Chamber duplication can easily be taken
into account in Petri net models.

The performance characteristics for steady–state be-
havior are derived in symbolic form, which provides a
very efficient analysis of specific schedules, described by
sets of numerical parameters. The steady–state model
can be used for the estimation of the initial and final
transient behaviors with only minor changes [17].

Only single–blade robots were discussed in this paper.
For dual–blade robots, a slightly different approach is
needed because the transportation of wafers from one
chamber to another is done in a different way (the robot
swaps the carried wafer with the wafer in a chamber).
Consequently, the description of configurations and their
changes must be different than the one presented in this
paper.

Symbolic results derived from analysis of net models
correspond directly to the fixed and incremental cycle
time proposed in [15], where the (average) time required
for processing a batch of n wafers is characterized by two
parameters, τfixed, the ‘fixed cycle time’, and τ0, the
incremental time per one wafer during the steady–state
behavior:

τbatch = τfixed + nτ0

It should be noticed that the simple formula of [15]
does not take the transient behaviors into account, so it
underestimates the batch processing time.

VI. ACKNOWLEDGEMENT

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through grant RGPIN-8222.

VII. REFERENCES

[1] Ajmone Marsan, M., Conte, G., Balbo, G., “A class
of generalized stochastic Petri nets for the perfor-
mance evaluation of multiprocessor systems”; ACM
Trans. on Computer Systems, vol.2, no.2, pp.93-
122, 1984.

[2] Bause, F., Kritzinger, P.S., “Stochastic Petri nets –
an introduction to the theory” (Academic Studies
in Computer Science); Vieweg Publ. 1996.

[3] Burggraaf, P., “Coping with the high cost of wafer
fabs”; Semiconductor International, vol.18, no.3,
pp.45-50, 1995.

[4] Murata, T., “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541-580, 1989.

[5] Perkinson, T.L., MacLarty, P.K., Gyurcsik. R.S.,
Cavin III, R.K., “Single-wafer cluster tool perfor-
mance: an analysis of throughput”; IEEE Trans. on
Semiconductor Manufacturing, vol.7, no.3, pp.369-
373, 1994.

[6] Perkinson, T.L., Gyurcsik. R.S., MacLarty, P.K.,
“Single-wafer cluster tool performance: an analysis
of the effects of redundant chambers and revisita-
tions sequences on throughput”; IEEE Trans. on
Semiconductor Manufacturing, vol.9, no.3, pp.384-
400, 1996.

[7] Ramamoorthy, C.V., Ho, G.S., “Performance eval-
uation of asynchronous concurrent systems using
Petri nets”; IEEE Trans. on Software Engineering,
vol.6, no.5, pp.440-449, 1980.



Petri Net Modeling and Performance Analysis of Cluster Tools with Chamber Revisiting 112

[8] Razouk, R.R., Phelphs, C.V., “Performance analy-
sis using timed Petri nets”; in: “Protocol Specifi-
cation, Testing, and Verification IV” (Proc. of the
IFIP WG 6.1 Fourth Int. Workshop, Skytop Lodge
PA), pp.561-576, North-Holland 1985.

[9] Reisig, W., “Petri nets – an introduction” (EATCS
Monographs on Theoretical Computer Science 4);
Springer-Verlag 1985.

[10] Sifakis, J., “Use of Petri nets for performance eval-
uation”; in: “Measuring, modeling and evaluating
computer systems”, pp.75-93, North-Holland 1977.

[11] Silva, M., Teruel, E., Colom, J.M., “Linear alge-
braic and linear programming techniques for the
analysis of place/transition net systems”; in: “Lec-
tures on Petri Nets I: Basic Models” (Lecture Notes
in Computer Science 1491), pp.309-373, Springer-
Verlag 1998.

[12] Singer, P., “The driving forces in cluster tool de-
velopment”; Semiconductor International, vol.18,
no.8, pp.113-118, 1995.

[13] Srinivasan, R.S., “Modeling and performance anal-
ysis of cluster tools using Petri nets”; IEEE Trans.
on Semiconductor Manufacturing, vol.11, no.3,
pp.394-403, 1998.

[14] Venkatesh, S., Davenport, R., Foxhoven, P., Nul-
man, J., “A steady–state throughput analysis
of cluster tools: dual–blade versus single-blade
robots”; IEEE Trans. on Semiconductor Manufac-
turing, vol.10, no.4, pp.418-423, 1997.

[15] Wood, R., “Simple performance models for inte-
grated processing tools”; IEEE Trans. on Semi-
conductor Manufacturing, vol.9, no.3, pp.320-328,
1996.

[16] Zuberek, W.M., “Timed Petri nets – definitions,
properties and applications”; Microelectronics and
Reliability (Special Issue on Petri Nets and Related
Graph Models), vol.31, no.4, pp.627-644, 1991.

[17] Zuberek, W.M., “Timed Petri net models of cluster
tools”; Proc. IEEE Int. Symp. on Systems, Man,
and Cybernetics (SMC’2000), vol.4, pp.3021-3026,
2000.

[18] Zuberek, W.M., Kubiak, W., “Timed Petri nets in
modeling and analysis of simple schedules for man-
ufacturing cells”; Journal of Computers and Mathe-
matics with Applications, vol.37, no.11/12, pp.191-
206, 1999.


