
7-th Int. Conf. on Application of Concurrency to System Design, Bratislava, Slovakia, July 10–13, 2007, pp.233-235.

Copyright c© 2007 IEEE (DOI 10.1109/ACSD.2007.56).

Multicomponent Compatibility and its Verification

(Extended abstract)

Donald C. Craig and Wlodek M. Zuberek
Department of Computer Science

Memorial University
St.John’s, Canada A1B 3X5

{donald, wlodek}@cs.mun.ca

Software architecture has been introduced with
promise of better re-use of software, greater flexibil-
ity, scalability and higher quality of software services
[1] [10]. Software architecture uses components as the
basic building blocks of software systems.

Components represent high-level software models;
they must be generic enough to work in a variety of
contexts and in cooperation with other components,
but they also must be specific enough to provide easy
reuse [12]. To be composable with other (third-party)
components, a component needs to be sufficiently self-
contained. Also, it needs a clear specification of what it
requires and what it provides. In other words, a com-
ponent needs to encapsulate its implementation and
interact with its environment by means of well-defined
interfaces.

The interface of a component defines the compo-
nent’s access points [12]; these points allow clients of
a component to access the services provided by the
component. Each access point may provide a differ-
ent service, catering to different client needs. In order
to represent component interactions, the interfaces are
divided into provider interfaces and requester interface,
or simply providers and requesters.

Two interacting components are compatible if all
services that are requested by one component are pro-
vided by the other component. Such “static” compat-
ibility can usually be checked quite easily, but it does
not prevent more subtle errors which are due to some
limitations on the ordering of services. Therefore a “dy-
namic” (or behavioral) compatibility is used, and two
components are compatible in the behavioral sense if all
possible sequences of services requested by one of the
interacting components can be provided by the other
component. The collections of sequences of services can
be regarded as interface languages (over the alphabet of
requested and provided services), and then a requester
component Ci is compatible with a provider component
Cj if

L(Ci) ⊆ L(Cj).

If the interface languages are regular (in the sense

of Chomsky [7]), the behavior of components can be
represented by finite automata [2], [6], and the com-
patibility relation can be verified easily by operations
on such automata [7]. In many cases, however, the
interface languages are non-regular; for example, if a
component implements a stack, the language of push
and pop stack operations is context-free. Models which
are more expressive than finite automata are needed for
representing non-regular interface languages. In [4], [5],
labeled Petri nets (with labels assigned to transitions)
have been proposed as behavioral models of compo-
nents at their interfaces:

Mi = (Pi, Ti, Ai, Si,mi, ℓi, Fi),

where Pi and Ti are disjoint sets of places and tran-
sitions, respectively, Ai is the set of directed arcs,
Ai ⊆ Pi × Ti ∪ Ti × Pi, Si is an alphabet represent-
ing the set of services that are associated with transi-
tions by the labeling function ℓi : Ti → Si ∪ {ε} (ε is
the “empty” service; it labels transitions which do not
represent services), mi is the initial marking function
mi : Pi → {0, 1, ...}, and Fi is the set of final mark-
ings (which are used to indicate the end of sequences
of firings). It is required that in each net representing a
provider interface there is exactly one labeled transition
for each provided service so as to eliminate ambiguity
of requested services.

Let F(M) denote the set of such firing sequences in
M which create one of the final markings in the set F .
The interface language of a component represented by
a labeled Petri net M, L(M), is the set of all labeled
firing sequences in F(M):

L(M) = {ℓ(σ) | σ ∈ F(M)},

where ℓ(ti1ti2 ...tik) = ℓ(ti1)ℓ(ti2)...ℓ(tik). Interface lan-
guages defined by Petri nets include all regular lan-
guages as well as some context-free languages and even
context-sensitive languages [9].

For the case of non-regular languages, the compat-
ibility of interacting components can be verified by
composing the component models into one model and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/395081057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Multicomponent compatibility and its verification 234

checking the properties of this model. The composition,
however, can be performed in several ways, resulting in
models with different properties.

The COSY–style composition [8] uses the fusion of
transitions labeled by the same services (with some ad-
ditional elements to distinguish repeated requests of the
same service). The consequence of such an approach is
that the composition of a requester modeled by Mi

with a provider modeled by Mj corresponds to the in-
tersection of their languages:

L(Mi) ∩ L(Mj).

The verification of the compatibility is thus checking if
the intersection is equal to the requester language:

L(Mi) ∩ L(Mj) = L(Mi)

which is as difficult as the verification of the original
compatibility relation.

The idea behind the CORD (compatible or dead-
locked) composition [4] is to make the language of com-
posed interfaces equal to the language of the requester,
or to create a deadlock when the requested sequence of
services cannot be provided by the other component.
The verification of the component compatibility is thus
equivalent to deadlock detection in the composed model
which, at least for some models, can be done quite ef-
ficiently.

The case of a single requester interacting with a sin-
gle provider is discussed in [5]. For multiple providers,
the consistency of each provider (with the same re-
quester(s)) is a sufficient condition for the consistency
of the whole multiprovider configuration. For multi-
ple requesters, the composition must take into account
the concurrent interactions of different requesters with
the provider. For a single service (named “a”), the
composition of two requesters with a single provider is
outlined in Fig.1 and Fig.2.

In general, the composition of a family of requesters
MI = {M1,M2, . . . ,Mk}, I = {1, . . . , k}, with a sin-
gle provider Mj results in the net MIj . Its defini-
tion is based on service transitions in the requester and
provider interfaces:

T̂j = { t ∈ Tj : ℓj(t) 6= ε },

T̂i = { t ∈ Ti : ℓ(t) 6= ε }, i ∈ I; T̂I =
⋃

i∈I

T̂i.

Also, let the set of all the requesters’ transitions
(both labeled and unlabeled), all places, all arcs and
all final markings be denoted, respectively, as:

TI =
⋃

i∈I

Ti, PI =
⋃

i∈I

Pi, AI =
⋃

i∈I

Ai, FI =
⋃

i∈I

Fi.

p′j p′′jtj

a

... ...

p′k p′′k

... ...

... ...

p′i p′′i

ti

tk

a

a

Provider

Requesteri

Requesterk

Fig.1. Multirequester interaction (before composition).

... ...

... ...

p′k p′′k

ptk

εε

p′tk

... ...

p′i p′′i

pti
εε

p′ti

p′j p′′j

t′k t′′k

ε

ε

t′i t′′i

t′′′i

t′′′k

Requesteri

Provider

Requesterk

p′tj

tj

a

p′′tj

Fig.2. Multirequester interaction (after composition).

The composed model MIj = (PIj , TIj , AIj , SIj ,

mIj , ℓIj , FIj) is defined as follows:

PIj = PI ∪ Pj ∪ { pti , p
′

ti
: ti ∈ T̂i ∧ i ∈ I } ∪

{ p′tj , p
′′

tj
: tj ∈ T̂j };

TIj = TI ∪ Tj − T̂I ∪

{ t′i, t
′′

i , t
′′′

i : ti ∈ T̂i ∧ i ∈ I };

AIj = AI ∪Aj−

PI × T̂I − T̂I × PI − Pj × T̂j − T̂j × Pj ∪
{ (p′i, t

′′′

i ), (t′′′i , p′ti), (p
′

ti
, t′i), (t

′

i, pti),

(pti , t
′′

i ), (t
′′

i , p
′′

i ) : ti ∈ T̂i ∧ i ∈ I ∧
p′i ∈ Inp(ti) ∧ p′′i ∈ Out(ti) } ∪

{ (p′j , t
′

i), (t
′

i, p
′

tj
), (p′tj , tj), (tj , p

′′

tj
),

(p′′tj , t
′′

i ), (t
′′

i , p
′′

j ) : tj ∈ T̂j∧

ti ∈ T̂i ∧ i ∈ I ∧ ℓj(tj) = ℓi(ti) ∧
p′j ∈ Inp(tj) ∧ p′′j ∈ Out(tj) };



Multicomponent compatibility and its verification 235

∀t ∈ TIj : ℓIj(t) =







ℓi(t), if t ∈ Ti ∧ i ∈ I,

ℓj(t), if t ∈ Tj ,

ε, otherwise;

∀p ∈ PIj : mIj(p) =







mi(p), if p ∈ Pi ∧ i ∈ I,

mj(p), if p ∈ Pj ,

0, otherwise;

FIj = {m : PIj → {0, 1, . . .} | m ↓ PI ∈ FI ∧
m ↓ Pj ∈ Fj ∧ ∀p ∈ PIj − PI − Pj : m(p) = 0};

where the binary operator ↓ restricts its lefthand argu-
ment (which is a function) to the domain indicated as
its righthand argument; Inp(t) is the set of input places
of t and Out(t) is the set of t’s output places.

For each service, the composition merges the labeled
service transitions of all requesters with the correspond-
ing service of the provider, and introduces two new
places in the provider and two new places and three
new transitions in each requester. The first new tran-
sition/place pair of the requesters (t′′′i and p′ti) allow
each requester to initiate and control its interaction
with the provider without any effect from the provider.
The other place (pti) enveloped by two transitions (t′i
and t′′i ) is on the boundary between each requester
and the provider. These elements help coordinate each
requester’s access to the provider’s service transition.
The two new provider’s places (p′tj and p′′tj ) with the re-
quester places pti , ptk perform serialization of accesses
to the provider’s shared service transition.

If the composed model is bounded and its marking
space is reasonably small, reachability analysis can be
used for checking the absence of deadlocks. If, how-
ever, the net is unbounded or the marking space is
unreasonably large, structural methods (using siphons
and linear programming techniques [3], [11]) can be
used. The drawback of siphon–based methods is, how-
ever, that the composed model usually contains a large
number of siphons even when only minimal and basis
siphons are used. This large number of siphons can be
significantly reduced by performing simple, deadlock–
preserving transformations of nets, and in particular,
the reduction of parallel and alternate paths [4]. These
transformations reduce “equivalent siphons”, i.e., such
siphons which, for all reachable markings, are either
marked or unmarked in the same way.

Experience shows that (for systems of 5 to 10 com-
ponents [4]) the performance of the proposed approach
is quite satisfactory, although many further improve-
ments are possible. For example, the reductions of
parallel and alternate paths do not guarantee that all
“equivalent siphons” are eliminated, so further reduc-
tion may be possible. Also, it can be shown [4], that
the ordering of analyzed siphons can affect the perfor-
mance the deadlock detection process; predicting the

most efficient ordering of siphons can be an interesting
research topic.

An interesting related problem is how to obtain Petri
net models of components; would it be practical to gen-
erate such models from component specifications or,
perhaps, from the implementation code?

Acknowledgments

This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada
through Grant RGPIN-8222.

References

[1] S.T. Albin, “The art of software architecture: design
methods and techniques”; Wiley 2003.

[2] S. Chaki, E.M. Clarke, A. Groce, S. Jha, H. Veith,
“Modular verification of software components in C”;
IEEE Trans. on Software Engineering, vol.30, no.6,
pp.388-402, 2004.

[3] F. Chu, X. Xie, “Deadlock analysis of Petri nets us-
ing siphons and mathematical programming”; IEEE

Trans. on Robotics and Automation, vol.13, no.6,
pp.793-804, 1997.

[4] D.C. Craig, “Compatibility of software components –
modeling and verification”; Ph.D. Thesis, Department
of Computer Science, Memorial University, St.John’s,
Canada A1B 3X5, 2006.

[5] D.C. Craig, W.M. Zuberek, “Compatibility of software
components – modeling and verification”; Proc. Int.
Conf. on Dependability of Computer Systems, Szk-
larska Poreba, Poland, pp.11-18, 2006.

[6] T.A. Henzinger, “Automata for specifying component
interfaces”; Proc. 8-th Int. Conference on Implemen-
tation and Application of Automata (Lecture Notes in
Computer Science 2759), pp.1-2, Springer-Verlag 2003.

[7] J.E. Hopcroft, R. Motwani, J.D. Ullman, “Introduc-
tion to automata theory, languages, and computa-
tions” (2 ed.); Addison Wesley 2001.

[8] R. Janicki, P.E. Lauer, “Specification and analysis of
concurrent systems – the COSY approach”; Springer-
Verlag 1992.

[9] T. Murata, “Petri nets: properties, analysis, and ap-
plications”, Proceedings of the IEEE, vol.77, no.4,
pp.541-580, 1989.

[10] M. Shaw, D. Garlan, “Software architecture: perspec-
tives on an emerging discipline”; Prentice Hall 1996.

[11] M. Silva, E. Teruel, J. Couvreur, “Linear algebra in
and linear programming techniques for the analysis
of place/transition net systems”; in “Lecture on Petri
nets - basic models” (Lecture Notes in Computer Sci-
ence 1491), pp.309-373, Springer-Verlag 1998.

[12] C. Szyperski (with D. Gruntz, S. Murer), “Compo-
nent software: beyond object–oriented programming”
(2 ed.); Addison-Wesley 2002.


