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Abstract: Smart grids (SG) emerged as a response to the need to modernize the electricity grid.
The current security tools are almost perfect when it comes to identifying and preventing known
attacks in the smart grid. Still, unfortunately, they do not quite meet the requirements of advanced
cybersecurity. Adequate protection against cyber threats requires a whole set of processes and
tools. Therefore, a more flexible mechanism is needed to examine data sets holistically and detect
otherwise unknown threats. This is possible with big modern data analyses based on deep learning,
machine learning, and artificial intelligence. Machine learning, which can rely on adaptive baseline
behavior models, effectively detects new, unknown attacks. Combined known and unknown data sets
based on predictive analytics and machine intelligence will decisively change the security landscape.
This paper identifies the trends, problems, and challenges of cybersecurity in smart grid critical
infrastructures in big data and artificial intelligence. We present an overview of the SG with its
architectures and functionalities and confirm how technology has configured the modern electricity
grid. A qualitative risk assessment method is presented. The most significant contributions to the
reliability, safety, and efficiency of the electrical network are described. We expose levels while
proposing suitable security countermeasures. Finally, the smart grid’s cybersecurity risk assessment
methods for supervisory control and data acquisition are presented.

Keywords: smart grid; cybersecurity; machine learning; optimization; deep learning; cybersecurity
risks; automated distribution network

1. Introduction

The concept of a “smart and sustainable city” is emerging with two flagship applica-
tions worldwide. The first target is to use better energy management—particularly with
“smart” electricity grids promoting renewable energies. The second one is to deploy ef-
ficient mobility solutions to limit the automobile’s use and, thus, limit greenhouse gas
emissions. As useful as they are, information and communications technologies (ICT) are
not an end in themselves.

A smart and sustainable city is an innovative urban strategy, using information and
communications technologies to reduce the city’s environmental footprint and improve
citizens’ quality of life. Indeed, the goal of using ICT is not only to increase the “IQ of the
city” but to make it more sustainable and more pleasant to live in. This is a formidable
challenge when we know that cities bring together an increasingly large population, expand
and become denser with the attendant nuisances that this can imply [1].

The electricity sector is evolving towards a modern and automated distribution net-
work. The demand for more digitized, connected, and integrated operations are growing
in all sectors, so electricity companies must ensure a reliable power supply, with an ap-
proach based on efficiency and sustainable sources [2–4]. As the electrical grid merges and
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becomes “smarter” with the resultant benefits of better connectivity, cybersecurity risks,
and threats also increase.

Smart grid technology will allow a better adaptation to the dynamics of renewable
energy and distributed generation, providing networks and consumers with more direct
access to the benefits associated with these resources. An intelligent system’s abilities will
allow the easy and straightforward control of the bidirectional flow of electrical energy
and facilitate the actions of monitoring, management, and support of resources at the
distribution level.

Smart grids are autonomous and improve the effectiveness and efficiency of electrical
power management, allowing utilities to optimize existing infrastructure, minimizing the
construction of more power plants.

The main objective is to make the system more flexible to accommodate both the
centralized renewable generation and all the generation and storage options linked to the
distribution system [5–10].

For system security, it will bring about a radical change, both in supply and in the
event of disasters, since the decentralization of generation will reduce the number of
sensitive targets, such as large power plants.

From the environmental point of view, the modernization of the system will contribute
much to the reduction in greenhouse gas emissions by promoting even greater distributed
generation (especially concerning micro-generation through clean technologies), as well as
the emergence of reliable sites for renewable sources, mainly hydro and solar, by avoiding
the problems associated with intermittent supply and reducing the need to invest in a
centralized fossil-source generation.

The analysis of threats in smart grid (SG) systems and the model of security threats
in embedded systems helps to understand better attackers’ weaknesses. For example,
based on interactions in formalized incentive structures, the game theory approach allows
us to carry out decision processes to address cybersecurity in monitoring and protection.
Similarly, control from a coordinated cyber-attack perspective can improve security. In
short, energy sector associations manage cybersecurity while maintaining critical power
supply functions to ensure the modernized grid’s reliability.

However, the most significant contributions to the reliability, safety, and efficiency of
the electrical network have taken place in the development of intelligent optimization algo-
rithms, such as genetic algorithms, neural networks, game theory strategies, reinforcement
learning, vector support machines, among others. These previous strategies have made it
possible to study the interactions in formalized security structures in response to demand
in the energy markets. Consequently, modern SG control and monitoring systems have
made rapid identification of critical infrastructure elements [11–17].

The International Organization for Standardization defines cybersecurity or cyberspace
security as preserving confidentiality, integrity, and information availability in cyberspace.
In turn, “cyberspace” is defined as “the complex environment resulting from the interaction
of people, software and services on the Internet through technology devices and networks
connected to it, which does not exist in any physical form”.

In this work, we conduct a comprehensive overview and analysis of smart grid
architecture and different security aspects in the era of big data and artificial intelligence. It
is also a risk-based cybersecurity framework—a set of industry standards and best practices
to help SG operators manage cybersecurity risks.

The paper’s structure is as follows: Section 2 explores energy management in smart,
sustainable cities. The main security threats in smart grids are given in Section 3. Section 4
provides the security-aware of SG infrastructures in the era of big data and artificial
intelligence. A survey on risk modeling techniques is given in Section 5. We summarize the
most efficient approach of mitigating cyber-attack risk on smart grid systems in Section 6.
Section 7 concludes this survey paper.
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2. Energy Management in Smart Sustainable Cities

The implementation of the smart and sustainable city, a complex system, requires new
governance involving all the connected actors—local communities, companies, citizens—
and a lot of research is required to draw its contours.

The concept of a “smart and sustainable city” is attractive. According to lifestyles
and social and environmental issues, information and communication technologies to
optimize and develop the city’s functioning are indeed auspicious. Cities are implementing
digital applications to give themselves a little more “intelligence” all over the world.
That said, making a city more digital and smarter is not an end in itself. Information
technologies are only one tool to achieve an objective: to make the city more pleasant
to live in for its inhabitants, to make it cleaner, more economical, more fluid, and more
participatory. In short, the challenge is to make the city more sustainable and livable, which,
beyond technology, implies a new organization of its players, relying in particular on the
participation of citizens.

The stakes are high. By 2025, around 58% of the world’s population (4.6 billion people)
will live in an urban area, and this rate will reach 80% for developed countries. By 2050,
75% of the world’s population will live in cities, which are denser and more populated.

The challenge of urbanization is considerable: overpopulation, climate change, qual-
ity of the environment, access to energy, etc. Agglomerations consume around 65% of
available primary energy and account for about 70% of greenhouse gas emissions, mainly
due to the supply of energy for lighting, heating, and transport. To respond to these
challenges, climate change, and deterioration in air quality, the city of tomorrow will have
to structure itself.

Of all the possibilities that exist, energy management is the preferred application today
by many cities. The energy issue is decisive, both for its effect on climate change and its
impact on cities and citizens’ bills. When it comes to energy, the smart city is often identified
with the “smart grid”. Thanks to smart meters equipped with sensors, it is possible to
know the consumption of all buildings—housing, office buildings, etc.—particularly to
identify the peak moments of energy consumption at the scale of a district and, ultimately,
an entire city. These data make it possible to smooth consumption at peak hours by
disconnecting devices and also to give consumers essential information to act on their
behavior. This information on consumption, together with the decentralized production of
electricity from renewable energies (wind, photovoltaic, cogeneration, geothermal energy,
etc.) and electricity storage (mainly in batteries today), still allows for management of the
production and use of electricity in an optimized way. Typically, the energy accumulated
by photovoltaic panels placed on office buildings can be stored and delivered during the
evening—that is, when offices are empty—to homes. Electric vehicles can be called upon
to provide electricity during peak periods or serve as a storage system during off-peak
hours [18–22].

3. Security Threats in Smart Grids

Smart grids reliability is based on the confidence, security, and availability of control
of communication application systems [23].

Big Data processes an enormous number of datasets through computer devices and
networks to generate useful information for supporting organizational decision-making.
The architecture and framework of Big Data illustrate how hardware, software, network-
ing, and data technologies orchestrate to perform the ultimate goal of this innovative
methodology.

One of the sources of vulnerability resulting from integrating ICTs to SG is that all
devices pass their data through the public network that is the Internet using the Internet
Protocol (IP). However, this protocol has known weaknesses that can facilitate the risks
of intrusions or interceptions of data. Yet, they have serious security gaps. Therefore, the
safety in smart grids implies the protection and security of information.
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The smart grid’s major security requirements are the CIA triad (confidentiality, avail-
ability, and integrity). Before implementing cybersecurity measures and solutions that
ensure safe and reliable operation, it is essential to understand the electrical network’s
safety objectives and requirements. The main goals and objectives are described below.

• Availability: guarantee access and timely use, and reliable information. Data availabil-
ity is one of the most critical aspects of smart grids. A loss of availability represents the
interruption of access and use of information, which could weaken the management
and delivery of energy.

• Integrity: ensuring that information is not altered in a way unauthorized. This policy
protects against modification and inappropriate destruction of data, ensuring this
non-repudiation and its authenticity.

• Confidentiality: preserve the restriction of access and disclosure of the information.
This policy addresses the protection of property of the data ensuring that sensitive
data is not disclosed to unauthorized persons, entities, or processes [24].

Cybersecurity threats can be associated with the three major security requirements are
discussed in Table 1.

Table 1. Malicious attacks on the smart grid.

According to Threat Security Objective
Affected Active or Passive Examples

Interception (when personal unauthorized
gets access to data, devices, or components
cyber environment)

Confidentiality
Passive (usually cannot be
detected but can be prevented
with cryptography)

Denial of services (DoS), data
traffic monitoring

Modification (when accessing) and
modifications are made to data, environmental
devices, or components cyber deliberately
and illegally)

Integrity Active (can be detected
with cryptography)

Modification of control signals,
modification of sensor data,
modification of information (by
example, energy use)

Interrupt (when data, devices, or components
of the cyber environment are destroyed or
turned to not available to delay, block, or
impair the communication in the smart grid)

Availability Active (can be detected, but
usually not prevented)

Elimination of routing, software
modification of deleting data, etc.

Manufacturing (when personnel not
authorized inserts objects (for example, data or
components) false in the system.

Authenticity Active (can be detected
with cryptography)

Saturation attacks, insertion of
false control signals, insert of
financial transactions bogus
for-profit

The National Institute of Standards and Technology (NIST) recommends individual
security requirements specific to the smart grid, including cybersecurity and physical
security [25].

As this article focuses on the security communication networks, below are some of
the most critical cybersecurity requirements for intelligent electrical power systems based
on the study developed in [26].

• Privacy: The smart meters and load management in networks intelligent electricity
systems involve the use of patterns of electricity that could reveal private informa-
tion [16,17,19,27]. For example, malicious users could use consumption patterns to
determine how much energy is used in a residence or building and find out if con-
sumers are or are not in them and thus be able to execute attacks. In addition, criminals
could use information from these patterns to harm specific consumers. As a result,
various privacy concerns must be addressed. Fortunately, the technologies related
to privacy are very well developed, and the specific privacy solutions needed will
depend on the type of protected communication resource [28].

• Attack detection and rapid response to incidents: The smart network electricity is a
communication network that includes excellent coverage. Therefore, it is practically
impossible to protect every node on the network. As a result, it is recommended to
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perform profile checks, tests consistently, and make comparisons to monitor the state
of network traffic to detect and identify abnormal incidents due to attacks [26].

• Continuity of operations: an information system of smart grids must have the ability
to continue or resume operations in case of interruption of its normal functioning. The
work presented in [26] introduces recommendations on policies and procedures of
roles and responsibilities, storage centers alternative methods, alternative command
and control methods, alternative control, recovery and reconstitution, and response to
failure testing information regarding continuity of smart grid operations.

• Identification, authentication, and access control: The networks of smart electrical
devices are made up of millions of devices electronic and intelligent information
systems. Therefore, identification and authentication should be essential procedures
for verifying a user or device’s identity and a prerequisite to access resources in the
smart grid’s information system. This access control focuses on ensuring that resources
are only accessed by staff appropriately and adequately identified. To achieve this,
each node on the network must have essential cryptographic functions to perform
authentications and data encryption [29].

• Audit and accountability: Periodic audits are used to detect gaps in security services
to thoroughly examine smart grids’ information system records [30,31]. Registration
is required to detect anomalies; with the convergence of traditional electrical systems
and information technology, the correct analysis of event information (for example,
the power outage is necessary to understand what happened).

4. Security-Aware of SG Infrastructures in Era of Big Data and Artificial Intelligence

SG vulnerabilities are most common in smart meters, devices that interact with electric-
ity supply and demand. This is a function of the geographic location where the meters are
installed and the encryption level with which the energy consumption analysis algorithms
are encoded [32,33].

Smart grids encompass the integration of information technologies for the electricity
grid infrastructure. Consequently, the system’s automatic operation allows effective options
for both utility operators and clients—the preceding under the precept of guaranteeing the
electricity supply’s reliability and continuity.

Some supervisory control and data acquisition (SCADA) systems or elements were
put in place dozens of years ago and are now impossible to update. Some of them were
designed before well-founded cybersecurity principles were settled upon. SCADA system
designers would claim that cybersecurity is not a concern since SCADA systems are not
connected to the Internet. However, over time, SCADA systems began appearing on
the Internet, and often with no cybersecurity. These systems must be replaced by more
recent, safer equipment, but this is synonymous with significant investments and, therefore,
often postponed.

On larger sites, the control system needs to be protected from attack within the
SCADA network. Implementing an additional firewall between the corporate and SCADA
network can achieve by imposing more restrictive rules. This will enable authorized service
engineers to provide support and manage security, e.g., apply security mitigations, inspect
log files, apply updates, etc.

Related studies in communications areas include communication network require-
ments for the main SG applications in domestic air networks, near air networks (NAN),
and comprehensive air networks. For example, Bekara investigated security challenges in
SGs based on Internet of Things (IoT). The author defined the primary security services
that should be considered [34].

The concept has evolved, and today IoT encompasses many other technologies, includ-
ing wireless sensor networks, machine-to-machine communications, and others, such as
ZigBee, WiFi, NB-IoT, LTE, Bluetooth, among others. In Figure 1, it is possible to appreciate
the myriad of information and telecommunications technologies that can operate in an
electrical distribution system [35].
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Figure 1. Myriad of information and telecommunications technologies [35].

4.1. The Enormous Potential of Big Data

The most important resource in the world is no longer crude oil, but data—according
to The Economist’s title from 6 May 2017. This lead story expresses the current assessment
of big data well. Big data—a term for which there is no generally accepted definition—
is pragmatic as a large amount of data, the analysis of which requires the use of tools
that go beyond the classic application programs [36]. The acquisition, storage, analysis,
maintenance, search, distribution, transmission, visualization, query, update, and data
protection are challenges due to the database’s size (as shown in Figure 2). There are
three general approaches to analyze harmonized data across different sources: pooled data
analysis, summary data meta-analysis, and federated data analysis [37–39].

Figure 2. The properties of Big Data are reflected by 5Vs, which are veracity, volume, variety, value,
velocity [40].

Thanks to forward-looking algorithms (i.e., prediction of consumption according to
the weather, forecasting of production, etc.), the SG has a global vision in real-time or in
advance of these energy offers and demands.
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The smart grid’s strength lies in using this data to automatically adjust the energy
flows of the network to supply areas of energy need with electricity primarily from renew-
able sources.

Electricity distributors are now actively engaged in a double movement towards Big
Data—the quantitative explosion of data digital available—and to Open Data—the update
free disposal of this data in an open manner, which allows their reuse without technical
restriction [40].

4.2. Cybersecurity and Artificial Intelligence

Cybersecurity is one of the many uses of artificial intelligence (AI) [41]. Buzzwords,
such as machine learning, natural language processing, and robot-assisted process automa-
tion (RPA), are currently primarily associated with digitized production processes [41].
But these technologies have also long been used in cybersecurity. The spam filter, for
example, is an excellent example of the application of machine learning that dates back to
the early 2000s [42–44]. Of course, the methods have become more refined over time, and
the systems now deliver analyses at a much higher level.

Today, the latest developments in artificial intelligence are already making a valuable
contribution to improving digital security in the smart grid. The innovations in this area
help to defend against a whole range of attack vectors. The five most common use cases are
fraud detection, malware detection, intrusion detection, risk assessment, and user behavior
analysis. Artificial intelligence is implemented more often than is generally known.

AI delivers insights that allow businesses to quickly understand threats, reducing
response times and keeping businesses in compliance with security best practices. Artificial
intelligence, 5G, and other technologies are poised to aid with these challenges, but the
energy industry must continue to invest in getting ahead of cyberattacks [45]. Another
AI application field is the detection and prevention of unauthorized access to network
infrastructures (intrusion prevention), be it external or internal. Deep Learning (DL)
systems also support user account monitoring. The AI algorithms examine user behavior
and can thus detect anomalies—e.g., through different geolocations within a very short
time, unusual working and access times, or the use of databases that were previously not
or only rarely used [46–48].

On the other hand, machine learning (ML) helps to recognize patterns in data so that
machines can learn from experience [49]. By leveraging cyber threat intelligence, smart
grid users can respond to problems quickly and confidently [50,51].

The current security tools are almost perfect for identifying and preventing known
attacks, but unfortunately, they do not quite meet the requirements of advanced cybersecu-
rity. These solutions offer no protection against new, unknown attacks, zero-day attacks,
and low and slow attacks. Therefore, a more flexible mechanism is needed to examine data
sets holistically and detect otherwise unknown threats [52–69]. Machine learning, which
can rely on adaptive baseline behavior models, is extremely effective in detecting new,
unknown attacks: The combination of known and unknown data sets based on predictive
analytics and machine intelligence will decisively change the security landscape [70–74].
Table 2 shows how AI can boost cybersecurity in SG.

Table 2. Artificial intelligence (AI) and Cybersecurity.

How AI Can Help in Cybersecurity References

Automated Detection [52–56]

Quick Identification Errors [57]

Secure Authentication [58–60]

Faster Response Times [61–64]

Cybersecurity without Errors [65–68]
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5. Survey on Risk Modeling Techniques

To keep pace with these developments and not be helpless in the face of AI-based
cyber-attacks, electric utility companies are ultimately almost forced to base their security
strategy on similar technologies [75–78]. There are already many effective AI-based security
solutions available, especially in endpoint protection. Unlike conventional signature-based
protection technologies, these next-generation solutions focus on dynamic behavior analy-
sis techniques and combine these with machine learning and intelligent automation [79–83].
Infections with malicious code are identified here based on their execution behavior within
a few seconds and automatically blocked before damage can occur [83]. Machine learning
capabilities ensure that the behavior analysis technology is constantly learning and, thanks
to the constantly flowing information about threats, is continuously optimized [84].

Cybercriminals are still causing billions in damage using traditional attack methods,
and without the use of artificial intelligence, it says a lot about the current state of IT security.

Some of the leading SG research technologies are mentioned in this section. The
previous techniques are based on the dynamic integration of electrical engineering de-
velopments, energy storage, big data analysis, advances in information, communication
technologies (ICT), wireless communication, and machine learning techniques [85–87].
Furthermore, advanced fault management is possible, thanks to the complete coordination
of local automation. That is why these sophisticated systems can be used to protect essential
consumers from interruptions. In this order of ideas, diagnostic techniques are essential in
SG since they must be fault-tolerant [88,89].

5.1. CORAS Method for Security Risk Analysis

A literature review is used in this article to explore various security modeling tech-
niques and their applicability in smart grid security [41]. The CORAS method for security
risk analysis was used, as shown in Figure 3.

Figure 3. CORAS method for security risk analysis.

The electronic databases IEEEXplore and SpringerLink were used in this literature re-
view. The work consists of a main qualitative study supplemented by a quantitative study.
Building a database is not as easy as it sounds to create the comparative databases, and
search keywords. Among these keywords, we can quote “attack tree security”, “vulnerabil-
ity analysis”, “false data injection attack detection”, “malicious behavior detection”, “deep
learning detection of electricity theft cyber-attacks”, “fraud detection”, “bow tie security”,
“anomaly detection method”, “smart grids cyber-attack defense”, and “CORAS security”.

These data were sufficient to create a comparative database and apply high-level
quality indicators. Table 3 shows the number of hits each of the keywords returned from
IEEEXplore and SpringerLink databases.
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Table 3. Classification based on security requirements.

Attacks References

Switching Attacks [46–48,51,56,63,66–69,75,77,79,84,85,89–94]
DoS (Denial of Service) [95–99]

Fraud Detection [78,96,100]
Cyber Threat Detection [14,29,96,97,101–104]

Data Integrity [105–112]
Replay [113–116]

Packet Dropping [117–119]
Dynamic Load Altering Attack [5,27,120–126]

Data Injection Attacks [47,57,59,75,89,101,107,127–137]
Malicious Software (Malware) [92,109,113,114,138–144]

Vulnerability Analysis [80,104,145–147]
Anomaly Detection [83,148–151]

5.2. Cyber Security Risk Assessment Methods for SCADA Systems

This work has a qualitative approach. It intends to make a reflective analysis based on
the documentary review on some methodologies implemented to evaluate cybersecurity
risk applied to SCADA (supervisory control and data acquisition) systems for electricity
companies. What are the appropriate methods to implement in electricity companies,
taking into account vulnerabilities? What are the shortcomings and possibilities for im-
provement in the current plans?

• Method 1: Analysis, classification, and detection methods of attacks through wireless
sensor networks in the smart grid and SCADA systems [152].

• Method 2: Detection of cyberattacks using temporal pattern recognition techniques [153].
• Method 3: A CPI-enabled firewall model for SCADA security in smart grid net-

works [154].
• Method 4: Combining ensemble methods and social media metrics to improve the

accuracy of One Class Support Vector Machine (OCSVM) in intrusion detection in
SCADA systems [155].

• Method 5: Unconditional security practical implementation for the IEC 60780-5-101
SCADA protocol [156].

• Method 6: SCADA approach as a service for the interoperability of micro-network
platforms. According to [157], in the context of the development of smart grids, this
work considered the interoperability of microgrid platforms. Various levels of inter-
operability were introduced with the respective requirements. The document’s main
objective was to propose a suitable hybrid cloud-based private SCADA architecture
satisfying multiple needs within the interoperability of micro-network platforms while
maintaining security constraint conditions. Interoperability between micro-networks
will allow research institutions to exchange meaningful information, gain access to
the pool of shared resources, and eventually, locally or remotely, borrow associated
infrastructure for research activities.

• Method 7: Simulation platform for cybersecurity and critical infrastructure vulnerabil-
ity analysis [158].

• Method 8: Pre-distribution key scheme with joint license support for SCADA sys-
tems [159].

• Method 9: Development of a secure and attack-resistant SCADA system using Wireless
Sensor Network (WSN), Mobile Ad hoc NETwork (MANET), and the Internet [160].

• Method 10: Cascading dynamics vulnerability analysis in smart grids under load
redistribution attacks [161].

• Method 11: Ensure operations in the industrial control system based on the SCADA-
IoT platform using deep belief [162].

• Method 12: An improved algorithm based on optimization for intrusion detection in
the SCADA network [163].
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The list of the risk assessment methods described in this subsection is summarized in
Table 4.

Table 4. Cyber security risk assessment methods for supervisory control and data acquisition (SCADA) systems.

Method References

Analysis, classification, and detection methods of attacks through wireless sensor networks [152]
Detection of cyberattacks using temporal pattern recognition techniques [153]
CPI-enabled firewall model for SCADA security in smart grid networks [154]

Combining ensemble methods and social media metrics to improve the accuracy of OCSVM
in intrusion detection in SCADA systems [155]

Vulnerability Analysis [156]
Data Integrity for cloud-based private SCADA architecture [157]

Simulation and Malicious Software (Malware) [158]
Replay and pre-distribution key scheme [159]

Packet Dropping and attack-resistant SCADA system [160]
Dynamic Load Altering Attack [161]

Data Injection Attacks using using deep belief [162]
Anomaly Detection and optimization for intrusion detection [163]

6. Mitigating the Risk of Cyber Attack on Smart Grid Systems

Protecting against today’s cyber threats requires greater collaboration between engi-
neers, IT managers, consumers, and security managers, who must share their knowledge to
identify potential problems and attacks that affect their smart grid systems. Utilities need
to consider how cybersecurity strategies will evolve. It is about staying current against
known threats in a planned and iterative way. Having a good defense against cyber-attacks
is an ongoing process and requires constant effort. Electricity companies must implement
a complete program that integrates a good organization and adequate processes.

The traditional tiered approach to cybersecurity can only prevent and detect the less
elaborate threats. In the meantime, modern cyber-attacks are carefully designed to bypass
standard security controls by learning detection rules. In addition, traditional controls may
not adequately counter insider threats, a form of insidious attack launched by those with
legitimate access.

By leveraging AI and advanced big data analytics, cybersecurity technologies can
generate predictive and actionable insights that will help you make better cybersecurity
decisions and protect your smart grid against threats. They can also help the electric utility
detect and counter threats faster by monitoring the cyber environment at speed and with a
precision level that only machines can.

Artificial intelligence technologies are already integrated into tools, such as antivirus,
EDR (endpoint detection and response) solutions, firewalls, data loss prevention, etc., that
automatically respond to attacks by filtering malicious traffic. Vulnerability management
has become a point of tension for operational teams due to the constant increase in the num-
ber of known vulnerabilities, difficulties in assessing the real risks induced, and prioritizing
and automating patches’ deployment. Indeed, of the thousands of vulnerabilities published
each year, only a fraction is used by attackers. Besides, some systems are protected by
perimeter defenses.

This complexity is driving vulnerability management tool vendors to integrate AI
technologies into their solutions. The objective of AI applied to vulnerability management
is to improve the discovery of active equipment, the scanning of vulnerabilities, the deter-
mination of associated risks connected with intelligence on the threat, the prioritization,
and deployment of patches.

Establishing and maintaining a robust and adequately implemented cybersecurity
awareness program for SG, several approaches (as shown in Figure 4) must be followed:

• Secured Remote Access: The mere protection by the combination of password and
user name is by no means sufficient here. Encrypted connections, for example, via
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VPN (virtual private network), are a better choice here [82]. These considerations
already show that there is no universal security solution that fits all companies and
electric utilities but that the corresponding measures must always be tailored to the
operational requirements. This is the only way to guarantee meaningful protection.

• Traffic Control: The first step is to control the data traffic, for example, through a
firewall, which ideally not only separates the internal IT systems from the Internet but
very precisely regulates which IT systems are allowed to communicate with which
Operational technology (OT) systems, and also which protocols they are allowed
to use for this. If, for example, an IT system should only communicate with an OT
system via an HTTPS connection, it makes sense to limit communication to precisely
this protocol [164–166]. This means that attacks based on the SMB (server message
block) protocol, for example, are no longer possible.

• Conduct a risk assessment: The first step is to conduct a comprehensive risk assessment
based on internal and external threats [167]. By doing so, specialists will understand
their most vulnerable points and define security policies and risk migration [168].

• Design a security policy and processes: The cybersecurity policy of a power company
provides a set of rules to follow. The purpose of an electric company’s policy is to
inform employees, suppliers, and other authorized users of their obligations concern-
ing the protection of technological assets and information [169] and security policy
violation [170]. One of the keys to maintaining a practical base is conducting a review
once or twice a year.

• Execute projects that implement the risk mitigation plan: It is crucial to select a
cybersecurity technology based on international standards [171,172].

• The anomaly detection by deep packet inspection, i.e., the “deep look” into the data
communication, not only brings a considerable security advantage in the electrical
industry but can also significantly increase productivity. In this way, new communica-
tion protocols, or even measured values that do not move within a defined framework,
are recognized in real-time. This means that an attack or a creeping error can be
reacted to very quickly before damage occurs. With this approach—after a learning
phase—the normal behavior of the system is known. Anything that deviates from it
in any way is recognized as an anomaly and triggers an alarm. The reasons for such a
deviation can be varied, for example, a defective sensor, a new notebook belonging to
a service employee, or an attack by a virus.

Figure 4. Mitigating the risk of cyber attack on smart grid systems.
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7. Conclusions

The smart grid’s basic idea is not enough when embarking on this complex system.
Even with the available experiences and technologies, the ideal network’s search is an
investment based on time, money, and research. With the great efforts put forth for SG
research, the power sector players pursue the energy revolution that humanity longs for.

The smart grid becomes more complex when environments involve numerous devices
and increasing connectivity to other networks, including the Internet. For such systems, it
is important to understand and comprehend the cyber elements and the implications of
the integrated state of the environment. Furthermore, the diversity of the hardware and
software in the SG sensors provides strong market competition, but this diversity is also a
security issue in that there is no single security architect overseeing the entire “system” of
the SG. Cybersecurity experts agree that standards alone will not provide the appropriate
level of security.

Will artificial intelligence be the next step in our evolution? Although it is still in its
infancy, AI is already changing the way we do things. Artificial intelligence, such as deep
learning, are key topics that have been driving new technologies. AI technologies have
great potential, especially when it comes to defending against cyber-attacks.

Despite existing guidelines and frameworks, designing and managing security for SG
remains difficult. This paper identifies the trends, problems, and challenges of cybersecurity
in smart grid critical infrastructures in big data and artificial intelligence. An extensive
state-of-art analysis was completed—some specific guidelines for achieving cybersecurity
awareness program for SG were discussed.
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