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ABSTRACT 
Estimating the soil properties and the associated heterogeneity is critical in geotechnical risk assessment, particularly in a 
large urban area and for infrastructural development projects. Seismic hazard studies acknowledge the considerable 
impact of local soil conditions on the amplitude and frequency of incoming seismic waves. This is particularly challenging 
in areas with highly variable soil properties and limited soil sampling. A multi-step probabilistic approach is proposed to 
model the soil-types at a regional scale, involving a large database that incorporates surface and subsurface data with 
clustered sampling pattern, and highly skewed statistical parameter distributions. First, the Empirical Bayesian Kriging 
(EBK) method is applied for the interpolation of the total subsoil and till thickness. The results from the EBK method appear 
more accurate compared with the estimates from the triangulated irregular network. The soil-types and associated 
probability of occurrence are determined from the continuous till deposit at the bottom and the ground surface topography, 
using sequential indicator simulation. This simulation method allows predicting the probability of occurrence of 
discontinuous soil layers in the full 3D model, a real aspect of the soil variability. The predicted soil-types and their 
probabilities allow better consideration of key geological uncertainties in risk evaluation.  
 
RÉSUMÉ 
L’estimation des propriétés des sols et de leur hétérogénéité est essentielles pour l'évaluation des risques géotechniques, 
en particulier dans une grande zone urbaine et pour les projets de développement d’infrastructures. Les études sur les 
risques sismiques reconnaissent l'impact considérable des conditions locales du sol sur l'amplitude et la fréquence des 
ondes sismiques. Cela est particulièrement difficile dans les zones où les propriétés du sol sont très variables et où 
l'échantillonnage du sol est limité. Une approche probabiliste en plusieurs étapes est proposée pour modéliser les types 
de sols à l'échelle régionale, impliquant une grande base de données qui incorpore des données de surface et souterraines 
avec un modèle d'échantillonnage en grappes et des distributions statistiques très asymétriques des paramètres. La 
méthode de krigeage bayésien empirique (EBK) a été appliquée pour l'interpolation de l'épaisseur totale du sous-sol et du 
till. Les résultats de la méthode EBK sont plus exacts que les estimations obtenues par réseau triangulé irrégulier. Les 
types de sol et leur probabilité d’occurrence sont déterminés depuis le dépôt de till continu jusqu’à topographie de la 
surface du sol, à l'aide d'une simulation d'indicateur séquentiel. Cette méthode de simulation permet de prédire la 
probabilité d'occurrence de couches de sol non continues dans le modèle 3D complet, un aspect réel de la variabilité 
spatiale du sol. Les types de sols prévus et leurs probabilités permettent une meilleure prise en compte des facteurs 
géologiques clés dans l'évaluation probabiliste des risques géotechniques. 
 

1 INTRODUCTION  
 
Natural soils have heterogeneous properties due to 
differences in deposition geometry and process. 
Modeling soil heterogeneity should capture the soil 
properties and their spatial distribution adequately and 
allow assessing the associated uncertainties, including 
in the absence of site-specific or limited soil data. In 
geotechnics, soil heterogeneity is attributed to two main 
sources; one is rooted in the lithology and the other is 
the inherent spatial soil variability (Elkateb et al. 2003). 
The so-called lithological (soil-type) heterogeneity is 
related to the significant differences in the mineralogy, 

grain size, and others, within a relatively uniform soil 
mass. This heterogeneity is described by qualitative 
terms (i.e., the soil-types), such as sand, clay, or stiff/soft 
soil layers. The second source of heterogeneity is rooted 
in inherent spatial soil variability, which modifies the 
spatial variation of soil properties due to different 
deposition conditions and different loading histories 
(Elkateb et al. 2003; Phoon et al. 2006). In the field of 
geotechnical engineering, the spatial variation of soil 
properties is modeled as a random field (Phoon and 
Kulhawy 1999; Uzielli et al. 2005) Recently, researchers 
have started using geostatistical approach to capture the 
heterogeneity in soil and rock engineering practices 



(Ferrari et al. 2014; Kring and Chatterjee 2020; Vessia et 
al. 2020); this approach allows modeling the lithological 
heterogeneity. 

In seismic hazard assessment, shear wave velocity 
and the thickness of soft soils play an important role in 
the amplification or de-amplification of seismic waves. In 
a regional study where data measured on shear-wave 
velocity (Vs) are sparse, the local geological 
characteristics can be used as a proxy for estimating the 
shear wave velocity (Holzer et al. 2005; Thompson et al. 
2014). Incorporating a 3D geological model to estimate 
the shear wave velocity were applied in several studies 
in eastern Canada (Rosset et al. 2015; Nastev et al. 
2016; Foulon et al. 2018). These studies analyzed the 
uncertainty related to the geotechnical parameters and 
neglected the one related to the 3D geological model. 
Nevertheless, the type and the thickness of a soil layer, 
and the uncertainties associated with these parameters 
are essential parameters for the analysis of geotechnical 
risks.  

This study aims to propose an innovative method of 
modeling the soil-types by considering the 
heterogeneities related to a model for a medium-to-
large-scale region with data complexity. A combined 
multi-step approach of the interpolation and simulation 
method is adopted in order to address the data 
complexity of the observation points and to predict soil 
variability realistically. First, the soil-rock interface (total 
thickness of surficial soils) and the upper surface of the 
continuous till deposit are generated using the Empirical 
Bayesian Kriging (EBK) method. The interpolation 
procedure incorporates all boreholes data in addition to 
rock outcrops and thin-till data. Providing bedrock and till 
deposit maps help exclude a huge number of shallow 
and zero-thickness data from the simulation process of 
the discontinuous sediment layers (clay, sand, and 
gravel). The sequential indicator simulation is then used 
to predict the probability of occurrence of discontinuous 
soil layers as representing the real soil variability. 

 
2 BACKGROUND 

 
Empirical Bayesian Kriging (EBK) is a geostatistical 
interpolation method that automates the process of fitting 
a variogram and solving a kriging model.  This 
automated simulation process facilitates sub-setting 
data for large databases in regional studies. It potentially 
helps achieve stationarity in sub-areas, especially in a 
large dataset with a mixture distribution of high and low 
values. EBK is a novel interpolation method 
outperforming in the spatial prediction of data in large 
scale studies or data with complexities (Pilz and Spöck 
2008; Krivoruchko and Gribov 2019; Giustini et al. 2019). 
The approach of locally varying mean and variance help 
assumption of the stationarity; the error variance 
provided by kriging can be the assessment of uncertainty 
about the estimated value.  

Spatial variation denotes the dissimilarity (or 
similarity) of a random variable between pairs of values 
as a function of their separation; it serves as important 
features of a spatial data set toward the estimation 
(Isaaks & Srivastava, 1989). An experimental variogram, 

𝛾(ℎ), is used to statistically describe the average 
dissimilarity between data separated by a vector h 
(Goovaerts, 1999) and generally is a measure of spatial 
variability: 

𝛾(ℎ) =
1

2 𝑁(ℎ)
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]2𝑁(ℎ)

𝛼=1              [1] 

Where 𝑁(ℎ) is the number of data pairs within a 
distance h and direction. Key features of an experimental 
variogram are the range; the distance that the variogram 
reaches the plateau; the sill, the plateau that the 
variogram reaches. In addition to the nugget effect, the 
positive variogram value at extremely small separation 
distances which is attributed to the short scale variability 
(lower than the distance of sampling intervals) and 
measurement errors (e.g., errors in logging soil-types). 
With the delineation of the nugget effect, sill, and range, 
a theoretical model then fits the experimental variogram, 
which can be a spherical, exponential, or Gaussian 
model. Modeling spatial variation assists in predicting 
soil properties at unsampled locations. 

Stochastic simulation of categorical variables such 

as facies, rock types, or geological units is widely used 
in reservoir and mineral resource modeling (Deutsch 
2006; Journel & Isaaks 1984; Pyrcz & Deutsch 2014). A 
stochastic modeling algorithm is applied to construct 
multiple realizations, and Sequential indicator simulation 
(SIS) is a widely used technique for categorical variable 
models (Deutsch 2006). A set of alternative, equally 
probable, high-resolution models of the spatial 
distribution of the random variable is constructed during 
the process; each realization reproduces the spatial 
statistics of the target variable (Deutsch & Journel, 
1997). The method consists of three steps:  

(i) Transferring soil types to K indicator 

variables:  

𝑖(𝑢𝛼; 𝑘) = {
1     𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑢
0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑘

= 1, … , 𝐾 

Indicator transformation facilitates to carry out classical 
statistical analysis in order to infer representative 
proportions of indicator variables.  

(ii) Defining indicator variograms to model the 

spatial continuity of indicator soil types.  

(iii) Simulating the soil types and honoring the 

data values at their locations (conditional) 

in a sequential and reproducible 

procedure. 

 
3 MATERIAL AND METHODS 
  
3.1 Geologic Framework of the Study Area 
 
The City of Saguenay is located in northeastern Quebec. 
It is the main municipality within the Saguenay‒Lac- 
Saint-Jean region and covers an area of 1136 km² with 
a population of 147,100. The city has a hilly topography 
and lies in the southern portion of the E–W-trending 
Saguenay graben. Regional seismic activity of this 
region was reassessed after the 1988 M6.0 Saguenay 
earthquake. The intraplate Saguenay earthquake, 
having a mid-crustal depth (29 km) and moderate 
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Figure 1. (a) The simplified surface geological map of the Saguenay City territory (modified from Daigneault et al. 2011, 

CERM-PACES, 2013) (b) complete set of observation points including real and virtual boreholes, rock outcrops and thin 

thickness till data  

 
magnitude, occurred 35 km south of the city center and 
90 km to the northwest of the Charlevoix-Kamouraska 
seismically active zone (Du Berger et al. 1991). 

Based on the geological sections (Daigneault et al. 
2011) and subsurface data (CERM-PACES 2013), the 
various soil deposits can be split into two major groups 
glacial and post-glacial deposits (Walter et al. 2018). 
Glacial sediments located at the base of the stratigraphic 
column and continuously covers the bedrock. We 
consider this geologic rule as an important criterion in the 
3D modelling approach.   

  The geologic terms at geological maps, sections, 
and borehole logs, can be grouped into five major groups 
based on the soil-types (Figure 1a): 
1- Till, the glacial sediments located at the base of the 

stratigraphic column is compact, semi-
consolidated, and is considered as continuous in 
the lowlands. The till ranges in thickness from a few 
meters to >10 m in locations. In the highlands, the 
till veneer is frequently discontinuous and results in 
areas of rock outcrops. The most area of the till 
outcrops is assigned less than 1 meter on the 
geological map (Daigneault et al. 2011).   

2- Gravel, these coarse sediments are mainly 
attributed to the glaciofluvial deposits consisting 
gravel, sand and a little till. This unit is not 
widespread in the region and is limited to some 
contacts of till and sand units. 

3- Clay, the most widespread and thickest deposits in 
the region are the fine postglacial sediments 
composed of silt, silty clays and clay. These silty 
clay deposits are generally up to 10 m in thickness, 
but they attain a thickness of >100 m in the 
lowlands.  

4- Sand, this group consists mainly coarse 
glaciomarine deltaic and prodeltaic sediments 
composed of sand, and sandy gravel. Sandy 
alluvial sediments are also attributed to this group.  

5- Others, loose postglacial deposits consisting of 
alluvium, floodplain sediments, organic sediments, 
and landslide deposits would classify to each three 
categories of sand, clay and gravel based on the 
logged soil types.  

 

3.2 Data Preparation and Analysis 
 
Subsurface and surfaced data were collected from 
various sources of information (Figure 1b). The drill hole 
logs are the main subsurface data from which the 
thickness data and soil-types are obtained. The other 
invaluable sources of data are rock outcrops with zero 
thickness value, virtual data derived from geological 
sections, and thin till data (thickness ≤ 1meter) 
interpreted from geological maps. The borehole data 
were obtained from groundwater wells, exploration 
boreholes, and geotechnical drilling logs. A complete set 
of data prepared for the study are:  
 Borehole logs: The borehole logs developed by 

PACES (CERM-PACES 2013) contain 3524 
borehole logs distributes over the city of Saguenay 
territory. As a primary step, the thickness of 2402 
boreholes, which known to reach the bedrock, 
determined and saved in the database. The 
thickness of 1122 boreholes not reaching the 
bedrock was used in the process of validation. 

 Virtual boreholes: there are 26 geological cross-
sections over the region that are obtained by vast 
geological studies of PACES team. These sections 
have been interpreted from the stratigraphy 
observed in the boreholes and incorporated in 
previous studies (Chesnaux et al. 2017; Foulon et 
al. 2018). These cross-sections are distributed 
according to a regular spatial pattern to make a 
good coverage of the entire region. The number of 
973 virtual boreholes are obtained alongside the 
cross-sections in a profile distance of 500 meters 
and consequently generate a regular pattern of 
drilling with reliable and validated information.  

 Rock outcrops: these locations can be pointed out 
as zero thickness data and can help enhance the 
realistic spatial variability. By spatial GIS 
processing of the geological map, 1034 rock 
outcrop points, located inside the bedrock polygon, 
were created to estimate the thickness of the total 
soil and till deposits. 

 Thin till data: till sediments covering the major area 
of this region are composed of zones with shallow 



  

  

Figure 2. Histograms of the thickness of (a) total soil deposits (SGC) (b) total soil deposits and rock outcrops (SGC) (c) till 
sediments (d) till sediments after replacing outliers 
 

thickness. The surface of thin till area was 
converted into a grid of points with a mesh of 75m. 
In this way, 42649 points with a thickness of 1meter 
were generated within the polygons of thin till area 
(Figure 2a). It should be noted this data is only 
applied to create the till thickness map. 

Figure 2 shows the histograms of the thickness of 
total soil deposits and till deposits logged at the 
boreholes. The average thickness of soil materials are 
almost 17m with positive skewness, and the relatively 
high standard deviation of 18.7m illustrates the high 
variability of the thickness in the region. The maximum 
thickness of sediments reaches 112 m while the 
minimum reaches less than 1 meter in a close distance. 
Incorporation of rock outcrops with zero thickness data 
decreases the average of the thickness (12.89m), but the 
effects on the other parameters are minor (Figure 2b).  
Figure 2c illustrates the distribution of till thickness in 
boreholes. The average thickness of till is almost 5 in 
borehole logs, but it has been logged to almost 50m in 
maximum length. Because of the major influence of 
outliers on most parametric tests, considerable attention 
requires for the detection of outliers (Wu et al. 2011). 
Since the thickness of till rarely extends to more than 20 
meters, the outlier data are the consequence of poor 
logging, replaced by the analysis of box-plot with a 
maximum of 13.85m (Figure 2d). Outliers were not 
replaced in the total thickness of soil deposits, as this 
would unrealistically decrease the estimated thickness of 
the deposits. Figure 3a illustrates the surface 
observation points, including thin till data (less than 1 m 

in thickness) and rock outcrops (zero thickness data). 
These two sources of information improve the accuracy 
of the interpolation process while affecting the data 
distribution to the higher positive skewness and the lower 
mean of the thickness (Figure 3b). 
 
3.3 Indicator Spatial Variation 
 
To describe the spatial variability of categorical 
variables, firstly indicator transformation was performed, 
and then the indicator variograms were computed. The 
study analyzed the directional and omnidirectional 
variograms for the indicator soil-types using a lag size of 
25m to model variability at a short scale, a lag size of 
300m and 750m to capture variability at a long scale for 
gravel, and both sand and clay respectively. The 
bandwidth was chosen three times the lag size to restrict 
the deviation around the direction of the azimuth vector. 
Table 1 presents the variogram model parameters fitted 
to the soil-types indicators. The significant spatial 
variances were captured in short-scale variability, and 
the geometrical anisotropy with the azimuth angle of 
135° corresponds to the geological continuity relatively 
(see Figure 1a). For all models, the vertical range is 
much less than the horizontal ranges; the anisotropy can 
be referred to as the large extension of soil type data in 
the horizontal direction relative to the vertical. Secondly, 
it would be due to the remarkable stratigraphic variation 
in the vertical direction than the horizontal. 
 

Mean 17.73
Median 11.22
Standard Deviation 18.77
Kurtosis 2.76
Skewness 1.70
Minimum 0.01
Maximum 112.16
Count 2745

Mean 12.89
Median 5.79
Standard Deviation 17.84
Kurtosis 4.12
Skewness 2.00
Minimum 0.01
Maximum 112.16
Count 3778

Mean 5.74
Median 4.40
Standard Deviation 5.12
Kurtosis 13.75
Skewness 2.84
Minimum 0.00
Maximum 51.45
Count 1007

Mean 5.32
Median 4.40
Standard Deviation 3.67
Kurtosis 0.12
Skewness 0.97
Minimum 0.00
Maximum 13.85
Count 1007

a b 

c d 



  
Figure 3.  (a) surface observation points created from geological maps showing both the presence of thin till deposits in 
yellow (less than 1 m in thickness) and rock outcrops in red (zero thickness) (b) Histogram of the thickness of till sediments 
with all surface observation points. 
 
Table 1- The variogram model parameters of the soil-type indicators 

 

Variables 
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Model properties 
Structure 1 

Model properties 
Structure 2 

Model 
type 

Anisotropy axis 
(amax,amed,amin) 

Model parameters 
Model 
type 

Anisotropy axis 
(amax,amed,amin) 

Model parameters 

Clay 2 Sp. (135°,45°,90°) 
Nugget: 0.01 

R1: (375,212.5,75) 
Sill1

*: 0.18 
Ex. (135°,45°,90°) 

R2: (12825,4275,75) 
Sill2

*: 0.05 

Sand 2 Sp. (135°,45°,90°) 

Nugget: 0.02 
R1: 

(412.5,187.5,62.5) 
Sill1

*: 0.17 

Sp. (0°,0°,90°) 
R2: 

(12375,12375,62.5) 
Sill2

*: 0.03 

Gravel 2 Sp. - 
Nugget: 0.01 

R1: (150,150,150)  
Sill1

*: 0.026 
Ga. (0°,0°,90°) 

R2: (4600,4600,150) 
Sill2

*: 0.015 

* Partial sill, R: Range, Sp.: Spherical, Ex.: Exponential, Ga.: Gaussian  

 
 
4 RESULTS 
 

4.1 Thickness Interpolation of Total Soil Deposits  

 
The study area was spatially discretized into a grid of 902 
× 637 cells with 75-m spacing. Figure 4 illustrates the 
thickness map of the total soil deposits using (a) TIN, (b) 
EBK. The total thickness of the deposits varies from 
zero, represented by blue to approximately 100 meters 
represented by the reddish region.  

 
 
4.2 Validation 
 
There are 1122 boreholes are known not to reach the top 
of bedrock (see Figure 1b). These boreholes were 
reserved as a test set to evaluate the estimation 
methods. At these locations, if the model estimates the 
thickness less than the real value, it would be perceived 
that the depth of the observed point has been 
underestimated. Accordingly, an index of “thickness 
error” considered by the difference between the 
measured and estimated thickness. The higher the 
number and the differences of the underestimations, the 
lower the precision of the estimation method.  
Table 2 presents the descriptive statistical results of the 
thickness error containing the mean, the sum, and the 

count of boreholes known not to reach the bedrock 
(validation dataset) according to the different 
interpolation methods. The EBK methods illustrated the 
least counts of underestimated boreholes by the number 
of 313. In contrast, the higher mean and the sum of the 
thickness error in the triangulated irregular network (TIN) 
method undermined the reliability of the estimates.  
 
Table 2. Descriptive statistical results of the thickness 
errors for the boreholes known not to reach the bedrock 
 

Thickness error TIN EBK 

Mean (m) 12.2 11.8 

Sum (m) 3889.8 3682.6 

Count 318 313 

 
4.3 Thickness Interpolation of Till Deposits 
 
The spatial distribution of the till thickness deposit was 
estimated using the EBK. The procedure is similar to the 
procedure of the total thickness interpolation in addition 
to the replacement of high peak values (outlier). The till 
deposits due to the difficulties in logging drilling muds are 
poorly recognized with the other soil types. Thus, 
Replacing outliers of the till thickness data would be  

Mean 1.10
Median 1.00
Standard Deviation 0.86
Kurtosis 128.95
Skewness 10.70
Minimum 0.00
Maximum 13.85
Count 43656

a b 



  

Figure 4. Thickness map of total soil thickness, (a) TIN, (b) EBK. 

 
considered as a conservative approach in the estimation 
of the thickness map. A complete set of observation 
points, including 2402 real and 973 virtual boreholes, 
1034 rock outcrops as well as 42649 points of thin till 
thickness (1m) were incorporated to create the till 
thickness map. Figure 5 presents the spatial distribution 
of the till thickness and the associated kriging standard 
deviation. Replacing outliers and using thin till data 
avoided overestimating the till thickness, causing a 
conservative estimate for the future evaluation of the 
geotechnical soil parameters 
 

 
Figure 5. Spatial distribution of the EBK estimates for the 
thickness till deposit  
 
4.4 Soil-types Simulation 
 
In order to determine the soil-types, a full 3D volume of 
blocks is required. Each block represents the smallest 
unit of soil-type using geostatistical simulation. For this 
purpose, it is necessary to create a bedrock topography 
and till topography using DEM, total thickness, and till 
thickness maps. When the bedrock topography, and the 
till topography were created, the space between the top 
and bottom of each surface was filled with blocks of 
75×75×2 meters. The proportion of soil types was 
determined by using virtual boreholes due to the 
systematic and unclustered pattern. Overall, 100 
realizations were generated using the sequential 
indicator simulation (SIS) method. Figure 6 shows the 3D 
spatial distribution of various soil types determined 
based on the most probability of occurrence.  The results 
of the simulation were then compared to the geological 

sections for visual validation. The results were found to 
be entirely consistent and acceptable (Figure 7). Figure 
7a represents part of a main cross-section of the study 
area; the section interpreted and drawn by expert 
geologists using the surface geological map and 
subsurface data, mainly using borehole data in addition 
to some geophysical studies (CERM-PACES, 2013). 
Figure 7b shows the most probable soil-types blocks 
using SIS. The model used real and virtual borehole 
data. Due to the three-dimensional nature of the 
estimates, the model gave more realistic variability than 
the two-dimensional geological sections (Figure 7b, the 
area between borehole F1161 and SIH1340). Simulating 
soil types quantified the variability of the predictive model 
by the probability of occurrence (Figure 7 c-e) of three 
categorical variables, namely clay, sand, and gravel. 
  

 
Figure 6. The 3D spatial distribution of various soil 
types using SIS based on the most probability of 

occurrence  

 
5 CONCLUSION 
 
The study adopts a combined multi-step methodology of 
the interpolation and simulation methods to develop a 3D 
geological model for geotechnical risk evaluation at the 
regional scale. In a probabilistic geological model, the 
soil types are not deterministic and the quantified 
probabilities consider the spatial uncertainty of soil type. 
Consequently, these probabilities can be used to take 
into account the associated uncertainties in probability of 
failure in geotechnical risk assessment or site 
amplifications in seismic hazard assessment.  

 

a b 



 

 

 

 

 
Figure 7. (a) a stratigraphic cross-section created by expert geologists (modified from CERM-PACES, 2013), (b) the 

most probable soil-types blocks using SIS, (c,d,e) probabilities of occurrence of each soil-types, obtained from a set of 
100 conditional simulations 

 
This approach is based on the efforts to model the spatial 
soil variability of both the continuous and the discontinuous 
soil layers. The depth to bedrock are distinguished by 
interpolating the total thickness of the sediments. The 
interpolation procedure incorporates the data from 
boreholes reaching the bedrock, in addition to rock 
outcrops and thin-till data, which cause an important 
skewness in observation points. 

The results shows that the capability of the EBK method 
in sub setting data leads to a more accurate outcome in 
regional studies involving extensive data with complexity.   

Sequential indicator simulation predicts the probability 
of occurrence of discontinuous soil layers as representing 
the real spatial soil variability. The results reveal that the 
continuity assumption for the stratigraphic design of the 
clay, the sand and the gravel layers often drawn in the 
geological sections  (CERM-PACES, 2013) would not 
correspond to the real variability of the soil deposits. This 

is confirmed by abrupt discontinuities and repetitions of the 
deposits in the 3D model produced by using geostatistical 
simulation.  
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