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ABSTRACT 
The most commonly used method for assessing the hydraulic erodibility of rock is the Annandale’s method. This method 
is based on a correlation between the force of flowing water and the capacity of rock resistance. This capacity is evaluated 
using the Kirsten’s index which was initially developed to evaluate the excavatability of earth materials. This index is 
determined according to certain geomechanical factors, such as the compressive strength of intact rock, the rock block 
size, the discontinuities shear strength and the relative block structure. This last characteristic represents the required 
effort to erode the rock and, it can be quantified considering the shape and orientation of the blocks. To determine the 
relative rock structure in the field, the dip and dip direction of closer spaced joint set, as well as the ratio of joints spacing 
are required. It is found that the Kirsten’s concept can be applied only when the direction of flow is perpendicular to the 
strike of closer spaced joint set. Adjustments are introduced to Kirsten's initial concept concerning the relative block 
structure parameter. Thus, two equations are proposed which were used to propose a rating for the relative block structure 
parameter for a case example with non-perpendicular flow. 
 
RÉSUMÉ 
La méthode la plus utilisée en pratique pour l’évaluation de l’érodabilité hydraulique du roc est celle d’Annandale. Celle-ci 
se base sur une corrélation entre la force érosive de l’eau et la capacité de résistance du roc. Cette capacité est évaluée 
à l'aide de l’indice de Kirsten initialement développé pour évaluer l’excavabilité des matériaux. Cet indice est déterminé en 
fonction de certaines caractéristiques géomécaniques telles que la résistance matricielle de la roche intacte, la taille des 
blocs, la résistance au cisaillement des discontinuités et la structure relative des blocs. Cette dernière caractéristique 
représente l’effort requis pour que le roc soit érodé et, elle peut être quantifiée en considérant la forme et l’orientation des 
blocs. En pratique, elle se détermine en fonction du pendage et la direction du pendage de la famille des joints les moins 
espacés, ainsi que le ratio d’espacement des joints. Il est observé que le concept de Kirsten n’est valide que lorsque 
l’écoulement est perpendiculaire à l’azimut de la famille des joints les moins espacés. Des ajustements sont introduits sur 
le concept initial de Kirsten concernant la structure relative des blocs. Ainsi, deux équations sont proposées et utilisées 
pour générer des pondérations de la structure relative des blocs pour un exemple de cas avec un écoulement non-
perpendiculaire.  

 
 
 
1 INTRODUCTION 
 
Annandale’s method (Annandale 1995, 2006) is the most 
commonly used method for assessing the hydraulic 
erodibility of earth materials (Mörén and Sjöberg 2007, 
Hahn and Drain 2010, Pells et al. 2014, Laugier et al. 2015, 
Rock 2015, Castillo and Carrillo 2016). This method is 
based on a correlation between the erosive force of flowing 
water, namely the available hydraulic stream power, and 
the capacity of rock to resist the flow energy. This capacity 
is evaluated using the Kirsten’s index (Kirsten 1982, 1988), 
which was initially developed to evaluate the excavatability 
of earth materials, but has since been adopted to assess 
the hydraulic erodibility of earth materials. For rock 
material, Kirsten’s index (N) is determined according to 
certain geomechanical factors related to the intact rock and 
the rock mass, such as the compressive strength of intact 
rock (Ms), the rock block size (Kb), the discontinuities shear 
strength (Kd) and the relative block structure (Js). The 
interest of using Kirsten’s index was initially mentioned at a 
symposium focused on rock mass classification systems 
(Kirkaldie 1988), where it was argued that the processes of 

mechanical excavatability and hydraulic erodibility of earth 
materials could be considered as similar processes (Moore 
and Kirsten 1988). Since then, many researchers have 
analyzed the hydraulic erodibility of earth materials by 
using the excavatability index, where the « direction of 
excavation » considered in the Kirsten’s index has been 
replaced by the « direction of flow » (Pitsiou 1990, Doog 
1993, Annandale & Kirsten 1994, Moore et al. 1994, Van 
Schalkwyk et al. 1994, Annandale 1995, Kirsten et al. 
2000). Hereinafter, the acronyms of « direction of 
excavation » and « direction of flow » are considered as 
synonymous term.  

Kirsten considers the orientation of a block relative to 
the direction of flow as an important parameter to be 
considered in assessing the hydraulic erodibility of rock 
(Pells 2016). Thus, Kirsten has included the Js parameter 
in his index, which corresponding to the required effort to 
move a rock block from the rock mass. It was developed 
mathematically by considering the shape of the blocks, as 
well as their orientation relative to the direction of 
excavation. In practice, as presented by Kirsten (1982), the 
Js parameter is determined as a function of dip and dip 



 
 

direction of the rock units, as well as the ratio of joint 
spacing (RJS) which corresponding to ratio of the length 
and width of block. It should be noted that Kirsten’s concept 
(Kirsten 1982) is perfectly valid only when the rock blocks 
are oriented in the same direction of flow. However, in 
practice, the Kirsten’s index is applied for all cases by 
assuming a certain imprecision on erodibility assessment. 
This paper describes an adjustment introduced on the 
Kirsten’s original concept to consider cases with variable 
flow direction. 

 
 

2 LIMITATION OF THE KIRSTEN’S CONCEPT  
 
The Kirsten’s concept (Kirsten 1982) considers that the 
geological formation is mainly fractured by two intersecting 
joint sets, where an angle of 90° is kept between the planes 
of the two joint sets (orthogonal fractured system). In 
practice, the dip angle of the closer spaced joint set and its 
dip direction relative to the direction of flow are respectively 
used to determine the Js values (Kirsten 1982, 1988). The 
dip angle is between 0° and 90°, while the dip direction is 
determined relative to the direction of flow. In the 
stereographic example shown in Figure 1, the direction of 
flow is 270°. If the closer spaced joint set has a dip direction 
between 180° (270° - 90°) and 360° (270° + 90°), the block 
is considered to be in the same direction as that of flow. 
Otherwise, it is against direction of flow. If the closer 
spaced joint set in Figure 1 is the first joint set, the block 
will be taken as in the direction of flow. Subsequently, the 
dip of closer spaced joint and RJS are required also to 
determine the Js value.  
 

 
 

Figure 1. Representation of perpendicular flow 
 

In Figure 2, the two joint sets constitute an orthogonal 
fractured system. The dip and dip direction of the first joint 
set are 30° and 270°, respectively; those of the second joint 
set are 60° and 90°, respectively. The first joint set is 
considered as the closer spaced joint set, while the 
direction of flow is 320°. To determine the Js value for such 

cases, Kirsten suggests taking the apparent dip of the 
closer spaced joint set, in the vertical plane containing the 
direction of flow, instead of the true dip of closer spaced 
joint set. The apparent dip used to determine Js would 
therefore be 20° (Figure 2). However, it is found that the 
angle between the two intersecting joint set on the plane 
containing the direction of flow (this angle is indicated 
hereinafter as α) is 112° as shown in Figure 1. 
Remembering that the Js value, when the dip is 20°, was 
initially proposed by Kirsten with α = 90° (orthogonal 
fractured system), it is found that Kirsten’s concept can only 
occur when the direction of flow is perpendicular to the 
strike of the closer spaced joint set (perpendicular flow). 
Consequently, it is considered valuable to consider the 
change of α angle along the vertical plane containing the 
direction of flow to determine the Js value for non-
perpendicular flow. Such consideration could improve the 
global erodibility assessment.  
 

 
 

Figure 2. Representation of non-perpendicular flow 
 
 
3 PROPOSED EQUATIONS FOR DETERMINING JS 
 
According to Kirsten (1982), the relative orientation of 
blocks and the spacing of joints affect both the possibility 
of penetrating the ground surface and that of dislodging the 
individual blocks. Accordingly, Kirsten (1982) determined 
the effect of orientation and shape of block on the 
excavatability process by considering the kinematic 
possibility of penetration (Kp) and kinematic possibility of 
dislodgment (Kd). To determine the values of Js for non-
perpendicular flow, the concepts of Kp and Kd proposed by 

Kirsten (1982) are adopted. These concepts can be used 
for α angle deferent to 90°. It should be noted that no 
change is introduced to the original concept of Kp. 
However, adjustment is introduced to that of Kd. The 
followed sub-sections describe the adjusted concept of Kd 
and give the equations to determine Js.  

 Principle of the adjusted concept 
 



 
 

Considering that the geological formation is mainly 
fractured by two intersecting joint sets, the block dislodging 
act occurs according to the digging process into angle of 
the first joint set and followed by the riding process on the 
angle of the second joint set (Kirsten 1982). In the 
representation of Figure 3, the planes of the two joint sets 
are plotted in blue and red colors. When the block is 
oriented in the direction of excavation, Kirsten considered 
the digging angle θ to be positive angle, while the riding 
angle Ψ is determined by adding an angle of 90° to θ angle 
(e.g. θ = 30°, thus Ψ = 30° + 90° = 120°). When the block 
is oriented against the direction of excavation, Kirsten 
considered the digging angle θ to be negative, while riding 
angle Ψ is determined by again adding an angle of 90° to 
θ angle (e.g. θ = -30°, thus Ψ = -30° + 90° = 60°). 

According to Figure 3, when the block is oriented in or 
against the direction of excavation, the joint spacing SΨ is 
always greater than the joint spacing Sθ. Therefore, the 
RJS (SΨ/Sθ) is of the same order for both blocks, although 
their orientations differ (Figure 3). This explains why Kirsten 
(1982) always used the same fixed RJS (1 = 1/1, 2 = 2/1, 4 
= 4/1, 8 = 8/1) for both directions of the block (in and against 
the direction of excavation). However, in the Kirsten’s initial 
concept (Kirsten 1982), where the block is oriented against 
the direction of excavation, the joint spacing SΨ is smaller 
than the joint spacing Sθ. For this, the corresponding RJS 
should not be as fixed RJS of 1, 2, 4 or 8. In addition, 
Kirsten (1982) states that for an RJS > 0.125, Js is 
determined as if the RJS = 0.125. This value would appear 
to be derived from a RJS of 1:8, but with a ratio of 1/8 
although it must be a ratio of 8/1 = 8 as argued in Figure 3. 
This confusion has also been noted in Kirsten (1988) and 

USDA (1997). But, Annandale (1995, 2006) has corrected 
this confusion by indicating that beyond a RJS of 8 (1:8 = 
8/1 = 8), Js could be considered as having a RJS of 8. 
However, the Kirsten’s initial concept (Kirsten 1982) could 
be adjusted. Indeed, when the block is oriented against the 
direction of excavation, the digging angle would be Ψ 
(Figure 3), while Kirsten (1982) represents this angle as θ. 
Also, when the block is oriented in the direction of 
excavation, the digging angle would be θ as indicated in 
Figure 3. Consequently, two equations of Kd will be 
proposed according to the adjusted digging angles. 

 
 Proposed Kd equation when the block is oriented in 

direction of flow 
 
The action of block dislodgement can be represented by a 
unitary horizontal force behind the block, while the latter is 
free to move in a perpendicular direction to the ground 
surface (Kirsten 1982). As a result, the kinematic possibility 
of dislodgement, as shown in Figure 4, can be obtained by 
the vector product of the principal dislodging force and the 
principal degree of freedom. These vectors can be 
decomposed into parallel coaxial components along the 
sides of the block (Kirsten 1982). The coaxial components 
are identified as A, B, B’ and A’ in Figure 4. The coaxial 
component, identified as A in Figure 4 is in opposite 
direction to the coaxial component, identified as A’ in Figure 
4. Accordingly, Kd can be expressed as a function of the 

other two coaxial components, identified as B and B’ in 
Figure 4. The unknown angle α in Figure 4, as well as the 
considered coaxial components B and B’ can be 
determined according to the equations numbered 1.

 
Figure 3. Concept of a delineated block oriented in and against the direction of excavation 

 



 
 

 
Figure 4. Coaxial components for a block oriented in the 
direction of flow. 
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 [1] 

 
The final equation of Kd when the block is oriented in 

the direction of flow is given by the product of the two 
components B and B’ (Equation 2). 
 

 𝐾𝑑 = 
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2(𝜓 − 𝜃)
 [2] 

 
It should be mentioned that Equation 2 can be applied 

under the following conditions: 
 

 

→ 
𝜓 =  𝛼 +  𝜃
0° < θ < 90° 

90° <  𝜓 < 180° 
} [3] 

 
 Proposed Kd equation when the block is oriented 

against direction of flow 
 
The concept of a block oriented against the direction of flow 
is shown in Figure 5.  
 

 
Figure 5. Coaxial components for a block oriented against 
the direction of flow. 

According to the determination of the coaxial 
components of the principal dislodging force and the 

principal degree of freedom for a block oriented in the 
direction of flow (Figure 5), the unknown angle α, as well 
as the coaxial components B and B’ could be determined 
according to following expressions:  
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𝐵′ = 
sin (

𝜋
2
−  𝜓)

sin(𝜃 −  𝜓)

   

}
 
 

 
 

 [4] 

 
The final equation of Kd when the block is oriented 

against the direction of flow is given by the product of the 
two components B and B’ (Equation 5). 
 

 𝐾𝑑 =  
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

𝑠𝑖𝑛2(𝜃 −  𝜓)
 [5] 

 
It should be mentioned that Equation 5 can be applied 

under the following conditions: 
 

 

→ 
𝜓 =  𝜃 − 𝛼

90° < θ < 180°   
0° <  𝜓 < 90° 

} [6] 

 
 

 Proposed equations for determining Js  
 
Considering that the required effort to move block is equal 
to 1 minus the kinematic possibility as proposed by Kirsten 
(1982), Js values can be determined by the proposed 
Equations 7 and 8. Equation 7 is applied when the blocks 
are oriented in the direction of flow (Equation 2 of Kd is 
introduced), while Equation 8 is used when the blocks are 
oriented against the direction of flow (Equation 5 of Kd is 
introduced). It should be noted that no change is introduced 
to the equation of Kp (first term of both equations 7 and 8). 

 

𝐽𝑠 = [ 1 −
𝑟 𝑡𝑎𝑛𝜃 + 𝑡𝑎𝑛𝜓

𝑎 (𝑟 + 1)
 ] .  [1 −  

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2(𝜓 − 𝜃)
 ] [7] 

 
 

𝐽𝑠 = [ 1 −
𝑟 𝑡𝑎𝑛𝜃 + 𝑡𝑎𝑛𝜓

𝑎 (𝑟 + 1)
 ] .  [1 −  

𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

𝑠𝑖𝑛2(𝜃 −  𝜓)
 ] [8] 

 
 

The prefix r in both equations 7 and 8 indicate the RJS 

(SΨ/Sθ). For its part, the prefix a is a constant value of 5 that 

has been proposed by considering the efficiency of the 
excavatability process relative to direction of excavation 
(Kirsten, 2016 pers. comm.). 
4 DETERMINING JS VALUES 
 
For non-perpendicular flow, α should be > 90° (from 91° to 
180°). To determine the role of the α > 90° on Js, a series 



 
 

of angles can be evaluated (100°, 110°, 120°, 130°, 140°, 
150°, 160°, 170° and 180°). However, planes are usually 
considered, in geomechanics, as being parallel when the 
angle between the planes is < 20°. Examples of this include 
the angle between the joint’s dip direction and the direction 
of excavation when determining the orientation factor in the 
rock mass classification system (RMR) of Bieniawski 
(1989) and the angle of the joint’s dip direction and the 
direction of slope surface during the analysis of possible 
planar failure (Wyllie and Mah 2004). Such situation in our 
study can be occurred when the plane containing the 
direction of flow is parallel to the strike of the closer spaced 
joint set. A check-up is performed with DIPS software 
(Rocsciences 2017) for all non-perpendicular flow with 
variable orthogonal dips angles. Accordingly, α angle for 
non-perpendicular flow can be limited to 150°, assuming 
that for α >150°, the plane containing the direction of flow 
constitute a parallel plane to the strike of the closer spaced 
joint set. In this article, just the case of α = 100° is studied. 
Although the dip of the closer spaced joint set can vary from 
0° to 90°, to keep the same considerations as Kirsten 
(1982), only dip angles used by Kirsten (1982) are taken as 
being part of the adjustment process. These dips 
correspond to 5°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 85° 
and 90°.  

The behavior of Js as a function of θ (considered as 
the dip of the closer spaced joint set) when α = 100° is 
shown in Figure 6. When the block is oriented in the 
direction of flow, θ ranges from 0° to 90° whereas this 

ranges from 90° to 180° when the block is oriented against 
the direction of flow (Equation 5). However, the latter 
angles are represented as angles varying from 0° to 90° 
marked with a negative sign. For example, a θ = 150° 
corresponds to an angle of 30° (θ = 180° - 150°) in Figure 
6. In this Figure 6, Js is not calculated for a θ ≥ 80°. This is 
explained by a non-favorable geometry applying to the 
conditions as indicated in Equations 3 and 6. To obtain the 
Js values, the curves showed in figure 6 are adjusted with 
the same method followed by Kirsten (Moore and Kirsten 
1988). It should be noted that no determination is 
performed when θ = 0° or 90° as Kirsten considered Kd and 
Kp to be zero when the joints are sub-horizontal (dip = 0°) 
or sub-vertical (dip = 90°). For these cases, Kirsten 
assigned a Js value of 1 for the four values of RJS. Indeed, 
when Kp and Kd = 0, Equations 7 and 8 will have Js as the 
product of 1 × 1 = 1, explaining the Js values of 1 when 
dips are 0° or 90°. For excavatability, Kirsten posits that the 
ground would not be excavated when Js = 1, as the sub-
horizontal or sub-vertical joints, relative to the ground 
surface, would not constitute a situation favorable for 
excavation. On the other hand, a ground characterized by 
a Js of 1 would have a representative value of its 
excavatability being determined according to the factors 
included in Kirsten’s index. However, it is practically non-
excavatable. Accordingly, the curve adjusting process was 
undertaken by considering that the curves must be plotted 
with Js of 1 when the dip is 0° or 90°. The final adopted Js 

values are presented in Table 1. 
 
 

 
Figure 6. Behavior of Js when α = 100°
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Table 1. Js values when  α = 100° 

  α Angle  

  100°  

 
Dip of  
closer 
spaced 

joint 
set1 

Ratio of Joint Spacing  

 1:1 1:2 1:4 1:8  
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70° 0.50 0.42 0.38 0.34  

60° 0.46 0.41 0.38 0.35  

50° 0.46 0.42 0.40 0.37  

40° 0.49 0.45 0.43 0.41  

30° 0.59 0.55 0.52 0.51  

20° 0.76 0.71 0.67 0.65  

10° 1.04 0.99 0.91 0.85  

5° 1.24 1.13 1.03 0.97  
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5° 0.68 0.72 0.75 0.79  

10° 0.50 0.60 0.64 0.68  

20° 0.46 0.52 0.55 0.57  

30° 0.46 0.49 0.51 0.53  

40° 0.49 0.52 0.54 0.56  

50° 0.59 0.62 0.65 0.66  

60° 0.76 0.81 0.84 0.87  

70° 1.04 1.12 1.18 1.22  
 

1: Apparent dip angle of closer spaced joint set 
 in vertical plane containing direction of flow. 

 

 
5 CASES STUDIES APPLICATION 
 
Three cases examined by Pells (2016), that were originally 

studied by Van Schalkwyk et al. (1994), are analyzed 

according to Js values proposed in this work for a non-

perpendicular flow. The three cases studies are from the 

spillways of dams located in South Africa: the rock mass 

section 8E-1 of the Mokolo Dam, the rock mass section 9E-

2 of the Hartebeespoort Dam and the rock mass section 

13E-3 of the Marico-Bosved Dam. The data for the 

examined sections as related to Kirsten’s index factors, 

include the compressive strength of intact rock (Ms), the 

rock block size (Kb), the discontinuities shear strength (Kd) 

and the relative block structure (Js) are presented in (Table 

2).  

   The Js values adopted by Van Schalkwyk et al. 

(1994) assumed a perpendicular flow (α = 90°). From the 

adopted Js value of each examined section, the RJS, dip 

direction of closer spaced joint set relative to the direction 

of flow and dip of closer spaced joint set are determined 

according to Kirsten’s rating (Kirsten 1982). This 

information is then used to calculate the corresponding Js 

when α = 100° by considering the proposed Js rating as 

presented in Table 2. The corresponding Js values are 

presented in Table 2. Subsequently, Kirsten’s index (N) is 

calculated according to the corresponding Js values (Table 

3). The values obtained for Kirsten’s index for the three 

examined cases studies, calculated as a function of α = 

100°, are converted into required hydraulic stream power 

(Pr) using the Annandale’s abacus (Annandale 1995, 

2006). Note that all examined cases studies of Annandale 

(1995, 2006) are considered as obtained with 

perpendicular flow. The determined required hydraulic 

stream power, for the three examined cases studies, are 

presented in Table 3. 

 

Table 2. Data of the analyzed case studies 

Case 
study 

Ms Kb Kd 
Js 

(90°) 
r1-Dir.2-

Dip3 
Js 

(100°) 

8E-1 140 25.45 0.94 0.81 
2-

against-
5° 

0.72 

9E-2 70 16.47 1.00 1.20 2-in-5° 1.13 

13E-3 140 26.95 1.68 0.69 
4-

against-
10° 

0.64 

Note : 
1: r is the ratio of joint spacing 
2: Direction is dip direction of closer spaced joint set relative to 
the direction of flow. It is in or against the direction of flow 
3: Dip is the dip angle of closer spaced joint set 

Table 3. Determined required hydraulic stream power 

Case 
study 

α = 90° α = 100° 

N Pr N Pr 

8E-1 2713 376 2411 344 

9E-2 1380 226 1303 217 

13E-3 4752 572 4056 508 

 

According to the obtained results, the required 

hydraulic stream power, using α = 100° for the 13-E3, 8-E1 

and 9-E2 cases studies, is reduced, when compared to the 

required hydraulic stream power when α = 90° (Table 3). 

Although the 13E-3 rock mass is characterized by the 

highest factor values of Ms, Kb and Kd (Table 2), it is 

marked with more decreasing of the required hydraulic 

stream power. This is explained by the effect of Js. Indeed, 

the lowest Js values, according to α, are noted for rock 

mass 13E-3 (Table 2). These findings highlight the 

importance of considering α when determining Kirsten’s 

index to determine the required hydraulic stream power. 



 
 

6 CONCLUSION 
 
Adjustments are introduced to Kirsten's initial concept 
concerning the relative block structure parameter. Thus, 
two equations are proposed to determine the relative block 
structure parameter when the angle between the planes of 
the two joint sets, on the vertical plane containing the 
direction of flow, is defer to the 90° angle considered by 
Kirsten. The use of the two proposed equations, by varying 
the angle between the two joint sets, makes it possible to 
propose a rating for the relative block structure parameter 
when direction of flow is non perpendicular to the strike of 
closer spaced joint set. The non-perpendicular flow reflects 
cases that can be potentially found in the field where rock’s 
vulnerability to erosion will therefore differ if assuming a 
perpendicular flow. Accordingly, the proposed rating of Js 
for non-perpendicular flow can provide a more accurate 
assessment of the hydraulic erodibility of rock. 
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