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Abstract 

This paper addresses the problem of learning the Activities of Daily Living (ADLs) in smart home for cognitive 
assistance to an occupant suffering from some type of dementia, such as Alzheimer’s disease. We present an 
extension of the Flocking algorithm for ADL clustering analysis. The Flocking based algorithm does not require an 
initial number of clusters, unlike other partition algorithms such as K-means. This approach allows us to learn ADL 
models automatically (without human supervision) to carry out activity recognition. By simulating a set of real case 
scenarios, an implementation of this model was tested in our smart home laboratory, the LIARA. 
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1. Introduction 

Due to the aging of the population and its consequences, the number of people suffering from category 
of disorders known clinically as dementias, like Alzheimer’s disease, grow up every year [1]. In this 
context, many researchers [2, 3] try to develop smart home technologies to provide cognitive assistance to 
a resident's in his everyday Activities of Daily Living (ADL). The identification of the ongoing inhabitant 
ADL is one of the main issues in smart homes. In most cases, the activity is inferred with a plan library 
that consists of basic activities predefined by an expert [4, 5]. Due to the high number of activities and 
their complexity, the resulting library is usually incomplete. Another option is to build it automatically 
thanks to a supervised learning method. Still, it requires interventions from a human to label the dataset. 
Such constraint is possible on a small set of data, but prevents the technique from being exploited in real-
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life contexts since it is very difficult to enumerate all the possible activities. Nevertheless, new ways 
allow us to explore this paradigm with unsupervised learning methods, which eliminate the requirement 
of a human in the process.  

To do so, one avenue is to exploit clustering algorithms to learn patient’s activities automatically such 
as the well-known K-means algorithm and its variants [6, 7]. However, K-means needs an initial number 
of clusters for its execution. This limit its applicability in our context, since it is hard to know the number 
of possible activities other than by trial and errors. In recent years, new clustering algorithms [8, 9] were 
developed on an emergent behavior called Flocking [10]. Flocking reproduce a behavior rising from the 
group movement of several societies in nature such as flocks of birds, schools of fish, and colonies of 
bees. In this method, an entity is called a boid. Each boid makes its own decisions on its movement 
according to simple rules. It reacts to other characters perceived within its local neighborhood. The 
Flocking model does not require an initial number of clusters unlike other partition clustering algorithms. 
We propose, in this paper, an activity clustering algorithm based on the Flocking, which is specifically 
adapted to unsupervised learning in smart homes. Our contributions are twofold. First, we provide a new 
experiment to the field of data mining on the Flocking algorithm to address the issue of fast evolving data 
[11]. Second, we are the first to exploit a Flocking based method to perform activity recognition in smart 
home while most existing approaches are supervised [12]. Moreover, only few completely unsupervised 
methods exist [13] to address this issue, and  they are very limited. For instance, they do not take into 
account the fast evolution of the data in our context  and they are based on key objet relevance which 
limit them to a small set of possible ADLs [14]. 

This paper is organized as follows. The next section draws an overall picture of the existing work on 
clustering algorithms and data mining methods in smart home. The third section presents our extension of 
the Flocking. The fourth section shows how this model is implemented in the LIARA smart home 
laboratory. The fifth section presents the results of our experimental phase using a set of real case 
scenarios. Finally, the last section presents our conclusion and future work. 

2. Related Works 

Clustering involves separating a large set of data into subsets named clusters. A cluster is a collection 
of data; elements within a cluster are similar between them, and are dissimilar with other clusters’ 
elements [15].  The goal behind clustering is to find inherent structure in the data and to show this 
structure as a set of clusters [16]. Two main clustering techniques exist: partitioning and hierarchical [15]. 
Hierarchical methods build a hierarchy of clusters and a unique partition of objects. In these techniques, 
the number of clusters to construct does not need to be specified and a distance matrix is usually used as 
clustering criteria. Although these methods are often portrayed as a clustering approach with better 
quality, in the general case, the complexity of hierarchical clustering is at least , which makes them 
too slow for large data sets. On contrary, the time complexity of partitioning techniques is almost linear. 
These techniques break up data into a set of non-overlapping groups to maximize the evaluation value of 
clustering. The K-means is a partitioning algorithm; it is based on the sound foundation of analysis of 
variances. Each cluster starts with a random center. Then, the algorithm reassigns the data objects in the 
dataset the centers of the clusters based on the similarity between the center and the data object. This 
reassignment procedure stops when a convergence criterion is met or after a fixed number of iterations. 
The major drawbacks of the K-mean algorithm are that the clustering may converge to the local optima, 
and it is sensitive to the selection of the initial cluster centroids. It also requires a prior knowledge of the 
problem to select the number of clusters needed. 

To address the limitations of classic partitioning methods, researchers in computer science have 
proposed several approaches such as Ant clustering [17, 18] and Flocking [8, 9]. Like Flocking, Ant 
clustering does not require a predefined number of clusters. Deneubourg and al. [18] presented a basic 
model to explain the behavior based on the group movement of corpses and eggs in real ant colony : An 
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ant, named an agent and represented on a 2D grid, follows one simple rule: “randomly moving in the grid 
and establishing a probability of picking up the data object it meets if it is free of load or establishing a 
probability of dropping down the data object if it is loading the data object”. On the same way, the 
Flocking algorithm generates a clustering of a dataset on a 2D grid. Nevertheless, the Flocking is more 
efficient than Ant colony because each data is an agent in the virtual space, and each agent is moving 
according to a heuristic, unlike the random activity in Ant clustering. 

3. The extension of the Flocking algorithm 

The basic Flocking model consists of three simple steering rules: alignment, separation and cohesion 
[10]. These rules are executed each iteration by all individual agent. With these three rules, each agent 
gets closer to his neighbors indiscriminately adopting a herd pattern. Therefore, only one cluster is formed 
after several iterations. That’s why we implement two new rules to exploit it as a clustering algorithm: 
similarity and dissimilarity. These rules allow us to create many clusters because similar agents follow 
each others, and dissimilar agents tend to separate. In addition, if an agent finds himself alone in the base 
model of Flocking, it stops moving. To correct this problem, we slightly modified the rule of alignment so 
that the agent continues to move straightforward if it is left alone. Besides, the base complexity is , 
but by dividing the virtual world into zones of equal size we can reduce it to . Linear complexity is 
desirable due to the large amount of data that must be processed. In the next subsections, we describe the 
five rules that we proposed, with their mathematical formalization.  

3.1. Alignment, Separation and Cohesion forces 

Alignment force attempts to keep an agent’s heading aligned with its neighbors. The force is 
calculated by first iterating through all the neighbors and averaging their heading vectors. Considering 
that  is the total number of current agent’s local neighbors,   is the agent’s heading force, and  is a 
neighbor heading force, the definition of  the force driven by alignment rule is: 

 

  (1) 

Separation force creates a force that steers an agent away from those in its neighborhood region. 
When applied to a number of agents, they will spread out, trying to maximize their distance from every 
other agent. Considering that  is the total number of current agent’s local neighbors,  is the current 
agent’s position vector, and  is a neighbor’s position, then  is the force driven by separation rule 
defined by the definition below: 

 

  (2) 

Cohesion force produces a steering force that moves an agent toward the center of mass of its 
neighbors. This force is used to keep a group of agents together. We calculate the average of the position 
vectors of the neighbors. This gives us the center of mass of the neighbors, the place the agent wants to 
get to, so it seeks to that position. The force  is the definition below where  is the agent’s 
position,  is the agent’s maximum speed (a predefined constant),  is the agent’s velocity, and  
is the center of mass of the boid.  is determined by  the total number of current agent’s local 
neighbors, and  is a neighbor’s position vector. 

 (3) 
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1Laboratoire d’Intelligence Ambiante pour la Reconnaissance d’Activités (http;//liara.uqac.ca)

3.2. The Flocking extension to clustering 

Dissimilarity force creates a force that steers an agent away from those in its neighborhood like the 
separation rule, but only between dissimilar agents. The mathematical implementation of the dissimilarity 
force (see equation 4) extend the separation rule by modulating  in function of  which 
represent the dissimilarity between a couple of agents  and . The function  is the normalized 
Euclidian distance represented on (5) which compare agents’ data in order to compute a certain distance 
between  and . In the Euclidian equation,  denotes the dimension of the vector space related to the 
attributes of the learning data set. 

 

  (4) 

 

 (5) 

Similarity force produces a steering force likewise to the cohesion rule, but only between similar 
agents. However, a new center of mass ( ) calculation, described below, replace the one from 
equation three. 

 

,   (6) 

Where is the total number of current agent’s local neighbors,  is the current agent’s position,  is 
a neighbor’s position, and  the similarity between agents  and . 

 

  (7) 

To achieve a complete Flocking behavior, the results of all rules are weighted and summed to give a 
steering force that will be used by the current agent for calculate his next velocity. If  are the 
predefined weight values, then equation 8 determine  our Flocking force which can be seen as a 
resulting force from the linear combination of all the other forces. If any of the force exceeds the 
maximum force, then it is not added. 

 

  (8) 

4. Smart home validation 

The LIARA1 lab consists of a standard apartment (kitchen, living room, bedroom, and bathroom) 
equipped with sensors, smart tags (RFID), pressure mats, localization/identification systems for objects 
and residents, audio and video devices, etc. Our research project aims to explore ways to provide 
pervasive cognitive assistance to people suffering from Alzheimer’s disease. As we noted beforehand, the 
main issue in this project is to recognize and predict the inhabitant ADLs. In this context, we need to 
represent the data as a set of mobile boid, also called agent, to use the Flocking based algorithm. The 
values of the sensors, which are stored in a database, change frequently due to patient’s actions. These 
modifications are called events, and we represent our agents with these events. When an event is detected, 
a new agent is created with the modified values of the corresponding sensor or RFID attributes.  An agent 
is essentially defined by three main attributes: spatial region, position and the generation time of the event. 
After its creation, an agent applies immediately its Flocking behavior, described by the rules of section 3. 
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4.1. The similarity and dissimilarity metrics 

The definition of the similarity/dissimilarity of two agents is an important issue for a good clustering. 
A lot of parameters can be taken into account: event’s duration, time between two events, event’s type 
(moving object, immobile object), spatial relation, spatial region (bathroom, kitchen, bedroom, etc.), 
position, event’s generation time (morning, afternoon, night, etc.). Among these variables, we chose to 
investigate three attributes: temporal relation between two events, spatial region and Cartesian positions. 
The comparison of two agents’ data check if their parameters match with each other: small time between 
them, close position and same spatial region. Such agents are considered similar and are attracted to each 
other because of the similarity rule. On contrary, if their spatial regions are different, or they are far, or 
the time between them is great, the dissimilarity rule is applied and they move in opposite direction. 

5. Experiments and results 

To test the efficiency and accuracy of our new model, we have conducted extensive experiments in our 
smart home. A participant was asked to perform normally specific scenarios without precise indications. 
A description of the tests' dataset is given on Table 1. 

Table 1 – The scenario dataset 

Scenario name Number of events 

Cook for lunch 103 

Cook for dinner 98 

Go to the toilet 14 

Read a book 12 

Sleep in the bedroom 16 

 
Events represent changes in the state of the different sensors of the environment. This is why simple 

activities like reading a book contain fewer events than tasks needing more complex operations (cooking). 
Indeed, fewer sensors change of states when a resident is only reading a book.  

Each scenario has allowed to generate a text file that contains 6 data per row, and each row symbolizes 
an event. The Table 2 contains a part of the scenario cook for lunch. The columns X and Y are the 
position of sensors and RFID tags; they are ranged between 0 and 600. The time parameter is expressed in 
minutes from 0h00; 710 min is 11:50 AM for example. 

Table 2 – Little part of cook for lunch scenario 

Type Name Location X Y Time 

Sensor TC2 Kitchen 250 250 710 

Sensor CA5 Kitchen 300 100 710 

RFID Pan Kitchen 362 139 710 

... ... ... ... ... ... 

5.1. Experimental setup 

For the experimental phase, we decided to run two other clustering algorithms with our new Flocking 
based model. Our choice fell on K-means because of its high efficacy. We also chose Expectation-
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Maximization (EM) which is also a clustering algorithm (among other things) that can either be used with 
a fixed number of clusters or that can efficiently estimate it. For the three versions, we used the same 
dataset and the Euclidian distance measure. We used Weka to test EM and K-means, and we used the 
Java language to implement our Flocking algorithm. Each data is represented as one boid, and all boids 
follow the five rules mentioned in section 3. Each boid can only sense other boids located within its 
neighborhood distance. Higher is the sensing distance and faster the clustering result emerges. However, 
at the same time, each agent needs more computational time to generate its moving direction and speed at 
each iteration. The virtual grid space for agents is set as a 500 x 500 2D square space. Likewise to others 
data mining techniques, we separate the learning phase and the testing phase. In the learning phase 2/3 of 
data are used for creating the clusters, and 1/3 for testing these clusters.   

The initial distribution of the experimental dataset is shown on Fig. 1 (a). As can be seen, at the 
beginning of the learning phase one unique cluster exists and contains all agents. We let the agents move 
freely according to the movement forces we defined in section 3 once per iteration (every 40ms). At the 
end of an iteration, clusters are built recursively from the agent list. If the square distance between two 
agents is under to their view distance, they are in the same cluster. When all agents have been assigned to 
a cluster, the center and the radius of the clusters are calculated relative to the agents inside. The Fig. 1 (b) 
shows that five clusters are created in the learning phase after several iterations. Each of them is relative 
to a scenario presented in dataset. This means that our algorithm succeeds in finding the exact number of 
activities during the learning phase, without supervision. After several iterations, if there are no more 
changes in the number of clusters, the testing phase begins. 

 

 

Fig. 1 – (a) Initial data distribution in the learning phase; (b) Result after 1000 iterations. 

5.2. Testing phase 

This phase aims to control the quality of our clusters. At the beginning of the testing phase, a 
representative agent is created for each cluster. It computes the average of the data of all agents in their 
clusters. After the creation of these representative agents, all others agents are destroyed. The 1/3 of the 
dataset unused replace these destroyed agents. In this phase, clusters are built from each representative 
agents created at the beginning. This allows to confirm if the clustering is efficient or not. The percent of 
success of each cluster is calculated every frame, and the average of all cluster is inferred. After 25 
measures, an average of these success rates is saved to a log file. The success of a cluster is the number of 
agents of the same class divided by the total number of agents in the cluster. 

5.3. Experimental results 

We ran the algorithm 10 times with these 5 real case scenarios, and we computed the average of the 
results. The Table 3 shows a part of our results.  
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Table 3 – The average results of Flocking clustering Algorithm on real datasets 

Iterations 3371 4591 5753 6897 8064 8882 10227 13404 

Success 0.6359 0.7184 0.8038 0.8716 0.8863 0.8902 0.9000 0.9249 

 
An iteration is the calculation of the combined forces  for all agents, and the update their position. 

The success rate is expressed between 0 and 1. The closer the value is to 1, the purer the cluster is. As one 
can see, the success rate rises rapidly at the beginning across the iterations to around eighty-seven percent 
and then progressively to reach the threshold of ninety-two percent after approximately thirteen thousand 
iterations. This means that for the five activities that the algorithm detected during the learning phase, the 
average purity of clusters is around ninety-two percent. The success rate is not equal to one hundred 
percent due to noise (radio-frequency interference, sensors failure, etc.), and this is to be expected due to 
unrelated events generated from the sensors imprecision. To compare, the Table 4 presents the results 
obtained with K-means and EM (Expectation Maximization) algorithms. 

 
Table 4 – The results of K-means and EM algorithms on real datasets 

 
Algorithm Iterations Success Number of clusters 

K-Means 5 0.6033 5 (set at start) 

EM (k set) 5 0.7603 5 (set at start) 

EM (k unset) 5 0. 6240 7 

 
These algorithms are more efficient in terms of iterations number. However, they cannot achieve a 

high success rate partly because of the small number of data contained in our dataset. Moreover, K-means 
requires to know the number of clusters at the start.  Furthermore, EM cannot find the exact number of 
activities, and its success rate is lower if we don’t set the number of clusters. Another important thing to 
note is the difference in the way the iteration metric is calculated. While an iteration in classic data 
mining approaches represents the complete reattribution of the elements to cluster, in our Flocking 
extension it is only a small movement for each boid. Therefore, the difference in performance of our 
algorithm is not as big as it seems. Besides, as stated in the beginning, the Flocking computational 
complexity is linear as for the partitioning algorithms with a fixed k and as opposed to hierarchical 
methods, which are polynomial. 

6. Conclusion 

In this paper, we have presented a new algorithm of clustering based on the Flocking as a potential 
solution to the problem of mobile data. The emergent behavior of Flocking combined with the addition of 
two more rules (similarity and dissimilarity) allows us to infer the exact number of ongoing activities 
even with few data. Moreover, in our context of activity recognition, we need an unsupervised method to 
recognize the ADL of the patient observed. The Flocking does not require a predefined number of clusters 
at start unlike others classic clustering algorithm like K-means. This is essential because we do not know 
in advance the number of activities a resident will perform in its daily life. While classic clustering 
methods possess their own advantages over our method, in our context we demonstrated the Flocking 
extension was more suited and performed better than K-means and EM. In future work, we aim to extend 
this approach in order to introduce more types of criterion such as advanced spatial or temporal reasoning. 
Moreover, we plan on doing large-scale experiments on data collected over a long period of time. 
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