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The rapid adoption of wireless communication and sensors technology has raised the awareness of many laboratories about the
field of network embedded system. Most researchers aim to exploit these advances to enable technological assistance of frail
persons in smart homes. However, to reach the full potential of applications using network embedded systems such as assistive
smart home, scientists need to work toward the creation of support services. In this paper, we present an accurate passive RFID
localization technique, which can easily be implemented and deployed in various environments, coupled to a complete human
activity recognitionmodel.The goal of this paper is to demonstrate, through concrete experiments, that support services can enable
powerful solution to long-lived challenges of the network embedded system community. Particularly, themodel exploits qualitative
spatial reasoning from RFID localization of objects in the smart home to learn and recognize the basic and instrumental activities
of daily living of a resident. Our system was deployed in a real smart home, and the results obtained were quite encouraging. The
developed RFID technique gives an average precision of ±14.12 cm, and the recognition algorithm recognizes up to 92% activities.

1. Introduction

The aging of the population in the developed countries [1]
has engendered a crucial need for the development of new
solutions to revolutionize the way the healthcare systems are
perceived and operated. With the recent advances of wireless
communications and technologies, smart home research [2]
has positioned itself as an emerging trend to bring socially
and economically viable solutions to some of the challenges
brought by this new context. For example, these technologies
could postpone institutionalization of cognitively impaired
elders by providing punctual support services, security, and
guidance to the resident. To do so, one must first be able to
recognize the ongoing activities of daily living (ADLs) [3]
of the resident from either visual information or raw data
collected from various types of sensors. The former implies
the installation of video cameras in the smart home [4, 5].
These systems suffer from the high complexity of identifying
patterns in real time from a large flow of images. They also
suffer from intrusiveness, which is hardly accepted by both
the resident and the health professionals. Other works are

trying to use emerging information from a variety of sensors
such as the radiofrequency identification (RFID) technology
to recognize the ADLs [6–8].

One important obstacle to the adoption of wireless sensor
network as an embedded system in smart home is the lack of
research on support services. Researchers aremostly building
theories either by taking raw information from the sensor
networks [9] or by making the assumption that they can get
qualitative information (such as high level action) [10].

In this paper, we explore the employment of passive RFID
to deploy an object localization support service for smart
home and for other smart environments. While extensive
research has been conductedwithin the field of robotic on this
precise topic, we demonstrate that the literature is inadequate
[11] to the context of object localization. Indeed, the majority
of the works are exploiting active tags, which are battery
powered but much more precise [12] than their passive
counterparts. However, they are also bigger and clumsier and
require timely maintenance due to their internal battery. On
the other hand, the current passive RFID localization systems
are mostly based on vast deployment of reference tags [13].
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A tag of reference is a tag that is positioned at a specific
known location and that provides a benchmark to localize
another one. In some cases, these systems require up to 300
tags [14]. This makes their methods difficult to implement in
the context of smart home like ours. Additionally, in the last
few years, many researchers tried to address the core issue
of localization by proposing systems based on a wide range
of other technologies, such as GPS, ultrasonic wave sensors
[15], and video cameras [16]. However, the RFID technology,
because of its robustness, its low price, and its flexibility,
seems to have imposed itself as one of the best solutions
currently available for smart homes. Moreover, each of these
other technologies suffers from great weaknesses such as the
line-of-sight constraint [13] and high intrusiveness.

The development of an object localization support service
could serve very well the dream of assistive smart home in
many aspects. For example, such spatial information could
help to overcome the human activity recognition challenge
(HAR). The classical way to do so is generally by exploiting
a range of logic formalisms such as first-order logic [10],
ontology [17], lattice theory [7], or probabilistic models such
as Hidden Markov Model (HMM) [6, 18] and Dynamic
Bayesian Network (DBN) [19]. In recent years, researchers
have focused on the probabilistic approaches since the activ-
ity models are easily learned from supervised [9] or, less
frequently, unsupervised [20] data mining algorithms. The
definition of activity models is, in fact, the major drawback
of logical approaches. Nevertheless, they possess many other
advantages. They are more predictable and understandable
than probabilistic approaches. They also are more scalable
to assistive systems. Nowadays, researchers [21] are noticing
the importance of the largely ignored but fundamental spatial
aspects of the realization of ADLs inside smart environments.
An object localization service, such as ours [22], could enable
the scientist community to refine qualitative spatial reasoning
theories to learn and recognize both basic and instrumental
ADLs.

In this paper, we present the results of our works [23,
24] on spatial aspects relating to the assistive smart home
paradigm. More specifically, we explain in details the deploy-
ment of a multilayered approach to trilateration which
exploits passive RFID technology. Our approach addresses
separately each problem with the technology used such as
the false readings and the varying received signal strength
indication (RSSI). It also implements trilateration from an
innovative elliptical wave propagation model and uses fuzzy
linguistic variables to provide qualitative positions (in addi-
tion to simple Cartesian positions). We also propose a com-
plete human activity recognition (HAR) solution that relies
exclusively the spatial aspects extracted from our localization
model. This model first needs to learn the activities’ models
while keeping the process simple and scalable. To do so, we
extend a classical association rule mining algorithm [25] in
order to extract spatial relationships, defined in the topolog-
ical framework of Egenhofer and Franzosa [26], correspond-
ing to each ADL. Thereafter, the newfound models are used
within an activity recognition algorithm which is simple and
easily implementable. Finally, we concretely apply it in real
case study scenarios of ADLs. These scenarios allowed us to

test the robustness of our new solution to classical anomalies
that can occur when dealing with normal and cognitively
impaired elders. Moreover, the tests were conducted at the
new LIARA laboratory’s smart home infrastructure, which
provided realistic experimental conditions.

The remainder of this paper goes as follows. Section 2
reviews the literature in three parts: a part on localization
schemas, a part on the spatial data mining, and a part on
smart home and human activity recognition. Section 3
presents our complete positioning system based on passive
RFID technology and the experimental results we obtained
in doing single object localization. Section 4 introduces the
learning model which is an extension of the well-known
Apriori algorithm [25]. Section 5 presents the spatial activity
recognition algorithm based on topological relationships that
has been previously developed in [23] but adapted for this
research. Section 6 describes the experiments conductedwith
the localization system to learn and recognize the ADLs. The
results are analyzed by taking into account the granularity
aspect of activities in smart home. Finally, Section 7 closes the
paper with an overview of the work achieved, its limitation,
and the future works.

2. Related Work

This section aims to overview the notable works that can be
compared to our complete model. Since this paper represents
the culmination of our research relating to various issues on
the spatial aspects in smart home, the literature review is sub-
divided into three major axes. First of all, we shall see works
on localization of objects, robots, and humans that emanate
from awide range of research areas.This subsection discusses
the different hardware components used while emphasizing
on works employing RFID technology. The second subsec-
tion discusses the classical activity recognition techniques in
smart home context. Both the advantages and disadvantages
will be discussed consecutively with their limitations. Finally,
one of these limitations leads us to the third axe of works
surrounding learning techniques in activity recognition and
particularly those exploiting the spatial aspects of the data
hereby called by the name of spatial data mining.

2.1. Literature on Localization. Sincemany years, the question
of localizing entities in a controlled or in a noisy environ-
ment has attracted many researchers resulting in hundreds
of scientific publications, which cover diverse topics and
technologies. Despite this, localization of objects and persons
inside buildings is still a challenging issue that could find
applications in several areas. In particular, techniques related
to RFID technology have been blossoming in the last few
years. However, due to the inherent imprecision, positioning
and tracking with RFID are still very hard to achieve. That
is why many researchers explored hybrid approaches based
on ultrasonic sensors, accelerometers, cameras, and LEDs.
These works are outside of the scope of our approach that
concentrates on pure RFID technology.We describe themain
ones and explain why they are generally not well suited
in smart home context. Thereafter, we present the most
interesting RFID approaches.
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2.1.1. Non-RFID andHybrid Approaches. Themost renowned
localization system which is not based on radiofrequency
(RF) is probably the one of Addlesee et al. [15]. It is one
of the first successful systems that relies solely on ultra-
sonic sensors. In a controlled environment, it achieves a
respectable precision of ≈3 cm which places it among the
most precise indoor localization systems.However, it requires
dense deployment of costly receivers installed throughout
the ceiling of the targeted area. Choi and Lee [27] follow
their work by hybridizing ultrasonic sensors to passive RFID.
They unfold static and fixed tags at predefined positions
(called reference tags) to infer the position of a mobile
robot. They yield a much higher accuracy than any other
RFID approaches (≈1–3 cm). However, sound based systems
are limited by environmental conditions such as noise and
obstruction of the line of sight. Hähnel et al. [11] have united
an RFID reader with a laser range scanner onboard mobile
robots.Their model starts by using machine learning to draw
a virtual map of the environment with the laser. Despite its
novelty, their system only achieves a high localization error of
around 1–10meters. Milella et al. [28] have combined vision
sensors to the RFID technology to achieve a precision in
the order of 20 cm. Sample et al. [16] is another work that
exploits vision sensors. They enhance the tags with LEDs to
enable a robot equipped with a camera to precisely find a
tag in the environment. Recently, Parr et al. [29] introduced
a novel method for RFID tag tracking by fusing an inertial
measurement unit to a handheld reader.Their technique uses
acceleration data, without the knowledge of antenna position,
to achieve an accurate positioning at a reasonably low cost.

While non-RFID and hybrid approaches give better
performances than pure RFID localization, they are arguably
less appropriate inmany situations. First, they aremore costly
than RFID approaches. Second, they rely on technologies
that suffer from high intrusiveness (cameras are particularly
prohibitive in our case).Third, they often impose line-of-sight
constraints that radiofrequency avoids. Fourth, none of these
systems offer robustness comparable to passive RFID tags.
For example, they cannot be put into a dishwasher, and they
can need batteries. They are also slower and harder to install
than simple RFID methods. Finally, these technologies are
too cumbersome for objects tracking inside home.

2.1.2. Active RFID Localization. As we stated in the introduc-
tion, RFID technology can be subdivided into two families:
active and passive. Both have been the object of study
for localization. Active systems are generally much more
precise on the same environmental scale than their passive
counterparts. For instance, Hekimian-Williams et al. [12]
implement phase difference to achieve millimeters’ accuracy
in perfect conditions. However, they ignore key factors such
as tag sensitivity. Moreover, active tags suffer from many
weaknesses that refrain from using them into smart home.
First, they are much bigger and, therefore, impossible to
install on everyday life objects in the goal of localizing them.
Second, they are considerably more costly. Above all, they
work with batteries that require timely maintenance, which
is to be avoided in smart home. Since phase difference is

hardly usable with passive technology, the work ofHekimian-
Williams et al. [12], which is still an important contribution,
would be better off being used in an adapted context.

2.1.3. Passive RFID Localization. There are a large number of
positioning approaches based upon the use of passive RFID
tags. A substantial part of them arises directly or indirectly
from the well-known LANDMARC system [30].That system
introduced the concept of localization from references tags
placed at strategic location. Vorst et al. [31] is one of them.
Their model uses passive RFID tags and an onboard reader
to localize mobile objects in an environment. A prerequisite
learning step is required to define a probabilistic model. This
model is exploited from a particle filter (PF) technique, which
estimates the position. It achieves a precision of 20–26 cm.
Themajor drawback is the relatively high computational cost
(at least for online tracking). Lei et al. [32] addressed this
issue by combining PF with weighted centroid localization.
They switch between the two methods depending on the
estimated velocity of the tracked object. In ideal condition,
they localize an antenna with an average error of 20 cm while
greatly increasing the speed of the process. Another model,
from Joho et al. [14], uses reference tags in combination
with different metrics. In particular, they are based on both
the RSSI and the antennas’ orientation to get an average
localization error of 35 cm.Chawla andRobins [13] developed
a model based on the variation of antenna power to estimate
the distance of nearby reference tags. They incrementally
adjust the antenna decibel until the tag is in range.Thereafter,
they use many tags’ distance from the antenna to localize a
mobile robot.Their approach yields an accuracy varying from
18 to 35 cm.

Some of these approaches provide very good results,more
than enough to exploit them as support services for smart
homes. However, they all rely on the large deployment of
tags of references. While it is a fairly good solution for robot
localization, it is not very appropriate nor always feasible
in smart home context. In fact, for our technology to be
adopted, the modifications to the environment need to be
minimal and such an installation of tags would be rather
unwelcomed by the residents. Additionally, doing so is a
complex and tedious task. Finally, in our case, we want to
achieve everyday life objects localization (cup, book, etc.).
The previously described techniques localize antenna with
tags. Antennas are much too big to be bundled on objects.
Therefore, there is a need for a precise, yet easily configurable
localization model to support smart environment.

2.1.4. Approaches Based on Trilateration. The best alternative
to references tags based systems for passive RFID localization
is the antennas’ trilateration from the RSSI. Despite the
potential and the simplicity of the method, trilateration
has been largely ignored in the scientific literature. This is
mainly because this technique is quite challenging to use
with noisy and imprecise information. A recent instance
of an RFID localization system based on this technique is
the approach of K. Kim and M. Kim [33]. They perform
a classical trilateration calculus from active tags by using
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the time of arrival of the signal to calculate the distance
from each antenna. Still, their main contribution is from
the introduction of a circular polarization antenna and a
positioning filter. Another worth mentioning is the approach
of Chen et al. [34] that perform trilateration with a different
radiofrequency technology (ZigBee). They develop a fuzzy
inference engine with one variable that correlates the RSSI
of an object transmitter to the distance separating it from a
receiver. They achieved a precision of 119 cm.

These approaches are much less precise and robust than
those reviewed in the previous section. The new model we
propose in this paper is also based on the trilateration but
still outperformsmost of the existing localization techniques,
including those relying on references tags. Moreover, it is
purely based on passive RFID and does not bear the dis-
advantages associated with hybrid technology and batteries
powered tags. Furthermore, many systems that presented
comparable results were tested in unrealistic condition [12]
or only in simulation [35].

2.2. Human Activity Recognition. A lot of work has been
done in the field of human activity recognition (HAR)
due to the crucial importance of the problem to pervasive
computing community. A majority of it has been conducted
with the exploitation of video cameras [4, 5, 36] by extracting
features and patterns on a spatiotemporal point of view.These
approaches are invasive and are hardly accepted by residents
of a smart home. Moreover, in the context of assistive smart
home for frail and cognitively impaired persons (such as for
residents afflicted by Alzheimer’s disease) it is not unknown
to researchers and physicians that invasiveness can worsen
the state of the resident and that it should be avoided [37].
Noteworthy to say, we are not the first to mostly rely on
passive RFID technology to perform recognition of human
ADLs. The data centric approaches to HAR of Smith et al.
[8] and Patterson et al. [19] are pioneers on this matter. Their
respective works were a good step forward but suffer from
similar problems than most previous systems. They require
the resident to wear a glove or a bracelet. We prefer to avoid
wearable sensors. It is hard to ensure that the residents always
wear them if we are ever able to convince them to accept such
method.

2.2.1. Logical HAR. The formal theory of plan recognition of
Kautz [10] constitutes a foundation to logic based HAR algo-
rithms and is still one of the most important in this branch. It
has inspiredmany other works such as [7] that exploits lattice
theory to model the ADLs. Kautz’s theory formalizes the pro-
cess of inference of the ongoing activity by using first-order
logic.The theory is limited by the assumption that all possible
activities are known and that basic actions can directly be
observed. Chen et al. [17] recently proposed a new system that
exploits ontology for explicit activity and context modeling.
Their approach is very comprehensive and partially addresses
the real-time recognition dilemma. Likewise to other purely
logical approaches [7, 23], the way they model the ADLs and
perform the inference is elegant and natural to understand
for a human being. Logical approaches to HAR mostly suffer

from the tedious works required to model ADLs correctly. It
does not only result in high overhead but also greatly limits
their real-world applicability.

2.2.2. Probabilistic HAR. Many teams have explored the
utilization of probabilistic theories such as Markovian and
Bayesian models [6, 18, 19] to address human activity recog-
nition in smart environment.These algorithms provide good
recognition rate (RR) and are usually combinedwith learning
techniques. These approaches are simpler to implement than
those based on formal logic but suffer frommany drawbacks.
First, they are generally harder to scale up to assistive system
and are unpredictable. Particularly, building large activity
library is very fastidious even with the help of learning meth-
ods. Second, inferring with them requires high computation
(resp., 𝑂(𝑇 ∗ |𝑆|2) with Viterbi’s algorithm for HMM while
exact DBN inference is still considered NP hard [38]).

Finally, there are still many problems with the state-
of-the-art algorithms. Most of the existing approaches only
recognize high level activities (cooking, toileting, etc.) which
does not allow to assist a resident at every step of his daily
activities. In addition, a majority of these approaches gives
no clue as to the performance for online recognition of
ADLs. In this paper, we present a recognition algorithm that
we developed in [24] and that we adapted to integrate our
new RFID localization technique, which not only has good
recognition rate but also promptly identify the ongoing ADL.

2.3. Data Mining and Learning Models. To address the dif-
ficulty of building library of activities, many researchers
have worked toward the development of learning schemes.
In recent years, a plethora of supervised approaches have
been developed [39, 40] such as the one of Van Kasteren
et al. [9]. In their work, they exploit a learned Markovian
model and conditional random field to perform coarse-
grained recognition of activities. Their model achieves a
recognition rate of 79.4–95.6%. Supervised learning is mostly
limited by the requirement of hand labeling of activity data to
perform the learning phase. Van Kasteren et al. [9] partially
address this issue by unfolding a voice recognition system
to annotate the data during the realization of daily living
activities. Completely eliminating the human intervention in
the process constitutes a difficult challenge to overcome.

Completely unsupervised methods could address this
problem since they rely on unlabeled data. However, they
have found only little traction in the field due to the
inherent challenges of HAR. Nonetheless, one can find some
recent examples of them [20, 41]. All the real unsupervised
approaches we found solely rely on web mining to extract
models of activities. For instance, Palmes et al. [41] scour
the Internet to get models based on object relevance weight.
This technique defines an influence score on each object that
is part of an activity and chooses the one with the highest
weight to define it as a key object. Though their approach
offers great scalability, it is limited by the fact that two
activities cannot define the same key object. That prohibitive
property enables their method to offer only very coarse-
grained recognition. Moreover, they have significantly lower
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recognition rate than other works and an unrevealed online
recognition performance [20]. Finally, the benefits of the
existing learning based approaches (supervised or not) are
limited by the very large number of data required by these
works to perform acceptably. Moreover, some of them report
using months of data corresponding to only few thousands
records [9], which is probably due to a prior formatting of
the sensors’ information for which we have no clues about
the level of human intervention required.

2.3.1. Spatial Data Mining. Since the approach presented in
this paper particularly focuses on spatial aspects, we thought
it would be necessary to talk a little about the field of spatial
data mining. Most of the works have been conducted for
geographical information systems (GIS) where large spatial
database are standard. In these conditions, extracting useful
spatial patterns is significantly more difficult than traditional
mining [42]. A representative work that could be compared
to us is the one of Koperski and Han [43] that is based
on association rules mining to extract relationships between
spatial and nonspatial predicates. Their work is particularly
interesting because it is based on the assumption that the
user has general knowledge about what he is looking for
(which is our case).However, we cannot use the same solution
than Koperski and Han [43] for our learning phase, since we
want to purely deal with spatial entities (see Section 4). In
our case, the learning problem is different and simpler than
those addressed in the most important spatial data mining
publications [42–44]. Existing approaches are simply not
adapted to our context. They are built to extract knowledge
from large-scale GIS and spatial database.

There is still a lot of work to be accomplished in the field
of HAR and on its learning complement. The majority of the
solutions suffer from important additional drawbacks. First,
they provide the offline recognition rate but just exceptional
case [17] give information about the online recognition of
ADLs. Second, except for some logical systems, these works
give (good) results on coarse-grained activities only. In many
situations, we want to obtain more precise information on
what the subject is doing (e.g., cooking versus preparing
spaghetti). Thirdly, many systems use prohibitive technolo-
gies such as wearable sensors [39] or, worse, video camera
[4, 5, 36]. Finally, human activity recognition is an important
challenge to the implantation of smart environment and
would greatly benefit from development of flexible local-
ization service for daily living objects. We demonstrate it
in this paper with the description of a hybrid recognition
model that possesses the advantages of a logical recognition
approach and the advantages of learning based methods. It
is simple, efficient, and very predictable and requires only
little human intervention to model the ADLs. Moreover,
compared to other supervised works, our system does not
requiremanual labeling since the learning phase is done from
few individual performances of each activity to learn. It is
possible only due to the simplicity of our ADLs models that
are defined by generic and intuitive topological relations,
which are extracted from the information on the position of
objects in real time.

3. Elliptic RFID Trilateration

As we said during the introduction, the main contribution
of this paper is the development of a passive RFID tri-
lateration technique [22] as a support service for network
embedded systems and more particularly, for smart home
infrastructures. This model implements multiple filters that
each addresses an issue arising in the process of localization
with passive RFID. This section explains the algorithm that
was published in [22].

3.1. Iteration Based Filter. The first challenge of RFID local-
ization takes place at the basic step of information collecting;
it is very common to obtain false-negative reading (FNR).
An FNR occurs when a tag is in the antenna coverage area
but is not detected during a certain period of time. That
type of problem happens in all the passive RFID systems we
tried through the years considering that it happens slightly
more frequently on inexpensive systems. Brusey et al. [45]
identified three reasons to explain this situation:

(i) the reader can fail to see all tags for a certain time due
to an unknown internal problem,

(ii) RF emitted from more than one tags may collide,
(iii) an interference might occur due to environmental

emissions or due to surrounding metal shielding.

From the same paper on RFID localization systems [45],
we found an inspiring solution. That leads us to the creation
of an iteration based filter whose goal is to remove most
of the false-readings problems (even the less frequent false-
positive readings). The filter is based on the general rule that
if an object’s presence is expected in an antenna range, it is
considered as not present only after no detection has occurred
for a number of localization iterations. An iteration is a fixed
time interval at which the system performs the localization.
We fix the time because we prefer stability in the reading
(more predictable behaviors) over faster speed. In our smart
home infrastructure, iterations are performed every 200ms,
which is fast enough to get a good precision without being
overwhelmed by the RFID data gathered. Here is the new
function, denoted by 𝑓ite(𝑖)

𝑓ite (𝑖) = {
True 󵄨󵄨󵄨󵄨

𝑖
𝑐
− 𝑖
𝑑

󵄨󵄨󵄨󵄨
≥ Δ𝑖

False otherwise.
(1)

This function enables us to update the state of an RFID
tag (detected/undetected) by subtracting the first detection
iteration of the nw state (𝑖

𝑑
) to the current iteration (𝑖

𝑐
). If the

number of iterations is bigger than or equal to a threshold
Δ𝑖, the state is updated. From experimental inference, we
found that 6 was optimizing the performance of this filter.
For example, suppose that the tag X is undetected at iteration
1. Then, for Δ𝑖 = 1, the next iterations go as follows.

(i) Iteration 2: X is read, |2 − 2| ≥ 1 = false, no change.
(ii) Iteration 3: X is not read, |3 − 3| ≥ 1 = false, no change.
(iii) Iteration 4: X is read, |4 − 4| ≥ 1 = false, no change.
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(iv) Iteration 5: X is read, |5 − 4| ≥ 1 = true, X is now
detected.

(v) Iteration 6: X is not read, |6 − 6| ≥ 1 = false, no change.

(vi) Iteration 7: X is not read, |7 − 6| ≥ 1 = true, X is now
undetected.

3.2. Gaussian Mean Weighting Filter. The second important
problem with RFID technology is the one for which trilatera-
tion has been disregarded. Without moving a tag, the RSSI
changes greatly every iteration. We propose to reduce the
amount of flickering by applying a Gaussianmean to the RSSI
received by the antennas before using the information. In
our implementation, the bell-shaped curve is centered on the
current iteration number 𝑖

𝑐
. The parameter 𝑖 is the iteration

number associatedwith the RSSI record that we areweighting
and the constant 𝜎 is set to 2. The mean weighted RSSI of a
tag is computed by making use of the next formula (3):

𝑓Gaussian (𝑖) = 𝑒
−(1/2)((𝑖

𝑐
−𝑖)/𝜎)

2

, (2)

𝑓strength (𝑡 [𝑖𝑐]) =
∑
𝑖
𝑐

𝑖=𝑖
𝑐
−Δ𝑖
𝑡 [𝑖]RSSI ∗ 𝑓Gaussian (𝑖)

∑
𝑖
𝑐

𝑖=Δ𝑖
𝑓Gaussian (𝑖)

, (3)

where 𝑡[𝑖]RSSI ∗ 𝑓Gaussian(𝑖) denotes the weighted RSSI for the
𝑖th iteration. This function receives as a parameter an array
(𝑡[⋅]) containing the RSSI reading of each iteration.Then, the
sum of the weighted RSSI for all iterations satisfying 𝑖

𝑐
− 𝑖 ≤

Δ𝑖 is divided by the total weight of the Δ𝑖 reads. The constant
Δ𝑖 is the number of iterations considered for the RSSI mean.

3.3. Elliptic Trilateration. Our first attempt [24] to build
a trilateration based algorithm considered that the wave
propagation was circular (normal way to perform it, in fact).
However, since our antennas are directional, the loss of signal
on the side is higher. Therefore, when converting the RSSI
to a distance value, we were less accurate on the side of the
antennas. To address this problem, we decided to replace
circularmodels by elliptical. It comes down to establish ellipse
equations (4) in function of the RSSI parameter. To do so,
we collected data series for each axis by moving away a tag
directly on the side of an antenna and directly on the front.
By using the method of polynomial regression (degree 2), we
determined two extremely useful equations (5)-(6). The first
one returns the value of the major axis (𝑀

𝑎
) and the other

returns that of the minor axis (𝑚
𝑎
). We also tried the linear

regression for both cases, but the correlation coefficients were
lower than the polynomial case (resp., 𝑅2

𝑀
= 0.908 and 𝑅2

𝑚
=

0.909):

(𝑥 − ℎ)
2

𝐴
2

+

(𝑦 − 𝑚)
2

𝐵
2

= 1. (4)

𝑀
𝑎
(RSSI) = 0.1833 ⋅ RSSI2 + 8.5109 ⋅ RSSI + 104.3,

𝑅
2

𝑀
= 0.974,

(5)

𝑚
𝑎
(RSSI) = 0.0462 ⋅ RSSI2 + 0.8155 ⋅ RSSI + 104.3,

𝑅
2

𝑚
= 0.937.

(6)

With these equations, from the RSSI received by each
of our antennas and their respective positions, we are able
to establish the different equations of the ellipse for each
of the antennas. From the point of intersection of three or
more antennas, we should always be able to find the two-
dimensional position of an object. Moreover, if two antennas
are on the same wall, they should be enough to determine it.
However, due to the imprecision of the RSSI, we often have
more than one point of intersection. In our testing environ-
ment, we have four antennas and to improve the precision
of the method, we decided to find intersection points from
each possible pair of antennas (6). The intersection points
are found by solving an equation of second or fourth degrees
depending on whether the pair of antennas is on the same
wall or not. In the first case, the equation is quadratic and
straightforward to solve (A1-A2, A3-A4). On the other hand,
when we try to find the intersection points of two antennas
located on opposite walls (A1-A3, A1-A4, A2-A3, A2-A4),
we have to solve a quartic equation and to this end, we
implemented the well-known method of Ferrari. Therefore,
we end up with five possible situations. For each pair of
ellipses, we obtain between 0 and 4 points of intersection.

3.3.1. Delta Filter. The situation when there is no point of
intersection is undesirable for us and considerably reduces
the accuracy of our system. Furthermore, it happens very
often. We designed a simple algorithm named the delta filter
to manage these situations.The algorithm gradually modifies
the original shapes of each pair of ellipses in a logical process
until they have at least one intersection point. The rate of
variation ismodulated in function of theRSSI since a stronger
signal is normally more accurate than a weaker one. The
application of this filter gives us 1 to 4 points of intersection
for each pair of ellipses.We eliminate all the points that corre-
spond to a complex number or those outside the eligible area
(the kitchen). Finally, when there are 2, 3, or 4 possible values
for a pair of ellipses, we take their arithmetic average to create
a unique point. Algorithm 1 summarizes the whole process.

3.4. Multipoints Filter. From the elliptic trilateration, we
obtain generally several points. Each of them is supposed
to represent the actual position of the tracked object. As
we said before, the stronger RSSI means usually a higher
accuracy. Consequently, we determine the estimated position
by taking this into account with the multipoints filter. Its first
step is to attribute a weight to the points extracted from each
pair of antennas in function of their received signal strength
indication. The antenna which received the stronger signal
gets the stronger weight. The matrix in Table 1 shows the
weight attributed to a pair considering that number 1 to 4
represent the rank of an antenna by RSSI.

For example, if a point is obtained by the intersection of
two ellipses that have the strongest RSSI (positions 1 and 2),
then this one will receive a weight of 1.00. Finally, these points
and their respective weights are used to compute the actual
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Input: Two ellipses (𝐸
1
and 𝐸

2
)

Output: One or more points of intersection
get delta variation value for 𝐸

1
(𝑉
1
) and 𝐸

2
(𝑉
2
)

initialize anempty table of point: 𝑝[⋅]
repeat till 𝑝[⋅] is empty
Δ
1
= Δ
1
+ 𝑉
1

Δ
2
=Δ
2
+ 𝑉
2

compute intersection point for 𝐸
1
+ Δ
1
and 𝐸

2
+ Δ
2
and add

them to 𝑝[⋅]
if 𝑝[⋅] is empty then

compute intersection point for 𝐸
1
− Δ
1
and 𝐸

2
+ Δ
2
and add

them to 𝑝[⋅]
end
if 𝑝[⋅] is empty then

compute intersection point for 𝐸
1
+ Δ
1
and 𝐸

2
− Δ
2
and add

them to 𝑝[⋅]
end

end
return 𝑝[⋅]

Algorithm 1: Delta filter pseudocode.

Table 1: The multipoints filter matrix.

Points 1 2 3 4
1 1.00 0.80 0.40
2 1.00 0.40 0.20
3 0.80 0.40 0.00
4 0.40 0.20 0.00

(final) position of the tracked object. This calculation is done
by using the function 𝑓location defined by

𝑓location (𝑝 [⋅]) =
∑
𝑛

𝑖=0
𝑝 [𝑖] ∗ 𝑓weight (𝑖)

∑
𝑛

𝑖=0
𝑓weight (𝑖)

. (7)

In this function, 𝑝[𝑖] represents each point (𝑥, 𝑦) and
𝑓weight(𝑖) is the weight assigned to it. The weighted average of
these points allows us to obtain a fairly accurate position.

3.5. Fuzzy Localization. In our earlier attempt at trilateration
[22, 46], we determined that in many situations Cartesian
position of an object would be harder to deal with than
qualitative information. Therefore, we decided to divide the
localization environment into small zones where an object
could be in or not. We chose to divide the smart home
into a square zone of 900 cm2 (30 × 30) because it provided
a good tradeoff between precision and stability. The zone
determination of an object is intuitive; if the position is
inside 𝑍

𝑥
, then the object ⊆ 𝑍

𝑥
. However, there is a lot

of uncertainty in this process. For example, it is not clear
that an object placed at the corner of the zone 𝑍

1
(29, 0)

is not in the zone beside. Moreover, what happens if we
are wrong? An algorithm would base its calculations on the
assumption that the object is inside 𝑍

1
. In fact, if we have

two propositions “𝑂
1
⊆ 𝑍
𝑥
” and “𝑂

1
⊆ 𝑍
𝑦
,” it is not clear

that they are completely true or completely false. Fuzzy logic
is especially good to deal with situation where propositions
have a degree of truth like this.

We need to stress that this part of the localization is
optional; one should exploit it when intuitive and qualitative
positioning is better suited than more precise but less stable
solution. The example application for this support service
described in this paper needed Cartesian positioning to work
adequately, but we use the fuzzy module in other systems.

3.5.1. Fuzzy Linguistic Variable. The fuzzy inference engine
uses three fuzzy linguistic variables to reason about the zone
membership. The first one represents the data we try to
infer. The Likeliness of an object’s membership to a zone is
ranged from 0 (Not likely) to 100 (Very likely).The reasoning
on the likeliness is made from two other FLVs. The first
shows how strongly an object is in a zone. That is given by
comparing the approximate Cartesian position determined
from the trilateration step with the Cartesian coordinates of
the center of the zone for which likeliness is being calculated.
For example, if the object is positioneddirectly in the center of
the zone𝑍

3
, we can say that it isNear at 100% degree of truth.

The secondFLVuses information about the last appearance of
a tag in a zone (New, Recent, Old). We used that information
because a tag that has recently been seen in a zone will more
probably be in that zone at the next iteration than any other
zone. Figure 1 shows these three FLVs.

Finally, Figure 2 which represents our smart home
kitchen, and the four antennas on the walls, gives an overview
of the system. The big black square represents the estimated
Cartesian position. The three smaller squares represent the
estimated zone by the fuzzy logic module in order of likeli-
ness.
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Figure 1: The FLVs likeliness, distance, and last detection of an object.
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Figure 2: Live tracking console positioning an object in C6. The
black square is the final absolute position.

4. Discovering the Spatial Activities

For this paper, we decided to try our new trilateration algo-
rithm with a complete hybrid recognition model recently
published in [24]. These approaches rely solely on qualitative
spatial reasoning to perform recognition and thus constitute
a good testing ground for our localization algorithm. In
this section, we present the learning of the topological
relationships which is the prerequisite step to the recognition
phase. The summary of the learning phase is as follows.
We first have to collect position of the smart home entities
with the help of our positioning systems. Then, the second

phase of the method is to determine the spatial relationships
and create automatically a transactional learning structure
according to the chosen algorithm (Apriori, in this paper).
Finally, valid rules are automatically retained to model the
activity. The overall solution can be seen on Figure 3.

4.1. Spatial Reasoning. The first step of the learning phase
consists of gathering spatial information from a smart home.
We are interested in three kinds of Entities (𝐸 = 𝑂 ∪ 𝐴 ∪ 𝑅):
the objects 𝑂 (cup, kettle, book, etc.), the smart home area 𝐴
(kitchen, dining room, etc.), and the resident 𝑅. Our smart
home is a standard apartment that includes several types
of sensors (infrared sensors, pressure mats, electromagnetic
contacts, various temperature sensors, light sensors, and
RFID antennas). The smart home areas cannot move and
are therefore predetermined in the localization algorithm. An
area grossly corresponds to a room of the smart home. We
have two localization algorithms in use. The first one tracks
the resident using the infrared sensors that activate upon his
arrival into a new area. The second one is the trilateration
algorithm presented in this paper, which is used to track the
objects. The real objects of the smart home can have one
or many RFID tags depending on their size. The tags are
associated in the system with a type of object. Distinguishing
between the unique cup of coffee, for instance, would not be
useful in our context to infer the ongoing activity. Moreover,
this choice results in a greater scalability and flexibility. The
objects could be changed without modifying the system (or
the knowledge base) or could even be installed in a different
smart home infrastructure with only slight update.

From the obtained spatial information, we decided to
deploy the topological framework of Egenhofer and Franzosa
[26]. This framework has been created for the research
on Geographical Information Systems (GIS). In this work,
spatial entities are defined as a set of points either contained
in the boundary (𝜕) or in the interior (∘). The frame-
work defines the possible relationships between two entities
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𝑒
1
and 𝑒

2
with the formal intersection structure that fol-

lows: ⟨𝜕𝑒
1
∩𝜕𝑒
2
, 𝑒∘
1
∩ 𝑒
∘

2
, 𝜕𝑒
1
∩ 𝑒
∘

2
, 𝑒∘
1
∩𝜕𝑒
2
⟩. By using the simple

invariant empty property of sets, there are sixteen possible
relation types. However, only eight exist for physical regions
without holes. These relation types can be seen on Figure 4.

There are few significant adaptations we decided to do to
the framework. First of all, we prefer not to use mathematical
point as primitive. This is mostly for complexity considera-
tion, but a detailed discussion can be found in [47].Therefore,
we define the region representing the entities as being a circle
equation. The boundary of a region is also a little different
from a topological perspective. The boundary includes the
coordinates that fall under (8) where 𝜀 is a threshold fixed for
all different sizes of regions and (𝑎, 𝑏) is the center coordinates
of the circle:

(𝑟 − 𝜀)
2
≥ (𝑥 − 𝑎)

2
+ (𝑦 − 𝑏)

2

≤ 𝑟
2
. (8)

Second, since we seek to reduce the human workload,
we do not want to have to precisely calculate region size for
each type of object. Hence, the region associated with object
entities are qualitative (small, medium, large).The regions are
also bigger than the objects (twice the radius of the smaller
object that fall under the category) because we want a higher
number of possible relations. If we take the exact size of the

d = 10

2

Disjoint Touch
(r1 + r2) < d (r1 − 𝜀) + (r2 − 𝜀) ≤ d ≤ (r1 + r2)

1 r1 = 5 r2 = 3

d = 7

1 r1 = 5

r2 = 3
1

1

Figure 5: Identification of the type of spatial relationship with 𝜀 = 1.

physical objects, they could clearly not be overlapping. With a
larger number of types of relationships possible, our activity
models are more expressive. Finally, to reduce the number of
calculations, our system determines the relationship between
two entities by using the distance between their Cartesian
position and the radius of both regions. Figure 5 shows two
examples of how it is done in our model.

4.2. Extracting Spatial Knowledge. The next step in the learn-
ing phase consists of defining how our activities can be
generally represented with those relationships. In our model,
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Table 2: Examples of extracted rules.

Make Coffee PartiallyOverlap (Coffee, Cup)
Make Coffee Covered (Spoon, Cup)
Make Coffee Overlapped (Resident, Kitchen)
. . . . . .

we want to define a set of constraints𝐾with respect to (9) for
all ADLs we want to be able to recognize.

𝐾 = {𝑇 (𝑒
1
, 𝑒
2
) | 𝑒
1
, 𝑒
2
⊆ 𝑂 × 𝑂 ∪ 𝑅 × 𝐴,

𝑇 is a topological relation} .
(9)

In otherwords, wewant to extract representative relation-
ships between entities of various types: objects (𝑂), resident
(𝑅), and area (𝐴). Association rules mining algorithms are
well suited for this type of situation since their goal is
to extract strong relationships between elements in a large
transactional database. In previous work [24], we tested
different algorithms, but we found out that Apriori [25] is
excellent for the task. It is directly extended in our system, and
from the data formatting to the extraction of a set of rules,
everything works automatically. Table 2 shows examples of
such rules.

These rules represent the activity Make Coffee. In
Section 5, we show how they can be used to recognize it. The
observed relationships during an iteration each represents a
transaction in the training data structure. Besides, patterns
are not that frequent. Therefore, we have to select a low
confidence value for Apriori (≈15–25%). The confidence of
a rule is based on calculation of the support. The support is
simply a constraint of appearance of a pattern in the whole set
of data. From it, the confidence is calculated with (10),

Confidence (𝑋 󳨐⇒ 𝑌) =
Support (𝑋 ∪ 𝑌)
Support (𝑋)

. (10)

In the equation, 𝑋 is the rule antecedent(s) and 𝑌 the
consequent. Once we have extracted the rules, it is necessary

to filter the standard results in order to select only the valid
ones (corresponding to the format of Table 2). This step is an
integral part of the extended algorithm and does not require
a human intervention.

5. Human Activity Recognition

In the previous section, we have defined our new trilateration
approach and how we could automatically model a knowl-
edge base from topological relationships between entities of
the smart home from it. To perform recognition of ADLs,
we exploit a third algorithm (a modification of [23]) that
intuitively works by matchmaking the spatial observations
made during an iteration to its knowledge base. The overall
process is illustrated on Figure 6.

5.1. Spatial Observation. The first step of a recognition
iteration is to observe the environment. We suppose that
we have a functional smart home with a reference initial
state.Then, the observations are made on entities that change
the environmental state. Particularly, two types of relations
interest us (the same we learned): pair of objects (𝑂 × 𝑂)
and resident with the area (𝑅 × 𝐴). These observations are
extracted from the localization algorithms used to learn the
activities. The performance of the algorithm presented in
Section 3 is decisive for the performance of our recognition.
Every iteration, the recognition algorithm passes upon each
possible activity to establish a scoring from the set of
observations. This step is done in two parts. The objects’
relationships are first matched with the one in the knowledge
base. Then, If an activity has the same relationship, it gets 𝜑
points. If it has a similar relationship, it gets 𝜑 − 𝑤 points,
where 𝑤 is the sum of the edges’ weight from the observed
relation to the known one. The weight is illustrated on the
neighborhood topology graph on Figure 7.

For example, if the defined relation in the knowledge
base is PartiallyOverlap(𝑒

1
, 𝑒
2
) and the relation observed

is Disjoint(𝑒
1
, 𝑒
2
), the number of points gained from the

observation is 𝜑 ∗ (100% − 50% − 50%) = 0. On the other
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hand, if the observed relation is Covers(𝑒
1
, 𝑒
2
), the points

equal 𝜑 ∗ (100% − 20%) = 4𝜑/5. Obviously, we limit the
points from 0 to 𝜑 so if the weight exceeds 100% we never
get negative scores. Finally, considering that the Similarity
function returns the percentage of similarity from 0 to 100%,
the scoring of an activity (𝑎

𝛿,𝑖
) for the iteration 𝑖 is

𝑎
𝛿,𝑖
=

𝑎
𝑡,𝑖
∈𝑎
𝑇

∑

𝑛=𝑎
𝑡,0

𝑙
𝑗
∈𝐿

∑

𝑚=𝑙
0

𝜑 ∗ Similarity (𝑛,𝑚) , (11)

where 𝑎
𝑇
is the set of topological relationships defining the

activity 𝑎.

5.2. Choosing the Ongoing ADLs. The second step of the
recognition algorithm is to circumscribe the knowledge
base to find the ongoing activity. In other words, it has to
choose which ADL best explains the observations made up
until the current iteration. The plausibility of an activity
after 𝑖

𝑐
iterations is calculated by taking into account the

points earned until now. However, the past observations are
less important. In fact, if we give the same weight to all
observations, the algorithm would have a serious difficulty to
recognize a newongoingADL following another one. For that
reason, we use a proportionality function to weight on the
points obtained after each iteration. The plausibility function
below calculates the total plausibility score of the activity 𝑎
after 𝑖

𝑐
iterations:

plausibility (𝑎) =
𝑖
𝑐

∑

𝑖=0

𝑎
𝛿,𝑖
∗ 𝜙
𝑖
𝑐
−𝑖
. (12)

That is, the plausibility of 𝑎 is the sum of all the points
gained modulated by an inverted exponential function. The
constant parameter 𝜙 ∈ (0, 1) modulates the speed at which
the function tends to 0. The bigger it is, the longer iteration’s
score has an impact. The last step is to normalize the points
gained by the activities. This is done by dividing the score of
an ADL by the sum of the score of all ADLs. The set of ADLs
with normalized plausibility is defined by

Normalized ADLs =
𝑎
𝑖
∈ADL

⋃

𝑖=0

plausibility (𝑎
𝑖
)

∑
𝑥
𝑗
∈ADL
𝑗=0

plausibility (𝑥
𝑗
)

. (13)

Having a set containing the normalized plausibility of
activities is very useful for the step of hypothesis formulation.
The algorithm only has to select the activity with the highest
plausibility.

Figure 8: The smart home’s kitchen.

6. Implementation and Experiments

For this research, we conducted two sets of experiments
at our laboratory. The first one, which we describe in the
next subsection, was conducted to test our new trilateration
algorithm andwas published in [22].The second set consisted
of integrating the trilateration algorithm in to our spatial
method to learn and recognize activities of daily living.
We describe the tests in Section 6.2 that had as objective
to demonstrate the usefulness of the trilateration method.
Larger experiments on this new learning and recognizing
method have been published in [24], but they did not use
the elliptic trilateration which was not mature enough at
that time. These experiments were all conducted in our
smart home that is equipped with more than a hundred of
different sensors and effectors, which enable us to conduct
various kinds of experiments. In particular, we possess 8
RFID antennas/readers in the apartment to track the position
of the objects. These A-PATCH-0025 antennas of the com-
pany Poynting were designed to be waterproof and easy to
install. To increase their effectiveness, the antennas are placed
strategically to cover specific areas. Of these, four antennas
have been installed on the kitchen walls which is the zone
chosen for our experiments. The kitchen is a logical choice
because it is an area where there are multiple objects and
where precision is important to achieve good recognition
of ADLs. We have incorporated tags to approximately all
objects of the smart home taking care to select tags which had
relatively the same sensitivity [13]. Figure 8 shows a cluster of
images from different parts and angles of our smart home.

6.1. Experiments on the Localization System. In order to chal-
lenge our new tracking system and test its accuracy, we have
established an experimental setup which fairly represents the
reality smart environments. We wanted to cover as much
space as possible and a wider variety of zones in the kitchen.
This includes the two counters of 170 × 60 cm and 129 ×
60 cm, respectively, the oven, the sink, and also whole space
where there is nothing (only the floor). In addition, since
our algorithm uses zones with its fuzzy logic module, we
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Figure 9: Accuracy under various configurations.

divided the kitchen into 64 square zones of 30 cm per 30 cm.
However, 12 of them were ineligible because of the design of
the room and the refrigerator location. For the purpose of
these experiments, we used a cylindrical object made of four
tags oriented in different directions for a greater stability.

We established a detailed experimental protocol to obtain
meaningful results. We placed the object in the center of a
zone, and then we recorded all the data from the database
(the RSSI returned by each tag) for at least 400 iterations
(80 seconds), and we repeated this recording process for each
of the available zones of the kitchen. Data’s recording allows
us to compare more precisely the different algorithms by
eliminating the variations in the antennas’ reading.Therefore,
we can easily compare the efficiency of the proposed filters by
using different configurations of the algorithm. For example,
we can easily remove the Gaussian Mean Weighting filter in
order to verify its effectiveness with exactly the same data.

6.1.1. Analysis of the Results. The objective of the first series
of tests was to confirm that each filter contributed to improve
the model’s effectiveness. To this end, we changed the config-
uration of the algorithm by using the same data. A first series
was obtained using trilateration with circle and no filters to
give us a benchmark and progressively, we added filters until
the final configuration of our model. The obtained results
are presented in Figure 9. Note that for each configuration,
they are presented in terms of proximity from the center
of the zone in centimeters. What should be first noticed is
that the elliptical trilateration with all filter is much better
than the other configurations. Another interesting element
on the graph is the performance comparison between the
circle and the ellipse model. We can see that even without
the delta filter the elliptical version works better. It confirms
our predictions and the contrary would have been surprising
since our antennas are directional.

At the light of these results, it is clear that each proposed
filter improved the performance of the algorithm. In sum-
mary, on more than 1600 iterations and with an elliptical

model and all filters activated, we obtained an average
accuracy of ±14.12 cm and with the same settings but with a
circular trilateration, the accuracy was reduced to ±32.52 cm.
TheGaussianMeanWeighting filter also greatly improves the
accuracy.With this filter, the effect of the fluctuation in signal
strength is considerably reduced. Furthermore, as a result
of the activation of the Iteration Based Filter, most of the
aberrant false readings were eliminated. Without this filter,
the performance would be unstable and the accuracy lower.
Thedelta filter helps to find points that are, in some situations,
crucial for a proper localization. Often, ellipses are very close
one from the other, but they do not intersect. Therefore,
if we do not use this filter, these points would be ignored,
and the position would be less accurate. On the other hand,
the multipoint location filter assigns different weights to the
points of intersection; it modulates their value according to
their accuracy. After a full analysis of these results, we can
conclude that each of these components is effective, but their
combination provides good stability with a high-accuracy
rate.

The improvements brought by fuzzy logic filter are more
subtle to quantify. Indeed, by combining this module with
the History Fuzzy Zone filter, we found that it can remove up
to 71.43% of the zone changes that are unnecessary when an
object is in a critical location (i.e., almost between two zones).
In addition, the module also allows us to retrieve other data
that can be useful for some types of algorithms. Indeed, the
module returns us not only one zone butmany that are ranked
in order of likeliness. We are therefore, able to know the zone
with the second highest desirability, and this information is
even more interesting. In fact, we carried out some tests and
when the algorithm does not position correctly the tracked
object in the right area, 62.93% of the time, the second area
identified by the fuzzy logic module is the correct one.

6.1.2. Comparison with Results Presented in Related Works.
As we have seen in Section 2, there is a plethora of local-
ization algorithms in the literature. Many possess their own
advantages in their context of application over our method.
Nevertheless, compared to other approaches, our model
requires less equipment to be deployed and to be functional
since we did not use reference tags [11, 13, 14, 31]. Indeed,
without these tags, one does not need to perform calibration
and precise installation in a new environment. Speed is also
another very important criterion to evaluate performance
of a localization system. A fast system will be more likely
to perform well with the tracking of moving objects. On a
standard personal computer, we can track an object in only
few milliseconds. The system’s speed is, however, limited by
our RFID hardware (200ms). In addition, some of the filters
slow down the changes a little bit to around a second. Still,
most of the others have not reported the speed of their system,
and from those that did it, we are faster [13, 31]. Finally,
our system is not only faster and more flexible than other
approaches, but it is also more accurate. In fact, we obtained
an average accuracy of ±14.12 cm over an area of 6m2. Of
course, there are existing active RFID [12] or ultrasonic sys-
tems [15] that more precisely localizes objects, but as argued
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Table 3: Summary table of different location systems.

Authors Technology Technique Hardware Test area (m2) Speed (sec) Precision (cm)
Addlesee et al. 2001 [15] Ultrasonic Reference receivers 750 receivers 929 <1 3
Choi and Lee 2009 [27] Ultrasonic/RFID 14.4 N/R 1.6–2.4
Chen et al. 2010 [34] ZigBee Trilateration/RSSI 1 device/4 sensors 6 N/R 119
Jin et al. 2006 [48] Active RFID Reference tags 20 tags/4 antenna 40 N/R 72
Fu et al. 2009 [49] Active RFID Trilateration/RSSI N/R 200–300
Hekimian-Williams et al. 2010
[12] Active RFID Phase difference 1 tags/2 antenna 18 ≈1

Hähnel et al. 2004 [11] Passive RFID Reference tags 100 tags/2 antenna 784 N/R 100–140

Zhang et al. 2007 [35] Passive RFID Direction of
Arrival Simulation N/R 100

Vorst et al. 2008 [31] Passive RFID Reference tags 374 tags/4 antenna 125 1–3 20–26
Joho et al. 2009 [14] Passive RFID Reference tags 350 tags/1 antenna N/R N/R 35.5
Chawla and Robins 2011 [13] Passive RFID Reference tags 132 tags/1 antenna 8 ≈4–15 18–35
Lei et al. 2012 [32] Passive RFID Reference tags High/1 antenna 24 N/R 20
Our approach 2012 Passive RFID Trilateration/RSSI 4 tags/4 antenna 6 ≈1 14

in Section 2, these technologies present many disadvantages
(need batteries, robustness, cost, etc.) thatmake themdifficult
to use at a larger scale in smart homes. Table 3 presents a
summary of the comparison with the main systems.

6.2. Recognition of Daily Activities. The second phase con-
sisted of integrating the new enhanced trilateration method
into the complete activity recognition solution presented
throughout Sections 4 and 5. The knowledge base of the
first version of this algorithm contained ten activities [23]
completely defined by an expert. However, to validate the per-
formance of the approach presented in this paper, this time it
was entirely learned with a version of the extended Apriori
exploiting the spatial data extracted by our trilateration
method. The learning phase of our experiments necessitated
performing all activities three times for a total time of 112
minutes (3.7min/activities) and approximately 163 thousand
lines of data in total (which RFID accounts for the most
part). The number of performances could have been less for
simpler activities such as reading a book, but for consistency,
we decided to standardize the learning phase. The algorithm
was run on each dataset and 41 valid rules were mined (the
whole knowledge base). The tens activities that were learned
are Make Hot Chocolate, Make Coffee, Make Tea, Make Cold
Chocolate, Read a Book, Watch TV, Wash Hair, Get a Bowl of
Cereals, Make Spaghetti, and Make Macaroni.

6.2.1. Analysis of the Results. We tested thoroughly our
method on a selection of four similar ADLs that were accom-
plished in the smart home infrastructure. We needed ADLs
that had at least few objects movement involved to see the
improvement or our method compared to the literature. As
youwill see, the newmodel can easily distinguish very similar
activities. Traditionally, the metric used to evaluate recog-
nition of activities is the recognition rate which is the rate

of success of the recognition for a sequence of observations.
From that standpoint, the learning and recognizing method
deploying our trilateration algorithm got 84% recognition
(10/12).This result is excellent considering that our algorithm
was not optimized to get the most of the new precision.
However, the recognition rate is incomplete because it ignores
the fact that some algorithms perform online recognition
while other does it offline. In our context, some overlook
that we need to recognize ongoing ADLs as fast as possible.
We choose a new measure that we call the correct duration
rate (CDR), which is the percentage of the duration of the
activity during which the algorithm formulated the correct
hypothesis. This measure should be accompanied by the
speed at which the algorithm proposes a new hypothesis (our
spatial one give new hypothesis every 500ms). For example,
if the algorithm’s hypothesis was correct for 10 on 20 try in
the last ten seconds, then the CDR equal 50%. Obviously,
the CDR cannot be 100% since during the realization of an
activity there is a long period where nothing happens. The
result of the recognition can be seen on Figure 10.

It is noteworthy to say that these ADLs correspond to
fine-grained activity recognition and that most systems in
the literature cannot differentiate between them. As you can
see the CDR is good for all activities, but the Make Tea
activity was harder to distinguish. An interesting point here
is that most of the time the algorithm was wrong, it was
confused with the similar activities. In particular, if we had
used Make Beverage instead of Make Coffee, Make Tea, and
Make Hot/Cold Chocolate, the CDR would have been near
80%. Finally, we are positive that our recognition approach
could have been improved to take advantage of the much
better accuracy provided by the new trilaterationmethod, but
the goal of these experiments was to demonstrate that such
algorithm could gracefully be integrated into smart home
algorithms. Moreover, our knowledge base was maybe a little
bit small to see completely the effects of a better tracking
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system. With a greater number of possible activities grow
the importance of having a well-definedmodel to distinguish
between the possibilities.

7. Conclusion and Future Work

In this paper, we described our new elliptical trilateration
system based on passive RFID technology. We presented the
results of our experiments with it in real smart home context
and compared them with the most advanced approaches in
the literature. This new model possesses several advantages
in the context of smart home since it does not rely on costly,
invasive, or hard to deploy technologies. We demonstrated
that each of the developed filters addressed a crucial problem
in the trilateration process and the potential applications of
such method. Secondly, we described a new learning and
recognition method for the activities of daily living. This
model relies solely on spatial information and integrates
the new trilateration method in order to track the smart
home objects in real time. We tested it in the smart home
from a knowledge base of ten learned activities, and we
obtained important improvement over the latest version of
our algorithm, which implemented standard trilateration.

Despite our promising results, there still remain some
limitations that we need to work on in the near future. First,
we need to test our system on a larger scale, with much
more activities and a greater number of test. Also, it would
be interesting to address the problem of three-dimensional
localization. Such an information could be strategically
exploited by a recognition method to draw more accurate
profile of the activities.

Conflict of Interests

The authors certify that they have no interest of any form in
the company “Poynting” cited in the paper. None of them
have direct financial relation with the trademarks mentioned
and the company was mentioned for the sole purpose of
reproducibility of their experiments.

Acknowledgments

Theauthorswould like to thank theirmain financial sponsors:
the Natural Sciences and Engineering Research Council of
Canada, the Quebec Research Fund on Nature and Tech-
nologies, and the Canadian Foundation for Innovation.They
would like to thank their health regional center for provid-
ing them the Alzheimer participants in their experiments.
Finally, special thanks go to their neuropsychologist partners
and the graduate students who indirectly worked on this
project by supervising the clinical trials with patients.

References

[1] United Nations,World Population Ageing 2009, United Nations,
Department of Economic and Social Affairs, Population Divi-
sion, 2010.

[2] K. Bouchard, B. Bouchard, and A. Bouzouane, “Guideline to
efficient smart home design for rapid AI prototyping: a case
study,” in Proceedings of the 5th International Conference on
Pervasive Technologies Related to Assistive Environments, Crete
Island, Greece, 2012.

[3] C. Ramos, J. C. Augusto, and D. Shapiro, “Ambient intelligen-
cethe next step for artificial intelligence,” IEEE Intelligent Sys-
tems, vol. 23, no. 2, pp. 15–18, 2008.

[4] L. Fiore, D. Fehr, R. Bodor, A. Drenner, G. Somasundaram, and
N. Papanikolopoulos, “Multi-camera human activity monitor-
ing,” Journal of Intelligent and Robotic Systems, vol. 52, no. 1, pp.
5–43, 2008.

[5] J. Hoey, P. Poupart, A. V. Bertoldi, T. Craig, C. Boutilier, and A.
Mihailidis, “Automated handwashing assistance for persons
with dementia using video and a partially observable Markov
decision process,” Computer Vision and Image Understanding,
vol. 114, no. 5, pp. 503–519, 2010.

[6] M. Buettner, R. Prasad,M. Philipose, and D.Wetherall, “Recog-
nizing daily activities with RFID-based sensors,” in Proceedings
of the 11th ACM International Conference on Ubiquitous Com-
puting (UbiComp ’09), pp. 51–60, Orlando, Fla, USA, October
2009.

[7] B. Bouchard, S. Giroux, and A. Bouzouane, “A keyhole plan
recognitionmodel for alzheimer’s patients: first results,”Applied
Artificial Intelligence, vol. 21, no. 7, pp. 623–658, 2007.

[8] J. R. Smith, K. P. Fishkin, B. Jiang et al., “RFID-based techniques
for human-activity detection,”Communications of theACM, vol.
48, no. 9, pp. 39–44, 2005.

[9] T. Van Kasteren, A. Noulas, G. Englebienne, and B. Kröse,
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