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A B S T R A C T   

The application of transcriptome analyses in forensic genetics has experienced tremendous growth and devel-
opment in the past decade. The earliest studies and main applications were body fluid and tissue identification, 
using targeted RNA transcripts and a reverse transcription endpoint PCR method. A number of markers have 
been identified for the forensically most relevant body fluids and tissues and the method has been successfully 
used in casework. The introduction of Massively Parallel Sequencing (MPS) opened up new perspectives and 
opportunities to advance the field. Contrary to genomic DNA where two copies of an autosomal DNA segment are 
present in a cell, abundant RNA species are expressed in high copy numbers. Even whole transcriptome 
sequencing (RNA-Seq) of forensically relevant body fluids and of postmortem material was shown to be possible. 
This review gives an overview on forensic transcriptome analyses and applications. The methods cover whole 
transcriptome as well as targeted MPS approaches. High resolution forensic transcriptome analyses using MPS 
are being applied to body fluid/ tissue identification, determination of the age of stains and the age of the donor, 
the estimation of the post-mortem interval and to post mortem death investigations.   

1. Introduction: transcriptomics and potential forensic utility 

In 2008, when RNA analysis had barely just arrived on the scene in 
forensic genetics, Bauer published a review on “RNA in forensic science” 

[1]. He anticipated the high potential of RNA analyses for solving 
forensic questions, e.g. for body fluid identification, wound age deter-
mination, estimation of the post-mortem interval (PMI), estimation of 
the age of stains and determination of the cause of death. Since then, 
many RNA-based studies have been published on these topics, especially 
on body fluid identification applications. Determining the cellular 
(pheno)type from which the DNA originated can be important in sup-
porting sexual versus social intercourse, for example, by distinguishing 
menstrual blood from peripheral blood on suspected perpetrators in 
sexual assault cases [2]. Molecular methods for cellular phenotype 
determination (i.e. body fluid and tissue identification) include classical 
biochemical methods, mainly singleplex antigen-antibody reactions [3], 
as well as more specific, multiplex methods based upon the tran-
scriptome [4,5], the epigenome [6,7], the proteome [8] and even the 
microbiome [9]. While all of these "-omes" contain tissue specific bio-
markers, the transcriptome is of particular interest, since most of the 

information in the genome (including sequence variation) is reproduced 
in multiple copies of RNA. 

Due to a decrease in operational costs and an increase in throughput 
in the last two decades, Massively Parallel Sequencing (MPS) has revo-
lutionized research and diagnostics [10]. Nowadays, whole genomes or 
transcriptomes can be studied. The transcriptome as used in this review 
is the complete set of RNA transcripts (either coding or non-coding) in a 
specific type of cell, cell population or tissue. Alongside, approaches for 
the targeted analyses of subgenomic DNA regions and specific RNA 
biomarkers exist. The huge amount of data being generated requires 
suitable analysis pipelines and sophisticated knowledge of bioinfor-
matics. Although, the degraded nature and low abundance of nucleic 
acid species render forensic samples a genuine challenge for any MPS 
experiment, several studies showed promising results when analyzing 
these kind of samples [11,12]. Also whole transcriptome sequencing 
(RNA-Seq) was successfully applied to forensic samples [13–15]. 

What have fundamental studies revealed about the human tran-
scriptome [16–19]? Although the approximately 21,000 known protein 
coding genes constitute ~2% of the genome, > 80% of the genome may 
be transcribed into different RNA species (although not in a single 
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tissue) [17,20]. Primary transcription is recognized as the major driver 
of cellular specificity and therefore the transcriptome is an indicator of 
cellular phenotype [21]. It is this fact that primarily makes RNA typing 
potentially useful in forensic genomics. Importantly, genes vary more 
across tissues (47% of total variance in gene expression) than individuals 
(4% of total variance) [21]. Approximately 12% of genes are preferen-
tially enriched in a single tissue (i.e. > 5x compared to other tissues) and 
10% of transcripts in a tissue come from expression-elevated genes 
(differential expression in several tissues compared to most) [19]. Only a 
small percentage of genes are exclusively expressed in a single tissue (<
200 total, i.e. < 1%) [21]. On the other hand, almost half of all genes 
(44%) are expressed in all tissues (i.e. housekeeping genes) [21,22]. 
Additional tissue specific variation is obtained due to the fact that ~50% 
genes express tissue dependent isoforms because of alternative tran-
scription start and termination sites, although not so much variation as 
initially believed due to alternative splicing [21]. 

Among the different types of RNA, only a small proportion is transcribed 
into protein coding messenger RNA (mRNA) whereas the vast majority of the 
genome is transcribed into non-coding RNAs (ncRNAs) that do not encode 
information about proteins. ncRNAs can be sub-classified by length into long 
non-coding RNAs (lncRNAs) and small non-coding RNAs (sncRNAs). lncRNAs 
comprise a highly heterogeneous group of long transcripts (> 200 nucleo-
tides) with a wide range of structures and subcellular locations, which are 
involved in post-transcriptional modifications, splicing and epigenetics [23]. 
sncRNAs are between 18 and 200 nucleotides in length and have diverse roles 
which - in conjunction with other molecules - involve gene regulation through 
RNA interference, RNA modification or spliceosomal involvement [24]. 
MicroRNAs (miRNA) are a particular type of small (approximately 22 nu-
cleotides) single-stranded non-coding RNA molecules with regulatory func-
tions [25]. miRNAs participate in many physiological and pathological 
processes, such as proliferation, differentiation and cancer development [26]. 
Piwi-interacting RNAs (piRNAs) form RNA-protein complexes through in-
teractions with Argonaute proteins and are mostly involved in the epigenetic 
and post-transcriptional silencing of transposable elements [27]. Circulating 
extracellular RNA (exRNAs) are another type of sncRNAs and have been 
identified in the blood circulation and in several body fluids [28]. Small 
nuclear RNAs (snRNAs) are involved in the assembly of the spliceosome and 
the splicing of pre-mRNA [29]. Small nucleolar RNAs (snoRNAs) are located 
in the nucleus and process/modify rRNA [30]. Circular RNAs (circRNA) are 
not linear but form a loop, where the 3’-end is covalently linked to the 5’-end. 
They originate from a special type of pre-mRNA splicing (back-splicing) and 
are expressed in a tissue and cell specific manner [31,32]. 

Why is transcriptomics useful in forensic genetics? Despite its ther-
modynamic instability compared to DNA, RNA of sufficient quality and 
quantity for analysis is recoverable from evidentiary items typically 
found in forensic biology casework [33–38]. It is possible to co-extract 
DNA and RNA [4,33,39]. Since the RNA is converted to DNA (cDNA) 
the same downstream chemical analysis as DNA can be conducted using 
the same analytical platforms. Contrary to genomic DNA where two 
copies of an autosomal DNA segment are present in a cell, multiple 
genome segments are copied into RNA species hundreds or thousands of 
times in a cell, a copy number somewhat akin to mtDNA. This increase in 
copy number may help ameliorate the reduction in RNA target number 
due to normal RNA degradation that takes place during the drying phase 
after the physiological fluid has been deposited ex vivo. Importantly for 
future investigations, genomic information is also directly encoded and 
reproduced in RNA transcripts. Thus, the emerging MPS technology 
permits genomic-encoded RNA data to be accessed. This digital gene 
expression technology permits the direct counting of transcripts and 
variants encountered in a sample and facilitates quantitative analysis. 

2. Cellular phenotyping: body fluid and organ tissue identification 

2.1. Body fluid identification 

Identifying the origin of a biological trace is important for the 

contextualization of different stains and therefore may provide crucial 
information to law enforcing authorities. Body fluids are routinely 
identified by presumptive tests (chemical, immunological and protein 
catalytic activity tests) as well as spectroscopic methods and microscopy 
[3,40]. Unfortunately, these tests suffer from different drawbacks such 
as cross-reactivity with other substances or tissues, they are not avail-
able for all forensically relevant body fluids (e.g. vaginal secretion) and 
the differentiation between related body fluids such as blood and men-
strual blood is difficult. Today it is possible with RNA profiling to 
identify with a high degree of certainty the presence of most of the 
commonly encountered forensically relevant body fluids and tissues in 
dried stains, including blood, semen, saliva, vaginal secretions, men-
strual blood and skin. Traditionally PCR/CE methods were applied 
[41–44], but increasingly in the past few years MPS methods have being 
established. In a proof-of-principle study Zubakov et al. presented an 
approach for the simultaneous analysis of forensic STRs, amelogenin, 
and forensic mRNAs based on parallel targeted DNA/RNA sequencing 
using the Ion Torrent PGM [45]. The assay included 9 autosomal STRs, 
the AMELX/AMELY system for sex identification and 12 mRNA markers, 
using separate workflows for RNA and DNA analysis. Unambiguous 
mRNA-based tissue identification was achieved in all samples from all 
forensically relevant tissues tested, and STR sequencing analysis of the 
tissue sample donors was 100% concordant with conventional STR 
profiling. Consequently, the feasibility of simultaneously sequencing 
various nucleic acid markers of different types (i.e. STRs, amelogenin 
insertion/deletion, and mRNAs) for different forensic purposes (i.e. in-
dividual, sex, and tissue identification) was demonstrated. Lin et al. used 
MPS data from fresh and degraded body fluids to identify regions of high 
read coverage within target transcripts, representing particularly stable 
sequences, designated as “transcript stable regions” or “StaRs” [46]. 
They propose a new concept whereby primers targeted to StaRs are able 
to consistently and specifically amplify a wide range of RNA biomarkers 
in various body fluids of varying degradation levels. Hanson et al. 
developed a targeted RNA sequencing assay for the identification of 
body fluids [47]. The assay, which was designed for Illumina MiSeq/FGx 
platforms, contains 33 markers for the identification of blood, menstrual 
blood, semen, saliva, vaginal secretion and skin. The sensitivity and 
specificity of the assay was verified, and it was successfully applied to 
single source and mixed stains. Two classification methods, the per-
centage of reads in a sample that are due to each of the 6 body fluids/ 
tissues tested and inter-sample differential gene expression revealed by 
agglomerative hierarchical clustering, were investigated to permit 
inference of the body fluid/ tissue. Dorum et al. used this MiSeq data set 
to build a probabilistic model based on partial least squares (PLS) fol-
lowed by linear discriminant analysis (LDA) that predicts the origin of a 
stain [48]. The model incorporates quantitative information (MPS read 
counts) rather than just presence/absence of markers and resulted in 
improved predictions. The model was also successfully applied to mixed 
body fluid samples to identify the individual components in the mixture. 
A collaborative exercise within the EUROFORGEN/EDNAP laboratories 
was organized to test the efficacy of targeted mRNA sequencing to 
identify body fluids [49]. The above-mentioned Illumina MiSeq/FGx 
assay and an in-house assay for the Ion Torrent PGM/S5 platform 
(containing 29 markers) were evaluated. There was some 
inter-laboratory variability in read counts, but overall the results of the 
laboratories were similar. The in-house PGM/S5 workflow seemed to be 
less reliable with low input samples. Recently, an MPS assay on the Ion 
S5 system with optimized primer sets for body fluid identification was 
introduced [50]. The presented prototype assays suggest that the anal-
ysis of mRNA by targeting body fluid/ tissue specific amplicons is a 
promising tool for body fluid identification. The corresponding results 
will serve as a basis for improvements regarding marker selection, li-
brary preparation and sequencing. 

Due to their tissue-specific expression, miRNAs are also suited for 
body fluid identification [51–55]. Several body fluid specific miRNA 
markers were identified using conventional methods, but most of the 
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candidate miRNAs were not concordant among the different studies 
[56]. Seashols-Williams et al. sequenced the whole miRNome from 
blood, feces, menstrual blood, saliva, semen, urine and sweat [57]. 
Several body fluid specific miRNA markers as well as markers for data 
normalization have been identified. Wang et al. investigated around 
2600 miRNAs in blood and semen samples [58]. In the end, 6 blood- and 
19 saliva-specific miRNA markers were identified. Based on whole 
miRNome data, Dorum et al. used a PLS-DA model do predict the origin 
of different forensically relevant body fluids (blood, menstrual blood, 
saliva, semen, skin and vaginal secretion) [59]. With 100 miRNA 
markers a prediction accuracy of 0.98 could be obtained, with 9 markers 
a prediction accuracy of 0.93 was achieved. 

piRNAs were also investigated as candidate markers for body fluid 
identification [60]. Wang et al. sequenced small RNA libraries from 
blood, menstrual blood, saliva, semen, skin and vaginal secretion. Out of 
376 candidate piRNA markers, 37 piRNAs were sufficient to discrimi-
nate most biological samples using a PLS-DA model. Five piRNAs were 
further evaluated in a TaqMan RT-qPCR assay. Three of the piRNAs can 
distinguish between blood and menstrual blood, while two piRNAs are 
useful for the discrimination of saliva and vaginal secretion. 

2.2. Organ tissue identification 

Determination of the organ source of tissues from crime scenes may 
aid in shootings and other investigations. The specific challenges with 
organ tissue samples from crime scenes are limited biological material, 
putrefaction, or damage due to crushing or dehydration. Traditionally, 
tissues have been identified using immunological or histological 
methods [61–65]. Recently, assays for tissue identification based on 
mRNA or miRNA have been developed, based on PCR/CE-methods 
[66–69]. In addition, a male (RPS4Y1) and female (lncRNA XIST) 
RNA marker to identify the sex of the donor was introduced [70]. Lin-
denbergh et al. developed an endpoint multiplex RT-PCR assay con-
taining 14 organ tissue-specific markers (two per organ), a general 
muscle, blood and 18S-rRNA markers to analyze different samples such 
as neat organ and blood as well as mixed and mock casework samples. 
The assay showed good sensitivity and specificity and was able to 
identify components of mixtures [66]. In a follow up study, species 
specificity was confirmed by analyzing various human tissues (brain, 
lung, liver, skeletal muscle, heart, kidney, and skin tissue), different 
human body fluids (blood, menstrual blood, nasal mucosa, saliva, 
semen, vaginal mucosa) and animal samples (cat, dog, guinea pig, rab-
bit, cow, chicken, pig, sheep) [68]. Based on literature and data base 
searches, Lux et al. identified selected mRNA (C1orf61) and miRNAs 
(miR-124a, miR-124*) as candidate markers for the identification of 
brain tissue [67]. These markers were successfully tested on ballistic 
trace samples recovered from the inside of guns that were used for 
suicidal or homicidal contact shots. Sauer et al. evaluated 15 potential 
miRNA markers for the identification of brain, skeletal muscle/ general 
muscle, kidney, lung, skin, heart and liver using RT-qPCR [69]. They 
found five robust miRNA markers for the identification of brain, heart 
and skeletal muscle, liver and skin, but no reliable markers for lung and 
kidney. The qPCR-method is applicable to realistic forensic samples e.g. 
mixtures, aged and degraded material as well as traces generated by 
mock stabbings and experimental shootings at ballistic models. 

In recent years, several studies employing MPS for organ tissue 
identification have been published. Based on literature and database 
searches, Hanson and Ballantyne developed an MPS assay, testing for 
the presence of 10 organs/tissues (adipose, brain, heart, intestine, kid-
ney, lung, liver, skeletal muscle, stomach, trachea) by using 46 mRNA 
markers. Commercially available organ RNA (adipose, brain, colon, 
heart, intestine, kidney, lung, liver, skeletal muscle, spinal cord, stom-
ach, trachea) and collected body fluid samples (blood, buccal, menstrual 
blood, semen, vaginal secretion) were used to test the assay [71]. The 
assay proved to be very specific, capable of detecting mixtures and 
showing low cross-reactivity with non-target body fluids or tissues. In 

follow up studies, the assay was successfully applied to various types of 
cadaver samples, tissue samples with different PMI as well as mock and 
bona fide casework samples [72,73]. 

3. Assigning body fluids to donors in mixed body fluid stains 

Although it is now theoretically possible to definitively identify the 
most relevant body fluids in a non-physically separable mixture, it is not 
yet possible to directly link specific body fluids to individual DNA pro-
files in the mixture. The latter is needed to evaluate source versus sub- 
source level propositions as part of a robust and accurate mixture 
deconvolution and DNA interpretation process. However, it is not 
straightforward to combine evidence from STRs and RNA/ presumptive 
tests to associate donors and body fluids, unless gender-specific body 
fluids are present. One plausible approach for associating body fluids 
and donors would be to compare mixture ratios in DNA and RNA; 
however, Harteveld [74] and Ingold [75] discourage this approach 
based on their CE and MPS results. Several publications propose the use 
of Bayesian networks to combine different types of evidence [76–78]. 
These are all based on presumptive tests to identify body fluids. A 
problem with the conditional probabilities based on presumptive tests 
that is needed in such a Bayesian network is that they to some extent 
may be case and laboratory specific, and so their use should be carefully 
considered for each case. 

The presence of coding region SNPs (cSNPs) in body fluid specific 
mRNA transcripts enable the direct assignment of a body fluid to a 
specific individual in the mixture and exclude other individuals from 
contributing that body fluid. In a preliminary study Ingold et al. inves-
tigated 35 cSNPs in a targeted mRNA MPS assay for the Illumina MiSeq 
platform [79]. The cSNPs were specifically chosen for each forensically 
relevant body fluid with the aim of being highly discriminating between 
European individuals. In addition, a DNA MPS assay was introduced for 
the detection of the 35 selected cSNPs in genomic DNA (gDNA), to 
confirm the discriminatory power of these markers and, for comparison 
purposes, to determine the cSNP genotypes of the mixture contributors. 
In a proof-of-concept study by the same authors this cSNP panel was 
tested and evaluated more extensively [75]. This set of 35 cSNPs seems 
promising with regard to linking a body fluid to a donor, although more 
cSNPs are required to increase the discrimination power. Several sce-
narios were evaluated, including when the donors had contributed 
different body fluids as well as when they had contributed the same body 
fluid. The cSNP assay can also be used for body fluid identification, 
although the performance was not as good as a previously described 
body fluid specific 33 mRNA transcript assay [47]. Several of the cSNPs 
are located on the same gene, which may introduce linkage disequilib-
rium (LD). The implication of LD is that allele frequencies on different 
cSNPs cannot be regarded as independent in match probability calcu-
lations, and we need to handle haplotypes instead. This involves 
merging the cSNPs found to be in LD into one polymorphic unit. For 
cSNPs in the same amplimer, phased haplotypes can also be retrieved, 
which means they can be regarded as a microhaplotype. In addition, this 
cSNP panel was tested in a collaborative exercise within the EURO-
FORGEN and EDNAP laboratories [80]. Recently, an MPS assay on the 
Ion S5 system comprising a set of 21 cSNPs in body fluid specific mRNA 
transcripts (7 blood, 8 semen, 6 saliva) was reported [50]. The assay can 
identify all forensically relevant body fluids and skin as well as differ-
entiating blood, semen and saliva transcripts from different individuals. 
The data from these prototype assays demonstrate that cSNPs can 
potentially directly link body fluids/ tissues with specific donors in 
mixed body fluid stains. However, additional markers are needed to 
increase the discrimination power in each body fluid/ tissue category. 
The assay performance varied among the cSNP markers which can result 
in low coverage. Still, even at high coverage, genotype calling can be 
difficult due to pseudo-homozygous phenomena with some of the cSNP 
markers. Therefore, the interpretation of cSNP data remains challenging 
and more work in this area is needed. 
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Recent non-MPS approaches to the use of cSNPs for assigning body 
fluids to specific DNA donors have been reported. Wang et al. explored 
the consistency of cSNP analysis results from DNA and RNA data using a 
single base extension (SBE) method (SNaPshot) [81]. Six blood-specific 
cSNPs were analyzed at the DNA and RNA level, using gDNA and cDNA 
specific primers. The study showed a high consistency of cSNP analysis 
results between DNA and RNA. Liu et al. selected five blood-specific 
mRNA biomarkers (SPTB, CD3G, AMICA1, ANK1, and GYPA) that 
encompass 16 cSNPs, to identify individuals in mixture samples 
composed of two body fluids [82]. They also used a multiplex PCR and 
SBE (SNaPshot) approach. The assay showed good sensitivity in 
detecting trace amounts of peripheral blood mixed with other body 
fluids (1:100) and a combined discrimination power (CDP) of 0.99929 in 
the Chinese population. Although an SBE approach is easier to apply and 
cost-effective, this method will not circumvent the challenges with cSNP 
data interpretation, as outlined above. 

4. Determination of the age of stains (time since deposition, 
TsD) 

Information on the age of a trace, or more precisely, the time since 
deposition (TsD) is crucial for evaluating the relevance of evidence in 
the investigative process. For example, if the trace has been deposited at 
the estimated time point of the crime, it has a high relevance while the 
relevance of older/younger traces is low, because deposition might not 
be related to the crime itself. Several techniques for TsD determination 
have been exploited, most of which track changes in the optical char-
acteristics of blood [83,84]. However, these methods are limited to 
colored stains and are not easily transferred to white or nearly colorless 
traces such as saliva, semen or vaginal secretion. Novel TsD technologies 
commonly involve the analysis of the time-dependent degradation of 
biomolecules such as DNA or RNA. These biomolecules degrade over 
time and show differing persistence rates. Initial studies investigating 
the degradation of RNA were mostly performed in bloodstains but also 
in saliva, semen and plucked hair. It was suggested that the ratio of two 
amplicons originating from housekeeping genes (e.g. ACTB, GAPDH, 
18S-rRNA) with differing degradation rates could be used to assess the 
age of a stain [85–89]. 

Lin et al. used a whole transcriptome sequencing (RNA-Seq) 
approach for characterizing the differential RNA degradation in 
different body fluids [13]. RNA was analyzed from fresh and aged (up to 
six weeks old) blood, menstrual blood, oral mucosa/saliva and vaginal 
secretion samples. To evaluate the quality and degradation level of the 
RNA, RNA integrity numbers (RIN) were assessed (10 indicates an intact 
sample, and 1 a fully degraded sample [90]). They found that RIN values 
of blood decreased (8.2–2.4) with increasing age, while oral mucosa, 
menstrual blood and vaginal secretion showed constantly low RIN 
values (4–1) throughout the six-week study period. All but one blood 
sample showed RIN values < 8, which is below the recommended RIN 
values for RNA sequencing. However, Lin et al. demonstrated that RNA 
sequencing can be performed with forensic samples, which are degraded 
as well as of low quality. 85% of all samples showed a Qscore of > 30, 
indicating high sequencing quality. The authors state that for RNA-Seq a 
high RNA input seems to be more important than high RIN values, since 
many samples with low RIN values generated high sequencing output. 
About 90% of blood and fresh menstrual blood reads could be aligned to 
the human reference genome, in contrast to 26–88% of oral mucosa and 
5.6–59% of vaginal section reads. Since the oral cavity as well as the 
genital region are microbiota-rich environments, this finding would be 
expected [91–93]. Besides, they detected and confirmed known body 
fluid specific mRNA markers in samples of varying ages and presumably 
in differing states of degradation. 

Weinbrecht et al. used RNA-Seq to analyze and characterize the time 
dependent degradation of blood, saliva, semen and vaginal secretion 
[14]. Samples were collected from two donors per body fluid and aged at 
room temperature (protected from light) for up to 1 year. 80–90% of 

blood and semen reads were of human origin. In contrast, only 5–10% of 
saliva and vaginal secretion reads were of human and 90% were of 
bacterial origin. Global transcript abundance declined over time in 
blood, semen and vaginal secretion samples. However, specific tran-
scripts disappeared with differing rates. The greater the initial transcript 
abundance was, the longer a transcript could be detected. But the rate at 
which common transcripts disappeared varied between body fluids. 
There was no correlation between the length of a transcript and the 
degradation rate. Also, secondary structures seemed not no influence the 
persistence rate. They also observed that in dried stains the 5′ end of an 
mRNA transcript degrades faster than the 3′ end [94]. This differential 
degradation pattern can be followed with a qPCR assay that quantifies 
~90 bp amplicons produced from the 5′ and 3′ ends of 4 transcripts 
chosen from the transcriptome of blood. They reported that the age of 
blood stains could herewith be accurately estimated within 2–4 weeks 
for stains less than 6 months of age and within 4–6 weeks for stains 6 
months to 1 year old. 

Salzmann et al. sequenced total RNA from fresh and aged (up to 9 
months) blood, menstrual blood, saliva, semen, skin and vaginal secre-
tion [15]. In their experimental setup, rRNA depletion (commonly used 
in mRNA-Seq studies to improve coverage) had a negative influence on 
the sequencing quality and also the downstream analyses. RNA degra-
dation was assessed with transcript integrity numbers (TIN). TINs assign 
a score ranging from 0 to 100 to each transcript, where 0 indicates that 
no fraction of the transcript could be reconstructed by the sequencing 
reads and 100 represents a fully intact transcript. Aged samples showed 
in general a higher level of RNA degradation than fresh ones. In addi-
tion, transcriptome profiling was capable of identifying source-specific 
signatures from human RNA. 

Results of these studies contribute to our understanding of mRNA 
degradation in forensically relevant body fluid stains, in ways that may 
lead to developing a tool to estimate the age of a stain at a crime scene. 
This knowledge is also relevant for choosing RNA markers that exhibit a 
relatively high degree of stability and are therefore suited for particular 
applications (e.g. reliable body fluid identification). Also, targeting 
stable amplified regions (StaRs) for primer design may improve the 
amplification of target transcripts in degraded body fluid samples [46]. 

5. Determination of the donor age 

Establishing the age of an unknown person can provide important 
information in police investigations, for example to narrow down the 
pool of suspects or for the identification of unknown human remains. A 
distinction is made between chronological and biological age [95,96]. 
The chronological age is the time elapsed since birth. The biological age 
is the age based on a cellular level, which is influenced by individual 
factors such as chronic diseases, epigenetics, lifestyle and environmental 
impacts. In a forensic context, age estimation is commonly performed 
with morphological analysis based on the radiological examination of 
dental and skeletal developmental stages [97]. However, these ap-
proaches are not applicable for retrieving the age of an unknown person 
from biological samples or traces obtained at crime scenes. 

Human exceptional longevity represents an extreme phenotype and 
studies have shown that centenarians exhibit a remarkable compression 
of morbidity and a resistance to otherwise lethal illnesses occurring 
earlier in life, providing important insights into the underlying molec-
ular mechanisms of aging [98]. In general, aging is the gradual decline 
of physiological functions leading to age-dependent fitness loss, diseases 
and eventually mortality [99]. The process of aging is characterized, and 
likely influenced, by gradual alterations of biomolecules such as telo-
mere repeat length, mitochondrial DNA mutations, accumulation of 
advanced glycation end products (AGEs), decline in signal joint T-cell 
receptor rearrangement excision circles (sjTRECs), aspartic acid race-
mization (AAR), epigenetic modifications and gene expression changes 
during the human lifespan [95,100–106]. Among these age-associated 
biomarkers, epigenetic aging clocks represent the most accurate 
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models for age prediction so far and have therefore attracted attention in 
the forensic field [107–109]. However, the required quantity of 
high-quality DNA for DNA methylation analysis is often not available in 
forensic trace material. Therefore, prediction models based on 
age-related changes in the transcriptome seems to be a promising 
alternative for the age estimation of the person who contributed a 
forensic sample. 

Numerous whole-genome studies have focused on changes in the 
transcript levels in people of different age groups and have identified 
subsets of genes that show age-related changes in expression in mito-
chondrial, metabolic and immune function-related pathways 
[110–112]. One of the first studies focusing on age-related tran-
scriptome changes was performed in blood samples of 154 healthy in-
dividuals between 23 and 77 years of age and identified 16 
age-dependent transcripts mostly involved in emerging or recessing 
functions of immune cells associated with premature senescence [113]. 
In 2015, Peters et al. carried out one of the largest age-associated 
transcriptome studies based on the meta-analysis of 8847 human pe-
ripheral blood samples from six independent cohorts [114]. In this 
study, 1497 genes were reported as differently expressed in relation to 
chronological age with a mean absolute deviation (MAD) of 7.8 years. 
Most of the RNA markers were involved in known aging processes 
including dysregulation of transcription and translation, immune 
senescence, ribosome biogenesis and mitochondrial decline. In addition, 
differences between the transcriptome age and chronological age were 
linked to clinical features such as blood pressure, blood glucose and 
cholesterol levels. In 2016, Zubakov et al. generated different age pre-
diction models by considering not only age-related RNA markers, but 
also other biomarkers of age such as DNA methylation, telomere length 
and sjTRECs in blood samples of 350 healthy male individuals of a wide 
range of ages [115]. The most accurate prediction model was achieved 
with a subset of 6 biomarkers, namely 5 methylation markers and 1 
mRNA marker with a MAD of 4.5 years. Another transcriptome aging 
clock was published in 2018 which was trained on human dermal 
fibroblast profiles from 133 participants from 1 to 94 years old [116]. 
The model was based on a machine learning approach that could predict 
chronological age with a MAD of 7.7 years. A deep neuronal network 
was used for age prediction in a large study of 6465 blood samples of 
individuals from 17 combined datasets obtained from specific ethnic 
populations with the best-performing prediction model achieving a 
mean absolute error (MAE) of 5.94 [117]. With this aging clock model, 
the authors were able to show that ethnically diverse aging clocks have 
the potential to predict chronological age with high accuracy. 

Beside mRNA based transcriptome aging clocks, a few studies also 
focused on different types of noncoding RNA molecules and their im-
plications in human aging. Recent studies have suggested that changes 
in miRNA expression levels occur with human cellular senescence, 
whereby most of them are downregulated with increasing human age 
[118–120]. This loss of miRNA function during the aging process may be 
due to transcriptional repression, deletion, mutation, epigenetic 
silencing or aberrant miRNA processing [121]. Huan et al. explored 
age-related miRNA expression in blood samples of 5221 adults and 
identified 127 miRNAs that were differentially expressed by age 
whereas most miRNAs were under-expressed in older individuals [122]. 
A study by Fang et al. focused on 220 blood samples from Han Chinese 
descendants and established an miRNA age prediction model based on 
six age-related miRNAs with a MAE of 5.52 and 7.46 years in male and 
female bloodstain samples, respectively [123]. 

Several studies have shown that lncRNAs are linked to processes 
important for various aging-associated diseases, including cancer or 
neurodegenerative diseases [124,125]. A study in senescent human 
fibroblast cells identified several lncRNAs that display differential 
expression levels as compared with the corresponding young cells [126]. 
Another study reported age-associated lncRNA expression patterns in 29 
human tissues [127]. These lncRNA markers are involved in immune 
system processes, signal transduction and transcription and most of 

them are highly tissue specific. 
Dluzen et al. identified in serum samples of a small cohort of 13 

young (30–32 years) and 10 old (80–85 years) African American women 
age-related differences in different types of circulating extracellular 
RNAs (exRNAs) species [128]. Among these different RNA types, they 
observed higher levels of mitochondrial transfer RNAs and mitochon-
drial ribosomal RNAs in older individuals which is consistent with a 
progressively impaired mitochondrial function with increasing age. 

In general, human aging is a complex process. Many gene expression 
markers vary considerably between different body sites due to their 
functional involvement in gene regulation, which will require cell type 
specific prediction models. The challenges of molecular age prediction 
models include delineating the relationship between the chronological 
versus the biological age. Multi-omics methods such as combining DNA 
methylation, mRNA and miRNA markers together could improve the 
accuracy of age prediction models [129]. Finally, predictive biomarkers 
and analysis methods will need to be validated prior to implementation 
into the forensic field. 

6. Estimation of the post-mortem interval (PMI) 

Post-mortem interval (PMI) refers to the time interval between 
physiological death and the examination of the deceased person and is 
an important part of forensic death investigations. Currently used 
methods to determine PMI include biochemical, physical, physico-
chemical, microbiological, entomological and botanical investigations 
[130]. In standard forensic practice, short-time PMI, i.e. within the first 
24 h post-mortem, is usually estimated by assessing gross post-mortem 
physical changes such as the body temperature, muscular and 
neuro-muscular reactivity and post-mortem lividity [131]. The 
long-time PMI (days to years) is evaluated based on the decomposition 
stage, entomological analysis (fly larvae growth) and determination of 
bone radioisotope concentration. However, these methods are often 
inaccurate and influenced by individual characteristics such as age, 
gender, physiological and pathological states of the deceased. Therefore, 
more precise methods are needed for the determination of PMI. One 
viable approach is the time-dependent degradation of biological 
markers such as DNA, RNA and proteins [132,139,171]. 

In contrast to DNA, the less thermodynamically stable RNA was 
initially believed to degrade rapidly after death due to ubiquitously 
present ribonucleases, bacterial processes and environmental influ-
encing factors such as sunlight, humidity or high temperatures [5]. 
During the last years, several studies have demonstrated that, depending 
on the circumstances, RNA can remain largely intact even for long time 
periods and quantification of mRNA degradation could be used for PMI 
estimation [133]. In 2003, Bauer et al. showed in a pilot study that RNA 
degradation of the fatty acid synthase-messenger RNA (FASN mRNA) is 
significantly correlated with the PMI in autopsy cases up to 5 days 
post-mortem [134]. Further studies focused on quantitative PCR anal-
ysis and RNA integrity numbers (RIN) in various tissues and cell types in 
rats and humans [133,135–137]. They suggested GAPHD, β-actin, 18S 
rRNA and HIF-1α as promising markers to estimate the PMI up to several 
days. Other studies reported no correlation between PMI and RNA 
degradation in human samples with long PMI up to 40 years [138,139]. 
Since most of the commonly used transcripts degrade over time, Tu et al. 
focused on the stability of miRNAs and circular RNAs (circRNAs) in mice 
and reported the following markers as suitable for PMI estimation: 
miR-122, miR-133a and 18S in heart tissue, LC-Ogdh, circ-AFF1 and 
miR-122 in liver and miR-133a, circ-AFF1 and LC-LRP6 in skeletal 
muscle tissue [132]. Additionally, Li et al. explored the relationship 
between time-dependent level changes of miRNA (miR-1-2) and 18S 
rRNA in rat cardiac muscle and demonstrated that these markers could 
be useful for estimating early PMI [140]. Zhang et al. observed that U6, 
GAPDH and 18S RNA were the most suitable PMI markers in their 
investigated set of human tissues (heart, brain, kidney and skin) from 40 
individuals with different PMI ranging from 1 to 72 h [141]. But they 
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emphasized that miRNAs should not be chosen as endogenous controls 
because they are less stable (at least in vivo), than mRNA due to the lack 
of the 5’-cap structure or 3’-polyA tail. Another study investigated the 
miRNA expression level in 71 human bones with a PMI of up to 2 years 
and identified two specific miRNA markers (let-7e and miR-16) which 
showed a negative correlation between the expression level and 
increasing PMI [142]. 

A relatively novel and emerging topic in the forensic field is the 
investigation of the human thanatotranscriptome to determine cause and 
time of death [143–146]. The thanatotranscriptome is derived from the 
Greek word for death (thanatos-), and it encompasses all RNA transcripts 
expressed from the part of the genome that is still functional or that be-
comes awakened in internal organs of a dead body. After death, apoptosis 
or programmed cell death is leading to the activation or repression of a 
plethora of genes and of diverse regulatory factors depending on the 
absence or presence of stimulated feedback. In a preliminary thanato-
transcriptome study, Javan et al. showed that RNA is stable in internal 
organs of cadavers and that pro-apoptotic genes such as caspases were 
up-regulated and the expression of genes responsible for anti-apoptosis 
such as BCL2 and BAG3 were down-regulated in human liver samples 
[145]. Another study investigated mRNA transcript abundances in pros-
tate tissue from human remains and identified several anti-apoptotic 
genes (BCL2, BFAR, BIRC2) and negative regulator of apoptosis (XIAP) 
that produced significantly elevated fold-changes in a time-dependent 
manner [146]. In addition, pro-apoptotic genes such as CASP2, DIABLO 
and APAF1 also produced significant up-regulation in relation to time of 
death, indicating that there is still active gene expression after death. 

In addition, outside of the forensic context, several recent studies 
examined gene expression based on large datasets of post-mortem 
samples in order to identify global patterns of post-mortem RNA 
changes. Hunter et al. analysed 71,179 microarray data of zebrafishes 
and mice and identified 1063 transcripts that were significantly 
increased in abundance between 48 and 96 h post-mortem [147]. Sys-
tematic investigation of various human post-mortem gene expression 
data sets derived from the Genotype-Tissue Expression (GTEx) database 
[18] (2016 samples from 15 tissue types), demonstrated that mRNA 
degradation occurs in a tissue-specific manner and is associated with 
gene-specific properties [148]. Considering the possibility that 
post-mortem mRNA degradation may be a non-linear process, the study 
identified 266 genes which showed a significant difference in expression 
variance in short-time and long-time PMI. A third study analysed mRNA 
sequencing data from 7105 humans including 36 tissues from the GTEx 
project and showed that there are remarkable differences between tis-
sues regarding the transcriptional response to PMI [149]. Some tissues 
such as the digestive tract exhibited early changes in gene expression 
after death whereas gene expression levels in other tissues such as the 
central nervous system, heart and brain remain more stable over several 
hours. In addition, a machine-learning model was applied to predict the 
time of death of a recently deceased individual with a few key tissues. 
Interestingly, the most informative tissues to predict the PMI are rela-
tively accessible ones such as skin and subcutaneous adipose. Although 
this prediction model was only generated as a proof of concept, the 
R2-value for the real vs. predicted tissue PMI was 0.86 and the prediction 
performance was not impacted by the cause of death. 

A major limitation of the above mentioned studies is that they were 
carried out under controlled conditions such a fixed temperature and 
were only conducted over relatively short time frames, therefore the 
effects of changing environmental conditions on RNA degradation were 
not extensively evaluated and therefore the suitability for real-life cases 
is accordingly restricted [133]. In general, more sensitive biomarkers 
are necessary for PMI estimation, especially also with a focus on 
long-term PMI estimation in cases of skeletal remains [139]. 

7. Post-mortem death investigations: cardiac causes of death 

Analyzing the functional status of cells in post-mortem samples could 

offer insight into the pathological mechanisms leading to death. 
Messenger RNA up-regulation can occur rapidly within minutes so that 
even acute events could be monitored. However, for the quantitative use 
of mRNA data from post-mortem tissues it is necessary to rule out 
concomitant post-mortem changes. Here we focus specifically on the 
determination of cardiac causes of death. 

Sudden and unexpected death of a previously healthy infant, 
adolescent or young adult is a tragic and distressing event for those left 
behind. Up to 30% of these cases remain unexplained after standard 
forensic autopsy, with no definite cardiac etiology identified after gross 
and microscopic inspection of the heart and are therefore termed as 
sudden infant death syndrome (SIDS) or sudden unexplained death 
(SUD) [150]. There are often no apparent warning signs during lifetime 
and sudden death might be the first manifestation of an undetected 
cardiac disease. In the last years, several genetic studies have demon-
strated that post-mortem genetic testing (’molecular autopsy’) repre-
sents a valuable tool to identify functional pathogenic variants in 
cardiovascular disease-associated genes in 20–35% of autopsy-negative 
SUD/SIDS cases [151–154]. However, 70–80% of the SUD cases still 
remain elusive after genetic testing, and therefore post-mortem RNA 
expression profiling may provide a supplementary tool to investigate the 
cause of death in autopsy cases. 

Myocardial transcriptome analysis in human cardiovascular diseases 
has shown that the expression pattern can clearly distinguish between 
arrhythmogenic right ventricular cardiomyopathy (ARVC), dilated car-
diomyopathy (DCM) and healthy ventricular myocardium [155]. 
Another study demonstrated that myocardial mRNA expression profiles 
are changed in sarcolemma calcium regulation, apoptosis, and adipo-
genesis in patients with ARVC compared to DCM patients and controls, 
suggesting that these molecular pathways may play a critical role in the 
pathogenesis of ARVC [156]. Furthermore, certain mRNA species, 
namely those encoding hemoglobin A1/2 and B (HBA1/2 and HBB) as 
well as pyruvate dehydrogenase kinase 4 (PDK4) have been reported to 
exhibit distinct postmortem expression patterns in the left ventricular 
free wall of sudden cardiac death patients compared to the corre-
sponding tissues from control persons with non-cardiac causes of death 
[157]. Schiano et al. investigated specific transcriptome changes 
occurring in cardiac tissues of patients with heart failure compared to 
healthy patients and were able to identify DCM- and restrictive 
cardiomyopathy-specific expression signatures for protein-coding genes 
and describe dysregulation in focal adhesion and oxidative phosphory-
lation in end-stage heart failure [158]. Andersen et al. performed whole 
genome sequencing (WGS) and whole transcriptome sequencing (WTS) 
in sudden cardiac death victims in order to correlate gene expression 
levels with DNA variations in regulatory non-coding regions of the 
genome [159]. In their cohort of 13 SADS (sudden arrhythmic death 
syndrome) and SUDI (sudden unexplained death in infancy) cases, they 
identified a rare variant in the promoter region of the nexilin F-actin 
binding protein encoding gene NEXN (c.–194A>G), that was found to be 
associated with decreased expression of NEXN and cardiac hypertrophy. 

With respect to the role of non-coding RNAs in cardiac physiology 
and pathology, a number of miRNAs have been identified in the healthy 
adult heart that are highly expressed in non-diseased cardiac tissue and 
thus likely play a key role in both normal cardiac maintenance and 
diseases [160]. Furthermore, HCM (hypertrophic cardiomyopathy) pa-
tients with MYBPC3 mutations demonstrated differentially expressed 
miRNAs which target mRNAs involved in cardiac hypertrophy and 
cardiac beta-adrenergic receptor signaling [161]. In addition, several 
studies have identified heart-specific lncRNAs that are up- or down-
regulated during acute myocardial infarction and heart failure, whereas 
others control hypertrophy and cardiomyocyte death by interfering with 
miRNAs [162–164]. 

These findings indicate that RNA analysis of post-mortem tissue 
could contribute to the determination of the cause of death with regard 
to cardiovascular diseases. Combined RNA and DNA analysis may help 
to solve some of the formerly unexplained death cases. This is 
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Table 1 
Collation of MPS-based topic-specific RNA markers.  

Application Organism Tissue / Body Fluid / 
Organs 

Technique Marker RNA 
species 

Reference 

Tissue 
Identification 

Human Brain Targeted MPS SNAP25, RTN1, GABRA1, OPALIN, GFAP, NEUROD6 mRNA [71,72] 

Tissue 
Identification 

Human Lung Targeted MPS SFTPB, SFTPD, SFTPA1 mRNA [71,72] 

Tissue 
Identification 

Human Trachea Targeted MPS BPIFB1 mRNA [71,72] 

Tissue 
Identification 

Human Liver Targeted MPS AMBP, F2, SPP2, CFHR2, F9, MBL2, AHSG, C9 mRNA [71,72] 

Tissue 
Identification 

Human Skeletal muscle Targeted MPS TNNI2, MYLK2, ATP2A1, MYH2, NEB, MYLPF mRNA [71,72] 

Tissue 
Identification 

Human Heart muscle Targeted MPS ITGB1BP3 mRNA [71,72] 

Tissue 
Identification 

Human Heart Targeted MPS MYBPC3, NPPB, NPPA, TNNI3 mRNA [71,72] 

Tissue 
Identification 

Human Kidney Targeted MPS UMOD, SLC12A1, SLC34A1, SLC22A12 mRNA [71,72] 

Tissue 
Identification 

Human Adipose Targeted MPS TUSC5, ADIPOQ, PLIN1 mRNA [71,72] 

Tissue 
Identification 

Human Intestine Targeted MPS FABP6, LCT, CCL25, DEFA5, DEFA6 mRNA [71,72] 

Tissue 
Identification 

Human Stomach Targeted MPS PGA5, PGA3, PGA4, GIF, GKN1 mRNA [71,72] 

Body Fluid 
Identification 

Human Blood Targeted MPS ALAS2, ANK1, SPTB, CD3G, CD93, AMICA1 mRNA [47] 

Body Fluid 
Identification 

Human Semen Targeted MPS PRM1, PRM2, TGM4, SEMG1, SEMG2, KLK3 mRNA [47] 

Body Fluid 
Identification 

Human Saliva Targeted MPS HTN3, HTN1, STATH, PRB3, PRB4, PRH2 mRNA [47] 

Body Fluid 
Identification 

Human Vaginal secretion Targeted MPS CYP2B7P1, DKK4, FAM83D, CYP2A6 mRNA [47] 

Body Fluid 
Identification 

Human Menstrual blood Targeted MPS MMP10, LEFTY2, MMP7, MMP11, SFRP4, MMP3, STC1 mRNA [47,170] 

Body Fluid 
Identification 

Human Skin Targeted MPS LCE1C, CCL27, IL37, SERPINA12, KRT77, COL17A1 mRNA [47] 

Body Fluid 
Identification 

Human Blood MPS miR-200b, miR-486-5p, miR-16-5p, miR-451a, miR-144-3p, 
miR-126-5p, miR-144-5p 

miRNA [57,58] 

Body Fluid 
Identification 

Human Semen MPS miR-891a miRNA [57,58] 

Body Fluid 
Identification 

Human Saliva MPS miR-26b, miR-203a-3p, miR-205-5p, miR-223-3p, miR-200c-3p, 
miR-141-3,; miR-375, miR-34a-5p, let-7c-5p, miR-27b-3p, miR- 
125b-5,; miR-23b-3p, miR-99a-5p, miR-29a-3p, miR-23a-3p, 
miR-27a-3p, miR-210-3p, miR-24-3p, miR-29b-3p, miR-22-3p 

miRNA [57,58] 

Body Fluid 
Identification 

Human Menstrual blood MPS miR1246 miRNA [57] 

Body Fluid 
Identification 

Human Urine/ feces MPS miR-320c, miR-10b-5p miRNA [57] 

Body Fluid 
Identification 

Human Blood, semen, saliva, 
vaginal secretion, 
menstrual blood 

MPS 1034 different markers miRNA [59] 

Body Fluid 
Identification 

Human Blood/ menstrual blood MPS piR-hsa-27622, piR-hsa-1207, piR-hsa-27493 piRNA [60] 

Body Fluid 
Identification 

Human Saliva/ vaginal 
secretion 

MPS piR-hsa-27493 and piR-hsa-26591 piRNA [60] 

cSNPs Human Blood Targeted MPS AMICA1, ANK1, CD3G, CD93, SPTB mRNA [75] 
cSNPs Human Semen Targeted MPS KLK3, SEMG1, SEMG2, TGM4 mRNA [75] 
cSNPs Human Saliva Targeted MPS MUC7, PRB3 mRNA [75] 
cSNPs Human Vaginal secretion Targeted MPS CYP2A7, DKK4 mRNA [75] 
cSNPs Human Menstrual blood Targeted MPS MMP10, MMP7 mRNA [75] 
cSNPs Human Skin Targeted MPS COL17A1, KRT77, LCE1C mRNA [75] 
Age of Donor Human Blood Microarray 16 transcripts mRNA [113] 
Age of Donor Human Blood Gene expression 

meta-analysis 
1497 genes mRNA [114] 

Age of Donor Human Blood Microarray NRCAM, ABLIM1, LRRN3, NELL2, SLC16A10, NOG, AK5, CCR7, 
CFH 

mRNA [115] 

Age of Donor Human Dermal fibroblasts RNA-Seq Ca. 4000 genes mRNA [116] 
Age of Donor Human Blood Gene-expression 

meta-analysis 
1497 genes mRNA [117] 

Age of Donor Human Blood RNA-Seq 127 marker microRNA [122] 
Age of Donor Human Blood RNA-Seq miR-98-3p, miR-324-3p, miR-32-3p, miR-330-5p, miR-374c-5p, 

miR-342-3p 
microRNA [123] 

Age of Donor Human Fibroblast cells Microarray lncRNAD3 lncRNA [126] 
Age of Donor Human 29 different tissues GTEx data 1264 age-lnRNAs lncRNA [127] 
Age of Donor Humans Serum RNA-Seq 1154 genes exRNA [128] 

(continued on next page) 
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specifically important for direct relatives, since they might carry the 
same genetic variant and are at risk to develop a similar disease or even 
die. Therefore, an optimal management of such cases should be based on 
a multidisciplinary team involving legal pathologists, geneticists, and 
cardiologists [165]. In case of a confirmed cardiac variant or mechanism 
there are therapy options for the affected relatives that could save their 
lives. 

8. Future of forensic transcriptomics 

As we have shown in this review, transcriptome analysis has 
increasingly become useful in forensic genetics and reported studies 
have covered a variety of several topics and applications. Targeted and 
whole transcriptome analyses have been successfully applied to forensic 
material, including dried physiological stains and post-mortem tissues. 
Some promising methods and markers have been tested and evaluated, 
especially for the identification of body fluids and tissues. Table 1 shows 
a collation of the MPS-based topic-specific RNA markers that were 
described or alluded to in the previous sections. This list is not claimed 
to be comprehensive, but represents more of a momentary snapshot of 
the general state of the field at this time. The field and technologies 
develop fast and continued studies in the near future should result in the 
use and/or discovery of additional RNA biomarkers and types. 

Further developments in forensic transcriptomics might include 
point-of-use, non-PCR based RNA methods for rapid (< 1 h) definitive 
body fluid identification as a triage for downstream DNA analysis. It is 
also possible that non-microscopical identification of spermatozoa will 
be possible due to the presence of sperm specific RNAs (e.g. protamines 
such as PRM1) [166]. It is likely that the transcriptome will be a con-
stituent part of a (multi)omics/data integration process for evidence 
analysis that will include the not-isolated biological entities of the 
genome, transcriptome, methylome, proteome and microbiome. This 
will include not only mRNA and miRNA, since mRNA is regulated by 
miRNA binding and both exhibit tissue specific expression, but also 
other non-coding RNA species. Most genes are expressed in multiple 
isoforms caused by alternative or cryptic splicing and intronic alterna-
tive polyadenylation sites [167]. This additional variation, which is 
easily revealed via MPS methods, has not yet been applied in forensic 
transcriptomics. Such studies are expected to improve our ability to 
resolve specific cellular phenotypes in complex organs and tissues such 
as the brain and also to increase the number of specific biomarkers 
available to identify epithelial cell types from skin, the mouth, the va-
gina and the uterus. Gene expression itself also exhibits genetic variation 
and expression quantitative trait loci (eQTLs) have been described 
[168]. This additional variation is yet to, but should as the field matures, 
be studied in the forensic context as is the influence of transcriptome 
altered diseases [169] on RNA-based forensic analyses. 

It is expected that artificial intelligence (AI), such as machine 
learning, will play an increasing role in data analysis and interpretation 
of the transcriptome and other -omes. Socio-economic forces will 
probably result in the use of whole genome sequencing approaches 
(Whole Genome (WGS)/ Transcriptome (WTS)/ Exome (WES)) 
exploiting the concept that one obtains the whole -ome data from which 
the relevant case dependent biomarker information is subsequently 
extracted. Since most of the genome is faithfully reflected in transcribed 
RNA, it is not out with the bounds of possibility that RNA could be used 
as a complement to DNA typing for the whole gamut of forensic genomic 

applications including personal identification, providing context to the 
identification and obtaining a genetic eyewitness of the donor of a 
physiological stain (i.e. a phenotype that includes ethnicity, sex, age, 
external visible and behavioral traits, etc.). 
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M. Dötsch, P. Hoff-Olsen, P. Johansen, F. Kohlmeier, P.A. Lindenbergh, B. Ludes, 
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changes in the expression of lncRNAs in human tissues reflect a transcriptional 
modulation in ageing pathways, Mech. Ageing Dev. 185 (2020), 111177, https:// 
doi.org/10.1016/j.mad.2019.111177. 

[128] D.F. Dluzen, N. Noren Hooten, S. De, W.H. Wood, Y. Zhang, K.G. Becker, A. 
B. Zonderman, T. Tanaka, L. Ferrucci, M.K. Evans, Extracellular RNA profiles with 
human age, Aging Cell 17 (2018), e12785, https://doi.org/10.1111/acel.12785. 

[129] I. Solovev, M. Shaposhnikov, A. Moskalev, Multi-omics approaches to human 
biological age estimation, Mech. Ageing Dev. 185 (2020), 111192, https://doi. 
org/10.1016/j.mad.2019.111192. 
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