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Abstract

Acute musculoskeletal injuries in large animals such as horses or camels often result in productivity losses and euthanasia in racing, esthetic or 

stock animal industries. Bioengineered products for tissue reconstruction and wound healing may supplement traditional veterinary surgical care 

synergistically. Banked primary fetal progenitor cells can potentially be used towards structural and functional therapeutic restoration in condensed timeframes. Extensive clinical experience exists in our University Hospital working with dermal progenitor fibroblasts for managing burns, donor 
site grafts and ulcers. By extrapolation, the present study assessed suitability of equine fetal progenitor cell sources for biotechnological processing, 

robust cell banking and application in tissue engineering strategies for hippiatric regenerative medicine. Diverse fetal equine musculoskeletal tissues were obtained and processed under defined frameworks and protocols for standardized and optimized tiered cell bank establishment and 
characterization. Consistency, safety and cyto-compatibility of progeny cells with therapeutic delivery systems were assessed. Finally, optimized 

hippiatric cell therapy protocols were applied for preliminary safety assessments and promoting musculoskeletal wound healing in four equine 

subjects. Equine progenitor cells were found to optimally adapt to standardized biotechnological processing, rapid extensive cell banking and 

consistent therapeutic construct bioengineering. Clinical applications of equine allogeneic cell therapies in large animals yielded preliminary evidence 

of safety and facilitated volumetric defect reconstruction or wound healing. Gathered experience around veterinary wound management using 

progenitor cells proved highly similar to therapeutic care of human patients suffering acute and chronic musculoskeletal affections. Standardized 

processing of a single organ donation and establishment of dedicated equine cell banks allows consistent and off-the-freezer allogeneic treatments 

to potentially be made available for millions of veterinary patients. Prior art in human translational regenerative medicine and preliminary evidence in veterinary settings strongly support the candidacy of equine progenitor cell banking as an optimal tool for efficient therapeutic management of 
diverse hippiatric musculoskeletal affections.

Keywords: Cell banking, cell therapy, hippiatric regenerative medicine, horses, musculoskeletal injuries, progenitor cells, tissue engineering, 

translational development, veterinary protocols, wound healing. 

Abbreviations: CABMM: Center for Applied Biotechnology and Molecular Medicine; cATMP: combined Advanced Therapy Medicinal Product; CD: Cluster of Differentiation; CHUV: Centre Hospitalier Universitaire Vaudois; DED: De-Epidermized Dermis; DMEM: Dulbecco’s Modified Eagle 
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Introduction

Degenerative diseases and acute wounds deeply impacting the 

musculoskeletal system often pave the way to the slaughterhouse 

for large animals such as horses or camels. Heavy burdens 

therefore ensue for individuals responsible for the animals, as 

productivity losses or direct losses in racing, esthetic or stock animal industries may bear significant impacts. Primordially, 
injury, pain and lameness directly impact animal patients themselves, prompting the development of efficient therapeutic 
strategies ideally solving wide arrays of veterinary affections [1-

5]. In this context, application of novel tissue engineering and cell 

therapy concepts potentially allows for animal tissue repair and 

regeneration, attained through structural supplementation and 

balanced modulation of patient organisms towards physiological 

healing resurgence and stimulation thereof [6-13]. Bioengineered 

therapeutic products may supplement traditional veterinary 

surgical care synergistically and alleviate the resort to euthanasia 

[14-18]. Effective structural and functional restoration of equine 

musculoskeletal system components and effectors in condensed 

timeframes may be attainable by pragmatic application of 

emerging treatment strategies evaluated for human translational 

regenerative medicine such as cell therapies [19-26]. 

Development of clinical protocols for cutaneous or soft tissue 

repair and stimulation thereof in human and veterinary applications 

has rapidly evolved and currently comprises both autologous, 

allogeneic and xenogeneic products or procedures (Table 1) [2- 

 

4,14-16,19-27]. Wide arrays of biological substrates and tissue 

sources have been studied with respect to suitability as starting 

materials for biomedical engineering, comprising but not limited to 

autologous biopsies, embryonic stem cells (ESCs), adult stem cells, 

bone marrow, cadaver tissue, acellular dermis, de-epidermized dermis (DED), xenografts, placenta and amniotic fluid [27-40]. 
Minimal technical processing requirements are prerequisites for consistent, effective and efficient cell source establishment, ranging 
from tissue procurement, culture initiation to progeny cell banking. Cultured primary fetal progenitor cells benefit from considerable 
industrial and clinical hindsight attesting safety and optimal 

adequation thereof with technical, economic and regulatory 

requirements of cell therapy product development. Extensive clinical 

experience exists in our University Hospital working with viable allogeneic dermal progenitor fibroblasts formulated as Progenitor 
Biological Bandages (PBBs) for managing burns, donor site grafts 

and chronic ulcers, yielding unique therapeutic results [41-50]. 

Wound healing rates after progenitor cell applications have been 

shown to be relatively more important and prompt with little scar 

tissue formation and an absence of immunogenic or tumorigenic 

properties has been documented [43,45-48]. Generalized and tissue-specific application of progenitor cell technology to 
musculoskeletal regenerative medicine has effectively been a local 

driver of translational biomedical research and is currently being  

evaluated for human and veterinary patients in Switzerland [51-

65]. 

Table 1: Comparison of various cell types or approaches for equine or human cell therapy and tissue engineering with examples, associated advantages 

and inconveniences.

Cell Type Advantages Inconveniences

1 Autologous No immune rejection

Biopsy necessary 

Limited differentiation capacities 

Limited manufacture scale-up 

Limited number of tissues 

Poor expansion capacities

1.1 Adult stem cells
Autologous source 

Few ethical concerns
Same as above

2 Allogeneic 
No autologous biopsy 

 Same-species source

Immune incompatibility 

Scarcity for some tissues 

Transfer of adventitious agents

2.1 Embryonic stem cells
High differentiation capacities  

“Immortal”

Difficult control of cell growth Expensive and difficult cell culture/differentiation 

High ethical concerns 

Inhomogenous cell growth 

Limited availability 

Some immune incompatibility

2.2 Fetal progenitor cells

Consistency and stability

Extensive cell banking

High biocompatibility

Low direct costs

Low immunogenicity and tumorigenicity

Safety testing

Single organ donationTissue-specific cell types
Stringent selection process for mother-donor
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3 Xenogeneic High availability

Functional loss after transplant

Immune incompatibility

Transfer of adventitious agents

3.1 Transgenic animals  (“humanized”)

Genetically controlled

High availability

Immune compatibility

Genetically controlled

The present work is consistent with the One Health Initiative 

(www.onehealthinitiative.com), an approach of integrative medico-

therapeutic development under which veterinary medicine can benefit from human medicine and vice versa. By extrapolation 

of acquired experience in progenitor cell banking and current 

insights into human translational regenerative medicine, it was hypothesized that progenitor cell therapies might vastly benefit 
hippiatric musculoskeletal medicine. Indeed, within the sports industry alone, high incidence of equine cutaneous, flexor tendon 
and suspensory ligament injuries requiring heavy therapeutic 

intervention is explained by relatively high exposure to potentially 

traumatic events and results in numerous veterinary consultations and follow-ups. Specificities of equine cutaneous and soft 
tissue injury (in particular to distal limbs) comprise relatively 

long and complicated healing periods lengthened by frequent 

impracticality of effective suturing after volumetric tissue prejudice 

[2,3,5]. Additionally, horses are predisposed to excessive tissue 

granulation, which inhibits tissue repair processes mediated by 

epithelial formation and promote exuberant granulation tissue 

(EGT) formation [1,13,16,18]. Such outcomes are poorly controlled 

by existing non-biological wound care products (Table 2). Resulting 

consequences for race animals comprise extensive immobilization 

periods (> 2-6 months), diminished esthetic quality assorted to lessened financial or sporting value and often lead to subject 
revalorization for breeding or euthanasia. Direct necessity therefore 

prompts the development of effective therapeutic products capable 

of rapidly stimulating epidermal and soft tissue renewal while 

limiting excessive EGT formation in equine injuries [5,15,18]. 

Table 2: Various medical device standard treatment options for hippiatric medicine with associated advantages and inconveniences.

Technique Product (manufacturer) Advantages Inconveniences

Sutures

Vicryl® (Ethicon Inc., braided) Good tension resistance Strong vector for bacterial infection

PDS® (J&J, resorbable)
Good resistance for tension  

Low infection risk
NA

PROLENE® (J&J, non-resorbable)
Good resistance for tension  

Low infection risk
Possible inflammatory reaction

Cutaneous staples (Ethicon Inc.)
Diminished inflammation          

Low infection risk
Relatively expensive

Biological glue(diverse) Low inflammation Limited use  

Relatively expensive

Bandages (absorbent)

JELONET® (Smith and Nephew) Good absorption
Induces tissue granulation                          

Inhibits epithelialization

MELOLIN® (Smith and Nephew) No interference with 

epithelialization
Limited absorption capacity

SKINTACT® (Robinson Healthcare)

Bandages (occlusive)
OPSITE® (Smith and Nephew) Enhances quality and rate of 

healing
Favorizes bacterial proliferation

TEGADERM™ (3M™)

NA-Non-Applicable

Intrinsic technological and therapeutic advantages of 

cultured primary progenitor cells enable standardized, safe and 

consistent processing of biological materials and subsequent 

widespread clinical application of optimized treatment protocols. Fetal progenitor cells are tissue-specific and do not 
require either biochemical manipulation to maintain their respective defined phenotypes nor feeder-layers to sustain in 

vitro proliferation, allowing for standard optimized cell banking 

consistency [43,45,53,66]. Extensive proliferation capacities, low 

immunogenicity and tumorigenicity, high cyto and biocompatibility 

and excellent stability allow for tangible therapeutic product 

development based on primary progenitor cell sources [43,46-

49]. Such an objective is attainable through the establishment of extensive qualified tiered cell banks which can potentially benefit 
millions of veterinary patients. Indeed, a robust dedicated cell bank 

derived from a single equine-fetal organ donation fragment (< 1 

cm3) potentially yields sufficient progeny materials for industrial 
scale manufacturing of bioengineered therapeutic constructs (> 109 

constructs/cell bank) [47].

 Vast experience and hindsight in progenitor cell technology for 

human translational regenerative medicine supported preliminary 

investigation of equine fetal progenitor cells (eFPCs) as candidates for efficient therapeutic management of diverse hippiatric 
musculoskeletal injuries. The present study aimed for suitability 
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assessment of eFPC sources for biotechnological processing, robust 

cell banking and application in tissue engineering strategies for hippiatric regenerative medicine. Diverse codified fetal equine 
musculoskeletal tissues (skin, muscle, cartilage, tendon, connective 

tissue and bone) were obtained after pregnancy terminations and processed under defined frameworks and protocols for standardized 
and optimized tiered cell bank establishment and characterization. 

Consistency, safety and cyto-compatibility of progeny eFPCs with 

therapeutic delivery systems (collagen sheets and hyaluronic acid 

(HA) gels) were assessed. Finally, optimized hippiatric cell therapy 

protocols were applied for preliminary assessment of safety 

and promotion of musculoskeletal wound healing in four equine 

subjects. This work establishes technical suitability of eFPCs for 

bioengineered product manufacturing and preliminary safety 

evidence of allogeneic primary equine progenitor cell application 

in hippiatric patients. Data presented herein supports further 

investigation of equine progenitor cell therapy in vivo within 

standardized veterinary settings and further broadening of the 

potential scope of application of allogeneic progenitor cell therapy 

in the developmental domain of translational musculoskeletal 

regenerative medicine.

Materials and Methods

All procedures involving animal patients (organ donation/

biopsy procurement and experimental treatments) were performed 

with appropriate informed consent from respective animal owners and in compliance with the Swiss Federal Veterinary Office 
guidelines based on the Swiss Federal Law on Animal Welfare and 

applicable ordinances. Experimental treatments were prescribed 

and administered by practicing veterinarians as veterinary magistral preparations as defined by the Swiss Federal Law on 
Therapeutic Products. Animal procedures were carried out in a 

private veterinary practice in Boudevilliers, Switzerland. 

Equine fetal tissue procurement 

Two mother-donors (codenames ED001 and ED002) for equine fetal tissue donation were identified by veterinarians 
tending to spontaneous pregnancy interruptions in Western 

Switzerland. ED001 was a female 7-year-old German Warmblood 

(Oldenburger), while ED002 was a female 10-year-old German 

Coldblood (Noriker). Following gestational termination and 

expulsion of the fetuses/foals, veterinarians proceeded with full 

physical examination of the mother-donors, which revealed no 

physical and physiological abnormalities or diseases. No particular 

cause was attributed to either of both pregnancy interruptions. 

Fetal tissue donations (whole fetus in placenta) were wrapped 

in surgical mats and kept on wet ice before rapid subsequent (< 

6 hours) detailed investigation and processing by veterinarians 

and biologists. Gestational ages, total weights and lengths of 

donations were established after thorough rinsing with sterile 

normal saline (Bichsel, Switzerland). Macroscopic and microscopic 

examinations (micro-dissection and histology) were performed 

on both donations. Various musculoskeletal tissue fragments 

were isolated and procured for biotechnological processing and 

cell type derivation. Each tissue fragment was surgically cleaned 

of any unwanted adherent tissue, thoroughly rinsed with sterile 

normal saline, aseptically placed in a sterile dedicated labelled cell 

culture-grade recipient (50 mL tube, Falcon®, USA) and immersed 

in 30 mL phosphate buffered saline (PBS, KH
2
PO

4
 0.21 g/L, NaCl 9.0 

g/L, Na
2
HPO

4
 0.726 g/L, Invitrogen™, USA) supplemented with 1% 

penicillin-streptomycin (P/S, 100 U, Sigma-Aldrich, Switzerland) 

for rapid transport (< 2 hours) to the cell culture laboratory in a 

refrigerated container (4°C).

Enzymatic tissue processing, culture initiation and 

equine PCB establishment 

After transfer to an independent Good Laboratory Practices 

(GLP) cell culture laboratory, individual tissue biopsies were 

serially washed 4 times for 15 minutes each in PBS supplemented 

with 1% P/S. Biopsies were then transferred to fresh sterile culture-

grade tubes and were incubated for 10-25 minutes (depending on 

the tissue) in 25 mL trypsin-EDTA (0.25% trypsin - 0.1% ethylene 

diaminetetra acetic acid, Gibco®, USA) at room temperature (RT). 

Tissues were subsequently individually and aseptically dissected 

into < 0.5 mm3 fragments and transferred to sterile tissue culture 

Petri dishes (10 cm diameter, Falcon®, USA). Culture dishes were 

sterilely and deeply scored following checkerboard patterns 

using scalpels. In order to initiate adherent cell culture, isolated 

tissue fragments were homogenously distributed and further 

mechanically attached along scored plastic regions by gentle 

additional mincing. For each individual tissue biopsy, 6-10 Petri 

dishes were planted with tissue fragments (~5-10 fragments/

dish). A small volume (< 2 mL) of sterile warm (37°C) liquid growth 

medium was dispensed around individual fragments to avoid initial tissue flotation. The growth medium was composed of Dulbecco’s Modified Eagle Medium containing phenol red, 25 mM dextrose, 1 
mM sodium pyruvate and L-glutamine (DMEM, Invitrogen™, USA) 

supplemented with 10% v/v clinical grade fetal bovine serum 

(FBS, HyClone™, USA) and 2 mM L-glutamine (Invitrogen™, USA). 

All media had been tested for sterility before use. Tissue culture dishes were gently transferred in a humidified incubator set at 
37°C and 5% CO

2
. After the first 24 hours of incubation, additional 

warmed growth medium (8 mL) was cautiously added by slow 

dispensing to each culture vessel, without disturbing the adherent 

tissue fragments, before reincubation. Growth medium did not 

contain antibiotic supplementation and was thereafter exchanged 

every other day. Once the adherent cultures had migrated outwards from the tissue fragments and attained 90% confluency, cells were 
harvested as described hereafter.

Each culture dish was rinsed twice with 5 mL warmed PBS and 

cell monolayers were enzymatically detached using 2 mL trypsin-
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EDTA. Following complete cellular detachment and cell colony 

separation, resulting suspensions were pooled and diluted with 

equal volumes of growth medium. Using 500 µL aliquots of the pool, 

manual enumeration using a Neubauer Improved hemocytometer 

and Trypan Blue exclusion dye (Sigma-Aldrich, Switzerland) 

yielded total and viable cell counts. The cell suspension pool was 

then centrifuged at 230 x g for 15 minutes. Supernatants were 

discarded and cell pellets were re-suspended in 50 mL warmed 

growth medium. The pooled suspension was further diluted with 

growth medium and dispensed homogenously into 80 vented T175 cell culture flasks (175 cm2, Nunc®, USA). The relative viable seeding density in culture flasks was of 2 x 103 cells/cm2, while the final 
total volume of growth medium was of 30 mL/T175. Seeded culture 

vessels were incubated and growth medium was exchanged as previously described until cell confluency attained 100%. Cultures 
were then harvested by trypsinization and cells were enumerated 

as previously described. A single pooled cell suspension was then 

centrifuged for 15 minutes at 230 x g. After supernatant discard, 

the cell pellet was resuspended in a cryopreservation solution 

composed of DMEM, FBS and dimethyl sulfoxide (DMSO, Sigma-

Aldrich, Switzerland) in 5:4:1 volumetric proportions while the cell quantity was adjusted at a final viable cellular density of 
5 x 106 cells/mL. The resulting suspension was subsequently 

homogenously and aseptically aliquoted in labelled cryovials (1.8 

mL capacity, Nunc® CryoTube®, 1.1 mL/vial). Vials were then placed 

in Nalgene® Mr. Frosty® Cryo 1°C Freezing Containers or CoolCell® 

FTS30 devices (-1°C/minute rate of cooling, Nalgene®, UK and 

Corning®, USA) and were rapidly transferred to a -80°C ultra-low 

temperature freezer. After 24 hours, cryovials were transferred to liquid nitrogen vapor phase (−165°C) in dedicated Dewar tanks for 
long-term storage. Cryovials were stored in separate level-alarm fitted containers in several independant locations to mitigate destruction risks. This cryopreserved material was defined as an 
equine Parental Cell Bank (PCB).

 From this initial PCB homogenous cell stock, progeny tiered 

cell banks could be further derived, comprising full Master Cell 

Banks (MCBs), Working Cell Banks (WCBs) and End of Production 

Cell Banks (EOPCBs). To perform serial expansions and create 

progeny cell stocks, PCB vials were removed from the storage 

tank and transported to the cell culture suite on dry ice (without direct contact between the ice and the vials). For each specific cell 
type, one vial was initiated by rapid thawing in a 37°C waterbath, 

followed by rinsing of the cells in warmed culture medium before seeding in 10-15 T175 culture flasks at a relative viable cell density 
of 2 x 103 cells/cm2. To do so, viable counts were determined upon 

initiation and the acceptance criteria was set at 85% relative 

viability for the initiation procedure to continue. Culture expansions 

were conducted as described previously and harvested cells were 

homogenously distributed and cryopreserved with 2 x 106 to 107 

viable cells/vial.

eFPC banks safety assessmentFor each specific cell type, safety testing was performed on 1 
vial from the start, middle and end portions of the MCBs. Vials were 

initiated and cells were expanded in culture for the experiments. 

Bacterial contamination was excluded after one week of culture 

based on microscopical aspects of cultures and color of the 

growth medium (presence of phenol red indicator). Mycoplasma absence was verified by polymerase chain reaction (PCR, Look 
Out® Mycoplasma PCR Detection Kit, Sigma-Aldrich, Switzerland). 

Presence of equine prions was not investigated. Presence of 

bovine and porcine adventitious agents was excluded based on the certificates of analysis provided for FBS and trypsin-EDTA. 
In vitro eFPCs characterization, expansion kinetics and 

lifespans

Differential characterization of the various primary equine 

progenitor cell types was performed by microscopic observation. 

Vials of the different equine cell types of interest (isolated from 

skin, muscle, cartilage, tendon, connective tissue and bone from 

both organ donations) at different passages were used to obtain standard growth curves. Statistically significative differences in cell 
yields were determined by Student’s t-test, p < 0.05. In brief, vials 

were initiated, viable counts were determined, cells were seeded 

at a relative viable density of 2 x 103 cells/cm2 in T75 sterile and uncoated culture flasks (75 cm2, Nunc®, USA) in 10 mL of growth 

medium and cultures were maintained as described previously. At 

various time points (1, 3, 5, 7 and 9 days), cells were harvested and 

total viable counts were determined to constitute growth curves. 

Experiments were conducted in triplicate with four experimental 

repetitions. In any case, cultures were harvested for enumeration and viability assessment after reaching 80% confluency. Population 
doubling values (PDVs) of each cell type at different passages were 

calculated using the following formula:

Whereas N
H
 is the total viable cell count at the time of harvest 

and N
S
 is the total viable cell count at the time of seeding the cells 

in the culture vessels. Assorted population doubling times (PDTs) 

expressed in hours were calculated using the following formula:

Whereas T
I
 is the total incubation time expressed in hours from 

the time of seeding to the time of initiation of the harvest procedure 

and PDV is the population doubling value determined for the specific considered expansion. To assess stability of the equine cell 
banks during cryopreservation, the experiments were repeated 

after eight years of storage, whereas experiments were conducted 

in triplicate with three experimental repetitions.
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The in vitro lifespans of the considered cell types were assessed 

with regard to passage numbers. Cells were serially cultured, 

using relative viable seeding densities of 2 x 103 cells/cm2, in T75 vented culture flasks (Nunc®, USA) following expansion and harvest procedures (passage at 80% cell confluency) described previously 
until reaching passage 10 (P10). Total and viable cell counts were 

determined at each passage. The in vitro lifespan was defined as the 
highest passage at which the growth rates (expressed as relative 

cell yields or PDVs) conserved 75% of initial values (established as 

average values over three low passages, P2-P4).

Equine Progenitor Biological Bandage preparation and 

study

To manufacture equine PBBs (ePBBs) for in vitro investigation 

and experimental clinical application, skin and muscle equine 

progenitors from the 3-month gestational age donation (ED001-

SK, ED001-Mu) were used. Vials from respective WCBs (P5) were 

thawed, cells were rinsed in warmed growth medium and viable 

counts were determined, as previously described. A registered 

medical device (Tissue Fleece®, Baxter AG, Switzerland) consisting 

of a dry weight 9 cm x 12 cm equine collagen sheet of 2 mm thickness 

was used as a scaffold. The bandages were aseptically transferred 

in large Petri dishes (15 cm diameter, Falcon®, USA) and small 

incisions were made at 2 cm intervals into the collagen matrix with 

a sterile, small bored Pasteur pipette. Skin and muscle progenitor 

cell suspensions were pooled at a 1:1 viable cell ratio. Cells were then seeded on the matrix by gentle dispensing, with the final 
suspension volume being 20 mL and the relative viable cell seeding 

density on the constructs being 5 x 103 cells/cm2. Culture vessels 

were incubated as described previously. An additional volume of 

30 mL of warmed growth medium was dispensed in each vessel 

after 1 hour of incubation. Incubation was continued and medium 

exchanges occurred every other day for a period of 30 days. 

At time-points ranging between 4 days and 30 days of culture, 

constructs were snap-frozen in liquid nitrogen and processed 

for histology. Construct sections of 20µm were stained with 

hematoxylin and eosin (HE solution, Sigma-Aldrich, Switzerland) 

for morphological analysis and evaluation of cyto-compatibility, 

cell integration and distribution. Evolutive assessment of cell 

viability and proliferation in the collagen scaffolds was performed 

between days 1 and 9. In order to dissociate cells from the matrix 

for enumeration, the constructs were incubated for a period of 30 

minutes at 37°C after treatment with a solution of trypsin-EDTA and 

collagenase (collagenase type II, Clostridium histolyticum, Gibco™, 

USA). After complete degradation of the collagen structure, cells 

were rinsed, collected by centrifugation as described previously and 

isolated for enumeration (total and viable cell counts). Experiments 

were performed in triplicate and in three experimental repetitions.

Hydrogel for equine fetal progenitor tenocyte delivery 

To manufacture a cell delivery hydrogel vehicle yielding 

equine fetal progenitor tenocytes for in vitro investigation, tendon 

progenitors from the 3-month gestational age donation (ED001-

Ten) were used. Vials from respective WCBs (P5) were thawed, cells 

were rinsed in warmed growth medium and viable counts were 

determined, as described previously. A registered medical device 

(MesolisTM, Anties SA, Switzerland) consisting in highly reticulated 

HA (2%) was used as a scaffold. Cyto-compatibility between the 

progenitor tenocytes and the injectable hydrogel scaffold was 

assessed by evolutive investigation of cell survival and growth 

characteristics. To do so, standard doses of 104 viable cells were 

dispersed in 0.5 mL hydrogel by re-suspension after centrifugation 

of cell suspensions at 230 x g during 15 minutes. The constructs were 

then transferred to 6 and 24-well culture microplates (Nunc®, USA) 

and placed in incubation as previously described. Cell morphology 

was monitored daily and recorded by direct photographic imaging 

through the transparent construct. Cell counts were performed 

regularly between days 1 and 9 by dilution of the samples from the 

24-well plates in DMEM, trypsinization of the assay wells, rinsing 

and pooling of the cells and subsequent viable count determination. 

Clinical applications of ePBBs

Manufactured ePBBs were clinically applied to equine patients 

for preliminary assessment of safety (absence of immune rejection 

or tumor formation) and healing rate stimulation potential. Four clinical cases were identified by veterinarians as requiring special 
therapeutic care and characterized by mitigated structural and 

functional recovery prognoses based on professional practical 

experience. Two of these experimental clinical cases treated in Boudevilliers (Switzerland) are presented herein. The first case 
consisted in a profound articular lesion on the right hind knee of 

a 1-year-old female pony (French Saddlebred Pony) following a severe fall against barbed wire on difficult terrain. The wound was 
around 4 cm in diameter, 3 cm in depth with exposure of tendons, 

bone and important volumetric soft-tissue loss. The location of the 

lesion and its extent negated the possibility of direct suture.The 

second case consisted in a mandibular injury in a 3-year-old male 

Franche-Montagne horse. Abnormal growth of a tooth had caused 

a dental infection and ulceration of the lower left molar lodge, resulting in a transfixing lesion (external fistula) in the peri-buccal 
region lined with necrotic tissue negating the possibility of direct 

suturing. Both patients were treated with a combination of classic 

veterinary surgery and application of bioengineered ePBBs to close 

and heal respective severe wounds. 

Results

Equine fetal tissue procurement

Both tissue donations (ED001 and ED002, same code-names 

as mother-donors) were examined by experienced veterinarians 

and biologists. Gestational ages, total weights and lengths (without 

placenta, measurement from head to hind legs) of donations were 

established at three months, 103.5 g, 15 cm for ED001 and 11 

months, 29.5 kg, 81 cm for ED002, respectively. Macroscopic and microscopic examinations allowed for confirmation of anatomical 
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normality and absence of observable physical or physiological 

defects. Micro-dissection and histology yielded no evidence of 

major abnormalities of the cardiovascular, respiratory, endocrine, 

digestive, urogenital, musculoskeletal or central-nervous systems. Several distinct and very specific tissue fragments were individually 
isolated during aseptic micro-dissection, acquired and separately 

conditioned, including skin (abdomen, region without hair growth), 

muscle (thigh region), cartilage (cartilage-fetlock joint, covering distal epiphysis of the metacarpal bone), tendon (superficial digital flexor tendons, mid-metacarpal region), connective tissue 
(diaphragm region) and bone (trabecular, distal metacarpal bone) 

(0.2-2 cm3 of tissue/organ/donation) (Figure 1).

Figure 1: Equine fetal tissue fragments isolated during micro-dissection from donation ED002 (11 months gestational age). A) Tendon, 

superficial digital flexor tendons, mid-metacarpal region. B) Dense connective tissue, diaphragm region. C) Cartilage, cartilage-fetlock joint. D) 
Bone, trabecular, distal metacarpal bone. E) Skin, abdomen region. F) Muscle, thigh region.

eFPC tiered bankingFor each specific tissue, primary cell types were obtained after 
culture initiation and subsequently served for PCB establishment. 

Cell outgrowth from tissue fragments was rapid and emitting cells were fibroblast-like (Figure 2). Depending on the tissue, cultures reached 90% confluency in the Petri dishes after 7-12 days of incubation. Tiered cell banking of specific eFPC primary cell types 
was thereafter performed once all PCBs had been established and appropriately stored. For each specific cell types (named after 
the donor and the organ, e.g. ED001-SK, ED001-Cart for dermal fibroblast progenitors and chondroprogenitors respectively for 
donor ED001), vials from the PCBs were initiated, cells were 

culture-expanded and cryopreserved as described in Methods to constitute tiered progeny cell stocks defined as MCBs and WCBs 
(Figure 3, optimal cell bank sizes). The banking nomenclature 

and tier depended on the passage number (Pn) characterizing 

the cell lot and the cell type. Cells in cryovials from the PCB were defined as belonging to P1 in their frozen state, becoming P2 upon 
reinitiation and subsequent culture-expansion. Each MCB and WCB 

lot was composed of several dozen vials each containing 2 x 106 to 

107 viable cells (Figure 3). Typical average contents of cell banks 

were for example 15 vials ED001-Cart P1 (PCB), 70 vials ED001-

SK P2 (MCB), 230 vials ED002-SK P4 (WCB) or 15 vials ED001-SK 

P10 (EOPCB). Depending on the cell type, MCB vials contained 

cells at P2 to P3, while WCB vials contained cells at P4 to P5. To 

perform experiments, cells could be further culture-expanded to 

establish tier-2 WBCs at higher passages within the validated in 

vitro lifespan of the cell types (see hereafter). For each lot destined 

for animal experimentation, sample vials were selected at the 

beginning and the end of lot series and were tested for sterility, cell 

recovery, cell morphology and growth characteristics (population 

doubling values, PDV and population doubling times, PDT) upon reinitiation. For each lot, a batch record and certificate of analysis 
were established, yielding lot designation, quantity of vials, date of manufacture, tests performed, specifications, results and release. 
Non-conforming lots were destroyed and such procedures were 

documented. Each individual vial was attributed a code and storage 

locations were updated in a master-log. Logbooks were used to 

record vial movements, ranging from initial deposit to removal for further banking or experimental purposes. Modifications were 
dated and signed in the logbook to ensure continued traceability of 

materials. 
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Figure 2: Representative imaging of equine primary progenitor cell types (Passage 1) isolated from biopsies of the ED001 donor. A) ED001-

Ten or equine progenitor tenocytes. B) ED001-CT or equine connective tissue progenitors. C) ED001-Cart or equine chondroprogenitors. D) 
ED001-Bone or equine osteoprogenitors. E) ED001-SK or equine dermal progenitor fibroblasts. F) ED001-Mu or equine muscle progenitor cells 
progenitors. Pictures were obtained under 400X optical magnification.

Figure 3: Fetal tissue bioprocessing and tiered progeny eFPC banking. A) Isolation of specific fetal tissues during micro-dissection and 
enzymatic treatment. B) Preliminary cell expansion after culture initiation. C) Establishment of Parental Cell Banks (PCBs,  ̴ 40 vials/lot). D) 
Establishment of Master Cell Banks (MCBs,  ̴ 150 vials/lot). E) Establishment of Working Cell Banks (WCBs,  ̴ 300 vials/lot). 

eFPC in vitro characterization

All considered primary progenitor cell types (derived from 

skin, muscle, connective tissue, tendon, cartilage and bone), which 

were established from two different gestational age donations (3 

and 11 months) were grown in parallel to establish similarities 

and differences in cellular growth parameters. Differential 

characterization of the various primary equine progenitor cell 

types was performed by microscopic observation (Figure 2) 

and comparison of phenotypes to other progenitor cells (ovine 

or human) isolated from the same respective organs. Cell types 

from both donors consistently displayed rapid growth from 

original biopsies and subsequently in monolayer cultures. Cell morphology was fibroblastic in nature (spindle-shaped cells, 
elongated for certain cell types) by consistent throughout passages and characteristic for specific cell types. The different equine cell 
types of interest were characterized at different passages (P2-

P8) to obtain growth curves (Figure 4, cells at P4). Cell viability quantification upon initiation, PDVs and PDTs were obtained for 
each cell type at different passages (Table 3). Growth curves and 

expansion parameters displayed similarities and differences 

between the considered cell types and donors (Figure 4 and Table 
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3). ED001-Mu, ED001-Ten, ED002-CT and ED002-Mu produced 

the highest endpoint cell yields at P4, while ED001-CT, ED001-

Bone, ED002-Cart and ED002-Ten produced the lowest yields in the same conditions (Table 3, statistically significative differences 
in endpoint cell yields, p < 0.05, Student’s t-test). Specificities 
therefore characterized each cell type and cell behavior in culture, 

which additionally varied between gestational ages in terms of 

proliferation kinetics and yields. 

Figure 4: Growth curves representing comparative cell proliferation of eFPC cell types derived from equine fetal donations (skin, muscle, 
cartilage, bone, connective tissue and tendon biopsies). The average and evolutive total cell counts are presented as a function of time for 

cultures in T75 flasks. Data is presented for donor ED001 cell types at P4. Associated standard deviations of average counts are presented 
only for certain cell types as error bars to avoid overcrowding the data plots. Experiments were performed in triplicate and in three experimental 
repetitions. 

Table 3: Characterization of equine progenitor cell types from both organ donations (ED001 and ED002, 3- and 11-months gestational age, respectively). 

Data report the relative cell viability upon initiation as determined in triplicate by manual enumeration using Trypan Blue exclusion dye. Assorted PDVs and PDTs are based on data obtained for cultures in T75 culture flasks, after nine full days of incubation. Each average value is given for cells at P2 and P8 
as obtained during the in vitro lifespan assays. Cell viability data are presented assorted to respective standard deviations.

Cell type (original tissue)

Passage 2 Passage 8

Relative cell 

viability [%]
PDV PDT [h]

Relative cell 

viability [%]
PDV PDT [h]

ED001-SK (dermis) 98 ± 2 4.68 46.14 90 ± 4 4.36 49.55

ED001-Cart (cartilage) 96 ± 1 4.62 46.73 91 ± 3 4.28 50.44

ED001-Ten (tendon) 94 ± 2 4.79 45.12 89 ± 2 4.54 47.62

ED001-Mu (muscle) 99 ± 3 4.88 44.30 93 ± 3 4.77 45.27

ED001-CT (connective tissue) 97 ± 3 4.17 51.77 91 ± 2 4.00 53.94

ED001-Bone (bone) 93 ± 2 4.14 52.19 89 ± 3 3.92 55.08

ED002-SK (dermis) 97 ± 2 3.87 55.88 93 ± 1 3.65 59.22

ED002-Cart (cartilage) 95 ± 1 3.76 57.45 91 ± 3 3.66 59.09

ED002-Ten (tendon) 95 ± 4 3.60 60.05 90 ± 2 3.45 62.70

ED002-Mu (muscle) 97 ± 3 4.01 53.91 92 ± 5 3.87 55.81

ED002-CT (connective tissue) 95 ± 4 4.06 53.18 88 ± 4 3.89 55.47

ED002-Bone (bone) 91 ± 2 3.94 54.75 85 ± 3 3.74 57.69

PDV-Population Doubling Values, PDT-Population Doubling Times.

Consistency of cell growth and morphology were confirmed up 
to at least passage 8 during in vitro lifespan evaluations and following criteria defined under Methods (Table 3). EOPCBs were established 
at P8 for most cell types. PDV values ranged from 3.45 (ED002-

Ten P8) to 4.88 (ED001-Mu P2) while PDTs ranged from 44.30 h 

(ED001-Mu P2) to 62.70 h (ED002-Ten P8). Table 3 indicates that 

ED002 cell types presented relatively inferior performances than 

ED001 in terms of expansion kinetics and cell yields. With regard 
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to cell stability during cryopreservation, viable cell recovery and plating efficiency were determined to be > 80-90% after eight years 
of storage. PDTs and PDVs obtained by experimental repetition 

after 8 years of storage were similar to values obtained at the time 

of equine cell banks establishment (data not shown). The overall 

stability of eFPCs was confirmed by the relatively high viability of 
the different progenitor cell types upon initiation, during passage 

procedures and in cyto-compatibility assays, whereas relative 

viability results < 85% were rarely observed (Tables 3 & 4).

Table 4: Cell counts during cyto-compatibility assays. Average relative and evolutive cell yields are presented for monolayer cultures (controls) and cells 

seeded in both polymeric scaffolds. Data are presented assorted to respective standard deviations.

Cell type and passage
Culture vessel / 

Scaffold

Initial cell yield [103 

cells/cm2] Viability 

[%]

Cell yield D
3
 [103 

cells/cm2] Viability 

[%]

Cell yield D
6
 [103 

cells/cm2] Viability 

[%]

Cell yield D
9
 

[103cells/cm2] 

Viability [%]

ED001-SK P5 T75 (Nunc®)
2.0 ± 0.0 

98 ± 2%

3.9 ± 0.3 

96 ± 2 %

23.2 ± 1.9 

 97 ± 2 %

51.4 ± 6.2 

 96 ± 3 %

ED001-Mu P5 T75 (Nunc®)
2.0 ± 0.0 

99 ± 1 %

3.9 ± 0.3  

98 ± 1 %

25.0 ± 2.8  

95 ± 3 %

58.8 ± 6.6 

96 ± 2 %

ED001-Ten P5 T75 (Nunc®)
2.0 ± 0.0 

 99 ± 1%

2.1 ± 0.2 

93 ± 4 %

11.6 ± 2.5 

96 ± 3 %

24.2 ± 21 

 97 ± 2 %

  
Initial cell yield [cells/

mm3] Viability [%]

Cell yield D
3
 [cells/

mm3] Viability [%]

Cell yield D
6
 [cells/

mm3] Viability [%]

Cell yield D
9
 [cells/

mm3] Viability [%]

ED001-SK &  

ED001-Mu P5 (1:1)

Tissue Fleece® (Baxter 

AG, equine collagen)

25.0 ± 0.0 

99 ± 1%

68.4 ± 19.8 

96 ± 2 %

123.4 ± 27.7                 

92 ± 2 %

159.3 ±32.6 

94 ± 3 %

ED001-Ten P5

Mesolis™ (Anteis SA, 

reticulated hyaluronic 

acid)

20.0 ± 0.0 

97 ± 2 %

24.1 ± 8.3 

89 ± 5 %

44.0 ± 12.9 

92 ± 3 %

76.2 ± 15.0 

95 ± 3 %

Day 3 to Day 9 after cell seeding.

Cyto-compatibility of eFPCs with collagen and HA constructs

Figure 5: Cyto-compatibility of equine progenitor cells (ED001-SK) with collagen scaffolds. A) Equine Progenitor Biological Bandage without 
cells (control) after a two-week incubation period. B) Progenitor cells in the collagen scaffold after a two-week incubation period. C) Progenitor 
cells in the collagen scaffold after a four-week incubation period. Data was obtained using 20 µm sections stained with HE, imaged under 400X 
optical magnification.
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Specific cell types were selected based on optimal growth 
kinetics (Figure 4 & Table 3). Cyto-compatibility of ED001-SK 

and ED001-Mu progenitor cells with equine collagen sheets was 

assessed. Progenitor cells integrated in the scaffolds for periods of 

four days to one month did not show any differences in morphology. No biodegradation or significant construct thickness changes were 
observed over the one-month period, as the two mm dimension 

was conserved from the matrix in its dry state. After approximately 

three weeks of culture, slight shrinking of the planar size of the 

constructs could be measured (~0.5 cm) and was most likely due to 

high cell concentrations and ensuing constriction forces. Histology 

from serial samples at one, two and four weeks was accomplished 

and HE staining showed high cellular integration throughout the 

entire collagen matrix and not only on the surface. Cell populations 

were evenly distributed after two weeks of culture already (Figure 5). The three-dimensional environment sustained significant 
cellular proliferation during incubation (Table 4). Indeed, the total 

cell count evolved from 25cells/mm3 (99 ± 1% viability) at the time 

of seeding to 159.3 ± 32.6 cells/mm3 (94 ± 3% viability) after nine 

days of incubation.

 Cyto-compatibility of ED001-Ten progenitor cells with an HA 

hydrogel was assessed by monitoring cell survival and cell growth 

characteristics within the hydrogel. The cell type was selected 

based on optimal growth kinetics (Figure 4 & Table 3). In the 

assay multi-well plates, cells were observed to rapidly migrate 

throughout the gel and easily attach to the cell culture plate surface, 

as indicated by direct optical microscopy (Figure 6). Cell growth 

within the hydrogel could be monitored not only visually but also 

quantitatively by removing samples each day and counting total cell 

numbers (Figure 6, Table 4). Cell counts were plotted in function 

of the number of days in culture and portrayed increasing cell 

growth throughout the culture period (Table 4). Indeed, the total 

cell count evolved from 20 cells/mm3 (97 ± 2% viability) at the 

time of seeding to 76.2 ± 15.0 cells/mm3 (95 ± 3% viability) after 

nine days of incubation. Healthy cell growth was observed based on 

morphological evaluation and evolutive cell counts. Interestingly, once fetal equine tendon cells were confluent in mono-layer, they 
rapidly grew in three dimension (3D) throughout the hydrogel 

(Figure 6D).

Figure 6: Cyto-compatibility of equine progenitor cells (ED001-Ten, P5) with hyaluronic acid hydrogels. A) Cells growing in standard culture 
conditions. B) Cells after a 20-day culture period having attained over-confluency in standard culture conditions. C) Cells growing in the hydrogel 
after a one-week incubation period. D) Cells forming 3D structures in the hydrogel after a two-week incubation period. Representative imaging 
was performed under 400X optical magnification.

Case reports of ePBB application

Primary banked eFPCs were used for the development of ePBBs 

destined for application in hippiatric medicine following severe and 

complex wounds. The overall objective of the general approach was 

to tentatively extrapolate potent results of healing rate stimulation 

obtained in human medicine with human progenitor cells to the veterinary setting. The specific objective of the present collection 

of cases was to preliminarily assess the safety of application of 

ePBBs in equine patients and to verify absence of immunogenicity 

or rejection and absence of induced wound healing delay. The first case consisted in treatment of a severe distal limb wound 
(knee injury) with deep tissue exposition. Treatment occurred 

24 hours post-injury. As for all patients, pre-operative sedation 

medication was xylazine (0.6-0.7 mg/kg body weight, Streuli 
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Pharma AG, Switzerland). Induction of anesthesia was performed 

with Narketan® 10 (ketamine, 2 mg/kg body weight, Vetoquinol AG, 

Switzerland) and climazolam (0.2 mg/kg body weight, Dr. E. Graeub 

AG, Switzerland). The patient was intubated and maintained in 

a surgical plane of anesthesia by inhalation of halothane (3%, 

Fluothane®, AstraZeneca, Germany) in a supine position on an 

operating table (Figure 7). Under appropriate controlled sedation 

and anesthesia, the region around the wound was shaved, the 

wound was cleaned and thoroughly rinsed with normal saline, 

disinfected with hydrogen peroxide and rinsed again. Three full 

ePBB constructs were made available after one week of incubation. 

Constructs had been prescribed and ordered as a veterinary 

magistral preparation. ePBBs were placed directly and tightly into 

the lesion (Figure 8A-B) and over-layered with petroleum jelly 

coated gauze. Cotton gauze bandages protected the constructs and 

the primary gauze, while stitches helped to stabilize the bandage. The 

surgical site was then covered in a routine manner using Polysorb® 

(Tyco Healthcare, UK) staples and sutures (Figure 8C). After end 

of surgery and reanimation, the patient was kept immobilized in 

her box stall for three days after which she was allowed to move 

freely on the paddock. Three days after the intervention, bandages 

were removed and replaced with standard wound coverages before 

return of the patient to the paddock. Evolutive evaluation of the 

wound was realized by subjective macroscopic examination by an 

experienced veterinarian. Granulation tissue covered the surface 

of the wound and the deep tissue exposure was resolved, as the deepest portion of the wound remained filled with the remains of 
the ePBBs which fused with the adjacent repairing tissues (Figure 8D). Borders of the wound were well defined and in the process 
of reepithelialization. Standard wound care continued with regular 

bandage exchanges. Full mobility was restored after the three-

day immobilization and the wound was considered closed after 

a treatment period of two weeks. Based on practical veterinary 

experience, similar clinical presentations (3 cm wide x 2 cm deep 

wounds) would normally heal in approximately one month and 

impose strict mobility restriction. In particular, the resolution of 

the deep tissue exposure would have necessitated more time and 

the outcome generally comprises permanent volumetric loss at the 

site of injury.

Figure 7: Schematic overview of eFPC bank establishment, ePBB manufacture and clinical application on equine patients. A) Primary cells are 
initially cultured using an enzymatic explant method, cells are culture-expanded in vitro and cryopreserved to constitute cell banks. B) Vials from 
the Working Cell Bank are initiated and used to seed the biological constructs at 5 x 103 total viable cells/cm2. C) After proper anesthesia and 

surgical intervention, the biological constructs are applied as needed on the injuries. 
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The second case consisted in a mandibular necrotic and transfixing wound (Figure 8E). Treatment occurred 72 hours 
after the wound created an opening in the mandibular wall 

tissue. Under appropriate anesthesia as described hereabove, the 

incriminated tooth was removed and the resulting mandibular 

space was caped using Technovit® 6091/easy (Heraeus Kulzer & 

Co., Germany). The injury canal was cleaned and cleared of any 

excess granulation tissue using sterile surgical scissors. The wound 

was then thoroughly rinsed with sterile normal saline containing 

gentamycin (0.1 mg/mL, Veterinaria AG, Switzerland), disinfected 

with hydrogen peroxide and rinsed again before 2.5 full ePBBs which had been incubated for one week were inserted to fill the 
volumetric defect (Figure 8F). The entire wound bed was overlaid 

with Jelonet™ (Smith and Nephew Medical, UK), covered with 

gauze and then sutured into place (Figure 8G). After reanimation, 

the patient was kept in his box stall for three days after which 

he was allowed to move freely on the paddock. The bandages 

and staples were removed six days later (nine days post-surgery, Figure 8H). Slight superficial tissue granulation was observed on 
an otherwise healthy surface. ePBB constructs appeared to have 

integrated the repairing tissues and undergone resorption, being 

replaced with repairing tissue. The internal side of the wounded area was exempt of inflammation four days post-intervention 
and normal nutritive intake could resume 48 hours after surgery. 

Aside from mouth rinsing with antibiotic solutions, the wound 

required no further care. Two additional equine cases (4-year-old 

and 5-year-old Franche-Montagne male horses) were treated with 

the same therapeutic indication (mandibular necrosis following 

tooth abscess) and treatment protocol, with similar evolutions and 

comparable total wound closure (data not shown).

Figure 8: Case studies describing treatment of a distal limb profound injury and a mandibular fistula created by an abscessed tooth. A & E) 
Initial wound presentation before intervention. B & F) Application of biological constructs after thorough cleansing, disinfection and surgical 
debridement of the wounds. C & G) Suturing and stapling of wound coverage over the surgery sites. D & H) Bandage removal after three days 
(D) and nine days (H).
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Discussion

Wound healing and treatment options in hippiatric 

medicine

Equine distal limb injuries are notably characterized by 

feeble intrinsic regeneration capacities and slow wound healing 

rates. High adjacent skin tension, relative absence of underlying 

soft tissues, low propension for wound contraction and limited 

epithelialization render healing of such equine injuries arduous [16]. Trauma induced ischemia, constitutive hypoxia and inflammation 
contribute negatively to physiological repair mechanisms by 

promoting formation of EGT [18]. Equine models of wound healing 

best approach human physiological processes and can potentially 

be used in large animal studies, as both species strongly depend 

on physiological modulation of endogenous tissues toward 

reepithelialization. Excessive production of granulation tissue is common to both horses and humans, being defined by formation of proud flesh or keloids (dysplastic newly formed connective tissue 
and vasculature), respectively, which illustrate the relevance of 

equine models for translational development of human cutaneous 

repair products [13,16].

 Wound care options within standard veterinary practice are similar to classic human medicine practices, with specificities 
for application on animal wounds, given the particular aspects of 

equine tissue healing phases [1,4,5]. Current or standard wound 

dressing and care options (non-biological) for horses are listed 

and characterized in Table 2. Rising incidence of acute and chronic 

diseases and relative importance of the horse as a workforce or 

companion have prompted the development of novel therapeutic 

products dedicated for veterinary use, often conceptually derived 

from products destined for human application, in line again with 

the One Health Initiative [13-18]. Preliminary investigations of 

bioengineered construct therapeutic potential for treating equine 

cutaneous affections yielded controversial results, in particular 

with products such as bovine collagen porous membranes, hydro 

soluble yeast extracts or derivatives of porcine intestinal mucosa 

(VetBioSISt®, Smiths Medical-SurgiVet®, USA) [1,6,7]. Physical 

and biochemical therapeutic options have also been considered, 

with variable outcomes [67,68]. The use of equine amnion or amniotic fluid has yielded encouraging results, as comparison of 
the therapies to non-adherent bandages indicated a shortening of wound healing periods. Amniotic fluid contains growth factors, 
angiogenic factors and possesses a bactericide action [8]. Despite 

advances in cutaneous wound care and due to the exposure of 

horses to extensive trauma to the limbs in particular, more advanced 

tissue regeneration strategies are required for treatment of lesions 

to muscle tissue, tendon, cartilage and bone, which often present 

volumetric losses and require either tissue transplants or advanced 

wound coverage. This therapeutic niche and high demand have 

spawned the development of cell therapies and bioengineering 

of novel combination products destined for hippiatric medicine 

in parallel to or as part of therapeutic developments in human 

medicine. 

Fetal progenitor cell sources for regenerative medicine

Cell therapy and tissue engineering developments are 

producing novel approaches with remarkable induction of 

biological functions and clinical effects, whereas therapeutic 

cell choice and processing thereof is of utmost importance. Fetal 

tissues have been invaluable investigational tools in embryology, 

developmental anatomy and physiology [31,46,58]. Fetal cells additionally benefit from extensive industrial use and hindsight in biotechnology and pharmaceutical fields, being key substrates for 
production of viral vaccines for diseases such as polio and rabies [41]. Associated tissues such as placenta, amnion, amniotic fluid, 
umbilical cord and cells derived thereof have also been investigated 

for the development of new therapeutic products [6,8,31,33,69,70]. 

Effective development and industrial transposition of cell therapy 

manufacture are highly dependent on the selected cell source, 

processing thereof and resulting intrinsic characteristics. In view 

of tangible widespread application, tissue engineering processes 

must meet stringent criteria such as safety, consistency, rapidity and 

reliability in order to remain effective and cost-effective [46,53,69]. Regulatory frameworks and classifications should also be taken 
into account in early phases of therapy or product development 

[71]. Table 1 lists and characterizes major cell sources of interest 

(including autologous, allogeneic and xenogeneic) for development 

of therapeutic strategies and products. Primary fetal progenitor 

cells isolated following standardized protocols possess numerous 

intrinsic technological advantages making them optimally suitable 

for regenerative medicine applications. Low technical culture 

requirements (simple and standardizable industrial processes), 

high proliferation rates and extensive expansion potential (i.e. > 

10 in vitro passages with high PDVs) enable robust and tangible 

establishment of large consistent and characterized cell banks. Such 

cell stocks can potentially be relatively much larger than stem cell 

banks for example, whereas higher seeding densities (> 104 viable 

cells/cm2) are used for shorter in vitro lifespans (e.g. 3-4 passages). 

Valuable therapeutic attributes such as high resistance to oxidative stress, stable defined and differentiated phenotypes, low potential 
towards immunogenicity or tumorigenicity and optimal cyto and 

biocompatibility reinforce the interest in progenitor cell banks for 

allogeneic regenerative medicine [45,53,57].

 As was previously demonstrated in human translational 

medicine, simultaneous isolation of various fetal progenitor cell types from one organ donation enable highly efficient research and 
therapeutic development in all major aspects of musculoskeletal 

cell therapies [45,53,56,59,60,63]. Such knowledge and experience 

were extrapolated to veterinary therapeutic research, as immune 

privilege of progenitor cells potentially allows for safe xenogeneic 



Am J Biomed Sci & Res

American Journal of Biomedical Science & Research 266

Copy@ Anthony S de Buys Roessingh

transplantation, while use of allogeneic animal cells and veterinary applications may benefit from relatively alleviated regulatory 
requirements [54,62,65,66]. Restricted need for repetition of cell 

isolation procedures yielded by techniques described herein largely benefit temporal and economic factors of therapeutic supply chains. 
Avoidance of multiple organ donations and careful selection of 

donor parameters exclude inter-individual variability and the need 

for manipulation of cell types with regard to phenotypic identity or 

lineage commitment. Consistent establishment of safe and stable 

progeny cell banks is possible with minimal processing. Further 

optimization of cell delivery methods will allow for optimization 

of manufacturing, storage and distribution logistics, with abolition 

of the dependency to cryopreservation and ultra-low temperature 

maintenance for biological materials. Such burdens can be alleviated by specific further processing of cellular materials using 
existing technologies such as freeze-drying, while stably retaining 

the intrinsic therapeutic potential of viable and integral progenitor 

cells.

Cell therapies for hippiatric medicine

Equine cell therapies have been thoroughly investigated as of 

late for potential veterinary applications. Notably, bone marrow 

and adipose stem cells have been investigated regarding their chondrogenic potential. Being aspecific in terms of phenotype, 
such cell types require many growth and differentiation factors, 

complicating manufacturing processes and negatively impacting consistency thereof [3,12]. Human amniotic fluid yields both fetal 
cells and stem cells, representing alternative potential sources, yet 

consistent isolation and large-scale cell banking of latter cell types 

remains treacherous [31]. In this study, successful development 

of equine fetal cell banks from various musculoskeletal tissues of 

interest for bioengineering purposes were described. Rationale 

for establishing equine fetal cell banks and evaluating their 

regenerative stimulation potential was the local extensive 

preliminary experience and hindsight in human wound care using 

banked progenitor cells of both human and ovine origin, with single 

therapeutic cell types and combinations thereof [43,48,66]. Indeed, 

preliminary assessments of equine progenitor cell types had been 

made comparatively with human progenitor cell banks derived 

from organ donations following highly similar bio-processing and 

banking frameworks and protocols. eFPCs therefore appeared 

as optimal candidates for investigation of potential therapeutic 

veterinary applications.

 Cell delivery is a paramount aspect of all cell therapies, 

as the optimal scaffold is necessary for the deployment of full 

therapeutic effects of the biological materials. Collagen is a popular 

scaffold for cell therapies in general as it is constitutively present 

in animal organisms as a component of the extracellular matrix 

(ECM) and interacts in all phases of cutaneous wound healing (inflammation, ECM remodeling, contraction and epithelialization) 

with the effectors of tissue repair. Bioresorbable hemostatic 

collagen sponges obtained by lyophilization and gamma radiation 

sterilization are commercially available as medical devices, as well as combination products falling under regulatory classification 
of combined Advanced Therapy Medicinal Products (cATMP, e.g. 

Apligraf®, Organogenesis, USA, OrCel®, Ortec, USA) [23,42]. The latter yield neonatal fibroblasts and keratinocytes, which are involved in 
ECM production and paracrine modulation of wound environments 

during the healing process. Such regulatory and stimulation roles are the defined mechanisms of action for various marketed tissue 
engineering products (TEPs) [22]. In a similar fashion, ePBBs 

were engineered as cutaneous substrates intended to favor wound 

healing by modulation of tissue granulation and stimulate onset of 

epithelialization.

Cell banking of eFPCs

Extensive and consistent cell banks were established from fetal 

equine tissues (skin, muscle, cartilage, tendon, connective tissue 

and bone) by growing and expanding various musculoskeletal cell 

types in optimized and standard conditions. Full PCBs could be 

established rapidly (< 3 weeks for all considered cell types) and 

allowed for subsequent establishment of consistent MCBs and 

WCBs for experimental and clinical uses. Results indicated that 

cell growth from donor ED001 (three months gestational age) 

was more rapid that of donor ED002 (11 months gestational age) 

for all considered cell types. Such data supports the use of lower 

gestational age donations for cell banking, while the optimal age 

remains to be determined by comparative evaluation. The tiered 

banking system allowed for pragmatic use of the cellular materials. 

Indeed, extensive expansion capabilities and high stability allowed 

for experimental use of cells at passages between six and nine 

depending on the cell type, which theoretically allows for millions 

of therapeutic constructs to be manufactured using a dedicated cell 

bank derived from one organ donation. Indeed, despite the small 

amount of procured tissue at the time of donation, biotechnological processing and tiered cell banking allow for near indefinite 
propagation of the biological material within adequate banking 

strategies, consistently retaining initial cellular physiological 

properties and therapeutic attributes. Manufacture of  WCBs at defined passages for optimal therapeutic 
effects allow for generation of off-the-freezer allogeneic material 

sources for cell therapies. Initiation of cryopreserved WCB vials 

and conjugation of progenitor cells with adequate bioengineered 

scaffolds or delivery systems allow for prompt generation of 

advanced wound coverage and tissue reconstruction solutions. 

While skin and muscle-derived equine progenitor cells have been 

the main focus of the present study at a translational level, other 

musculoskeletal cell types such as bone, cartilage, connective tissue 

and tendon have presented interesting characteristics in vitro. Such 

cell types should be further investigated for their potential tissue 
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engineering applications to repair or replace soft tissue, muscle, 

cartilage, tendon and bone in parallel to human progenitor cells 

[47,51,54,59,60,65]. Further optimization of cell culture protocols 

(e.g. hypoxic culture conditions, dynamic culture settings, induction of tissue-specific ECM production) may better mimic the native environment of specific cell types and potentially increase or 
stimulate the therapeutic supplementation or mediation operated 

by therapeutic cells [16].

eFPC banks safety testing

Safety testing of the considered biological materials did not 

reveal any trace of contamination during culture (sterility of 

growth medium), nor the presence of mycoplasma in the material 

constituting the equine cell banks. Presence of equine prions was 

not investigated, due to the low rate of animal contamination and unavailability of equine-reacting specific antibodies. For safety 
testing of equine primary fetal progenitor cell types in general, 

not only can the mother-horse be tested to ensure seronegativity 

for communicable diseases, but each equine cell bank lot may 

easily be tested with regard to possible presence of bacterial, 

fungal and viral adventitious agents. Further regulatory-required 

testing in GMP (Good Manufacturing Practices) manufacturing 

settings for clinical use could include identity testing (to assure 

no cross-contamination upon manipulation of cells), mycoplasma 

absence and sterility testing (on a routine basis) or in vitro and 

in vivo adventitious agent detection (determined by regional viral 

contamination possibilities).

Additional cell bank testing should then include absence verification for contaminants from contact process consumables,  
and raw materials e.g. bovine viruses from FBS or porcine viruses from trypsin-EDTA. However, use of GMP-certified batches of serum 
and trypsin that have been previously tested and gamma-irradiated 

would limit the risk within cell bank production. Optimization and standardization are key concepts in any translational workflows 
and manufacturing processes, whereas progenitor cells adapt exceptionally well to the specificities of therapeutic product 
development pathways. Such advantages enable effective safety 

testing to be performed on homogenous and consistent production 

lots, ensuring optimal safety of all liberated starting materials for 

biologic product development.

eFPC characterization

The overall goal of characterizing biological starting materials 

is the assurance of working with adequate, effective, consistent, 

traceable and safe substrates. Based on extensive experience with 

handling and banking fetal progenitor cells from different tissues 

(human and ovine origins), microscopic differential phenotype 

characterization was possible with eFPC cultures, isolated from well-defined original tissue fragments. Culture growth kinetics as 
well as in vitro life spans and cyto-compatibility parameters were 

assessed for eFPCs for different donors. In addition, preliminary 

safety of eFPC sources was established throughout equine cell 

bank safety assessment and limited in vivo clinical applications. 

However, in view of optimization and eventual transposition to 

GMP manufacturing and product development, further insights and standardized quantifiable parameters need to be established and 
evaluated with regard to cell population identity, purity and potency. 

Similar challenges exist when working with human progenitor 

cells, whereas extensive characterization of the biological starting 

material is far from that of small molecule drugs or therapeutic 

biologics. Both domains (human or equine progenitor cell banking) 

may be similarly supplemented in respective manufacturing workflows by identity, purity and potency assays, which can fit 
both mechanism of action elucidation and quality assurance 

requirements. 

With regard to identity, eFPCs are similar to human progenitors and may be characterized by cell surface maker profiling using specific antibodies (e.g. for human cell types, CD13, CD14, CD26, 
CD29, CD34, CD44, CD45, CD49a, CD54, CD73, CD90, CD105, 

CD106, CD146, CD166, HLA-ABC, HLA-DPQR) [59,60]. Such investigations may be conducted using flow cytometry assays 
or immunocytochemical staining assays. A clear advantage of flow cytometry is that population purity may be simultaneously 
assessed. Evolution of cell population identity and purity may be assessed using flow cytometry or karyotyping assays performed 
on materials at various stages of the in vitro lifespan or various 

time points of cryopreservation. Potency of progenitor cells 

differs categorically from that of stem cells, which may be easily 

demonstrated with differentiation assays verifying phenotypic 

stability (multilineage differentiation assays, 2D/3D adipogenic, 

osteogenic and chondrogenic induction assays). Additional 

parameters which may be used to characterize eFPCs in terms of 

consistency comprise evaluation of evolutive total protein contents, specific gene or total ribonucleic acid (RNA) expression by PCR 
[53,59]. Functional assays are in addition necessary in order for 

therapeutic proof-of-concepts to be established, in particular for 

compliance with regulatory requirements. Therefore, progenitor 

cell therapies may be investigated in many ways in terms of 

function, including but not limited to assays for stimulation of 

adequate target cell proliferation, migration, metabolic activity or 

survival by therapeutic cells or modulation of endogenous ECM or 

tissue parameters.

Cyto-compatibility of eFPCs

Both collagen sponges and HA had been previously investigated for delivery of human dermal progenitor fibroblasts, progenitor 
myocytes and progenitor tenocytes with excellent results with 

regard to cyto-compatibility and biocompatibility [43,54,60,65]. In 

the particular case of HA, despite the absence of culture medium or 

growth supplement, cell survival was demonstrated for up to three 

days of 4°C conservation with retention of optimal rheological 

properties in view of clinical delivery with comparable commercial 
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preparations [61]. Based on results obtained with equine progenitor tenocytes, it appears beneficial to maintain incubation 
of engineered products in order to allow for better cell survival 

and integration, as ED001-Ten cells continued to proliferate in 

the hydrogel for up to four weeks in the present study parameters 

(Table 4).

 For the preparation of ePBBs for the equine patients, an 

empiric combination of cell types was investigated for ePBBs 

in the particular context of volumetric loss injury, whereas 

multiple and complementary tissue stimulation properties 

were required. The cell types (ED001-SK and ED001-Mu) were 

selected based on optimal growth kinetics (Figure 4 & Table 3). 

Based on excellent cyto-compatibility results with eFPCs and 

construct physicochemical properties, collagen constructs seeded 

with equine progenitor cells meet preliminary requirements for 

adequate cutaneous wound coverage or tissue reconstruction 

product development. With regard to HA hydrogel investigation for 

equine progenitor tenocyte delivery, the cell type (ED001-Ten) was 

selected based on optimal growth kinetics (Figure 4 & Table 3) and 

the high incidence of tendon injuries in equine patients. Based on 

observed cyto-compatibility and HA construct properties, hydrogels 

yielding equine progenitor cells meet preliminary requirements 

for development of appropriate injectable cell therapy options for 

damaged equine tissues.

Overall, both investigated scaffold options proved to be cyto-

compatibility with the eFPCs of interest and had been characterized 

as biocompatible during respective evaluations for CE marking. 

These two systems provide delivery options for external and internal 

wounds to be treated with equine progenitor cells, yet further 

developments are required in order to identify cyto-compatible and 

biocompatible matrices suitable for cell delivery and reconstruction 

of musculoskeletal defects impacting tendon, cartilage and bone. 

Hydrogels for human progenitor tenocyte delivery have been 

previously described [61]. For cartilage cell therapies, polymeric 

structures based on polyethylene glycol (PEG), chitosan, albumin 

or hyaluronan have been investigated for injectable applications 

yielding adhesive, chondrogenic and mitogenic properties [64]. 

Bone cell therapies using progenitor cells have been evaluated 

with poly(L-lactic acid)/tricalcium phosphate scaffolds with 

encouraging results [52,63]. Data gathered around the behavior 

of eFPCs in the collagen biological matrices of interest are similar 

to results obtained with human progenitor cells in the same 

polymeric scaffolds, which are being investigated in clinical trials 

in Switzerland (CHUV, Bru_PBB Priority Project) and Asia (Taiwan 

and Japan, trial ID numbers NCT03624023 and NCT02737748) for 

donor site wounds and diabetic ulcers [43,47,48,50,57,58].

Hippiatric case reports of ePBB application

In all clinical cases, no biopsies were taken to evaluate eFPC 

persistence during the wound healing phase. Furthermore, limited 

and preliminary conclusions could be drawn from the considered 

cases, as no controls could be used to comparatively assess the influence of ePBBs against standards of care. However, similarities 
could be observed between the use of ePBBs in equine subjects 

and application of human PBBs in burn patient populations. Indeed, while being unquantified, some inflammation reduction 
and apparent stimulation of tissue repair was observed. Absence of immunogenicity and tumorigenicity was confirmed, by patient 
examination at the time of wound closure and one year later, 

respectively. Effects of ePBB applications were subjectively 

evaluated by attending veterinarians as safe and positive towards 

tissue repair and wound healing.

The different advantages of optimized progenitor cell banking 

allow for manufacture of bioengineered cell therapy constructs at 

relatively low direct costs, as reported for human PBBs [26]. Given the apparent beneficial effect of ePBBs on equine wound healing, which needs confirmation on a larger patient group in a controlled 
comparative study, the drastic economic consequences brought 

down by severe injuries in highly valuable veterinary patients (e.g. 

race horses or camels) might be alleviated by application of such 

novel therapies. In addition, due to the high levels of similarity 

between human and equine cutaneous wound healing and the 

documented immune privilege characterizing primary progenitor 

cells, equine models appear as optimal for large animal studies 

during development of such human wound healing solutions. 

In parallel and as demonstrated in the present work, the use of 

investigational therapies as veterinary magistral preparations might benefit numerous equine patients otherwise destined for 
euthanasia, while gathering extensive preclinical safety data, in a 

relatively straightforward regulatory framework. As evidenced 

during translational work in human clinical cases, optimal 

therapeutic gains provided by highly-specialized medicine and novel products may only deploy their full beneficial effects through 
close inter-professional collaboration between research, regulatory, 

paramedical and medical personel, which all gravitate around and 

support the patient in her/his journey towards recovery and health 

restoration. 

Overall assessment of eFPCs

Based on the exposed technical data and gathered experience 

around progenitor cells and eFPCs in particular, major important aspects and specificities confirm the suitability of such primary 
cell types for large-scale cell banking and bioengineered product 

assembly. Indeed, due to robustness and consistency of cellular 

characteristics throughout processing, progenitor cells optimally 

adapt to the stringent requirements of GMP manufacturing workflows with regard to technical parameters and safety 
screening. Both cell delivery scaffolds (collagen and HA) were confirmed to be well adapted for conjugation with eFPCs based 
on cyto-compatibility parameters. Such data align with prior 

art around the use of human progenitor cells in PBBs, whereas 

standardized cellular construct preparation (scaffold size and cell 
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seeding density) allowed for robustness of experimental assays and sparing use of biological materials. Specifically, while using 
tiered cell banking and construct incubation periods before clinical 

application, the required quantity of therapeutic cells is relatively 

inferior to those of injectable cell-based products, which can 

contain several 109 cells/dose. The choice of cell seeding density 

had been derived from clinical experience around human PBBs, 

where live therapeutic cell yields had been optimized and validated 

in our Burn Center [43,46,47,49]. However and although the observed efficacy was classified as satisfactory in the present case 
studies, therapeutic cell doses seeded and obtained after construct incubation might benefit from further optimization with regard to specific injury classification, location and topology. In addition, 
simple manufacture and optimal physico-chemical properties of 

collagen scaffolds (moldability, capacity for bio-resorption and 

cell adherence) resulted in optimal construct colonization, viable 

integration and proliferation of seeded eFPCs.

Optimal cell sources, standardized processing thereof and 

tangible delivery methods and tools are paramount for cost-effective 

transposable development of investigational therapeutic products. 

Nonetheless, the choice of biological starting material often 

proves to be the limiting factor for effective product development. Significant intrinsic parameters of progenitor cells have been 
extensively studied using human cell types and comprise high 

stability and consistency, safe and extensive cell banking suitability, 

immune privilege, resistance to oxidative stress, potential for 

interplay with host ECM and potent therapeutic effects exerted by 

paracrine modulation. 

Xenogeneic histocompatibility and avoidance of immune 

system effectors by human progenitors was demonstrated in 

immune-competent murine models [54,62,65]. By analogy to 

human cell types, the existence of similar advantages in equine 

progenitor cell populations was to be investigated. Preliminary 

results relative to cell banking and safety of clinical application 

support the existence of strong parallels between human and 

equine progenitor cell types. Such attributes may be of interest 

in a regulatory-driven approach toward cATMP (conjugate of live 

cells and a medical device) registration, where cost-effectiveness of 

scalable product manufacture condition the viability of continued 

translational research. Such objectives were shown to be attainable 

using human progenitor cells and should be pursued with variant 

starting materials, such as equine fetal organ donations and eFPCs 

banks, with a focus on the ultimate goal of healing equine patients 

in need of effective and innovative therapies.

Conclusion

This work establishes technical suitability of eFPCs for 

consistent, safe and stable cell banking, bioengineered product 

manufacturing and preliminary safety evidence of allogeneic 

primary progenitor cell application in hippiatric patients. Successful 

establishment of robust cell banks allowed for characterization 

and assessment of stability and cyto-compatibility of eFPCs with 

collagen and HA bio-resorbable scaffolds, while application in four 

equine subjects presenting complex wounds yielded preliminary 

evidence of safety and absence of immunogenicity, tumorigenicity 

or delayed induction in wound healing. Data presented in this study, 

along with the vast translational experience available around the 

use of human progenitor cell types, supports further investigation 

of eFPC therapy in vivo within standardized veterinary settings and 

further broadening of potential scopes of application of progenitor 

cell therapy in the developmental domain of translational 

musculoskeletal regenerative medicine. Indeed, a single organ donation enables the establishment of quasi indefinite therapeutic 
cell sources for a variety of musculoskeletal tissue affections, with 

potential subsequent safe applications in veterinary regenerative 

treatment strategies for millions of equine patients.
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