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Abstract

Nucleosomes, the basic structures used to package genetic
information into chromatin, are subject to a diverse array of
chemical modifications. A large number of these marks serve
as interaction hubs for many nuclear proteins and provide
critical structural features for protein recruitment. Dynamic
deposition and removal of chromatin modifications by regu-
latory proteins ensure their correct deposition to the genome,
which is essential for DNA replication, transcription, chro-
matin compaction, or DNA damage repair. The spatiotem-
poral regulation and maintenance of chromatin marks relies
on coordinated activities of writer, eraser, and reader en-
zymes and often depends on complex multicomponent reg-
ulatory circuits. In recent years, the field has made enormous
advances in uncovering the mechanisms that regulate chro-
matin modifications. Here, we discuss well-established and
emerging concepts in chromatin biology ranging from coop-
erativity and multivalent interactions to regulatory feedback
loops and increased local concentration of chromatin-
modifying enzymes.
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Readout of chromatin modifications

through cooperative multivalent

interactions

Nucleosomes serve as interaction hubs for many nuclear
proteins and provide critical structural features for

protein recruitment. Histones acquire a large variety of
post-translational modifications (P TMs) that modulate
and diversify interactions between regulatory proteins
and the genome [1]. The proteins that write, erase or
read these modifications play central roles in shaping the
chromatin landscape in response to extracellular signals,
while mechanisms that maintain their presence on
chromatin ensure memory and inheritance of chromatin
modifications during cell division [2]. At the time of
writing, 22 types of histone modifications have been
described, including acetylation, citrullination, methyl-
ation, phosphorylation, and ubiquitination (Figure 1a).
With eight modifiable amino acid residues at about 138
positions on five canonical histone variants, more than
550 possible histone modifications have been reported
[3]. Several of these PTMs can co-exist on the same
nucleosome resulting in an immense theoretical number
of combinatorial possibilities. The majority of the PTMs
found on histones can be classified into two groups:
modifications in the globular domain and modifications
located on the flexible amino-terminal tails of histones
extruding from the nucleosome. PTMs in the globular
domains of histones can directly affect transcription and
nucleosome structure [4]. In contrast, the modifications
on histone tails create a diverse array of potential inter-
action signals for proteins containing reader domains that
specifically recognize histone PTMs (Figure 1b) [5,6]. In
addition, it has become increasingly clear that
nucleosome-binding proteins can target multiple nucle-
osome features such as nucleosomal or extranucleosomal
DNA, the “acidic patch”, a negatively charged surface,
present on each side of the histone-core, histone tails,
and histone PTMs [7]. Extending the possibilities of
chromatin readout, DNA methylation is often recognized
in a sequence-dependent and -independent context
[8,9]. The combinatorial readout of multiple marks and
nucleosome features by reader proteins enhances binding
through cooperative interactions, resulting in longer
residence time on chromatin [10—12]. More importantly,
it possibly contributes to context-dependent targeting of
regulatory proteins to particular genomic sites on the
basis of readout of multiple marks (Figure 2a).

Signal reinforcement and memory through
self-propagation of histone modifications
Histone modifications can stimulate chromatin-
modifying enzymes, resulting in their activity on

Current Opinion in Cell Biology 2021, 70:10—-17

www.sciencedirect.com



adjacent nucleosomes to reinforce and propagate chro-
matin states through a positive feedback loop and in
absence of the initiating signal (Figure 2b). For example,
two well-described histone modifications associated
with repressed chromatin states create binding sites for
other factors that compact chromatin and form large
chromatin domains of constitutive (marked by
H3K9me3) or facultative (marked by H3K27me3) het-
erochromatin. These histone PTMs and the compacted
chromatin structure can spread hundreds of kilobases
across the genome and are stably inherited after DNA
replication [13—15]. The enzymes that deposit
H3K9me3 and H3K27me3 rely on a self-propagating
mechanism with a central “write-and-read” function.
In this self-propagating mechanism, the enzyme or
complex that deposits the PTM can also recognize the
installed PT'M, inducing an allosteric switch that stim-
ulates the enzyme to deposit the mark on neighbouring
histone tails, creating a positive feedback loop [16—19].
The trimethylation of H3K9 by Suv39h-family proteins
exemplifies this mechanism. The chromodomain of
Suv39h1l binds to H3K9me3, resulting in allosteric
activation of its carboxy-terminal SET methyltransfer-
ase domain and subsequent H3K9 methylation [17,19].

Besides the allosteric regulation of histone lysine

methyltransferases (KMT), automethylation of KMTs
has emerged as a novel regulatory mechanism to

Figure 1
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regulate their enzymatic activity. Several KMTs display
an autoinhibited conformation that prevents aberrant
enzymatic activity. Analogous to the activation of many
protein kinases by autophosphorylation, new studies
have identified that intramolecular automethylation of
specific lysines at an internal loop enhances the H3K27
methylation (H3K27me) activity of EZH2 in the Poly-
comb Repressive Complex 2 (PRC2) [20,21]. The
H3K9 methyltransferase Clr4 of the fission yeast Schizo-
saccharomyces pombe and its human homolog SUV39H?2
also show automethylation of distinct lysines in a flex-
ible regulatory loop, resulting in a conformational switch
that enhances the H3K9me activity of Clr4/SUV39H2
[22]. These studies suggest that automethylation-
induced activation of lysine methyltransferases might
be a broadly conserved mechanism that reinforces the
deposition of modifications.

The positive feedback loops that arise from the “write-
and-read” properties of lysine methyltransferases must
be tightly regulated to prevent unwanted spreading of
histone modifications. How does the cell counteract the
uncontrolled spreading of histone marks? Histone
demethylation by specific chromatin modification
crasers and histone exchange are two regulatory mech-
anisms identified over the last years, primarily resulting
in the clearance of histone modifications [23]. An
emerging mechanism to counteract the uncontrolled
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Schematic of exemplary histone and DNA modifications on mammalian chromatin (a) Chromatin is subject to a diverse array of chemical modifications
with different molecular properties (molecular size, charge, and stability). Nucleosomes are enzymatically modified at the surface, the lateral side, and the
flexible histone tails that extrude from the nucleosome (b) Specialized writer, eraser, and reader proteins play central roles in the placement, erasure, and
reading of these modifications. All chromatin modifications known to date are reversible and create a highly dynamic platform for protein recruitment to

regulate access to the genetic information.
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spread of histone modifications is the suppression of
chromatin writers through protein inhibitors. Recent
studies discovered a protein called Enhancer of Zeste
Homologs Inhibitory Protein (EZHIP) containing a
flexible and conserved histone-like sequence sufficient
to inhibit EZHZ2 activity and reduce the spread of
H3K27me3 in cancer and germ cells [24,25]. These
findings raise the question of whether similar factors
exist with the ability to inhibit other chromatin writers.

Regulatory feedback loops between
different chromatin pathways

Similar to the autostimulatory mechanisms described
above, some modifications can influence the recognition
or deposition of other modifications. This interdepen-
dence of chromatin marks, frequently called “crosstalk”,
is a widespread regulatory mechanism in eukaryotic
chromatin pathways [1,26,27]. Two main regulatory
outputs can emerge from this crosstalk: a stimulatory
and an inhibitory outcome. The stimulatory scenario
involves an initial modification that triggers increased

Figure 2

writing activity for other modifications, allowing the
reinforcement of a particular chromatin state containing
two or more modifications on histones or DNA.

Positive feedback

Many chromatin pathways exhibit positive reinforce-
ment between different chromatin modifications
(Figure 2d). The conserved interplay between the
repressive modifications H3K9 and DNA methylation is
a recurring example found in mammalian cells, fungi,
and plants [28]. The presence of H3K9 methylation or
direct association of the DNA methyltransferases
(DNMTs) with H3K9 methyltransferases and
H3K9me3 readers such as G9a or MPPS8 is crucial in
targeting ¢ novo DNA methylation at heterochromatic
regions to reinforce a repressed chromatin state in
mammalian cells [29,30]. The machinery that maintains
DNA methylation further depends on positive crosstalk
between H3K9 and DNA methylation and histone
ubiquitination. Symmetrical CpG methylation depends
on the activity of the methylation maintenance enzyme
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Regulatory principles operating on chromatin (a) Cooperativity and multivalent interactions: the combinatorial readout of multiple marks and nucleosome
features by distinct sets of reader modules in effector complexes enhances binding through cooperative interactions and contributes to the context-
dependent recognition of particular genomic sites (b) Allosteric regulation of effector proteins: several enzymes that deposit repressive histone PTMs rely
on a self-propagating mechanism with a central “write-and-read” leitmotif. Binding to PTMs induces a conformational switch that results in increased
enzymatic activity (c) Crosstalk between histone modifications. Stimulatory effect (left): a chemical modification triggering the activity of a methyl-
transferase (green). Inhibitory effect (right): example of a phosphorylation mark (purple) that interferes with the readout of a neighbouring methyl mark
(green) (d) A positive feedback loop involving several chromatin modifications: Readers of H3K9me3 recruits a de novo DNA-methyltransferase leading to
the methylation of CpG (mCpG) sites at H3K9me3 genomic regions. Consequently, readers of mCpG sites can recruit repressive effector complexes to
deposit H3K9me3 allowing the reinforcement of a repressed chromatin state.

Current Opinion in Cell Biology 2021, 70:10—-17 www.sciencedirect.com



DNMTT1 in concert with the multidomain protein
ubiquitin-like, containing PHD and RING finger do-
mains 1 (UHRF1). UHRF1 recognizes hemimethylated
DNA at replication forks through its SET- and RING-
associated (SRA) domain and H3K9me3-containing
nucleosomes via its tandem TUDOR-PHD (TTD-
PHD) domain. UHRF1 then mono-ubiquitinates
H3K18 and H3K23, and together with its ubiquitin-
like (UBL) domain, creates signals for the recruitment
of DNMT1 to replication forks [31]. DNMT1 binding
to ubiquitinated H3 through its replication foci target-
ing sequence (RFTS) domain induces a conformational
change in DNMT1 that triggers its activation and en-
sures maintenance of symmetrical DNA methylation at
CpG sites [32].

A similar positive reinforcement between different
modifications has been described for Polycomb group
(PcG) proteins, which are essential for developmental
gene regulation from insects to vertebrates. Genetic and
biochemical studies revealed two core PcG repressive
complexes, PRC1 and PRC2, with distinct enzymatic
activities, accessory subunits, targeting mechanisms,
but related functions. PRC1 catalyses the mono-
ubiquitination of histone H2A at lysine 119
(H2AK119ubl) through the E3 ubiquitin ligases
RING1A/B subunits. The core complex of PRC2 catal-
yses the mono-, di- and tri-methylation of histone H3 at
lysine 27 (H3K27mel/2/3) through the methyl-
transferase EZH1/2. Both PRC1 and PRCZ2 exist in
different arrangements with distinct subunit composi-
tions that potentially influence the functional properties
of the complexes. The synergistic activity of PRC1 and
PRCQ2 results in the formation of transcriptionally silent
Polycomb domains, characterized by compacted chro-
matin with H2ZAK119ub and H3K27me3 marks. PcG
proteins are evolutionary conserved from flies to
humans, but their recruitment mechanisms to target
sites diverged significantly. Early studies proposed a
hierarchical recruitment model in which first PRC2 is
recruited to target genes leading to H3K27me3 depo-
sition. Subsequent binding of H3K27me3-reader
containing PRC1 complexes (canonical PRC1 com-
plexes) results in chromatin compaction [33]. Recent
studies have established a second parallel pathway
capable of recruiting PRC2.2 complexes via recognition
of variant PRC1-mediated H2AK119ub1 [34,35]. A new
Cryo-EM structure provides additional support for a
model where the H2AK119ubl signal initiates the
recruitment of PRC2.2 and stimulates the placement of
H3K27me3 via allosteric activation of EZH2. PRC2.2
subunits JARID2 and AEBP2 each recognize one of the
two ubiquitin moieties on the symmetrically modified
nucleosome providing additional anchoring interactions
with the nucleosome. EZH2 is further stabilized
through interactions with the H3 tail and the nucleo-
somal DNA on the substrate nucleosome. Together with
ubiquitin-dependent anchoring, these interactions
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result in the stabilization of the catalytic site and
increased enzymatic activity of EZH2 [36]. PRC2
further propagates H3K27me3 on neighbouring un-
modified nucleosomes in a “write-and-read” mecha-
nism. Previous genetic and structural studies revealed
how the readout of H3K27me3 through PRCZ subunit
EED allosterically activates the SET domain of EZH2
[16,18,37]. Finally, H3K27me3 is read by CBX subunits
of canonical PRC1 complexes, leading to chromatin
compaction and reinforcement of a repressed chromatin
state [38,39].

Negative feedback

The second theme involves the inhibitory effect of one
modification over another. For example, neighbouring
PTMs on the same histone tail can alter the binding of
readers toward their target modifications, resulting in
the repulsion of an effector protein from chromatin and
allowing the rapid off-switch of a distinct function. A
well-described and evolutionary conserved example is
the inhibition of PRC2Z activity by H3K4me3 or
H3K36me?2/3 on the H3 tail of the substrate nucleo-
some [40]. Recent structural studies suggest that inhi-
bition of EZH2 activity is caused through the loss of
electrostatic  interactions between tri-methylated
H3K36 and the phosphate backbone of nucleosomal
DNA, which normally help stabilize H3K27 into the
active site [36,41]. This negative feedback is also re-
flected by the genome-wide anticorrelation between
H3K27me3 and H3K36me3 [42].

Negatively charged modifications on chromatin can
mediate similar inhibitory effects. Sixteen phosphory-
lation sites of serine, threonine, or tyrosine residues on
histone tails occur beside or nearby lysine residues that
can be methylated. Phosphorylation of histone tails can
block the binding of readers towards adjacent methyl-
ated lysine residues (Figure 2¢). These so-called phos-
pho/methyl switches provide a binary mechanism to
regulate the readout of histone marks [43]. The first
observation of a phospho/methyl switch describes the
phosphorylation of H3S10 by Aurora B-type Kkinases
during mitosis, which releases the H3K9me3 reader
heterochromatin protein 1 (HP1) from heterochromat-
in, even though the H3K9me3 mark persists [44,45].
Since then, similar phospho/methyl switches have been
confirmed in various chromatin-related pathways [46].

Phospho/methyl switches also function upon signal-
induced phosphorylation of histone 3 during inter-
phase. Histone phosphorylation induces initiation or
elongation of transcription by transcriptional coac-
tivators [47,48]. Recently, Armache et al. showed that
the unique serine 31 residue on the histone variant H3.3
is phosphorylated (H3.3S31ph) in a stimulation-
dependent manner along rapidly induced genes in
mouse macrophages. H3.3S31ph ejects the prebound

www.sciencedirect.com
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ZMYND11 elongation corepressor and augments the
activity of SETD2, a H3K36me3 methyltransferase
associated with the active transcription machinery, to
induce the transcription of stimulation-induced genes
[49]. These results illustrate how a single mark
(H3.3S31ph) causes an inhibitory effect while simulta-
neously triggering an activatory feedback loop enabling
cells to rapidly respond to environmental cues
(Figure 2c¢).

High local concentration of chromatin
regulators for concerted action in space
and time

High local abundance of binding sites created by DNA
methylation or histone modifications allow the concen-
trated localization of enzymatic activity to a confined
space, resulting in increased regulatory activity. Akin to
increased effective molarity in chemistry, the high
concentration of chromatin regulators at specific
genomic sites is a central theme in many chromatin
pathways that regulate access to DNA such as tran-
scription, replication, and repair. In DNA repair for
example, an initial genomic lesion is recognized by
specialized proteins resulting in the deposition of

Figure 3
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High local abundance of binding sites created by H3K9me3 allows HP1-
mediated heterochromatin compaction. HP1 binds to H3K9me3 via its
chromodomain and bridges two neighbouring histone tails on the same or
adjacent nucleosomes through self-dimerization using its chromoshadow
domain (1). Also, HP1 contacts the nucleosome core and remodels
histone—histone contacts allowing internucleosomal interactions (2).
Finally, multiple H3K9me3 marks along heterochromatin and HP1-
dimerization increase the residence time of HP1 on chromatin, further
stabilizing the interactions mentioned above (3).

acetylation, poly-ADP-ribosylation, phosphorylation,
and ubiquitination of adjacent nucleosomes. These
modifications serve as secondary signals to recruit repair
factors and to amplify signalling by the DNA damage
response (DDR) pathway [50,51]. Heterochromatin
represents another well-studied example where a high
local concentration of chromatin regulators establishes a
stable repressive domain. Positive feedback loops be-
tween H3K9me3 and DNA methylation create a high
density of binding sites recruiting various specialized
reader proteins to heterochromatic regions [52,53]. In
turn, several readers recruit additional repressive com-
plexes, further sustaining the high density of repressive
marks [30,54]. Chromatin compaction, a characteristic
of repressed heterochromatin, is established through
HP1 proteins, likely operating through multiple mech-
anisms (Figure 3). First, HP1 proteins contain a reader
domain and a dimerization domain separated by a flex-
ible linker, allowing HP1 proteins to bridge neighbour-
ing  H3K9me3-marked nucleosomes via  self-
dimerization [10,55]. Second, the fission yeast HP1
homolog Swi6 reshapes the nucleosome core to promote
internucleosomal interactions [56]. Third, HPI-
dimerization reduces the off-rate of the protein from
chromatin [10,57], further stabilizing the interactions
mentioned above.

Several chromatin modifications and their associated
processes appear to occupy distinct spatial territories in
the nucleus, resulting in increased proximity between
factors involved in the same regulatory pathway. Recent
observations have suggested that this behaviour is
driven by phase—separation properties of chromatin
regulators, such as for HP1 [58,59], PRC1 member
CBX2 [60], the acetylation reader and transcriptional
coactivator BRD4 [61], 53BP1 in the DNA damage
response [62], and zz-vitro reconstituted chromatin [63].
The role of phase separation in driving compartmen-
talization of chromatin is currently vigorously debated
[64—66]. However, the phase—separation properties
observed in numerous chromatin-associated proteins
might serve as an additional regulatory layer. In addition
to modification readout, it helps increase the local
concentration of effector proteins and confine modifi-
cations with their functions to specific genomic and
subnuclear territories. In the future, it will be impera-
tive to design more physiological experiments to study
the phase separation properties of endogenous proteins
and demonstrate essential functions of phase separation
on chromatin-related processes [67].

Conclusions and future perspectives

Chromatin regulators play essential roles in regulating
genome function and are among the most frequently
mutated proteins in cancers, hinting to relevant gene—
regulatory pathways and providing potential thera-
peutic targets. Despite decades of progress in the field,
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many important questions remain regarding the mo-
lecular coordination between different regulatory
layers that control the deposition of chromatin modi-
fications to the genome and how these influence
genome function. A significant challenge in the field
remains to understand how the chemical language on
chromatin defines the local protein interactome of the
genome [53]. Detailed understanding of how modifi-
cations influence the spatiotemporal recruitment of
cffectors to designated genomic sites should help us
obtain a clearer view on the hierarchy of events that
lead from individual modifications to recruitment of
effectors, crosstalk to other pathways, and finally
establishment of robust and cell-type-specific regula-
tory circuits. Furthermore, disentangling the direct
developmental roles of chromatin regulators, which is
often hampered by complex mutant phenotypes, is
imperative to understand how multicellular organisms
arise. As recently exemplified, more refined perturba-
tion of gene activity with combined single-cell readout
will undoubtedly bring the insights needed [68]. In the
years to come, we will witness a more mechanistic
understanding of how chromatin contributes to
developmental processes as single-cell epigenomics
and single-cell proteomics technologies will mature in
the future.
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