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Abstract: Here, the various types of naturally synthesized metallic nanoparticles, which are essentially

composed of Ce, Ag, Au, Pt, Pd, Cu, Ni, Se, Fe, or their oxides, are presented, based on a literature

analysis. The synthesis methods used to obtain them most often involve the reduction of metallic

ions by biological materials or organisms, i.e., essentially plant extracts, yeasts, fungus, and bacteria.

The anti-tumor activity of these nanoparticles has been demonstrated on different cancer lines.

They rely on various mechanisms of action, such as heat, the release of chemotherapeutic drugs under

a pH variation, nanoparticle excitation by radiation, or apoptotic tumor cell death. Among these

natural metallic nanoparticles, one type, which consists of iron oxide nanoparticles produced by

magnetotactic bacteria called magnetosomes, has been purified to remove endotoxins and abide by

pharmacological regulations. It has been tested in vivo for anti-tumor efficacy. For that, purified and

stabilized magnetosomes were injected in intracranial mouse glioblastoma tumors and repeatedly

heated under the application of an alternating magnetic field, leading to the full disappearance of

these tumors. As a whole, the results presented in the literature form a strong basis for pursuing the

efforts towards the use of natural metallic nanoparticles for cancer treatment first pre-clinically and

then clinically.

Keywords: natural metallic nanoparticle; natural nanoparticle; bio-synthesized nanoparticle; plant

synthesized nanoparticle; bacterial nanoparticle; magnetosomes; cancer; alternating magnetic

field; magnetic hyperthermia; glioblastoma; GBM; anti-tumor activity; nanomedicine; nanoparticle;

magnetotactic bacteria

1. Introduction

Many studies have reported the potential of metallic nanoparticles (NP) of different compositions,

e.g., Pt, Pd, Au, Fe, Ag, Ni, Cu, Se, or their oxides, for cancer treatments, through various mechanisms

of action, such as the local production of heat [1], controlled drug release [2], or an enhancement of the

effect of radiation [3]. While the most straightforward definition of a NP is that of a material with at

least one dimension at the nanometer scale, it can be widened to include any compound that would

cause or be responsible for a phenomenon at this scale, e.g., an enhanced catalytic activity [4]. Although

this broader definition has a more sound scientific ground, it is rarely used, since the tools at our

disposal to directly observe or measure nano-metric phenomena, specifically dynamic ones, are still

lacking. In order for a cancer treatment to be optimal, it should on the one hand efficiently target cancer

cells and, on the other hand, be controllable on demand. This approach should maximize its efficacy

while minimizing its side effects. Using nanoparticles, it is possible to fulfill these two objectives.

Indeed, specific cancer cell targeting can be achieved through: (i) passive targeting also designated
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as EPR effect where nanoparticles passively diffuse through the angiogenic blood vessels irrigating

the tumor, (ii) active targeting by attaching a targeting ligand to the nanoparticles that specifically

recognize a cancer cell receptor, or (iii) magnetic targeting by applying a magnetic field on nanoparticles

that trigger nanoparticle diffusion towards the tumor [5]. Furthermore, in many interesting cases

described in the literature, nanoparticles can be activated on demand, for example by being illuminated

with a laser or by being exposed to an alternating magnetic field, X-rays, or ultrasounds [5]. Most of

them report results that are obtained with nanoparticles that were chemically synthesized using

methods, such as precipitation, sonication, ball milling, thermal decomposition, spray pyrolysis,

thermal hydrolysis, and sol–gel [4,5]. These chemical syntheses suffer from drawbacks, such as

the uses of toxic solvents/reagents, high temperature/pressure, or additives needing to be added

for metallic NP stabilization during the reaction of metallic NP formation. Besides, the methods of

nanoparticle chemical synthesis are not always reproducible, i.e., the same nanoparticle parameters,

such as nanoparticle sizes, distributions in sizes, geometry, shapes, cannot always be obtained from

one batch to another. Although this is rarely described in the literature, such variations can be due

to the use of containers made of different materials or with different volumes or to local changes in

temperatures or pressures at the nanometer scale that are not observable with standard sensors [6].

By naturally synthesizing metallic NP, toxic products can be avoided and the environment can be

respected since biological substances that are necessary for such synthesis are either used in limited

quantity, e.g., for plants, or can be grown/amplified almost indefinitely without requiring a lot of

natural resources, as it is the case for bacteria. In addition, living organisms, such as magnetotactic

bacteria, may minimize variations in NP properties by using their own metabolism to produce NP,

which might, to some extent, prevent the impact of environmental changes on NP properties [7].

After a presentation of the different types of natural metallic NP that have been described

in the literature, I summarize the various ways in which they can be obtained, which depend on

the type of biological material used for the synthesis, i.e., essentially fungus, yeast, plant extracts,

and bacteria. The mechanisms of action that were associated with metallic NP anti-tumor activity were

reported to involve, among others, apoptosis and anti-angiogenesis and depend on NP composition,

the association (or not) of metallic NP with a chemotherapeutic drug, or the activation of NP through

the application of radiation. Whereas anti-tumor activity of the majority of natural metallic NP was

assessed in vitro, in vivo anti-tumor efficacy was also demonstrated with magnetosomes, which are

iron oxide nanoparticles that are synthesized by magnetotactic bacteria. Indeed, it was shown that the

administration of magnetosomes inside intracranial GBM mouse tumors followed by the repetitive

heating of these tumors under alternating magnetic field application leads to full tumor disappearance.

2. Advantages of Natural Chemical Synthesis of Metallic Nanoparticles

Naturally synthetizing metallic nanoparticles (NP) presents a number of advantages, such as:

(i) the possibility to mass produce metallic NP without using toxic compounds [6], (ii) the ease

with which the raw material can be found, (iii) a secured working environment due to the use of

non-toxic biological materials, (iv) a reasonable cost in most cases, (v) a respect of the environment,

(vi) the existence of a large number of biological compounds that can be chosen for the synthesis,

such as plant metabolites acidic compounds, aldehydes, alkaloids, amino acids, alkaloids, aromatic

amines, flavonoids phenolic compounds, ketones, phenols, phyto-proteins, polysaccharides, proteins,

saponins, steroids, sugar compounds, tannins, terpenoids, vitamins, fungus, yeast, bacteria, virus,

and bio-polymer [8], (vii) biological entities, which can have multiple functions at the same time,

often combining a reducing capacity of metallic ions with either a stabilizing role, e.g., for starch, dextran,

alginate, cellulose, chitin, yeast/fungus extracts, or a chemotherapeutic effect, e.g., for curcumin [9–11],

(viii) the possibility to reach optimized NP properties, such as a high NP production yield, or a desired

NP size/shape, by adjusting various synthesis parameters, such as the type of biological and metallic

precursor materials used, the ratio between the quantities of precursor and biological material, the pH,
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temperature, or time of the reduction reaction [12], and, finally, (ix) the possibility to genetically modify

certain living organisms to optimize metallic ion bio-mineralization by these organisms [11].

3. The Different Types of Bio-Synthesized Metallic Nanoparticles

The various metallic bio-synthesized NP were shown to be of various compositions. First, CeO2

NP, which have excellent catalytic properties due to their large bang gap and exciton binding energies,

can be obtained by mixing Ce precursors, such as cerium acetate, cerium nitrate, and cerium chloride,

with plant extracts acting as reducing agents, leading to CeO2 crystalline spherical NP of 4–19 nm [13].

Second, Ag NP, which have been shown to display anti-tumor and anti-bacterial activities, can be

produced through the reaction between silver nitrate salt (AgNO3) and different reducing agents,

such as plant extracts, i.e., originating from proteins, carbohydrates, flavonoids, phenols, vitamins,

capsaicinoids, curcumin, basil, Pelargonium graveolens, Podophyllum hexandrum, Cinnamomum

camphora, bark, callus, flower, fruit, stem, seed, peel, leaves, petals, and rhizome, to yield stable

crystalline spherical/triangular Ag NP of a wide range of different sizes of 5–80 nm, depending on

the synthesis method [9,14,15]. Third, Au NP, which have been shown to induce apoptotic cancer

cell death, can be produced by mixing chloroauric acid (HAuCl4) with plants, plant extracts, or leafs,

such as Brassica Junceae, Medicago Sativa, Picea Mariana, curcumin, quercetin, lemon grass, Neem,

and Pear fruit, typically resulting in triangular, pentagonal, hexagonal, and spherical Au NP of 2 to

300 nm [9,10,14]. Fourth, Cu/CuO NP, which can be obtained cost effectively while using plant extract

reducing agents, such as L-ascorbic acids, amino acids, reducing sugars, and phenolic compounds,

typically consist of spherical Cu/CuO NP of 3 to 250 nm [15]. Fifth, Se NP can be produced through the

reduction of a selenium precursor, such as SeO3
2− by leaf extracts of Capsicum Annuum, fruit extracts

of Vitis Vinifera, polysaccharides extracted from Undaria Pinnatifida, typically resulting in spherical

Se NP of 3–18 nm [16–18]. Sixth, Ni/NiO NP can be synthesized through the reduction of Nickel ion

sources, such as Ni(NO3)2 or NiCl2, by: (i) different parts of plants, such as leaves, petals, and roots,

e.g., of Medicago, Ocimum sanctum, Hibiscus rosa-sinensis, and rambutan peel waste, (ii) products,

such as C2H4, resulting from the pyrolysis of petals, (iii) fungus, such as Aspergillus aculeatus, or (iv)

Nickel resistant bacteria MRS-1, typically yielding well-dispersed stable face-centered cubic Ni NP of

1–200 nm [19]. Seventh, Pd NP, which can be obtained through the reduction at room temperatures of

a Pd source, such as PdCl2 by plant or leaf extracts, e.g., of cinnamomum camphora, coffee, tea extract,

or plant polymer gum ghatti, typically result in cubic faced-centered crystallized NP of 2–60 nm [9].

Eight, the formation of Pt NP of 2–23 nm can result from the reaction at 95 ◦C between a Pt solution

such as chloroplatinic acid hexaydrate (H2PtCl6·6H2O) and various plant extracts, e.g., of Diopyros

kaki, Cacumen platycladi extract, and Terminalia chebula [9]. Nineth, TiO2 NP can be obtained

through the reduction of Titanium dioxide hydrate by some plant extracts [15]. Tenth, hexagonal,

spherical, rod, and crystalline ZnO NP of 9–180 nm can be produced through the reduction of different

zinc compounds, e.g., zinc acetate, zinc nitrate, and zinc sulfate, by: (i) various plants, stem, leaf,

flower, fruit, trees, herbs, ornamentals, and seaweeds, Aloe vera, palm pollen, and dried leaves, which

accumulate zinc [15]. Eleventh, the synthesis of different types of iron-based NP was also reported,

which could result from the reduction of iron sources by plant extracts (Amaranthus spinosus leaf

aqueous extracts) or various bacteria intracellularly or extracellularly [15].

4. The Various Bio-Synthesis Methods of Metallic Nanoparticles

First, NP synthesis can be carried out using whole plants or plant extracts, originating, for example,

from stem, leaf, flower, fruit, root, latex, seed, and seed coat, which are mixed or brought into contact

with a solution of metal salt during various lengths of time at various temperatures and pH under

agitation (or not). This leads to the reduction of metallic ions into NP. Furthermore, certain plants,

called hyper-accumulator, which are accumulating high metal concentrations, can be used for improving

this fabrication process [13]. Although plant extracts appear to be very appealing for synthesizing

metallic NP, there was not any attempt to the author knowledge to purify these extracts in order to make
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them compatible with pharmaceutical regulation and, hence, be able to use them in a pharmaceutical

production process.

Second, the production of metallic NP can also be achieved by fungus or yeasts, especially

those that absorb large quantities of metals from their environment [20], often involving extracellular

proteins/enzymes and/or mechanisms of bio-precipitation, chelation, or intra-cellular NP crystallization.

Examples of yeast and fungus that can form NP include a marine strain of ascomycetous yeast

Yarrowia Lipolytica that produce Ag NP [21], fungi Cladosporium Oxysporum that convert Au ions

into Au NP [22], and Candida Utilis that bio-synthesize Ag NP [23].

Third, metallic NP can be produced by marine algae, which comprise biological compounds and

secondary metabolites that can synthesize metallic NP [24] Examples of such algae include Codium

capitatum for the Ag NP biosynthesis [24], extracts of Chlorella vulgaris for Pd NP production [21],

extracts of Turbinaria Conoides for Au NP obtention [24], and Sargassum Muticum extracts to yield

ZnO NP [24].

Fourth, metallic NP can be formed by viruses using proteins of their capsids that, can under

certain circumstances, interact with metallic ions and reduce them into NP [20], e.g., enabling Pd NP

synthesis [25] or Zn/Cd sulfide NP synthesis by M13 bacteriophage [26].

Fifth, it is also possible to use certain nutrients or natural materials, such as egg white proteins and

honey for metallic NP production, e.g., CeO2 NP [13]. Mechanisms of such synthesis were reported

to rely on interactions between Ce3+ and oppositely charged egg white proteins or hydroxyl/amine

groups of carbohydrates, enzymes and vitamins, of honey matrix [13].

Sixth, it was also reported that metallic NP could be produced by gram-positive or gram negative

bacteria, intracellularly or extracellularly. The most commonly reported metallic NP of this type are

composed of iron oxide, possibly due to the high level of bio-compatibility that is associated with

such composition, multiple potential uses of iron by bacteria, and ubiquitous iron presence in the

environment [27]. Such bacterial synthesis involves certain proteins/enzymes, such as dodecameric

(Dps), ferritin, and encapsulin, which participate in oxydo/reduction reactions, leading to NP formation.

Magnetotactic bacteria, such as MSR-1 and AMB-1, are responsible for the intracellular fabrication

of membrane bounded Fe3O4 NP, called magnetosomes [28], while iron-reducing bacteria, such as

Geobacter Metallireducens or Actinobacter sp., produce extracellularly maghemite NP [27]. Both types

of intracellular/extracellular synthesis occur in the presence of an iron source under different conditions

of oxygenation. Other types of metallic NP can result from the reduction of various metallic ions

different from iron, i.e.,: (i) selenite can be transformed into Se NP by Actinomycetes, Thauera selenatis,

or E. coli [29–35], and (ii) Au chloride can be nano-formulated by the external cell membrane of

Bacillus Subtilis [36]. In some cases, such synthesis involves specific enzymes, which favor electron

transfers and oxydo-reduction reactions, such as NADH reductase, resulting for Pseudomonas

aeruginosa bacterium in the intracellular production of Pd, Ag, Rh, Ni, Fe, Co, Pt, and Li NP [37],

and leading for bacterium Streptomyces sp. LK-3 to the extracellular formation of Ag NP [38].

Concerning metallic NP synthesis outside of bacteria, it could be achieved with the help of extracellular

polymeric substances (EPS), e.g., those of Alteromonas Macleodii that resulted in the fabrication of Ag

NP [39]. Other types of metallic NP, such as those made of Te and Se, were also synthesized by certain

bacterial species, such as Ochrobactrum sp. [40]. Metallic NP synthesis by bacteria does not only

depend on the types of bacteria involved, but also on environmental factors, such as temperature, e.g.,

the synthesis of Ag NP by Morganella Psychrotolerans yielded triangular and hexagonal nanoplates at

20 ◦C and spherical nanoparticles at 25 ◦C.

Finally, certain bio-polymers or bio-molecules possessing hydroxyl groups, such as agarose,

glucose, sucrose, starch, and PEG, were used to synthesize metallic NP, e.g., CeO2 and Ni NP [13,19].

Table 1 summarizes the physico-chemical properties of the various natural metallic nanoparticles

(metallic composition, organic part, size, shape, crystallinity, zeta potential, and presence of surface

plasmon resonance peak, synthesis method).
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Table 1. Properties of different types of natural metallic nanoparticles, including the metallic composition, the organic part, the size, the shape, the crystallinity, the

zeta potential, the presence (or not) of impurities, and the synthesis method.

Metal. Comp.
(NP, NW)

Organic Part
(Capping/Stabilizing

Agent)

Size (nm)
Shape

Crystallinity
Zeta Potential (ZP in mV)

Surface Plasmon
Resonance

Impurities Synthesis References

NiO NP Plant extract

21 nm
Sphere

Crystalline
ZP = −10 mV

NA NA
Plant extract of Geranium wallichianum acting as

reducing and capping agent
[41], Abbasi 2019

Pt NP Extract of dates
1–3 nm
Sphere

Crystalline

321 nm,
329 nm.

K, Na, Mg, Ca, P,
Fe, Cu, Zn, Cd,

Mn

Purified date extract mixed with H2PtCl6 at
different pH and temperatures

[42], Al-Radadi 2019

Pd NP
Bis-phthalate or plant

metabiltes

10–50 nm
Sphere

Crystalline
ZP = −23 mV

460 nm NA
Extract of Moringa oleifera flower react with

Pd(II)
Species

[43], Anand 2016

Pd NP phenols and flavonoids
6–18 nm
Sphere

Crystalline
NA NA

PdCl2 solution was mixed with aqueous white
tea extract at 40 ◦C.

[44], Azizi 2017

Au NP Alkanoids/flavonoids
10–42 nm

Pentagone + triangular
ZP = 42 m V

500–600 nm NA
extracts of Zataria multiflora leaves mixed with

chloroauric acid
(HAuCl4) aqueous solution

[45], Baharara 2016

ZnO NP leaf extract

29 nm
triangle, radial, hexagonal, rod,

and rectangle
Crystalline

NA NA
zinc nitrate mixed with leaf extract of Eclipta

prostrata dueing 48 h
[46], Chung 2015

Cu NP
Biomolecules of leaf

extract

23–57 nm
spherical, hexagonal and cubical

Polycrystalline
565 nm NA

copper acetate Cu(OAc)2 mixed with aqueous
extract of E. prostrata for 24 h.

[47], Chung 2017

Te NW NA
Length (a few µm),
diameter = 26 nm,

Wire
NA NA

Telluric acid mixed with starch and heated at
160 ◦C for 15 h.

[48], Crua 2019

Se NP hawthorn fruit extract 113 nm NA NA
Sodium selenite was mixed with extracts of

hawthorn fruit
under stirring for 12 h.

[49], Cui 2018

Ag NP
bioactive molecules of

plant extracts

98 nm
Sphere

ZP = −32 mV
434 nm NA

Silver nitrate mixed with Cynara scolymus
extract in ultrasonic bath for 30 min.

[50], Erdogan 2019
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Table 1. Cont.

Metal. Comp.
(NP, NW, QD)

Organic Part
(Capping/Stabilizing

Agent)

Size (nm)
Shape

Crystallinity
Zeta Potential (ZP, mV)

Surface Plasmon
Resonance

Impurities Synthesis Ref

CeO2 NP Protein of fresh egg white
8-17 nm
Sphere

Crystalline
NA NA Ce(NO3)3.6H2O mixed with fresh eggs at 60 ◦C. [51], Kargar 2015

Fe NP Secondary metabolites
100 nm
Round

NA NA Rosemary plant extracts mixed with FeSO4. [52], Farshchi 2018

Fe2O3NP
Yield: 10 mg
per liter of

growth
medium

Iron oxide mineral coated
by bacterial

lipids/proteins

40 nm (average)
Cubo-octahedric

Chain arrangement
Crystalline

ZP = −18 mV (pH 6)

NA

Other metals than
iron

(% of iron
relatively to other

metals > 90%)

NP produced by MSR-1 Gryphiswaldense
magnetotactic bacteria

NP extracted as chains of magnetosomes from
these bacteria.

NP are pyrogenic

[53], Alphandéry 2017

Fe2O3 NP
Yield: 10 mg
per liter of

growth
medium

Iron oxide mineral part
coated by synthetic

coating (CA, CMD, OA,
PEI, PLL, CHI, NER)

40 nm (average)
Cubo-octahedric

Chain arrangement
Crystalline

Zeta potential depends of coating

NA

Other metals than
iron

(% of iron
relatively to other

metals > 90%)

NP produced by MSR-1 Gryphiswaldense
magnetotactic bacteria

NP extracted as chains of magnetosomes from
these bacteria, purification of chains to remove
all organic material surrounding magnetosome

mineral core,
Coating of magnetosome core with various

coating agents (CA, CMD, OA, PEI, PLL), CHI,
NERI.

Magnetosomes are non-pyrogenic

[54], Chalani 2017, 63,
Mandawala 2017

Au NP cocoa extract

150–200 nm
Sphere

Crystalline
ZP = −50 mV

535 nm NA
cocoa extract powder solution (reducing agent)

mixed with HAuCl4
[55], Fazal 2014

Tb2O3 NP NA
10 nm

Crystalline
ZP = −17 mV

NA NA
Incubation of fungus Fusarium oxysporumin with

Tb4O7.
[56], Iram 2016

MgO NP Biomolecules 12–24 nm 215 nm NA
Mixture of magnesium nitrate (MgNO3) with

the aqueous extract of Penicillium.
[57], Majeed 2018

BaCO3 NP NA
18 nm

Crystalline
Spherical + triangular

NA NA
BaCl2 and Na2CO3 mixed with Mangifera seed

extract at 120 ◦C for 6 h.
[58], Nagajyothi 2016
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Table 1. Cont.

Metal. Comp.
(NP, NW, QD)

Organic Part
(Capping/Stabilizing

Agent)

Size (nm)
Shape

Crystallinity
Zeta Potential (ZP, mV)

Surface Plasmon
Resonance

Impurities Synthesis Ref

Bi2S3 NP BSA

60 nm
Crystalline

Sphere
ZP = −33 mV

NA NA
Bi(NO3)3 and HNO3 added into bovine serum

albumin solution.
[59], Nosrati 2019

Th NP NA
100–1000 nm
Crystalline

5 KeV Au, Pd Pineapple juice added to thorium nitrate. [60], Pol 2018

CdS QD Organic material
2–5 nm

Crystalline
NA NA

Two steps: 1/CdSO4 added to C. sinensis extracts
for 3 days + 2/Na2S added for 4 days.

[61], Shivaji 2018

CoPt NP Polyphenol 10 nm NA NA

co-reduction of cobalt (II) chloride and
potassium tetrachloroplatinate (II) in the

presence of polyphenols by
using NaBH4 as a reduction agent

[62], Song 2016

MnO2 NP NA 10–50 nm 300–400 nm NA
Human serum albumin mixed with with

manganese chloride in the presence of drug +
photosensitizer

[63], Chen 2016

NP: Nanoparticle; NW: Nanowire.
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5. In Vitro Anti-Tumor Activities of Bio-Synthesized Metallic Nanoparticles

The anti-tumor activity of metallic NP composed of Ni/NiO2 [64,65], ZnO [66], Ag [67], Au [68–70],

iron oxide [71], and Se [35] has been demonstrated on liver, colon, breast, skin, and hepatoma cancer

cells [35,65–72], highlighting the potential of these bio-synthesized metallic NP for the treatment

of various cancers. When natural metallic NP were incubated with cancer cells, different levels of

cytotoxicity were observed, depending on NP/cancer cell type, i.e., the percentage of living cells

decreased: (i) from 80% for 87 µg/mL of ZnO NP incubated with HePG2 during 24 h to 20% for

2800 µg/mL of ZnO NP incubated with these cells [67], (ii) from 90% for 0.9 µg/mL of Ag NP

incubated with MCF-7 breast cancer cells during 24 h to 10% for 30 µg/mL of Ag NP incubated

with these cells [68]. A comparison between the efficacy of metallic NP of various compositions was

carried out for Au and Ag NP synthesized by plants Plumbago zeylanica, Commelina nudiflora,

and Cassia auriculata, which indicated that Ag was more cytotoxic than Au towards various cancer

cell lines [72]. More comparative studies deserve to be carried out in order to determine which metallic

NP composition would potentially yield the most efficient anti-tumor effect. Three cases can be

distinguished concerning the impact of NP composition on anti-tumor activity. First, the biological

material used for metallic NP synthesis is cytotoxic and it ends up at the surface or in the composition of

metallic NP, inducing a cytotoxicity towards cancer cells, which is larger than that of the free biological

material, as observed for Ni NP associated with Verbascoside [65], or Au NP combined with Cur [70,73].

Second, a cytotoxic extract of plant can be added to metallic NP after nanoparticle synthesis; this

fabrication process presented the advantage of offering the choice between different types of cytotoxic

compounds that can be attached to the metallic NP backbone. Thirdly, bio-synthesized metallic NP

may not comprise any natural cytotoxic compounds, in which case cytotoxicity might be induced by

the metallic NP backbone or by other mechanisms of tumor destruction than purely cytotoxic ones,

such as those involving the immune system. In vitro studies of tumor cell destruction have highlighted

a whole variety of different types of mechanisms of tumor cell destruction, such as anti-angiogenesis, as

observed for liver cancer cells brought into contact with ZnO NP synthesized by Sargassum muticum

extracts [67], apoptosis induced by the expression of pro-apoptotic Bax protein in MCF-7 human breast

cancer cell line in the presence of Au NP [73], pH-controlled drug release, e.g., Gingerol 6G or Cur

could be released from IONP in this manner [72], the delivery of the two chemotherapeutic drugs

doxorubicin and Quercetin associated with Au NP by infrared light illumination [74], mechanical

damage/disruption of cell membrane by CeO NP [75,76], DNA damage that is induced by Au and

Ag NP [77,78], the prevention of drug aggregation via drug conjugation to Se NP that enhances drug

bio-availability [79], and tumor cell targeting of drug-NP conjugates through the specific interactions

between drug compounds (carbohydrates) and cell receptors (lectins) [80].

6. Preparation and In Vivo Anti-Tumor Assessment of Magnetosomes

Only few bio-synthesized metallic NP had their anti-tumor efficacy examined in vivo. The reason

for that may be that despite their potential, many metallic NP formulations may not have reached a

sufficiently high level of accomplishment or be fully compatible with pharmaceutical regulation to

warrant in vivo evaluations. Even so, the presence of biological material, such as plant extracts in

the final formulation, is often perceived as an advantage due to the natural origin of such substance,

it might be difficult to obtain it reproducibly and identically from batch to batch. A detailed description

of the methods used for purifying metallic NP, as well as the exact metallic NP composition resulting

from such methods, are also often lacking. Furthermore, metallic NP characterization should go

beyond the sole estimate of nanoparticle size, which is often the only reported NP property.

As a first example, Au NP associated with Resveratrol (RES–Au NP) were administered to mice

bearing liver tumors, yielding better anti-hepatoma efficacy than for free Resveratrol, [81].

As a second example, magnetosomes, which are iron oxide nano-minerals surrounded by

biological material made of lipids/proteins [82], synthesized by magnetotactic bacteria (MTB), have been

developed methodically, in order to enable their administration to a living organism. First, the MTB
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species, which is the best suited for medical applications, was determined. MTB are ubiquitous in the

environment, belonging to a broad range of different classes, as shown in Figure 1, i.e., zetaproteobacteria,

beta-proteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilon-proteobacteria, Nitrospirae,

OP3, and Alphaproteobacteria. However, only certain species of Alphaproteobacteria such as

Magnetospirillum gryphiswaldense MSR-1, Magnetospirillum magneticum AMB-1, Magnetovibrio

MV-1, Magnetococcus sp. MC-1, Magnetospirillum magnetotacticum MS-1, and Magnetospirillum

sp. ME-1, could be grown under controlled conditions [83]. Among these species, MSR-1 seems

particularly interesting. Indeed, it was shown that MSR-1 could be amplified with a good yield,

i.e., the production of 10 mg of magnetosomes per liter of growth medium, by using a reduced growth

medium that is devoid of chemicals of animal/cell origin, such as peptone and yeast extract, which are

often used to promote bacterial growth, and of toxic substances, such as CMR (carcinogenic, mutagenic,

reprotoxic) products and heavy metals. It yielded pure iron oxide nanoparticles, using a production

method that abides by pharmaceutical production standards [7].

 

Figure 1. A schematic diagram presenting the various categories of magnetotactic bacteria (blue

background), species of magnetotactic bacteria belonging to Alphaproteobacteria that can be amplified

in specific growth media (dark apple green background), species of magnetotactic bacteria belonging to

Alphaproteobacteria that can be amplified in specific growth media and can produce more than 10 mg

of magnetosomes per liter of growth medium (yellow green background), MSR-1 specie belonging to

Alphaproteobacteria that can be amplified in specific growth media, can produce more than 10 mg

of magnetosomes per liter of growth medium, and can be amplified in minimal growth media not

containing peptone, yeast extract, toxic CMR products, and heavy metals.

Magnetotactic bacteria being gram negative, they contain LPS at the surface of their

membrane, which should be removed for injection, notably to prevent skeptic shock. For that,

an extraction/purification method was developed, in which MTB and extracted magnetosomes were

treated with detergents (KOH or NaOH) and heat in order to remove biological material, including LPS

from the magnetosome minerals. Finally, the minerals thus obtained were coated with several synthetic

substances, such as Poly-L-lysine under sonicating conditions, in order to yield nano-formulated

magnetosome minerals coated with Poly-L-lysine (M-PLL), which were stable and non-pyrogenic [84].

Figure 2 presents a schematic diagram with the different steps of the production of M-PLL, which

include: (i) growth and amplification of MSR-1 magnetotactic bacteria starting with a pre-amplification
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of MTB without feeding the bacteria with iron followed by growth of MTB under iron fed-batch

conditions (step 1), (ii) the extraction of magnetosomes from MTB, and (iii) the purification of

magnetosomes to remove organic materials and yield magnetosome minerals and finally coating of

magnetosome minerals with poly-L-lysine (step 3).

 

Figure 2. Schematic diagrams presenting the different steps of magnetosome production, which include:

step 1) growth/amplification of magnetotactic bacteria, this step being divided between a pre-growth

step where magnetotactic bacteria (MTB) are amplified without a source of iron and a growth step during

which MTB are grown by being fed with a fed-batch medium containing a source of iron under sustained

oxygen gas bubbling to promote magnetosome production, step 2) extraction of magnetosomes from

MTB by mixing MTB with KOH and isolating extracted magnetosomes with a magnet, step 3) a

treatment with detergents or heat to obtain magnetosome minerals and a sonication of these minerals

with a synthetic coating (Poly-L-Lysine) to yield stable coated magnetosome minerals (M-PLL).

M-PLL were administered at a concentration of 350–450 µg in iron per mm3 of tumor at the

center of GBM tumors of 1.5 mm3 grown in mouse brains to evaluate the anti-tumor efficacy of these

nanoparticles. Mice were then exposed to 27 magnetic sessions (MS), during which an alternating

magnetic field of 200 kHz and 27 mT was applied during 30 min. [84]. For a typical mouse, Figure 3

shows the rapid tumor disappearance resulting from the treatment, which is highlighted by the

decrease of tumor volume, as deduced from bioluminescence measurements and the absence of tumor

cells observed through histological analysis of treated mouse brains 75 and 125 days following the

beginning of the treatment [84]. The tumor temperature recorded during each session increased

moderately, not exceeding 43 ◦C, indicating that such treatment might be compatible with the treatment

of a human brain, which might withstand a moderate temperature increase.

Figure 4 illustrates, through a series of fours schematic diagrams, the different mechanisms that

could be involved in the anti-tumor activity, i.e.,: (i) localized heat induced at magnetosome location

that could occur inside or outside tumor cells, depending on whether (or not) magnetosomes have

internalized in tumor cells [54,85], (ii) a mechanism of tumor cell death dominated by apoptosis as

was observed during in vitro studies where magnetosomes were brought into contact with GBM cells

and then exposed to one magnetic session [53,84], (iii) anti-tumor activity due to the presence of the

magnetosomes within tumor margin, (iv) the attraction of certain immune cells, such as PNN, in the

region where magnetosomes are located, even so a direct link between the anti-tumor activity and

the presence of PNN has not yet been established [53,84]. In cases where magnetosomes are heated
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under the application of radiation, e.g. a laser or an alternating magnetic field, heat appears to be the

dominant mechanism of action since tumor disappearance is not observed in the absence of heat, and

magnetosomes are therefore classifiable as medical devices.

 

Figure 3. Treatment of a mouse bearing an intracranial GBM tumor of 1.5 mm3, which receives at the

center of its tumor 500–700 µg of M-PLL, followed by 27 applications of an alternating magnetic field

of 27 mT and 200 kHz, each session lasting for 30 min, and resulting in moderate temperature increase

of 0 to 18 ◦C. The decrease of tumor volume down to 0 mm3 10 days following the beginning of the

treatment as well as the absence of tumor in histological analysis of treated tumor brain slides collected

75 days and 125 days following the beginning of the treatments reveal the full tumor disappearance

induced by the treatment. “reproduced with permission in a slightly different format from Biomaterials,

V. 262, P. 259-272 (2017)”.

 

Figure 4. Schematic diagram presenting the possible mechanism of actions associated with anti-tumor

activity, i.e.,: (i) localized heat produced at magnetosome location, either inside or outside cells

depending on whether magnetosomes internalize in tumor cells or remain localized outside these

cells, (ii) an apoptotic mechanism as highlighted when magnetosomes were brought into contact with

U87-Luc cells and exposed to one magnetic session, (iii) mechanism of indirect tumor destruction

involving magnetosomes covering the border of GBM tumor, and (iv) the attraction of immune cells

(PNN) by the magnetosomes since PNN were observed near the magnetosomes in GBM tumors

following a magnetic session although a direct link between the presence of PNN and the anti-tumor

activity was not established.
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Table 2 summarizes the in vitro and in vivo anti-tumor efficacies obtained with the various types

of nanoparticles presented in Table 1.

Table 2. Summarizes the in vitro and in vivo anti-tumor efficacies of the various nanomaterials

presented in Table 1.

Efficacy Results (In Vitro & In Vivo)
of the Different Nanomaterials Presented in Table 1

References

cytotoxicity of NiO NP against HepG2 cancer cells (IC50 = 38 µg/mL) [41], Abbasi 2019

Cytoxicity of Pt NP against MCF-7, HCT-116, HepG-2 cells
(90 < IC50 < 290 µg/mL)

[42], Al-Radad i2019

Cytotoxicity of Pd NP towards A549 lung cancer cells
No cytoxicity towards healthy peripheral lymphocytes

[43], Anand 2016

Pd NP have larger cytotoxicity toward human leukemia (MOLT-4) cells
(IC50 = 0.006 µM) than tea extract (IC50 = 0.9 µM), doxorubicin (IC50 = 2 µM),

or cisplatin (IC50 = 0.013 µM).
NP relatively not cytotoxic towards healthy human fibroblast (HDF-a) cells.

Cytotoxicity due to apoptosis/G2/M cell-cycle arrest
NP have anti-oxydant activity

[44], Azizi 2017

Au NP anticancer activity against HeLa cells
(through apoptosis)

[45], Baharara 2016

Cytotoxicity of ZnO NP towards Hep-G2 cells
(ROS induce damage to DNA of the cells)

[46], Chung 2015

Cu NP are cytotoxic towards MCF-7 breast cancer cells [47], Chung 2017

Te NW (concentration between 5 and 100 µg/mL) improves healthy cell
proliferation/decreases cancer cell growth.

Higher efficacy compared with chemical Te NW.
[48], Crua 2019

Se NP cytotoxic towards HepG2 cells (IC50 = 19 µg/mL)
NP produce ROS

Cellular death through apoptosis
[49], Cui 2018

Cytotoxicity towards MCF-7 breast cancer cells of Ag NP (10 µg/mL) and PDT
(0.5 mJ/cm2)

Due to mitochondrial damage and intracellular ROS production
[50], Erdogan 2019

No CeO2 NP cytotoxicitys on periodental fibroblast cells. [51], Kargar 2015

Rosemary-FeNPs more cytotoxic towards 4T1
and C26 cancer cells than free Rosemary extract

[52], Farschchi 2018

Injection of magnetosomes in glioblastoma followed by several AMF
applications leads to full tumor disappearance

[53], Alphandéry 2017

Magnetosome cytotoxicity towards GBM RG-2 and GL-261 cells under the
application of an AMF of 200 kHz and 40 mT.

[54], Hamdous 2017, 63,
Mandawala 2017

Au NP cytotoxic towards epidermoid carcinoma A431 cells upon laser
irradiation laser at 800 nm (6 W/cm2).

[55], Fazal 2014

Tb2O3 NP cytotoxic towards MG-63 and Saos-2 osteosarcoma cancer cells
(IC50 = 0.102 µg/mL)

Tb203 NP not cytotoxic towards primary osteoblasts up
to 0.373 µg/mL.

[56], Iram 2016

Cytotoxicity of MgO NP towards A-549 human lung cancer cells
(IC50 = 100 µg ml−1 after 24 h incubation)

Less cytotoxicity of MgO NP twoards healthy vero cells (IC50 = 140 µg/mL)
[57], Majeed 2018

BaCO3 NP cytotoxic towards cervical carcinoma cells [58], Nagajyothi 2016

Possibility to add Curcumin at the surface of bismuth sulfide NP and to induce
cytotoxicity towards HT-29 cells by release of CUR.

[59], Nosrati 2019

Th NP cytotoxic towards A 375 melanoma cells. [60], Pol 2018

CdS QD cytotoxic towards A549 lung cancer cells. [61], Shivaji 2018

CoPt have better biocompatibility/lower toxicity than previously reported Co
NP, Co@Au NP, and CoPt NP.→ due to good biocompatibility/anti-oxidation

potential of polyphenols that prevent cobalt release.
[62], Song 2016

MnO2 NP cytotoxic towards 4T1 breast cancer cells [63], Chen 2016
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7. Conclusions

The development of metallic nanoparticles for cancer treatment is rapidly expanding. This is

due to the wide range of mechanisms of action that such a system can trigger, which depends on the

type of metallic NP used. It includes controlled chemotherapeutic drug delivery, localized heating,

and amplification of radiation. Most efforts in this field have focused on chemical synthesis to obtain

metallic NP. However, such synthesis suffers from a number of drawbacks, notably the use of toxic

products that should be avoided for medical applications. This is the reason why it has recently

been suggested to follow natural synthesis methods, using plant extracts, fungus, yeast, or bacteria,

to produce metallic NP. Such production usually relies on the reduction of metal ions by biological

material, which results in the crystallization of metallic ions into metallic NP. The anti-tumor activity

of most metallic NP has been demonstrated in vitro, where some of the underlying mechanisms have

been described as involving anti-angiogenesis or tumor cell apoptosis, DNA damage, or membrane

disruption. Following a specific purification method that enables the removal of endotoxins and

immunogenic biologic material from nanoparticles, metallic NP, called magnetosomes, which are iron

oxide nanoparticles that are synthesized by magnetotactic bacteria, have been administered inside

glioblastoma tumors grown inside mouse brains, and further excited by several applications of an

alternating magnetic field, resulting in several heating sessions that led to full tumor disappearance.

Therefore, it has been demonstrated that natural metallic nanoparticles have the potential to destroy

tumors pre-clinically. The next step will consist in assessing the efficacy and safety of these natural

metallic NP clinically.
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Abbreviations

AMF Alternating magnetic field

EPR effect Enhanced permeability and retention effect

LPS Lipopolysaccharide

MHT Magnetic hyperthermia

MTB Magnetotactic bacteria

MS Magnetic session, time during which an AMF is applied on NP

NP Nanoparticles

M-PLL Iron oxide magnetosome minerals coated with poly-L-lysine

NP Nanoparticles

NP backbone Nanoparticle without any drug attached to it

GBM Glioblastoma multiform

PNN Poly nuclear neutrophils
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