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Abstract: Intraoperative image-guidance in spinal surgery has been influenced by various technological 

developments in imaging science since the early 1990s. The technology has evolved from simple 

fluoroscopic-based guidance to state-of-art intraoperative computed tomography (iCT)-based navigation 

systems. Although the intraoperative navigation is more commonly used in thoracolumbar spine surgery, this 

newer imaging platform has rapidly gained popularity in cervical approaches. The purpose of this manuscript 

is to address the applications of advanced image-guidance in cervical spine surgery and to describe the use 

of intraoperative neuro-navigation in surgical planning and execution. In this review, we aim to cover the 

following surgical techniques: anterior cervical approaches, atlanto-axial fixation, subaxial instrumentation, 

percutaneous interfacet cage implantation as well as minimally invasive posterior cervical foraminotomy 

(PCF) and unilateral laminotomy for bilateral decompression. The currently available data suggested that 

the use of 3D navigation significantly reduces the screw malposition, operative time, mean blood loss, 

radiation exposure, and complication rates in comparison to the conventional fluoroscopic-guidance. With 

the advancements in technology and surgical techniques, 3D navigation has potential to replace conventional 

fluoroscopy completely.
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Introduction

Intraoperative image-guidance in spinal surgery has been 

influenced by various technological developments in 

imaging science since the early 1990s. This technology 

has evolved from simple fluoroscopic-based guidance to 

state-of-art intraoperative computed tomography (iCT)-

based navigation systems (1,2). The use of computer-based 

intraoperative navigation allows for a better understanding 

of complex spinal anatomy, higher accuracy, reduced 

radiation exposure, shorter operative time, and decreased 

complication rates (3-5). It is mainly used for localization, 

instrumentation, incision planning, and ensuring the 

adequacy of decompression in several different surgical 

techniques. Minimally invasive spine surgery has greatly 

benefited from these advancements due to the limited direct 
visualization inherent to this technique (6).

Although intraoperative navigation is more commonly 
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used in thoracolumbar spine surgery, it has rapidly gained 

popularity in cervical approaches (6). The cervical anatomy 

poses unique surgical challenges, particularly in high 

cervical levels due to the presence of the spinal cord, nerve 

roots, vertebral arteries as well as its relatively smaller 

bony fixation points for instrumentation (7). Moreover, the 
appropriate localization of index levels may be more difficult 
in the lower cervical spine with standard intraoperative 

fluoroscopy. For aforementioned reasons, the use of 

intraoperative 3D navigation offers many opportunities in 

cervical spine surgery, specifically with streamlining surgical 
workflow, decreasing invasiveness, and improving the 

accuracy of instrumentation (8).

The purpose of this review is to address the applications 

of advanced image-guidance in cervical spine surgery and 

to describe the use of intraoperative neuronavigation in 

surgical planning and execution. In this review, we aim to 

cover the following surgical techniques: anterior cervical 

approaches, atlanto-axial fixation, subaxial instrumentation, 
percutaneous interfacet cage implantation as well as 

minimally invasive posterior cervical foraminotomy (PCF) 

and unilateral laminotomy for bilateral decompression. 

Anterior cervical approaches

After its first introduction in 1958, anterior cervical 

discectomy and fusion (ACDF) has become one of the most 

commonly performed surgical procedures for single and 

multi-level cervical degenerative disc disease, infection, and 

neoplastic pathologies (9-12). Although conventional ACDF 

with fluoroscopy is a well-established procedure, there are 

some complications including dysphagia and degeneration 

of the adjacent segments. Comparatively, endoscopic 

procedures with smaller incision size have been successfully 

applied which could reduce the risk of dysphagia and 

adjacent segment degeneration (13,14). As such, navigation 

technology is expected to provide important anatomic 

information, particularly in minimally invasive techniques 

(15,16). Although the available data on the utilization of 

this technology for anterior cervical surgery is limited, 

the advantages have been described for several special 

circumstances including corpectomies, tumor resections, 

revision surgeries, and cases that involve the C-T junction (7). 

The usage of navigation essentially requires placing the 

reference array with stability. Placement of the reference 

array can be challenging in anterior cervical procedures 

due to the supine positioning of the patient and a lack of 

reliable bony landmarks (7). For that reason, the reference 

array is often attached to either a skull clamp head-holder 

or surgical table (17). Alternatively, a skin-fixed dynamic 

reference frame can be used as well (18).

In the lower cervical and upper thoracic spine, 

visualization of the levels with fluoroscopic-guidance can 

be more difficult. Therefore, in these particular cases, the 
risk of wrong level surgery can be improved by using 3D 

navigation (17). 3D navigation can significantly decrease 

operating time and radiation exposure to the OR staff by 

preventing frequent interruptions from multiple fluoroscopy 
scans (8,19). Specifically, revision surgeries can pose as 

technical challenges due to an elevated risk of complications 

in the setting of disturbed anatomy and absence of bony 

structures (7). In such cases, the benefits of navigation can 
be greater. For anterior cervical corpectomies, the extent of 

bone removal and middle point of the vertebral body can 

be determined with 3D navigation after the anterior aspect 

of spine has been exposed, allowing surgeons to perform a 

wide and symmetric corpectomy without injuring vertebral 

arteries (7,17) (Figure 1). In tumor cases, navigation plays a 

key role in localizing both the vertebral arteries and borders 

of the soft-tissue or osseous mass (7). Insertion of anterior 

cervical screws cage can be planned with navigation-

guidance and the accuracy can be comparable to insertion 

with fluoroscopy (20-22).

Posterior cervical approaches

C1–2 fusion

The atlantoaxial area differs from the other functional 

units of the lower cervical spine by its unique features (23).  

Several pathologies such as trauma, rheumatoid arthritis, 

infections, tumors, congenital malformations, genetic 

disorders with inherent ligamentous laxity, and degenerative 

conditions can lead to atlantoaxial instability (24,25). 

For aforementioned cases, many different C1–2 fixation 

and fusion techniques were described with the aim to 

re-establish stabilization (26-28). Compared to other 

atlantoaxial fixation options, the highest biomechanical 

stability and fusion rates are provided by posterior 

transarticular screws C1/2, which were described by Magerl 

et al. in 1987 (29,30). However, anatomical and radiological 

studies showed that 18% to 23% of patients may not be 

suitable candidates for posterior C1–2 transarticular screw 

fixation due to the anomalous course of the vertebral artery, 
especially in cases of a high-riding transverse foramen at 

the C2 level; therefore, it’s essential to assess the anatomy 
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Figure 1 Intraoperative screenshots present a C5 corpectomy case. The lateral aspect of the corpectomy is confirmed with navigation. Blue 
virtual shapes are used to localize C4–5 and C5–6 disc spaces. 

of the vertebral arteries via a preoperative CTA (31-34). In 

such cases, C1 lateral mass screws (LMS) together with C2 

pedicle screws can be used for fixation, which was initially 
described by Goel et al. in 1994 (35) and modified by 

Harms et al. (36). using a polyaxial screw-rod construct in 

2001. Moreover, in more recent studies, this technique also 

showed comparable outcomes to transarticular screws in 

terms of biomechanical stability (37).

Computer-assisted 3D navigation systems allows a more 

precise intraoperative image-guidance in atlantoaxial fixation 
surgery by improving the accuracy of screw placement, 

accelerating surgical workflow, and reducing intraoperative 
blood loss and radiation dose in comparison to the 

traditional fluoroscopy-guided surgical method (38-41).  

Yang et al. (42) reported that usage of intraoperative 3D 

navigation significantly decreased the screw breach rate, 

operative time, mean blood loss, and radiation time in 

comparison to the conventional C-arm in patients who 

undergo a C1–2 fixation with Harms technique. In two 

other studies, both Hitti et al. (43) and Harel et al. (44) 

showed that utilization of O-arm based intraoperative 

navigation reduced estimated blood loss by 50% in 

comparison to fluoroscopic guidance. On the other hand, 

similar improvements were observed with the utilization 

of intraoperative navigation for placement of C1–2 

transarticular screws when Yang et al. demonstrated the 

superiority of the 3D C-arm over conventional fluoroscopy 
in terms of accuracy, estimated blood lost, and radiation 

time (45). More recently, Tian et al. reported a case in which 

they placed a unilateral C1–2 transarticular screw accurately 

without any complications with robotic guidance (46).

For the surgical procedure, the patient is placed in a 

prone position and the head is fixated on a Mayfield skull 
clamp. The reference array is attached to the head clamp. In 

cases that involve fractures, reduction must first be achieved 
by traction on each side and the appropriate alignment is 

then confirmed by lateral fluoroscopy. Once the posterior 

arches of C1–C3 are exposed, the navigation probe is used to 

determine the insertion point and craniocaudal/mediolateral 

direction of the transarticular screw which is aimed 

toward the upper half of the C1 anterior arch (Figure 2).  

When transarticular screws are placed percutaneously, 

the stab incision location and length can be planned 

accordingly using 3D navigation. Then an autologous 

bone graft harvested from the posterior iliac crest is placed 

between the C1 and C2 arches. If transarticular screws are 
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Figure 2 Transarticular C1/2 screw positioning with Magerl technique, the entry points as well as the screw trajectory is planned with 

intraoperative 3D navigation.

not feasible due to high riding transverse foramen or other 

anomalies of the vertebral artery, C1 LMS in combination 

with C2 pedicle/pars screws should be preferred (Figure 3).

Subaxial cervical instrumentation

LMS

LMS were first applied in subaxial cervical spine stabilization 
by Roy-Camille in 1964, leading to the replacement of 

pioneer wiring techniques (47). Over the next few years, 

many different modifications of this technique and their 

respective safety profiles were developed and shown  

(48-53). These techniques each have their own distinctive 

angulations, trajectories, and entry points, all of which are 

performed with fluoroscopic-guidance. The most common 

complications associated with LMS are vertebral artery 

injury, facet violation, or lateral mass fractures (54,55). In 

order to decrease the risk of complications, the trajectory 

of LMS is usually aimed to be between 20 to 30 degrees 

laterally and cranially (53). Nevertheless, intraoperative 3D 

navigation eases the planning of the screw insertion point, 

trajectory, and even screw length (Figure 4). Arab et al. 

reported that the LMS malpositioning significantly decreased 
with intraoperative CT-based 3D navigation-guidance (56).

Posterior cervical pedicle screws

Pedicle screw fixation is considered the gold standard 

in lumbar and thoracic spine surgery; however, it has 

adapted slowly for use in the cervical spine due to barriers 

such as the smaller pedicle size and potential risk of 
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Figure 3 C1 lateral mass and C2 pars screws positioning with Harms technique, the entry points as well as the screw trajectory is planned 

with intraoperative 3D navigation.

Figure 4 Intraoperative 3D navigation pictures showing the trajectory and position of the LMS.
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Figure 5 Pedicle screw placement in the lower cervical and upper thoracic spine with intraoperative 3D navigation.

injuring neighboring neuro-vascular structures (57-59). 

Nevertheless, it is demonstrated that cervical pedicle screws 

provide better biomechanical stability and stronger pull-

out strength than other fixation techniques and therefore, 
potentially require shorter instrumentation constructs  

(60-62). There is possible risk of neurovascular injury related 

to placement of the cervical pedicle screw, and vertebral 

artery injury is an especially noteworthy complication (63). 

The complication risk can be minimized by evaluating 

dimensions of the patients’ pedicles and avoiding the 

application of this technique in non-suitable patients (20).

It has been shown that cervical pedicle screws can be 

placed safely and more accurately with navigation systems 

that determine entry points, angulations, and trajectories 

of the pedicle screws (20,64-68). Several studies reported 

high misplacement rates from 6.7% to 29.1% with the 

conventional non-navigated cervical pedicle screw technique 

(53,57,69-71). On the other hand, the literature reported 

perforation rates that ranged from 2% to 2.8% with 3D 

fluoroscopy-guidance (65,67). Equivalent accuracy rates 

were shown by several surgeons who used intraoperative 

O-arm based navigation systems (64,66). In another study 

published by Shimokawa et al. (68) found higher accuracy 

rates with intraoperative 3D navigation in cervical and 

thoracic pedicle screw placement compared to preoperative 

CT-based systems (97.1% vs. 93.6%). The radiation 

exposure to the patient and OR staff during pedicle screw 

placement is another concern regarding intraoperative 

image guidance. Nottmeier et al. reported that the cervical 

anatomy can be visualized adequately and efficiently even 

for obese and osteoporotic patients when using the O-arm 

based intraoperative navigation system, reducing radiation 

exposure to patients by up to 40% (8). 

From a technical perspective, the patient is positioned 

prone and the head is fixed using either a horse shoe or 

three-point cranial clamp. The reference array is usually 

placed on the spinous process, preferably in close proximity 

to the index levels. In cases in which the reference array 

is attached to Mayfield head-holder, the accuracy should 

be checked periodically. After the intraoperative scan is 

performed and images are uploaded, the entry points, screw 

trajectory, length, diameters, and incision line are planned 

in the axial, sagittal, and coronal planes with 3D navigation 

for percutaneous assisted cannulated screw placement 

(72,73) (Figure 5). This step plays a key role in reducing the 

risks of screw pullout and breaches by optimizing the outer 

diameter and length of the screw in relation to the inner 

diameter of the pedicle (74-76). A high-speed drill is usually 
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used for preparation of the pilot holes for pedicle screw 

insertion. The use of the drill allows surgeons to understand 

the bony resistance and minimizes antero-posterior forces 

during the creation of pilot holes. Next, the pedicle screws 

are tapped and the accuracy is confirmed by the navigation 
probe. Laminectomy should be performed at the end if it 

is indicated, as the bony lamina can serve as a protective 

barrier to the dura during instrumentation.

Percutaneous interfacet cage implantation

Cervical facet joint distraction was initially described 

by Goel et al. for the treatment of basilar invagination 

in early 2000s (77) and later, this technique was used to 

achieve indirect decompression for single-level cervical 

radiculopathy/myelopathy (78-81). More recently, 

minimally invasive percutaneous interfacet cage implants 

(e.g., DTRAX; Providence Medical Technology, Inc., 

Pleasanton, CA) have become alternatives to traditional 

open posterior cervical fusion with LMS (82-84). This 

technology is mainly indicated for foraminal stenosis, 

facet mediated pain, pseudoarthrosis, and adjacent level 

compromise following a prior ACDF. In a cadaveric study, 

Voronov et al. (85) demonstrated that bilateral interfacet 

cages can provide comparable segmental stability to 

posterior cervical fusion with LMS. Siemionow et al. 

performed postoperative radiographic analysis on patients 

who underwent posterior cervical fusion using bilateral 

interfacet cages to demonstrate bilateral interfacet cages 

can increase foraminal area (83). McCormack et al. reported 

that significant improvement in clinical outcomes up to 

one year after percutaneous posterior cervical fusion with 

interfacet cages (82). Interfacet cage implantation can be a 

safe alternative to other cervical spinal fusion surgeries with 

a favorable complication profile (84,86). To date, there is 

no data available on the use of 3D navigation for interfacet 

cage implantations.

For the surgical procedure, the patient is placed in the 

prone position and attached to a Mayfield head holder. 

During this procedure, SSEP and MEP neuromonitoring 

should be utilized. Although fluoroscopy alone can be used, 
3D-navigation can facilitate implant placement due to its 

ability to visualize the trajectory in the coronal, axial, and 

sagittal planes. 3D-navigation is used to identify both the 

media and lateral aspect of the facet (Figure 6) (87). The 

procedure begins with the insertion of the guide tube. 

In order to avoid damage to the nerve root, the access 

chisel should enter the joint following a medial to lateral 

trajectory similar to cervical lateral mass screw placement 

and also, remain collinear to the joint. A pineapple tipped 

decorticating burr is used to ream out the inside of the facet 

joint. Once the burr is removed, a cage with bone graft 

is inserted via the guide tube and bone screws are used to 

fixate it into the inferior articulating facet. All instruments 
except the guide tube is removed. Then, additional bone 

graft material is added onto the joint via the guide tube. 

Finally, the guide tube is removed and the wound is 

irrigated and closed in a routine fashion.

PCF

PCF is a well-established surgical technique among operative 

treatments for unilateral radiculopathy (88-90). This technique 

was initially described in the 1940s (91,92) and later, its 

minimally invasive modifications were developed by adapting 
tubular retractors and endoscopes (93,94). It has been shown 

that PCF has comparable clinical outcomes with conventional 

ACDF for the treatment of unilateral cervical radiculopathy 

while the risk of complications including dysphagia, recurrent 

laryngeal nerve injury, and adjacent segment disease is 

significantly reduced (95-97). The risk of requiring a revision 
fusion at the index level for patients undergoing PCF 

ranged from 1.1% to 5% in the literature (98,99). Moreover, 

minimally invasive PCF has several advantages over the 

traditional open technique in terms of blood loss, operation 

times, inpatient analgesic use, and length of hospital stays 

(93,100). However, certain difficulties exist when performing a 
minimally-invasive PCF due to the limited visibility provided 

through a tubular retractor, and can be even more challenging 

in the lower cervical spine and C-T junction of obese patients 

with short and thick necks (100). Herein, the use of 3D 

navigation-guidance facilitates the surgical workflow, assists 

in deciding the boundaries of foraminotomy, and allows a safe 

and efficacious decompression at the intended level (87,101). 
Similarly, 3D navigation enables surgeons to perform a safe 

and efficient full endoscopic PCF where it provides great 

accuracy and helps to overcome the limited vision under the 

endoscope (102).

For the surgical procedure, the patient is placed in a 

prone position with rigid head fixation and the reference 

array is attached to either a skull clamp head-holder or over 

the cervicothoracic junction. A 2-cm paramedian incision is 

then made in the skin and cervical fascia, of which is planned 

via 3D navigation-guidance. In general, a 14- or 16-mm 

tubular retractor is docked following the serial insertion 

of sequential dilators. The accuracy of intraoperative 
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Figure 6 Intraoperative 3D navigation screenshots demonstrating the trajectory and ultimate target of the interfacet joint cage (A,B,C,D). 

Postoperative (E) lateral and (F) anteroposterior radiographs following bilateral interfacet joint cage implantation. With permission of ref. (87).

navigation should be confirmed at this point and then, 

the shape and extent of the foraminotomy can be decided 

(Figure 7). Typically, bone drilling begins at the V-point 

(the lateral aspect of the superior and inferior hemilamina 

and medial third of the facet joint) using a high-speed 

burr. Data suggests that removing greater than 50% of the 

facet joint should be avoided since it can cause segmental 

hypermobility (103,104). Then, Kerrison rongeurs are 

used to remove the ligamentum flavum and widen the 

foraminotomy. At this point, the lateral edge of the dural 

sac as well as the branching nerve root are identified, and 
nerve hooks are used to retract the exiting nerve while the 

discectomy is completed using micropituitary rongeurs. In 

the end, the navigation probe is used to ensure achievement 

of sufficient decompression.
 

Cervical unilateral laminotomy for bilateral decompression

In 1997, Spetzger et al.  introduced the “unilateral 

laminotomy for bilateral decompression” (ULBD) 

A B

C D

E F
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Figure 7 Intraoperative 3D navigation pictures presenting a PCF case. With permission of ref. (87).

technique for lumbar spinal stenosis (105). In following 

years, this surgical concept has been adapted for treatment 

of cervical spine and has become one of the main principles 

of minimally invasive spine surgery (106). Although there 

are various treatment options for cervical spondylotic 

myelopathy, each procedure has both advantages and 

disadvantages associated with manipulation.  The 

conventional laminectomy-alone may contribute to a late 

cervical kyphotic deformity, late neurologic deterioration 

and postoperative axial symptoms (107-109). Minimally 

invasive cervical ULBD can be a better alternative to open 

the laminectomy for treatment of single or multilevel 

cervical spondylotic myelopathy (110,111) (Figure 8). 

Although the literature lacks the data comparing open 

cervical laminotomy to minimally ULBD, Minamide  

et al. reported that endoscopic ULBD demonstrated similar 

neurological outcomes with maintaining sagittal alignment 

and less axial symptoms compared to open cervical 

laminoplasty in their 5-year cohort study (112). 

The technical aspect of the procedure involves 

positioning the patient prone with the head immobilized in 

a 3-pin skull clamp with the reference array attached. The 

incision site is determined based on total 3D navigation and 

then, a 2.5-cm incision is made approximately 2 cm off the 

midline. After incising the fascia, the first dilator is then 

passed through the created plane to dock onto the lamina 

and subsequently, serial dilation is performed. Later, a 16–

18 mm tubular retractor is placed and the triangle formed 

by the lamino-facet junction is identified with the assistance 
of the pointer. The bony removal begins at the inferior 

aspect of the cranial lamina using a combination of a high-

speed drill and Kerrison ronguers until the cranial insertion 

of the ligamentum flavum is reached, often indicated by 

the epidural fat. Next, the superior aspect of the caudal 

lamina is drilled away. Following this step, the tubular 

retractor should be tilted to aim medially and the operating 

table should be rotated away from the surgeon to grant the 

surgeon an appropriate trajectory for the performance of 

the contralateral decompression, undercutting the spinous 

process. The ventral surface of the contralateral lamina 

is drilled away without removing the ligament flavum to 

protect the spinal cord. At this point, it’s important to avoid 

applying downward pressure on the spinal cord. Once 

the ligamentum flavum has been mobilized away from its 

attachments, Kerrison rongeurs are used for removal of the 

ligamentum flavum. Finally, the adequate decompression 

in the contralateral side is confirmed using 3D navigation-
guidance (Figure 9).

Conclusions

The introduction of navigation and intraoperative image-

guidance revolutionized spine surgery and provided great 

benefits particularly for minimally invasive approaches. 
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Figure 9 Unilateral laminotomy for “over the top” bilateral decompression. Intraoperative 3D navigation facilitates adequate contralateral 

decompression. With permission of ref. (87).

Figure 8 Multi-level cervical disc disease and spinal canal stenosis. With permission of ref. (87).

Although the intraoperative navigation is more commonly 

used in thoracolumbar spine surgery, it has rapidly gained 

popularity in cervical approaches. Placement of the 

reference array remains the primary limitation of navigation 

systems in the cervical spine. Literature suggested that 

the use of 3D navigation significantly reduces the screw 

malposition, operative time, mean blood loss, radiation 

exposure, and complication rates in comparison to 

the conventional fluoroscopic-guidance. Although 3D 

navigation has potential to replace conventional fluoroscopy, 
further evidence is needed to establish the superiority 

of navigation over conventional fluoroscopy in specific 
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procedures for cervical spine.
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