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a b s t r a c t

The fate of the canine corpus luteum (CL) differs from that of other domestic species: beyond the

extended luteal regression observed in both pregnant and non-pregnant cycles, active luteolysis is

observed only in pregnant dogs. Luteal regression in the absence of pregnancy lacks a luteolytic trigger.

The CL lifespan during pregnancy is around 60 days, as long as that of the cyclic CL. Although they are

already available in the first half of diestrus, LH and especially prolactin (PRL) play a decisive luteotropic

role from approximately day 25 post-ovulation onwards. Nevertheless, many locally-produced factors are

orchestrated to ensure a fully functional CL, which in the bitch produces progesterone (P4), 17b-estradiol,

and other local regulators. Recently, insulin has been described as another luteotropic factor in this

species, able to increase glucose uptake in luteal cells and contribute to steroid biosynthesis. The locally-

produced PGE2 is also a potent luteotropic factor in the first half of diestrus, promoting STAR expression,

as are also proliferating, vasoactive- and immunomodulatory factors. These, in turn, all contribute to the

formation and maintenance of the canine CL. Meanwhile PGF2a, produced by the utero-placental

compartment, participates actively in triggering pre-partum luteolysis. Cytokines play different roles,

either contributing as luteotropic or as acute inflammation molecules. So far, the one clinically most

efficient mechanism of interrupting a pregnancy in the dog is to block P4 receptors, using an anti-

gestagen (e.g., aglepristone) in the second half of diestrus. To enhance the chances of pregnancy, how-

ever, several luteotropic factors could be used.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The dog is unique among domestic species with regard to the

evolution of reproduction. Cyclic diestrus lasts at least 60 days [1,2],

i.e., as long as pregnancy or longer, and the corpus luteum (CL) plays

the central role in regulating the estrous cycle and pregnancy. Since

the dog placenta is unable to produce steroid hormones [3,4],

crucial for successful pregnancy, and the canine CL is the only

source of progesterone (P4) and 17b-estradiol (E2) during diestrus

[5], the CL should be among the main foci of research in the dog

when the aim is to manipulate pregnancy.

Hormones control the CL lifespan, either in an endocrine or

paracrine/autocrine way [5e8]. Locally produced growth factors,

cytokines and prostaglandins (PGs), modulate CL function, creating

a balance leading to luteal regression in non-pregnant dogs or

luteolysis in pregnancy (reviewed in Ref. [9]). In pregnant dogs, the

trophoblast is the feto-maternal compartment most responsible for

PGF2a production [10], which actively participates in pre-partum

luteolysis. Aglepristone is a P4 receptor (PGR) blocker, which can

be safely used to terminate pregnancy in dogs by evoking pre-term

parturition/abortion [11]. Alternative methods are desirable, espe-

cially ones related to manipulating cyclicity and avoiding preg-

nancy. Neutering is a surgical approach, broadly used for control of

street dog populations, but is considered very invasive, as well as

expensive when applied on a mass scale [12]. On a smaller scale,

but still very important for understanding canine pregnancy

physiology, pregnancy failures are often observed due to luteal

insufficiency [13], which raises the need to develop tools to

improve that particular situation.

Regardless of the approach, and before discussing this question,

we shall review the major general and local players controlling the

CL lifespan in cyclic and pregnant dogs (summarized in Table 1),

and then identify possible target mechanisms to increase the

chances of pregnancy in the dog or of avoiding it.
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Table 1

Luteotropic factors and those involved in luteolysis or regression of the pregnancy and cyclic canine corpus luteum.

Luteotropic

Factors

Pregnancy CL Cyclic CL

Pre-implantation Post-implantation Mid gestation Pre-Partum luteolysis Formation Maintenance Early regression Late regression

LH 1.7 ng/mL 1.7 ng/mL 1.7 ng/mL 2.3 ng/mL 1.5 ng/mL 1.5 ng/mL 1.5 ng/mL 1.7 ng/mL

LH receptor increase until mid gestation ¼ ¼

Prolactin-PRL constant increase until 50 ng/mL 2e4 ng/mL ¼ ¼ 9 ng/mL

PRL receptor constant expression until gradually decreasing

Insulin * * * * 3.8 uU/mL 2 uU/mL 5 uU/mL 1.7 uU/mL

GLUT4 * * * * ¼

GLUT1 * * * * ¼ ¼

Progesterone variably high, similar to non-pregnant <2e3 ng/mL Variably high, similar to pregnant >1 ng/mL levels <1 ng/ml

indicate onset of anestrus

PGR constant constant higher lower/

constant

lower/constant higher

17b-estradiol 21e42 pg/mL 21e42 pg/mL 21e42 pg/mL <12 pg/mL 12e20 pg/mL 20e35 pg/mL 30e40 pg/mL 20-12 pg/mL

ERa * * * * constant constant constant

ERb * * * * constant expression throughout diestrus

PGE2 * * * * constant constant

PTGS2 ¼ ¼

PTGES ¼ ¼

PGT ¼

EP2 constant expression until ¼ ¼

EP4 constant constant constant expression throughout diestrus

IL-6 * * * * ¼ ¼

IL-10 * * * * * * *

VEGFA ¼ ¼ ¼ ¼

VEGFR1 ¼ ¼ ¼

VEGFR2 constant expression throughout diestrus ¼

FGF2 * * * *

Endothelin 1 constant expression throughout diestrus ¼ ¼

ETB ¼ ¼ ¼ ¼

ECE1 constant expression until ¼ ¼

IGF1 ¼ ¼

IGFR1 constant expression until constant expression throughout diestrus

Factors involved with Pregnancy CL Cyclic CL

luteolysis or regression Pre-

implantation

Post-

implantation

Mid gestation Pre-Partum luteolysis Formation Maintenance Early regression Late regression

PGFM 200 pg/mL 700 pg/mL 1000 pg/mL 7900 pg/mL 900 pg/mL 500 pg/mL ¼ 200 pg/mL

PTGFR constant expression throughout diestrus Stable expression throughout diestrus

PGFS low ¼ ¼ low or no detection

IL-1b * * * constant expression throughout diestrus

IL-8 * * * * * * *

IL-12a * * * constant expression throughout diestrus

CCL3 * * * * * * *

P.C. Papa, M.P. Kowalewski / Theriogenology 150 (2020) 339e346340



2. Classical endocrine regulators of luteal function

2.1. Prolactin and luteinising hormone

Luteinizing hormone (LH) triggers a marked preovulatory

luteinization of canine follicular granulosa and theca interna cells.

Independent of pregnancy, the canine CL may last as long as

pregnancy (approximately 60 days) or longer, and is able to

respond to LH and PRL, particularly in the second half of diestrus

[14,15], when concentrations of both gonadotropins increase in

peripheral blood [6,7]. Accordingly, immunoneutralization of LH

during the second half of diestrus in non-pregnant dogs and during

pregnancy was associated with a transient decline in serum P4

concentrations, but was not able to abbreviate the CL lifespan [16].

However, LH was reported to increase circulating PRL levels in

canine pregnancy, placing LH in an indirect luteotropic role [7]. In

the cyclic CL, LH receptors (LHR) were assessed at the mRNA level,

showing an increase fromday 5 up to days 15 and 25 post-ovulation

(p.o.), and a decrease thereafter at day 35 p.o., with no significant

changes until day 65 p.o. Interestingly, in the same study, LHR

mRNA in the pregnancy CL increased from pre-implantation to

mid-gestation and remained so until pre-partum luteolysis [17].

In non-pregnant dogs, plasma PRL concentrations fluctuate

constantly around 2e4 ng/mL during diestrus and rise slightly to

9 ng/mL on day 60 p.o. However, PRL increases continuously in

pregnant dogs towards the end of gestation, achieving 50 ng/mL

close to parturition [15]. PRL receptors (PRLR) are expressed in

cyclic and gestational canine CLs: during the estrous cycle the

expression of PRLR increases from day 5e15, and decreases grad-

ually towards day 65 p.o. Similarly, in pregnancy, PRLR expression is

high in the developing CL and decreases gradually during luteal

regression until mid-gestation (approximately day 35e40), and is

strongly suppressed at pre-partum luteolysis [17]. Moreover, in

isolated canine early luteal cells (approximately 3 weeks p.o.)

prostaglandin E2 (PGE2) strongly stimulated PRLR expression [18].

In the same report, functional withdrawal of prostaglandin activity

during the early luteal phase, associated with decreased intraluteal

PGE2 synthesis, significantly diminished in vitro PRLR expression

[18]. This apparent functional loop implies an indirect involvement

of PGE2 in regulating sensitivity of the canine CL to circulating PRL.

Nevertheless, during the first half of the diestrus phase, i.e., from

the day of ovulation until approximately day 24e28, the canine CL

is independent of the potential luteotropic action of hypophyseal

hormones [19] and hypophysectomy triggers only a transient

decline in concentrations of plasma P4. After day 24 p.o., hypo-

physeal ablation and/or blockade of PRLR leads to luteolysis in the

non-pregnant dog, further highlighting the role of PRL in regulating

the CL lifespan [19,20]. Additionally, as a pleiotropic hormone,

plasma PRL is able to modulate glucose homeostasis and insulin

secretion, as shown in rats [21]. However, in humans, high doses of

PRL (hyperprolactinemia) can cause insulin resistance and act as a

diabetogenic hormone [22].

2.2. Progesterone and 17b-estradiol

In cows, E2 acts as an endocrine modulator of the cyclic CL

lifespan [23]. It is produced by the recruited growing ovarian fol-

licles during the follicular waves [24]. The system of ovarian ve-

nules and veins carries E2 into the main blood circulation, which

then distributes E2 throughout the target organs, including the

ovary containing the CL. Possible paracrine and autocrine effects of

E2 on the bovine cyclic CL may not be excluded, since ovarian

arterio-venous anastomoses exist [25,26], and the CL itself has been

reported to produce E2 [27]. Together with PGF2a (prostaglandin F2

alpha), E2 can be considered a luteolytic factor in cows [28]. In

pregnant cows, however, ovarian E2 production is maintained at

low levels, and the main organ producing estrogens is the placenta

[29], which is able to increase the amount of free and conjugated

estrogens (from less than 1 to around 10 ng/mL) starting at 20 days

prior to parturition [29]. Other luteolytic factors, induced by PGF2a,

Table 1 (continued )

Luteotropic

Factors

Pregnancy CL Cyclic CL

Pre-implantation Post-implantation Mid gestation Pre-Partum luteolysis Formation Maintenance Early regression Late regression

CCL13 * * * * * * *

MHCII * * * * * * *

NF-kB (RELA) * * * * constant constant

TNFa ¼ ¼ ¼ ¼

TNFR1 ¼ ¼ ¼ ¼

TNFR2 ¼ ¼ ¼ ¼

Endothelin 2 ¼ ¼

Endothelin 3 constant expression until constant constant ¼

ETA constant expression until constant expression throughout diestrus

Pre-implantation e days 10e12 of gestation (o.g.); Post-implantation e days 18e25o.g.; Mid-gestation e days 30e45o.g.; Pre-partum luteolysis e days 58e61o.g.; Formation

e day 10 post ovulation (p.o.); Maintenance e days 20 and 30 p.o.; Early regression e day 40 p.o.; late regression e day 60 p.o.; LH e luteinizing hormone; GLUT4/GLUT1 e

facilitative glucose transporters 4 and 1; PGR e nuclear progesterone receptor; ERa/ERb e estrogen receptors a and b; PTGS2 e prostaglandin synthase 2; PTGES e pros-

taglandin E synthase; PGT e prostaglandin transporter; EP2/EP4 e prostaglandin receptors 2 and 4; IL e interleukin; VEGFA e vascular endothelial growth factor A; VEGFR1

and 2e VEGFA receptors 1 and 2; FGF2 e basic fibroblast growth factor; ETB and ETA e endothelin receptors B and A; ECE1 e endothelin converting enzyme 1; IGF1 e insulin

like growth factor 1; IGFR1 e receptor 1 for IGF; PGFM emetabolite of PGF2a; PTGFR e receptor for PGF2a; PGFS e prostaglandin F synthase; CCL 3 and 13 e Chemokine CeC

Motif ligand 3 and 13; MHC II emajor histocompatibility complex class II; NF-kB (RELA) e transcription factor, subunit p65, responsible for activation of NF-kB; TNFae tumor

necrosis factor a; TNFR1 and 2 e receptors 1 and 2 for TNFa. Increased ( ), decreased ( ) or equal (¼) expression in relation to previous stage. * - no information

available.
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apoptotic and immune factors, also contribute to luteolysis of the

bovine pregnancy CL. In the rabbit, E2 is considered the main lu-

teotropic factor, acting through its receptors to maintain the cyclic

CL lifespan [30]. The cyclic rat CL is also considered to be sensitive to

E2 as a luteotropic factor [31], as is the porcine CL [32,33]. Indeed, in

the latter species, E2 seems to play a protective role by increasing

LHR expression and P4 production in the cyclic pig CL, delaying the

onset of PGF2a induced luteolysis [32]. In the human cyclic CL, a

luteotropic role has been attributed to E2 [34], but there is some

dispute about its involvement in luteolysis, mediating apoptotic

events [35].

The role of P4 in modulating CL function is rather autocrine and/

or paracrine, as is the role of E2 for the canine CL. We will discuss

these aspects below, under “Paracrine and Autocrine regulators”.

3. Non-classical endocrine regulators of CL function

Insulin plasma concentrations fluctuated during diestrus in

non-pregnant dogs used for most of the experiments we conducted

in this context [36]. Concentrations of 3.8 mU/ml were found on day

10 p.o., decreasing to around 2 mU/mL on days 20 and 30 p.o,

increasing again up to 5 mU/mL on day 40 p.o. and decreasing again

after they reached 50 p.o. (p < 0.05).

Recently, it was shown that insulin is able to increase glucose

uptake by canine luteal cells through phosphorylated AKT-

dependent glucose transporter 4 (GLUT4) translocation [8], as in-

sulin does in classical insulin-sensitive tissues like skeletal muscle

and adipose tissue [37e40]. GLUT4 is the only facilitative glucose

transporter able to respond to insulin stimulus in white and brown

adipose tissue, as well as in skeletal and cardiac muscles [37]. It also

responds to exercise, increasing glucose uptake [41]. Postprandially

and during exercise, more than 50% of cellular GLUT4 content is

translocated into the plasmamembrane, and the amount of glucose

taken up correlates with this GLUT4 shift in cellular localization as

well as with the physiological state of the tissue or cells [42]. Other

tissues such as the uterus, placenta and CL, in humans, rodents and

domestic animals, have been reported to express GLUT4 protein

and SLC2A4, its encoding mRNA [8,43e46]. Both protein andmRNA

can be differentially modulated during CL development and

regression [8,44], placental age [46] and endometrial phases

[43,45]. Nevertheless, to the best of our knowledge, glucose uptake

under insulin stimulus has only been described for cyclic canine

luteal cells [8], even though other above-mentioned studies

attributed a role to GLUT4 in the functionality of endometrial and

placental tissues on the basis of its expression.

In addition to contributing to glucose uptake by translocating

GLUT4 from the intracellular compartment to the plasma mem-

brane, insulin signaling is also able to increase SLC2A4 transcription

and its translation to GLUT4, as shown in rat muscle cells [47] and

canine luteal cells [8]. These results characterize insulin as playing a

role in modulating canine CL function.

4. Paracrine and autocrine regulators of luteal function

4.1. Steroid hormones

Steroid hormones, especially E2 and P4, play the paramount role

in controlling CL function, not only in the dog [5] but also in cows

[27], humans [48], and pigs [49], among others. Since 2001, it has

been known that E2 and P4 receptors are present in the canine CL

and their expression is modulated during diestrus [5,50] and

pregnancy [51e53]. Non-surgical termination of unwanted dog

pregnancies can be achieved by aglepristone, a P4 receptor (PGR)

blocker [10,54e56].

The canine CL is the only source of steroid hormones during

pregnancy and non-pregnant diestrus, since the placenta is unable

to synthetize them [3,4]. In order to achieve its function, P4 has to

bind to nuclear or membrane receptors. After binding to nuclear

receptors, the P4-receptor complex connects to the promoter re-

gion of target genes, and it may recruit additional transcription

binding factors to initiate or repress transcriptional activity (see

review by Ref. [57]). In canine luteal tissue of pregnant and non-

pregnant dogs, PGR is expressed in a time-dependent manner,

apparently exhibiting an inverse relationship to circulating P4

levels [5,50,53]. Interestingly, PGR is expressed in both luteal and

non-luteal cells. Progesterone plasma levels vary strongly individ-

ually and reach maximum values between days 15e30 p.o [1,9,58].

(values of 25e35 ng/mL, sometimes over 80 ng/mL can be recor-

ded). In the second half of the luteal phase, steroidogenesis slowly

declines until sudden luteolysis occurs before parturition; in non-

pregnant dogs, progressive and protracted CL regression occurs

secondary to fatty degeneration of luteal tissue and in the absence

of a luteolytic signal.

Basal P4 levels of <0.1 ng/mL determine the beginning of

anestrus [2]. The presence of PGR in different populations of cells

within the canine CL implies a broad local regulation of physio-

logical processes. It has been postulated that P4 is able to induce

proliferation of endothelial and stromal cells, suppress immune cell

function [52] and act in a positive feedback over the luteal cells, in

an autocrine manner triggering its own production [53]. The first

half of diestrus, when luteal P4 production achieves full capacity,

displays a plethora of luteotropic factors, including the glucose

transporter 1 (GLUT1), whose expression is triggered by P4 itself

through its own receptor, as shown in murine and human endo-

metrial cells [59], favoring glucose uptake to supply the needs of

the developing, fully secretory CL. GLUT1 was assessed in cyclic

canine CL in the context of hypoxia-regulated genes, and showed a

high correlationwith P4 production in the first half of diestrus [58].

Knockout studies in mice shed light upon PGR functions in the

ovary, resulting in an anovulatory phenotype [60]. However, one

should be careful in extrapolatingmouse data to canine CL function,

because blocking PGR functionality in the dog does not affect

ovulation [61].

In our most recent, as yet unpublished study, the expression of

membrane progesterone receptors (MPGRs) was examined in

pregnant and cyclic canine CL. Overall, diestrus and pregnancy

stages influenced the expression of MPGRs, although expression

patterns differed among PGRMC (P4 membrane receptor compo-

nent) 1, 2, PAQR (class II progestin and adipoQ receptor) 5, 7 and 8.

The combination of data already gathered on PGR functionality and

new data on MPGRs may bring new insights into P4 action in the

canine CL during its maturation, maintenance and regression.

Regarding estrogen actions, two main nuclear receptors have

been described, ERa and ERb, encoded by ESR1 and ESR2 genes,

respectively. ERs are broadly distributed throughout the body [62],

pointing towards dependency of the organism upon estrogens for

achieving homeostasis. ERa and ERb are not always present in the

same organs, but if they are, the ratio of ERa to ERb also plays a role

in the response to estrogens, in a tissue-dependent manner [63].

Moreover, when expressed together, ERa and ERb heterodimerize

[64]. More recent data indicate that, whereas homofusion of either

ERa or ERb evokes signals similar to the parent ER, heterodimers

emulate the transduction effects of ERa, affirming the latter as the

dominant partner in the ERa/ERb dimer [65].

In the canine cyclic CL, both ERa and ERb are expressed [5,50],

and predominantly found in steroidogenic cells, while being less

represented in non-steroidogenic cells. The mRNA and protein

expression levels of ERa appear to diverge [5,50]. The ERa protein

was found consistently distributed in luteal and non-luteal cells

during diestrus, but in luteal cells a gradual increase from day 35

P.C. Papa, M.P. Kowalewski / Theriogenology 150 (2020) 339e346342



and elevated expression on day 65 were observed [5]. In contrast,

the transcripts levels were elevated from day 5 to day 25, and

decreased gradually towards day 65 p.o [5]. The expression of ERb

and ERS2, however, was not greatly affected by the stage of diestrus

[5]. However, in another recently published study, the transcript

levels of both ESR1 and ESR2 were also investigated in the CL of

non-pregnant dogs, both showing time-dependent effects and

increased expression towards day 30 p.o [66]. Interestingly, despite

high individual variations in that study, their expression was not

affected by functional withdrawal of prostaglandins [66]. Never-

theless, taking into consideration the expression and distribution

patterns of the respective proteins, ERa and ERb, cumulatively the

available data imply that the ratio of ERa to ERb may change with

increasing ERa expression towards the end of diestrus [5,50].

Additionally, estrogen sulphotransferase 1 (SULT1), an enzyme

responsible for conjugation and inactivation of estrogens, was

found to be increased during luteal regression of the cyclic canine

CL on day 65 p.o. compared to pre-partum luteolysis in pregnancy

CLs of the same age, which was interpreted as a sign of a functional

withdrawal of estrogens [52]. Notably, SULT1 was among the genes

commonly upregulated in luteolytic dogs, both during natural

luteolysis and in mid-pregnant dogs in which luteolysis/abortion

was induced by an antigestagen [52]. The latter finding implies a

role of PGR in mediating the local availability of estrogens, making

estradiol unavailable for its otherwise expressed receptors.

As described for rat Sertoli cells [67], the functions of 17b-

estradiol, if transferred to the CL, could be related to proliferative as

well as anti-proliferative processes, and this would indeed depend

on the ERa/ERb ratio as already described for human breast cancer

cells [68]. Moreover, the description of membrane-bound estrogen

receptors in the hamster ovary, the ESR36 [69], a splice variant of

the ESR1 gene involved in non-genomic signaling of estrogens,

leads us to assume that E2 action in follicles is broader than orig-

inally presumed. Although currently there are no data addressing

the presence of membrane-bound estrogen receptors in CLs, their

contribution to the regulation of luteal function warrants further

investigation.

Additionally, nuclear ERs have been related to metabolic disor-

ders. Insulin resistance increases in muscle cells treated with ERb

agonist, whereas ERa shows a protective effect for insulin resistance

and obesity [70,71]. Often driven by the estrous cycle and preg-

nancy, hormone fluctuations may lead to impairment of glucose

metabolism and insulin resistance in humans, and ERs have been

implicated in this process [72]. Whenwe consider that insulin plays

a luteotropic role in the canine CL [8], fluctuations of ERs in the

tissue could also have an effect on insulin-driven GLUT4 glucose

uptake.

And last, but not least, the priming action of E2 in the canine CL

for the expression of PRL and, reciprocally, for PGR [17], attributes

another critical autocrine and paracrine role to E2.

4.2. Prostaglandins

Prostaglandin F 2a (PGF2a) is the most-studied PG in domestic

animals, and its main function is termination of the luteal phase in

non-pregnant females to allow resumption of cyclicity. In rumi-

nants, PGF2a originates in the uterus and acts on the CL by a

counter-current mechanism involving the uterine vein and the

ovarian artery. In the non-pregnant dog, PGF2a does not seem to

play a physiological role in CL regression [9,73]. Expression of the

PGF2a-synthase (PGFS) enzyme is very low or absent in both

pregnant and non-pregnant canine CL [74,75]. Nevertheless, due to

its constitutive expression of the respective receptor, PTGFR [53,74],

the canine CL remains responsive to exogenously administered

PGF2a [76e78]. However, as reported, e.g., for early pregnant

bitches, serious dose-dependent adverse side effects, mainly

related to emesis and induction of defecation, are to be expected

[77]. In contrast to non-pregnant dogs which lack endogenous

PGF2a secretion by the uterus, the utero-placental unit of pregnant

bitches secretes PGF2a that leads to pre-partum luteolysis [9,10,79].

It originates predominantly from the microsomal compartment of

fetal trophoblast cells in the placenta, and triggers contractility of

the myometrium and apoptosis of luteal cells [10,75].

As for PGE2, it seems to be the most important prostaglandin

controlling early CL function in dogs. It acts as a luteotropic factor

directly involved in CL formation and P4 production [73], as well as

indirectly by increasing blood flow and enhancement of PRL re-

ceptor [66,80]. The whole machinery necessary for PGE2 synthesis

and action in the dog is present in both pregnant and non-pregnant

CLs. It starts with a massive expression of cyclooxygenase 2 (PTGS2)

and the converting enzyme PGE2 synthase (PTGES)when P4 plasma

levels are rising [81], associated with the expression of the PG

transporter (PGT). The expression of HPGD, an enzyme responsible

for PGs degradation, is negatively correlated with PTGES and PGT.

Moreover, when PTGS2 is blocked in vivo following the use of the

selective COX2 blocker firocoxib, an inhibition of STAR and HSD3B

accompanied by reduced P4 concentrations is observed [82,83]. In a

follow-up study, also including the RNAseq approach on CL tissues

from non-pregnant dogs treated with firocoxib from day 5e30 p.o.,

Tavares Pereira and collaborators [66,84] documented the expres-

sion of genes related to immune system, vascularization and general

global luteal transcriptomic changes. Genes belonging to the

angiopoietin family (ANGPT) were down-regulated, whereas

endothelin 1 and some pro-inflammatory cytokines, e.g., IL1b, IL6

and IL12a, were increased. The up-regulation of the above-

mentioned cytokines by a COX2 inhibitor points to a possible

immunosuppressive effect of PGs in the canine cyclic CL [66,84]. The

findings regarding the ANGPTs and their receptors indicate a

destabilization of blood vessels when PGs are not available.

4.3. Cytokines

Cytokines have been brought into focus in the regulation of CL

function only in recent decades, when several immune cells, e.g.,

lymphocytes, macrophages, plasmocytes and dendritic cells, have

been reported to secrete theircytokineproducts in theCLof cattle and

other species, affecting its function (see review by Ref. [85]). Addi-

tionally, recently, specific subsets of miRNA have been implicated in

cytokine-mediated regulation of cyclic and pregnancy CLs in cattle

[86]. In the canineCL, the expressionof cytokineswas reported for the

first time in the studies of Hoffmann and collaborators [50,87,88].

Although thepresenceofCD4þ andCD8þ immunecellswas identified

within the canine CL, at that time only a few cytokines, e.g., inter-

leukin- (IL) 8,10 and12, TNFa andTGFB1were differentially regulated

throughout diestrus and, thus, implicated in the regulation of CL

function [88]. Using qPCR and RNA sequencing, it has recently been

shownthatexpressionof other cytokines is alsomodulated according

to the phase of diestrus in the canine cyclic andpregnant CL [8,66,84].

Whereas pro-inflammatory cytokines such as IL-1b and IL-12a donot

exhibit time-dependent expression in the first half of the cyclic CL

lifespan, IL-10 and IL-6 show up-regulation on days 10 and 20 p.o.,

respectively [8,66]. When luteal tissue samples from non-pregnant

dogs in late diestrus were compared with luteal samples from dogs

undergoing pre-partum luteolysis using next-generation RNA

sequencing,1595 differentially expressed genes (DEG) were detected

[52]. Gene expression in prepartum luteolysis pointed towards an

acute immune and inflammatory response, represented bymassively

increasedexpressionof IL-1b, chemokine (CeCmotif) ligand3 (CCL3),

major histocompatibility complex class II (MHCII) and chemokine

(CeC motif) ligand 13 (CCL13). In contrast, the transcriptome of CL
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samples from non-pregnant dogs provided evidence for luteal

regression to be characterized as a prolonged, degenerative process

without involvement of significant immune response. In another

study [89], TNFA and its two receptors were detected during the

wholeofdiestrus inbothpregnantandnon-pregnantCLs. In the cyclic

canine CL, the expression patterns of TNFA, TNFR1 and TNFR2 were

the same as in the CLof pregnancy, decreasing fromday 5until day 35

p.o and remaining low until day >65 p.o.

4.4. Growth factors

Several families of growth factors have been reported as present

in the canine CL, as described below. Some of their functions in the

CL encompass capillary bed formation and maintenance, cell pro-

liferation and migration and steroidogenesis. The CL is a temporary

endocrine gland, the formation of which relies on angiogenesis, and

regression/luteolysis upon withdrawal of its vascular bed. It de-

pends on a finely-tuned synchronization among different vascular-

related growth factors. VEGFA and its receptors (VEGFR1/FLT1 and

2/KDR) have been localized to luteal and endothelial cells

throughout diestrus [90] and their expression changed according to

the luteal phase. The highest mRNA expression of VEGFA and its

two receptors was on day 20 p.o., although VEGFR2 showed

another peak of expression on day 40 p.o [58]. It is known that

when VEGFA binds to VEGFR2, a positive proliferation response

occurs, whereas the binding to VEGFR1 leads to a sequestration of

the available VEGFA, impairing the binding to VEGFR2 [91]. More-

over, VEGFA and FGF2 have been shown to increase steroidogenesis

through increased expression of STAR in the bovine CL [92], a fact

that led us to speculate if this could also be true for the canine CL,

since the highest expression of STAR occurs concomitantly with P4

secretion. FGF2 mRNAwas also assessed in the canine cyclic CL and

it showed fluctuations during diestrus, increasing from day 10 to

day 30 p.o. (maximum expression) and declining towards day 70

p.o [58]. In the canine CL of pregnancy, VEGFA and its two receptors

were also studied [93] at specific time points. Similarly, as in

pregnant dogs, the highest VEGF and VEGFR1 expression was

observed in early until fully mature CLs, compared with later luteal

stages, corresponding to the time of increasing P4 secretion [93].

The expression of VEGFR2 did not vary strongly throughout preg-

nancy. The stable expression of VEGFR2 may indicate the need for

VEGFA signaling also when the pregnant canine CL starts its

remodeling towards pre-partum luteolysis.

Endothelins (ETs: ET1, ET2 and ET3) belong to another growth

factor family involved in vascularization of the canine CL. They bind

to two receptors, ETA and ETB, whose activation results in opposite

actions: binding to ETA leads to vasoconstriction while binding to

ETB to vasodilatation. ETs have also been shown to induce P4

secretion in cows [94]. Gram and collaborators [80] reported time-

dependent expression of ETs, their receptors and their converting

enzyme (ECE1) in canine cyclic and pregnant CLs. Cyclic CL devel-

opment was associated with strong expression of ETB, ECE1 and

ET2, which decreased towards the mid and late luteal phases. Pre-

partum luteolysis was characterized by higher expression of ET2

and ET3 as well as of ETA. This difference of expression between

canine pregnant and cyclic CL may be due to the response to PGF2a,

derived from the utero-placental compartment, actively vaso-

constricting blood vessels and contributing to a rapid termination

of pregnant CL function [80].

The IGF1 and its receptor IGF1R belong to another family of

growth factors, the insulin-like growth factors, which have been

studied in the canine CL [95]. As already postulated for cows [96],

IGF1 and its receptor have been proposed to act as paracrine and

autocrine factors within cyclic and pregnant canine CLs, since they

were co-localized in luteal and endothelial cells. Moreover, their

mRNA expression pattern differed: in cyclic CL, IGF1 expression

decreased on days 45 and 65 p.o. and IGFR1 remained unchanged,

whereas in the pregnant CL there was a constant decrease from

pre-implantation until pre-partum luteolysis and IGFR1 increased

at pre-partum luteolysis [95], indicating a response to PGF2a, as

previously shown in cows [97].

5. Perspectives

The more than 15,000-year successful partnership between

dogs and humans [98] has placed the dog as a family member in

many societies, launching the concept of a multi-species family,

which nowadays is also shared by cats, with all the bonuses and

onuses [99].

On the one hand, developed countries have achieved a high

degree of dog welfare conditions, but the concern remains that

some breeds, which developed based on their phenotype, are not

able to reproduce. On the other hand, most countries still face

problems of poor animal welfare conditions, including uncon-

trolled stray and feral populations of dogs and cats. So, ultimately,

should we conduct research in order to increase or to avoid canine

reproduction? The quest to find non-surgical methods to safely

manipulate reproduction in dogs is of paramount importance.

Given the above analyses and understanding of luteotropic and

luteolytic factors governing cyclic and pregnant canine CL lifespans,

we can infer that more research is necessary to terminate an un-

wanted pregnancy at its beginning, i.e., to decrease P4 levels so that

the CL is not able to achieve its full secretory capacity. Surgical

procedures are available but not always desired, since they are

invasive and permanent. Possible targets for that purpose, in the

first half of diestrus, have to be identified among the upstream

regulators of steroidogenesis and P4 receptors (PGRs), before PGR is

activated and triggers the positive feedback loop of its own

expression and P4 production. Candidates could be genes and

proteins related to the first supply of energy to the CL, such as

SLC2A1/GLUT1 and insulin receptor (INR), and related also to vas-

culogenesis, such as VEGFA and its receptors. Nevertheless, one

should keep inmind that the blockade of these genes, which showa

whole body distribution, has to be local. We could take advantage

of already developed research in cancer, where the use of targeted

gene therapy is a reality [100]. Additionally, if our aim is to prevent

a pregnancy in canines, we could locally target as early as the

luteinization process of granulosa cells [101], depleting their

nutritional supply and/or inducing their apoptosis, then avoiding

ovulation without the use of hormone-related treatments, which

are very deleterious for bitches [102,103]. To corroborate our line of

thought, a recent publication by Rhodes [104] addressed the ne-

cessity of sterilizing dogs and cats using non-hormone and non-

surgical approaches that are as permanent as possible. It is our

hope that this review could contribute to devise strategies for

developing new molecular-based drugs.

On the contrary, if our aim is to promote pregnancy in dogs,which

sometimes is not successful due to luteal insufficiency [13,105], this

review discusses a plethora of luteotropic factors that could be tar-

geted locally in the first half of pregnancy, which would be able to

stimulate luteal P4 production, as for example, PGE2, transcription

factors associated with PGR signaling, growth factors and IL-10,

among others. The use of exogenous P4 for this purpose has been

reported as well [106], but its efficacy cannot readily be determined.

Because the canine CL exhibits somany local factors regulating its

function and lifespan, and because modern biotechnology offers

diverse possibilities for manipulating themwithout affecting overall

general health of the animals, we recommend investing in devising

approaches to regulate the canine CL function at the local level.
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