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SUMMARY

We demonstrate that cortical interneurons derived

from ventral eminences, including the caudal gangli-

onic eminence, undergo programmed cell death.

Moreover, with the exception of VIP interneurons,

this occurs in a manner that is activity-dependent.

In addition, we demonstrate that, within inter-

neurons, Calcineurin, a calcium-dependent protein

phosphatase, plays a critical role in sequentially

linking activity to maturation (E15–P5) and survival

(P5–P20). Specifically, embryonic inactivation of

Calcineurin results in a failure of interneurons to

morphologically mature and prevents them from

undergoing apoptosis. By contrast, early postnatal

inactivation of Calcineurin increases apoptosis.

We conclude that Calcineurin serves a dual role of

promoting first the differentiation of interneurons

and, subsequently, their survival.

INTRODUCTION

Inhibitory interneurons play a pivotal role in gating, sculpting,

and preventing runaway excitation within the cortex. Although

inhibitory interneuronal populations are less numerous than their

excitatory counterparts, they are comprised by an extremely

broad variety of subtypes (Butt et al., 2005; Lee et al., 2010;

Miyoshi et al., 2010; Xu et al., 2004). This heterogeneity reflects

their functional diversity, which allows them to collectively fine-

tune the flow of cortical information while maintaining excit-

atory/inhibitory balance (Haider et al., 2006; 2013; Pouille and

Scanziani, 2001; Wehr and Zador, 2003).

The stereotypic organization of cortical circuits demands that a

broad range of interneuron classes integrate in appropriate

numbers. This requires a tradeoff between the need to maintain

subtype heterogeneity without imposing too great a cost on

resources. We recently hypothesized that the refinement of

interneuron subtypes within the cortex occurs after they have

reached their settling positions, whereupon instructive local

cues allow them to achieve their definitive functional identity (Ke-

pecs and Fishell, 2014). For such a regulative strategy to be pre-

cise, the cortex must rely on a buffering capacity in the form of

neuronal overproduction. In support of this general hypothesis,

recent work has shown that �30% of the initial population of

medial ganglionic eminence (MGE)-derived cortical interneurons

undergocell death (Southwell et al., 2012). However, theextent to

which cell death also affects the cortical interneuron population

derived from the caudal ganglionic eminence (CGE) (Lee et al.,

2010) and the exact mechanism by which the apoptotic pathway

is controlled in developing interneurons remain to be elucidated.

In nematodes, pioneering work from the Horvitz laboratory

revealed thataprecisecell intrinsicgenetic cascademediatespro-

grammed cell death (Cameron et al., 2002; Conradt and Horvitz,

1998; Horvitz, 2003; Sulston andWhite, 1980). Cell death in higher

vertebrates is initiated through a variety of mechanisms, including

competition for trophic support (Levi-Montalcini, 1987; Oppen-

heim, 1989; Oppenheim et al., 1993) as well as cell-autonomous

mechanisms (Southwell et al., 2012). Within interneuronal popula-

tions, the number of neurons that survive cell death scaleswith the

initial size of the progenitor population (Southwell et al., 2012).

Here we demonstrate that neuronal activity modulates inter-

neuron survival, with decreased activity increasing cell death

and increased activity diminishing it. Our work confirms recent

work showing a more general requirement for activity for cell

survival in the primary sensory cortex (Blanquie et al., 2017). It

is also consistent with a paper in this issue of Cell Reports

showing a requirement for activity for interneuron survival (Dex-

ana et al., 2018). This latter study, like ours, discovered that, in

vasointestinal peptide (VIP), interneurons, although they undergo

apoptosis, survival is not regulated by activity. A growing body of
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literature indicates that calcium influx couples excitation to a

variety of biological processes (Bando et al., 2016; Bean, 1989;

Bonci et al., 1998; Brosenitsch and Katz, 2001; Mermelstein

et al., 2000; Tsien et al., 1988; Wheeler et al., 2012; Yasuda

et al., 2003), including transcription and alternative splicing

(Ghosh and Greenberg, 1995; Greenberg et al., 1986; Iijima

et al., 2011). We discovered that, with the exception of VIP cells,

activity in interneurons directly modulates the activity of the

phosphatase Calcineurin (CaN) and is sequentially required for

maturation and survival.

RESULTS

Cell Death in CGE-Derived Interneurons Is

Bax-Mediated

Cortical interneurons derived from the MGE have been shown to

undergo 20%–40% apoptosis between the first and second

postnatal weeks (Southwell et al., 2012). However, the extent

to which cell death occurs in CGE-derived interneuron popula-

tions has not been previously examined. We assessed this by

monitoring changes between birth and the second postnatal

week using a 5HT3aReGFP transgenic line, which labels all

CGE-derived interneurons (Lee et al., 2010). At both post-natal

day 5 (P5) and P21 we comprehensively quantified the number

of CGE interneurons within the anterior-posterior axis of the

cortex. Our analysis revealed that the number of CGE-derived

interneurons decreased by approximately 20% between these

time points (Figures 1A and 1B).

Because CGE-derived interneurons as a population are

generated later than MGE-derived interneurons (Miyoshi et al.,

2007, 2010), we wanted to determine whether the peak in their

cell death is shifted accordingly. To address this question, we

analyzed the number of CGE-derived interneurons that are pos-

itive for cleaved caspase-3 at different time points, revealing that

the peak of cell death was P9 (Figure 1C).

Next, we crossed the 5HT3aRcre mouse line with a Baxfl allele

and examined the proportion of cell death in the two primary

subtypes within the CGE population, those expressing VIP or

Reelin (Butt et al., 2005; Lee et al., 2010; Miyoshi et al., 2010).

We found a significant increase in the numbers of both VIP-

and Reelin-expressing interneurons in the cortex of Bax-null an-

imals compared with their control littermates (Figures 1D–1F).

Neuronal Activity Differentially Modulates Cell Death

within CGE-Derived Interneuron Populations

Given that the morphological maturation and functional integra-

tion of interneurons is coincident with the onset of activity

(Allène et al., 2008; Close et al., 2012; De Marco Garcı́a

et al., 2011, 2015) and recent evidence that activity regulates

cell survival in the somatosensory cortex (Blanquie et al.,

2017), we decided to investigate whether activity per se regu-

lates apoptosis. To test this possibility, we sought to dampen

levels of activity within interneurons in vivo. To reduce neuronal

activity in cortical interneurons, we unilaterally injected into the

somatosensory cortex of 5HT3aRcre animals an adeno-associ-

ated virus (AAV) driving the expression of Kir2.1-P2A-mCherry.

Kir2.1 is an inward-rectifying potassium channel that hyperpo-

larizes neurons (De Marco Garcı́a et al., 2011; Yu et al., 2004),

which we fused to mCherry by P2A, and regulated by a cre-

dependent genetic switch (flip-excision [FLEx] switch) (hereafter

referred to as AAV-EF1:DIO:Kir2.1-P2A-mCherry). These exper-

iments were done on a background containing the R26R CAG-

boosted EGFP (RCE):LoxP reporter. As a control, we unilaterally

infected the cortex with AAV-EF1:DIO:mCherry in 5HT3aRcre;

RCE:LoxP littermates. Under both conditions, animals were in-

jected at P0/P1 and sacrificed at P18 (Figure 2A). The expres-

sion of Kir2.1-mCherry initiates around P5 (data not shown),

a time point corresponding to the onset of the period of physi-

ological cell death in the developing cortex. The number of

GFP+ interneurons in the injected hemisphere were counted

and compared with the AAV-flex-mCherry-injected control con-

dition. We observed that the numbers of GFP+ neurons in the

Kir2.1-expressing hemisphere were significantly reduced by

9% (Figures 2B and 2C). We examined the two most prominent

CGE interneuron types expressing Reelin and VIP. Interestingly,

although the numbers of Reelin-expressing interneurons were

diminished within Kir2.1- expressing populations, the number

of VIP-expressing interneurons compared with the control was

unchanged (Figures 2D–2G).

Next, we wanted to determine whether activity also regulates

cell survival within the entire interneuron population. To

address this question, we unilaterally injected our AAV-EF1:DIO:

Kir2.1-P2A-mCherry virus into the somatosensory cortex of

compound Dlx6acre;RCE:LoxP animals, in which the entire pop-

ulation of cortical interneurons is EGFP+ (Yu et al., 2011). As a

control, we again infected the cortex of Dlx6acre;RCE:LoxP

animals with AAV-EF1:DIO:mCherry. We found a 20% decrease

in EGFP+ interneurons in the region in which Kir2.1 expression

was expressed (Figures S2A and S2B).

In a complementary set of experiments, we increased the level

of activity in these same populations of interneurons by using

bacterial sodium channel (NaChbac), a bacterial voltage-gated

sodium channel that decreases the threshold for firing (Bando

et al., 2016; Lin et al., 2010). This channel was incorporated

into an AAV-flex-P2A-mCherry vector (AAV-EF1:DIO:NaChbac-

P2A-mCherry). We found that the unilateral injection of the

AAV-EF1:DIO:NaChbac-P2A-mCherry virus into the cortex of

Dlx6acre;RCE animals led to a 20% increase in the survival of

GFP+ cortical interneurons (Figures S2A and S2B) compared

with the control. We also found an increase in the number

of Reelin-expressing interneurons in cortices injected with

AAV-flex-NaChbac-P2A-mCherry. However, the number of

VIP-expressing interneurons remained unaltered (Figures S2C

and S2D).

To more rigorously ascertain whether the lack of influence of

activity on survival was specific for VIP-expressing interneurons,

we tested the effects of dampened neuronal activity on the two

major subtypes of MGE-derived interneurons. We assessed the

number of parvalbumin (PV)-expressing and somatostatin

(SST)-expressing neuronswhen the entire interneuron population

was targeted with Kir2.1. As with Reelin cells, we also observed a

reduction in the numbers of both PV- and SST-expressing cells in

hemispheres expressing the AAV-Kir2.1-mCherry construct (Fig-

ures S2E and S2F) compared with the control. This suggests that

VIP-expressing interneurons are the sole class of cortical inter-

neurons in which cell death is not regulated by activity.
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Interneuron Survival Does Not Depend on Soluble

Signals from Glia or Neurons

Despite identifying a role for neuronal activity for the regulation of

cell death, we sought to investigate whether other factors also

contribute to survival during apoptosis. Brain derived neurotro-

phic factor (BDNF) is one of the best-studied neurotrophic factors

released from neurons and is involved in various developmental

processes, including cell survival (Ghosh et al., 1994; Kokaia

et al., 1993; Miller and Kaplan, 2001; Polleux et al., 2002; Riccio

et al., 1999). Previous investigators had already reported that

the removal of the BDNF receptor TrkB did not have any effect

on the cell survival of MGE-derived interneurons (Southwell

et al., 2012). However, BDNF can also activate the p75 receptor

(McKay et al., 1996). We therefore wanted to test whether BDNF

itself affects interneuronal survival. We found that treatment of

GAD67GFP-labeled interneurons with BDNF in vitro, although it

had an effect on the neurite outgrowth, did not increase the sur-

vival of interneurons compared with untreated controls (Figures

S3A and S3B). We next wished to assess whether other still un-

identifiedglia- or neuron-derived factorsmaymediate interneuron

survival. Indeed, the presence of a cortical feeder layer is critical

for the survival of cortical interneurons in vitro, suggesting that

Figure 1. Cell Death in CGE-Derived Interneurons Is Bax-Mediated

(A) Representative image of coronal sections from 5HT3aR-BACeGFP cortex at P5 and P21.

(B) Quantification of the number of EGFP+ neurons in the cortex at P21 compared with P5 (nR 3, p = < 0.0001).

(C) Density analysis of cleaved caspase-3+, GFP+ interneurons at different postnatal time points. ANOVA, statistical difference, p < 0.0001, nR 3.

(D) Representative sections showing the density of Reelin- and VIP-expressing interneurons in control and Bax cKOs. Scale bar, 100 mm.

(E) Quantification reveals an increase in density of Reelin+ interneurons in Bax cKOs compared with the control. nR 3; p = 0.01412.

(F) Quantification reveals an increase in density of VIP+ interneurons in Bax cKOs compared with the control. nR 3; p = 0.001.
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someaspect of cell-cell interactionsmust regulate survival during

the cell death period (Xu et al., 2004). Glia have been previously

reported to provide a permissive substrate for neuronal develop-

ment (Henderson et al., 1994; Jin et al., 2002; Lin et al., 1993). To

address whether this is true for interneurons, we placed embry-

onic day 13.5 (E13.5) GAD67GFP-labeled cells onto a P0–P2 glial

feeder layer (Figure S3C) and measured their survival. We found

that the number of GFP+ neurons in vitro declined steeply over

time (Figure S3D). This suggests that glia alone are not sufficient

to support cortical interneuron survival.

Figure 2. Activity Regulates Cell Death of Specific CGE-Derived Interneuron Subtypes in the Developing Cortex

(A) Schematic representation of the experimental strategy.

(B) Representative section of the cortex with AAV injections. Left: a coronal section from a 5HT3aRcre;RCE brain injected with AAV-flex-mCherry. Right:

5HT3aRcre;RCE brain section injected with AAV-flex-Kir2.1-P2A-mCherry.

(C) Quantification of the percent change in cell density of GFP+ interneurons in the AAV-Kir2.1-mCherry-injected hemisphere compared with the control

(p = 0.0057, nR 3).

(D) Representative images showing coronal sections from 5HT3aRcre;RCE brains injected with control (left) and AAV-flex-Kir2.1-P2A-mCherry virus (right)

immunostained for Reelin.

(E) Representative images showing coronal sections from 5HT3aRcre;RCE brains injected with control (left) and AAV-flex-Kir2.1-P2A-mCherry virus (right)

immunostained for VIP.

(F) Quantification of the percent change in cell density of Reelin+ interneurons in AAV-Kir2.1-mCherry-injected brain compared with the control (mean ± SEM,

p = 0.0.006, unpaired t test, nR 3).

(G) Quantification of the percent change in cell density of VIP+ interneurons in AAV-Kir2.1-mCherry-injected brain compared with the control (mean ± SEM,

p = 0.1135, unpaired t test, nR 3).

Scale bars, 100 mm. See also Figures S2 and S3.
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We next examined whether secreted factors from neuronally

conditioned medium might prove to be more efficacious in

promoting interneuronal survival in vitro. However, the presence

of medium conditioned by neurons did not rescue the decline

in the number of interneurons placed on the glial feeder layer

(Figure S3E). Therefore, neither glia nor soluble factors secreted

from neurons are sufficient to promote the survival of developing

interneurons in vitro. To assess whether the influence of the

cortical feeder layer was dependent on neuronal activity, we

subjected cultured neurons plated on the neuronal feeder layer

to tetrodotoxin (TTX), which blocks voltage-gated sodium chan-

nels. This resulted in survival comparable with cultured neurons

lacking a cortical feeder layer (Figures S3F and S3G). By

contrast, when activity was augmented in these populations by

subjecting interneurons to K+ enriched solution (25 mM), we

observed a trend toward increased survival (Figures S3F and

S3G). These findings support our hypothesis that neuronal activ-

ity promotes the survival of interneurons.

Activity Levels that Reduce Cell Death Result in

Activation of the Calcium Effector CaN

The pattern of NaChbac-induced firing, which reduced the de-

gree of cell death in interneurons (Figures S4A and S4B)

resemble early cortical network oscillations or giant depolarizing

potentials (Allène et al., 2008; Khazipov et al., 2004) that occur

when a cluster of action potentials result in intracellular calcium

influx (Bando et al., 2016; Lin et al., 2010). Both with NaChbac

and in vivo, these bursts occur at a frequency of about 1 mHz

(Figure S4C), which has been shown previously to favor CaN

activation (Dolmetsch et al., 1998). CaN is a phosphatase that

regulates several synaptic and transcriptional pathways. Its

high affinity for calcium (Klee et al., 1979) makes it a strong puta-

tive candidate as the effector molecule that is activated upon

bouts of neuronal activity. However, previous findings suggest

that CaN is not expressed in hippocampal interneurons (Sı́k

et al., 1998). To establish the presence of CaN in cortical inter-

neurons, we utilized the 5HT3aR-BACeGFP and Lhx6eGFP mouse

lines to label CGE- and MGE-derived interneurons, respectively.

EGFP+ neurons were sorted by fluorescence-activated cell sort-

ing (FACS) and biochemically treated for the extraction of cellular

proteins. The resulting lysates were subjected to western blot-

ting to stain for the regulatory subunit of CaN (Cnb), the isoform

that is enriched in the brain (Chang et al., 1994; Ueki et al., 1992).

Our results indicate that both CGE- and MGE-derived interneu-

rons express the regulatory subunit of CaN (Figure S4D).

CaN is a heterodimer that depends upon the b-regulatory

subunit interacting with a catalytic subunit. The catalytic sub-

unit has multiple isoforms, each encoded by separate genes.

To identify the possible isoforms that could be utilized within

interneurons, we used the Dlx6acre; RCE mouse line to isolated

interneurons from the cortex using FACS. The cell lysates ob-

tained were analyzed by western blot using antibodies against

the catalytic subunit alpha isozyme (CNA1), beta isozyme

(CNA2), and gamma isozyme (CNA3). Our results indicate the

presence of all three CNA isoforms in interneurons (Figures

S4E and S4F).

We next sought to determine whether CaN is activated by

neuronal excitation in interneurons. We first asked whether

enhanced neuronal activity in interneurons results in dephos-

phorylation of dynamin1, a well-recognized target of CaN. This

CaN target is involved in activity-dependent bulk endocytosis

and becomes dephosphorylated during bouts of elevated

neuronal activity (Clayton et al., 2009; Evans and Cousin,

2007). To this end, we utilized Dlx6acre;Ai9 (ROSA 26Sor locus

[RCL]-tdTomato), P7 pups and subjected them to either electro-

convulsive shock (ECS) to globally and acutely increase the level

of neuronal activity within the brain (Daval et al., 1989; Guo et al.,

2011) or sham treatment. The animals were then sacrificed 3 hr

after induction. td-Tomato-positive interneurons from the cortex

were sorted by FACS and biochemically treated to extract pro-

teins, which were subjected to western blotting and quantified

for the level of S774 phospho-dynamin 1. We found that ECS-

treated animals had dramatically reduced levels of phospho-

dynamin 1 compared with sham-treated pups, suggesting that

CaN is involved in the dephosphorylation of dynamin 1 in inter-

neurons during bouts of increased neuronal activity (Figures 3A

and 3B). ECS can also result in more general effects on both

mitochondria and the endoplasmic reticulum. Therefore, one

must remain cautious in interpreting changes as stemming solely

from alterations in activity.

To specifically examine VIP+ interneurons that are refractory

to activity, we examined dynamin dephosphorylation in VIP inter-

neurons using a VIPcre mouse line crossed with the Ai9 (RCL-td-

Tomato) reporter line. Although VIP+ interneurons express CaN

(Figure S4G), we observed no change in the levels of phospho-

dynamin 1 upon ECS treatment compared with sham treatment

(Figures S4H and S4I).

To validate dynamin 1 as a bona fide target of CaN in interneu-

rons, we examined the level of phosphorylation of this protein

upon Cnb loss of function. The Cnb gene was conditionally

removed within interneurons by crossing a conditionalCnb allele

onto a compound Dlx6acre;RCE mouse background (subse-

quently referred to as CnB cKOs). Interneurons from cKOs

versus control mice were isolated, lysed, and probed for S774

phospho-dynamin 1. Consistent with dynamin 1 being a direct

target of CaN, we found that the level of phospho-dynamin 1

was substantially increased in Cnb cKOs compared with wild-

type mice (Figures S4J and S4K).

To confirm the relationship of activity level with CaN activa-

tion, we examined another downstream target of CaN, nuclear

factor of activated T-cells, cytoplasmic (NFATc), a transcription

factor (Clipstone and Crabtree, 1992; Flanagan et al., 1991).

NFATc is translocated to the nucleus in neurons upon CaN acti-

vation (Beals et al., 1997; Flanagan et al., 1991; Graef et al.,

1999). To determine whether such a translocation occurs, we

injected Dlx6acre animals at birth with the AAV-flex NaChbac-

P2A-mCherry, which were then sacrificed at P7 and immuno-

stained for NFATc4. We observed that AAV-flex NaChbac-

P2A-mCherry expression in interneurons results in the nuclear

localization of NFATc4 (Figures 3C and 3D). By contrast,

the levels of nuclear NFATc4 decreased upon the expression

of AAV-flex Kir2.1-P2A-mCherry in interneurons (Figures 3C

and 3E). Taken together these findings are consistent with

our hypothesis that CaN signaling is recruited upon neuronal

activation and may be involved in regulating the cell death

response.
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Embryonic Inactivation of CaN Results in an Increase in

the Number of Cortical Interneurons

We next used both pharmacological and genetic strategies

to directly assess whether CaN regulates cell death in cortical

interneurons. We began by suppressing the enzymatic activity

of CaN at the peak of cell death using FK506, a pharmacological

blocker (Sussman et al., 1998). We unilaterally injected FK506

diluted in DMSO or vehicle control into the P7 somatosensory

cortex, along with red fluorescent beads to identify the site of

injection. These experiments were performed on Dlx6acre;RCE

Figure 3. Canonical CaN Targets Are Activated by ECS

(A) Western blot of interneuron lysates, sorted by FACS from ECS- or sham-treated animals (duplicates are shown) and probed for total dynamin, phospho-S774

dynamin 1, and tubulin.

(B) Quantification of phospho-dynamin 1 reveals a reduction in the levels, 3 hr after an ECS treatment was applied to P7 mice compared with sham-treated

littermates. n = 4, p = 0.0178 (unpaired t test).

(C) Representative image showing cellular localization of NFATc4 upon NaChbac (top) and Kir2.1 overexpression (bottom).

(D) Quantification of the nuclear-to-cytoplasmic ratio of integrated density of NFATc4 immunolabeling shows an increase in NaChbac-expressing cells. n = 3,

p = 0.0042 (unpaired t test).

(E) Quantification of the nuclear-to-cytoplasmic ratio of NFATc4 expression in Kir2.1-mCherry-injected compared with uninfected cells. n = 3, p = 0.0008

(unpaired t test).

Scale bar, 10 mm. See also Figure S4.
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mice. We compared the number of GFP+ neurons within the

FK506-injected and vehicle-injected hemispheres and found

that they were decreased 20% within the FK506-injected side

comparedwith the control hemisphere (Figures S5A–S5C). How-

ever, pharmacological blockade non-specifically removes CaN

function in all cortical cells. To directly demonstrate that CaN

is required cell-autonomously for interneuronal cell survival,

we next used a genetic strategy where CaN was selectively

removed from interneurons by crossing a Cnbfl/fl allele with

the Dlx6acre driver. This conditional genetic knockout of Cnb

resulted in increased mortality after P14 and fully penetrant

lethality by P22 (Figure 4A). Additionally, the animals were

smaller in size and had reduced body weight compared with

their control littermates (Figure S5D). Interestingly, we found

that, even though overall body size was significantly smaller

compared with the controls, the size of the brain and cortical

thickness were equivalent to that seen in control littermates

(Figures S5E and S5F). At P18–P21, the number and distribu-

tion of GFP+ interneurons was equivalent within heterozygous

and wild-type animals (Figure S5G); therefore, we used the

Dlx6acre; Cnbfl/+ ; RCE animals as controls. Surprisingly, by

P18–P21 in Dlx6acre;Cnbfl/fl ;RCE animals, we found that the

number of GFP+ neurons was increased by 20% compared

with the control littermates (Figures 4B and 4C), and that in-

crease was most marked specifically in superficial layers (Fig-

ure 4D). Additionally, we observed a decrease in the cumulative

cleaved caspase-3 immunoreactivity in Cnb conditional

knockout (cKO) animals at P7 (Figure S5H). To confirm that

the increase in the number of GFP+ neurons was not due to

migration/dispersion issues along the rostral-caudal axis, we

compared sections from the motor, somatosensory, and visual

areas and observed that the increase in the number of neurons

was consistent throughout the cortex (Figures S5I and S5J). To

determine whether the increase in the number of interneurons

upon Cnb removal was due to an increase in proliferation, we

analyzed the number of GFP+ neurons at P5. This represents

a developmental stage by which all cortical interneurons have

settled within the cortex but cell death phase has yet to

Figure 4. CaN Regulates Cell Death within Interneurons during Development

(A) Survival percent indicates increased mortality in animals lacking the Cnb gene in interneurons compared with their control littermates.

(B) Representative image of coronal sections showing the distribution of GFP+ interneurons upon conditional removal of Cnb using a Dlx6acre driver line. Animals

were sacrificed between P18–P21.

(C) Quantification of GFP+ interneurons in the cortex shows a significant increase in the density of Cnb cKO compared with controls. n = 5, p = 0.0010, paired

t test.

(D) Layer distribution of GFP+ interneurons shows an increase in density in superficial layers without affecting deeper layers upon Cnb removal. Layer I,

p = 0.0030; layers II/III, p = 0.050; layer IV, p = 0.013, laver V, p = 0.493; layer VI, p = 0.890.

Scale bar, 100 mm. See also Figure S5.
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commence. Hence, this is the time point at which the cortical

interneuron population reaches its maximum. Arguing against

changes in proliferation as a result of Cnb removal, we did

not observe any significant difference in the numbers of inter-

neurons at P5 between the cKO animals and the controls (Fig-

ures S5K and S5L). To validate the loss of the Cnb gene from

Dlx6acre;RCE labeled interneurons, we performed an in vitro

analysis by co-immunostaining for CnB and GFP (Figure S5M).

These results suggest that the increase in number of neurons is

due to a decrease in cell death in the developing cortex upon

embryonic Cnb removal.

The Increased Survival of Interneurons upon Embryonic

Removal of Cnb Is Not Due to an Increase in Electrical

Activity

Our work indicates that CaN’s phosphatase function in interneu-

rons could be induced by electrical activity. We also have shown

that increasing activity within interneurons promotes their sur-

Figure 5. Increases in the Number of Inter-

neurons in Embryonic Cnb cKOs Are Not

Due to an Increase in Neuronal Activity

(A) Representative traces of sEPSCs recorded

from layer I interneurons in vitro (top, control;

bottom, Cnb cKO).

(B) Quantification of amplitude of sEPSCs. cKO of

Cnb results in an increase in frequency. n R 3,

number of cells recorded for control = 16 and

mutant = 11. Mann-Whitney test, p = 0.0009.

(C) Quantification of frequency of sEPSCs. cKO of

Cnb results in no change in amplitude, n R 3,

Mann-Whitney test, p = 0.0974.

(D) Schematic of the experimental design.

(E) Representative image of coronal sections from

Dlx6acre;Cnbfl/fl;RCE mice injected with AAV-flex-

Kir2.1-mCherry.

(F) Quantification of percent change in density of

GFP+ neurons in Cnb cKO and control. n R 3,

unpaired t test, p = 0.0006.

Scale bar, 100 mm.

vival. We were therefore surprised to

find that embryonic loss of CnB in inter-

neurons in fact increased interneuron sur-

vival (Figure 4C). One possibility is that the

increase in the number of interneurons

upon embryonic removal of Cnb is due

to homeostasis, resulting in an increase

in excitatory postsynaptic currents

(Baumgärtel and Mansuy, 2012; Beattie

et al., 2000; Kim and Ziff, 2014; Lieberman

and Mody, 1994). Indeed, by performing

electrophysiological recordings of spon-

taneous excitatory postsynaptic currents

(sEPSCs) onto layer 1 interneurons, we

found that there was a significant in-

crease in the number and amplitude of

sEPSCs in interneurons lacking Cnb

gene function comparedwith control cells

(Figures 5A–5C). We therefore investi-

gated whether autonomously dampening neuronal activity in in-

terneurons in Dlx6acre;Cnbfl/fl ;RCE animals could reverse the

increased interneuronal survival. To address this question, we

unilaterally injected the cortex at P0/P1 with AAV-flex Kir2.1-

P2A-mCherry in embryonic Cnb knockout pups (Figure 5D).

However, even when the increased excitation of Cnb-null inter-

neurons was abrogated through Kir2.1 overexpression, we still

observed increased survival in Cnb knockouts (Figures 5E and

5F) compared with the controls. These data suggest that the

increased numbers of interneurons under embryonic Cnb

knockout (KO) conditions is not due to the concomitant increase

in their activity associated with loss of CaN function.

Early Removal of CaN Prevents the Maturation of

Interneurons

Previous work indicated that interneurons do not undergo cell

death before they reach a certain stage of maturation (Southwell

et al., 2012). That led us to hypothesize that CaN might be
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involved in the maturation of interneurons and that its absence

could suppress their progression to the developmental stage

at which apoptosis is initiated. Using in utero electroporation,

we sparsely targeted CGE-derived interneurons so that only

cell-autonomous effects would be evident. Dlx5/6:eGFP- and

Dlx5/6:cre-containing plasmids were co-electroporated into

E15.5 Cnbfl/+ and Cnbfl/fl embryos (a vector and time point that

favor the targeting of CGE interneurons; De Marco Garcı́a

et al., 2011), and the labeled cells were analyzed at P8 (Fig-

ure 6A). We found that themorphology ofCnbfl/flReelin-express-

ing interneurons was stunted as a result of Cnb removal (Figures

6B, 6D, and 6F–6I). We also found the morphology of PV- and

Figure 6. Removal of CaN Has No Effect on the Maturation of VIP-Expressing Interneurons

(A) Schematic representation of the experimental strategy.

(B) Representative image of Reelin+ interneurons in CnB heterozygous (het) and CnB cKO animals.

(C) Representative image of VIP+ neurons in CnB het and CnB cKO mice.

(D) Reconstructed Neurolucida drawing of Reelin+ interneurons.

(E) Reconstructed Neurolucida drawing of VIP+ interneurons. Red denotes axonal reconstruction, blue denotes dendrites, and black indicates somata.

(F–I) Morphometric analysis of Reelin+ interneurons shows a reduction in both axonal and dendritic parameters under CnB cKO conditions in comparisonwith the

control.

(F) Axonal length, p = 0.0025.

(G) Axonal node, p = 0.0242.

(H) Dendritic length, p = 0.0101.

(I) Dendritic node, p = 0.0242.

(J–M) Morphometric analysis of VIP+ interneurons under control and CnB cKO conditions does not show any significant change in any parameter.

(J) Axonal length, p = 0.5317.

(K) Axonal node, p = 0.4127.

(L) Dendritic length, p = 0.4127.

(M) Dendritic node, p = 0.3333.

Mean ± SEM, Mann-Whitney test. See also Figure S6.
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SST-expressing interneurons to be immature in Cnb cKO ani-

mals (data not shown). Consistently, the morphology of VIP-ex-

pressing interneurons was comparable with controls (Figures

6C, 6E, and 6J–6M). Thus, the activation of CaN in CGE interneu-

rons correlates precisely with a requirement for activity in cell

survival. To explore other maturation properties of the interneu-

rons that lack CaN, we undertook electrophysiological record-

ings of spontaneous inhibitory postsynaptic currents (sIPSCs)

of layer 2–3 pyramidal cells within the barrel cortex of Cnb

cKOs. We found that there was a significant reduction in the fre-

quency and amplitude of sIPSCs in pyramidal neurons in CnB

cKOs compared with that observed in wild-type animals (Figures

S6A and S6B). This was not due to defects in the action potential

generationwithin control versus cKO interneurons because anal-

ysis of the firing patterns revealed no major differences. Interest-

ingly, we also found that the Reelin, a marker indicative of matu-

ration in neurogliaform neurons, progressively diminishes in Cnb

cKOs, reaching 50%of normal levels by P18 and only 5%by P21

(Figures S6C and S6D). By contrast, in these mutants, the VIP

marker appeared to be unaffected (Figure S6E). Taken together,

these data indicate a requirement for CaN in the maturation of

Reelin-expressing interneurons prior to the onset of cell death.

Timing of CaN Removal Is a Critical Factor in

Determining the Final Population Size

We showed that embryonic inactivation of CaN prevents

cell death and alters maturation. However, pharmacological

blockade of CaN during the postnatal period increased cell

death. We finally wanted to test whether the differential response

between the pharmacological blockade and Cnb cKO is due to

the difference in the timing ofCnb removal (i.e., P7:FK506 versus

E15:Dlx6aCre). We conditionally removed CaN function at the

same age at which we had previously administered FK506.

Tamoxifen injection at P5/P6 of Dlx1/2creER;Cnbfl/fl ;RCE mice

deleted the Cnb gene in interneurons. Indeed, we found that

later removal of Cnb led to a decrease in the number of GFP+

interneurons, as seen with pharmacological treatment (Figures

7A–7C). Together, these results suggest a dual and sequential

requirement for CaN in morphological development and the

regulation of cell death in interneurons (Figures S7A and S7B).

DISCUSSION

Our results show that activity-mediated calcium signaling

involving CaN plays a pivotal role in the control of interneuronal

cell death within all but the VIP+ subpopulation. Within interneu-

rons where CaN-mediated activity regulates cell death, our find-

ings indicate that it occurs in two stages: an early phase, during

which CaN is required for morphological development, and a

later period, when it acts to prevent cell death (for a model,

see Figures S7A and S7B).

Previous work argues against interneuron survival being tro-

phic factor-dependent (Southwell et al., 2012). In particular, the

observation that a constant proportion of interneurons un-

dergoes cell death when their numbers are considerably super-

numerary (Southwell et al., 2012) is not consistent with such a

mechanism. By demonstrating that activity regulates cell death,

our present results provide a parsimonious explanation for the

Figure 7. Timing of CaN Removal Is Critical in Regulating Cell Death

(A) Experimental design and representative image of coronal sections showing the distribution of GFP+ interneurons upon conditional removal of Cnb using an

inducible driver line, Dlx1/2creER, reported by EGFP expression by using RCE::lox P. Tamoxifen was injected at P5, and the brains were analyzed at P18.

(B) Quantification of the number of EGFP+ interneurons shows a reduction in cell density upon conditional removal of Cnb. n = 4, p = 0.0050 (paired t test).

(C) Quantification of the layer distribution using the Dlx1/2creER driver line shows a decrease in the density in superficial layers.

Scale bar, 100 mm. See also Figure S7.
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puzzling observation that the level of cell death among inter-

neurons is proportional but scalable (Southwell et al., 2012).

Neuronal activity is ideally suited to this task because there is

no absolute limit to net activity. Indeed, studies done in the

mouse olfactory and hippocampal systems, both of which are

notable for their ability to incorporate new neurons throughout

life, provide object examples of this principle (Doetsch et al.,

1999; Gage, 2000; Lois et al., 1996; Song et al., 2002). In both

of these instances, adult born neurons are able to continuously

integrate into already established circuits in a manner that is

both robust and essential for proper neural function (Alvarez-

Buylla et al., 1990; Gage and Temple, 2013; Lin et al., 2010;

Sahay and Hen, 2007).

Our results are also consistent with our working hypothesis

that interneuron maturation is regulated by a two-step process:

a genetically controlled specification step that we call cardinal

specification and a secondary step that occurs post-migration,

which we call definitive specification (Kepecs and Fishell,

2014). Specifically, we predict that determination of an interneu-

ron’s selection of afferent and efferent targets only occurs upon

reaching their settling position. For such a mechanism to func-

tion, an error correction process is required to ensure that, if

they are not properly integrated into cortical circuitry, then they

are ablated (Figure S7B, model). Activity-mediated cell death

provides an ideal mechanism to control such a process.

Numerous studies have emphasized the importance of activity

in neuronal maturation (Polleux et al., 2007; West and Green-

berg, 2011). With regard to interneurons specifically, previous

work from our lab has shown a requirement for neuronal activity

for their appropriate migration and morphological maturation

(De Marco Garcı́a et al., 2011). Our work now demonstrates

that CaN provides a direct link between activity and cell death.

Moreover, the dual role for CaN in maturation and cell death

shows how activity is sequentially coupled to both. This idea

is supported by previous data where, with heterochronic trans-

plantation of young interneurons, they only undergo apoptosis

when they reach a particular chronological age and, hence,

maturation (Southwell et al., 2012).

Our hypothesis is also consistent with a recent study that has

shown that the conditional removal ofDicer, which is required for

the production of miRNAs (Tuncdemir et al., 2015), concomi-

tantly results in both their premature maturation and initiation

of apoptosis. Thus, the apparent coupling of maturation and sur-

vival appears to represent a developmental checkpoint by which

appropriate circuit integration is regulated.

Interestingly, with regard to the coupling of activity and cell

death, VIP interneurons are the exception (De Marco Garcı́a

et al., 2011, 2015). Although they experience an equivalent de-

gree of developmental cell death, this process is not activity-

dependent. Interestingly, a number of features, most notably

their function in disinhibition and their receipt of long-range inter-

cortical projections (Fu et al., 2014; Lee et al., 2013; Pi et al.,

2013), indicate that they play a unique role in cortical processing.

Perhaps their involvement in recurrent cortical signaling rather

than the processing of ascending sensory input results in VIP

cell death being under trophic rather than activity-mediated con-

trol. Support for this idea comes from a recent study showing

that VIP-expressing interneurons display an experience-induced

gene expression program involving insulin-like growth factor

(Mardinly et al., 2016).

In summary, our data demonstrate that the regulation of activ-

ity-mediated cell death is mediated through CaN signaling. We

can now add survival to the list of findings showing that activity

is essential for the migration (Polleux et al., 2002), morphological

development (De Marco Garcı́a et al., 2011), positioning (Lodato

et al., 2011), and physiological properties (Dehorter et al., 2015).

EXPERIMENTAL PROCEDURES

Mouse Strains

Strains from The Jackson Laboratory used in this study include Swiss

Webster, RCE:LoxP reporter allele, Baxfl/fl;Bak�/�,5HT3aRcre, Baxfl/fl;Bak�/�;

Lhx6cre and GAD67GFP mice (a gift from the Yanagawa labs), Cnbfl (I. Graef),

Dlx6acre (Yu et al., 2011), Dlx1/2creER (Batista-Brito et al., 2008), 5HT3aR-eGFP

(Gensat), Lhx6-eGFP, and 5HT3ACre (a gift from N. Henitz, Rockefeller Univer-

sity) mouse lines. Temporal regulation of Cnb removal was obtained by creER

induction using tamoxifen administration (20 mg/mL in corn oil; 50–100 mL per

pup) by intraperitoneal injections at selected time points (P6 and P7). Both

males and females were used for all experiments. All animals were treated in

accordance with the regulations and guidelines of the Institutional Animal

Care and Use Committees at NewYork University School of Medicine and Uni-

versity of California, San Francisco.

Virus Injections

350 nL of Cre-regulated AAV containing mCherry-tagged Kir2.1 or NaChbac

were injected unilaterally into the cortex at P0. The expression of mCherry

was monitored to identify the kinetics of the viral expression. It took around

4–5 days for the expression of mCherry. For the injections, animals were

anesthetized by inducing hypothermia on ice. The pups were returned to

the mother, sacrificed for further analysis at P18, and analyzed using cryostat

sections for cell count or vibratome sections for electrophysiology.

In Utero Electroporation

The protocol for mouse in utero electroporation has been described elsewhere

(De Marco Garcı́a et al., 2011, 2015; De Marco Garcia and Fishell, 2014). The

Dlx5/6-cre and Dlx5/6-eGFP plasmids were co-electroporated at E15.5 in em-

bryos obtained from a Cnbfl/+ and Cnbfl/fl cross. The controls were littermates.

Mouse colony maintenance and handling were performed in compliance with

the protocols approved by the Institutional Animal Care and Use Committee of

the New York University School of Medicine.

FACS and Protein Analysis

Animalsof thedesiredgenotype,agedP7–P10,weresacrificed.Cortical sections

were obtained and dissociated using a previously published protocol (Hempel

et al., 2007). Dissociated cells from the cortical slices were then subjected to

FACS (MoFlo, Beckman Coulter) to obtain EGFP+/td-Tomato interneurons. On

average, the percentage of GFP+ interneurons was 2%–5% for P7–P10 ages.

Collected cells were subsequently used to obtain protein by lysing in radioimmu-

noprecipitation assay (RIPA) buffer (50 nMTris [pH 8.0], 150mMNaCl, 1%Triton

X-100, 0.10%SDS,and1mMEDTA,water-adjusted to100mL). Theproteinwas

analyzedbywesternblot. Theblotswereblockedwith5%milk andprobed for an

antibody mix consisting of Rb-Cnb (Upstate Cell Signaling, 07-069, 1:1,000),

m-b-actin (1:2,000), Rb-S774 Dynamin 1 (Abcam, ab55324, 1:1,000), total dyna-

min 1 (Abcam, ab3456, 1:1,000), Rb-CNA1 (Millipore, 07-1490, 1:500), Rb-CNA2

(Abcam,ab96573,1:500), andRb-CNA3 (Abcam,ab154863, 1:1,000). Blotswere

imaged using an Odyssey CLx infrared imager and analyzed using ImageStudio

software (LI-COR Biosciences) or using the enhanced chemiluminescence

method. Fluorescent signaling for Cnb was normalized using b-actin.

Immunohistochemistry

Brains were fixed by transcardiac perfusion followed by 1 hr of postfixation on

ice with 4% formaldehyde/PBS solution. Brains were rinsed with PBS and cry-

oprotected by using 30% sucrose/PBS solution overnight at 4�C.
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Cryosections were prepared at 20 mm (for counting immunoprofiles) thickness.

Immunohistochemistry was performed by using a PBS solution containing

1.5% normal goat serum and 0.25% Triton X-100 for all procedures. The

washing steps were done with PBS. The sections were incubated overnight

(ON) at 4�C with selected antibodies, followed by incubation at 4�C ON with

donkey secondary antibodies (Jackson ImmunoResearch Laboratories).

For cell counting and post hoc examination of marker expression, sections

were stained using rat anti-GFP, mouse anti-Reelin (1:500, MBL, D223-3),

rabbit anti-dsRed (Abcam, ab62341), rabbit anti-VIP (1:1,000, Immunostar,

20077), Gt-PV (1:500, Swant:PVG214), and rat anti-SST (1:500, Millipore).

For the analysis of nuclear localization of NFATc4 protein, rabbit NFATc4

(Abcam, ab62613, 1:500) was used.

Neuronal Morphology Analysis

Neuronal morphology was obtained either by using the in utero electroporation

method or by using whole-cell physiology to fill the cells with biotin. Successful

targeting of the desired Reelin- and VIP-expressing populations in all of our

experiments was confirmed through post hoc examination of marker expres-

sion. The morphology of neurons obtained from the confocal stacks was

reconstructed using Neurolucida (4-mm interval, 250-mm-thick sections).

Morphometric analysis was done using Neurolucida Explorer for both the

axonal and dendritic length and branching.

Electrophysiology and Analysis

Whole-cell patch-clamp electrophysiological recordings were performed on

EGFP+ and EGFP-negative cells of layers I–III in acute brain slices prepared

from P16–P21 animals. Briefly, animals were decapitated, and the brain was

dissected out and transferred to physiological Ringer’s solution (artificial cere-

brospinal fluid [ACSF]) cooled to 4�C, of the following composition: 125 mM

NaCl, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 1 mM MgCl2, 2 mM

CaCl2, and 20 mM glucose. The brain was then glued to a stage, and slices

of 250–300 mm were cut using a vibratome (Vibratome 3000 EP). The slices

were allowed to recover in recording ACSF at room temperature for at least

45min before recording. Acute slices were then placed in a recording chamber

mounted on the stage of an upright microscope (Axioscope, Zeiss, Germany)

equipped with immersion differential interference contrast objectives (53 and

403) coupled to an infrared camera system (Zeiss), superfused at a rate

of 1–2 mL/min with oxygenated recording ACSF, and maintained at a temper-

ature of 31�C. An EGFP filter was used to visualize the fluorescent interneurons

in epifluorescence.

Patch electrodes were made from borosilicate glass (Harvard Apparatus)

and had a resistance of 4–8 megaohm (MU). For both intrinsic electrophysio-

logical properties and sEPSC recordings, the patch pipettes were filled with

a solution containing the following: 128 mM potassium gluconate, 4 mM

NaCl, 0.3 mM sodium guanosine triphosphate (Na-GTP), 5 mM Mg-ATP,

0.0001 mM CaCl2, and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid (HEPES). For recording sIPSCs, the patch pipettes were filled with a so-

lution containing the following: 65 mM KCl, 65 mM K-gluconate, 4 mM NaCl,

0.3 mM Na-GTP, 5 mM Mg-ATP, 0.0001 mM CaCl2, and 10 mM HEPES.

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-

mediated currents were recorded at –70mVwith no drugs in the bath, whereas

gamma-aminobutyric acid receptor (GABAAR)-mediated currents were re-

corded at –70 mV in the presence of 3 mM kynurenic acid. Experiments were

performed in current-clamp and voltage-clamp modes using the Axopatch

200B amplifier (Molecular Devices). sEPSCs and sIPSCswere recorded inmul-

tiple epochs of 2–4min at holding potential (Vh) = –70mVwith a sampling rate of

10 kHz and filtered online at 3 kHz. The recorded events were analyzed using

Minianalysis software (Synaptosoft, Decatur, GA, USA) or Clampfit. The area

was measured as an absolute value of the integral of the synaptic current.

The decay time was calculated by fitting the average trace with a single expo-

nential. Access resistance was always monitored to ensure the stability of

recording conditions. Cells were accepted for analysis only when the initial se-

ries resistancewas less thanor equal to30MUanddidnot changebymore than

20% throughout the recording period. No compensation was made for access

resistance, and no correction was made for the junction potential between the

pipette and the ACSF. Passive and activemembrane properties were recorded

in current-clampmode by applying a series of sub- and suprathreshold current

steps. The analysis was done in Clampfit. The resting membrane potential was

ascertained in current-clamp mode right after rupturing the patch by applying

zero current. All values presented in the manuscript are average ± SEM, and

all comparisons were done using a Mann-Whitney test.

Cell Counting

20-mm-thick coronal sections were used for all of our analyses. Brains were

manually cut perpendicular to the horizontal plane, using the cerebellum as

a reference for mounting. The angle of cut was confirmed by the co-emer-

gence of the caudoputamen and anterior commissure. For counting the

CGE-derived cortical interneuron population, we utilized the 5Ht3aReGFP

transgenic line (Figure 1). We analyzed brain sections between two well-

defined anatomical landmarks, beginning with the appearance of the claus-

trum (at the most anterior part of the striatum) until the disappearance of the

splenium. This allowed us to analyze equivalent regions and account for

changes in the whole-brain volume with age. Specifically, we found that the

observed changes in cell density cannot be accounted for simply by the

increase in brain size across these two ages. The specific methods involved

in counting the number of GFP+ neurons involved the collection and analysis

of every tenth section within the cortical region defined and quantitating the

number of GFP+ neurons across the medial-lateral extent of these sections

(Figure S1A). To calculate total GFP numbers, we used the fractionation

method by using the following formula in our final analysis:

N=

X
Q�

,

1

asf
,

1

ssf
; (Equation 1)

where, Q� is particles counted, asf is the area sampling fraction (1 in our exper-

imental design), and ssf is the section sampling fraction (10 in our experimental

design).

In experiments using AAV injections and FK506 treatment, we restricted our

analysis to the cortical region between two anatomical landmarks as injections

were focally targeted: beginning with the appearance of the lateral ventricle

until the disappearance of the caudoputamen. Brains used for quantification

of cell density were manually cut perpendicular to the horizontal plane; the

angle of cut was confirmed as described above.

The coordinates for virus injections (and FK506) were taken from the Atlas

of the Developing Mouse Brain (Paxinos, 2007). The injections were made at

positions x = 1.5 and y = 3 mm from the bregma. 350 nL of virus was injected

into the cortex at a cortical depth of 150 mm.

For quantifying interneuronal population size upon AAV injections, we

analyzed 3 slices per hemisphere for each animal: one section containing

the injection core and an alternate section either anterior or posterior to the

core. We imaged each section using a 103 lens on a Zeiss confocal micro-

scope and generated z stacks with 4-mm intervals. We then performed a

maximum projection of these z stacks and overlaid a standardized counting

frame (250/550 pixel or 156/350 mm area) encompassing the cortical area

with viral infection. We calculated the cell density for each section and then

took an average of those 3 sections. A similar analysis was done for each brain,

and the values obtained were averaged to calculate the mean and the SEM.

Importantly, we found, with either control or experimental AAV injections,

that the infection site uniformly labeled the entire quantitated area, ensuring

that the level of injection did not affect the experimental outcome. Within this

area, we calculated the density of interneurons by counting the number of

GFP+ neurons and different immunomarkers that labeled interneuron sub-

types; for example, Reelin, VIP, PV, and SST.

To account for the variability in the site of injection and facilitate compari-

sons of cell numbers across samples, we normalized our cell density counts

to the equivalent region on the contralateral site. We normalized the cell

density as described below (Equation 1). The percentage of change in cell

density = (cell count on the injected side)3 (100)/(cell count on the uninjected

site). A minimum of three brains was analyzed per age (n = 3) unless stated

otherwise, and averages are shown with the SEM.

For measuring the cell density in the conditional KOs and aged-matched

controls, 20-mm-thick tissue sections were used for analysis. The stringency

in the angle of cut wasmaintained as described above. We restricted our anal-

ysis to the somatosensory cortex (except for Figure S7F, where, along with the
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somatosensory cortex, we also analyzed the motor and visual cortex). The

appearance of the hippocampus was used to identify the reference section

for the somatosensory cortex. We then selected an alternate section anterior

or posterior to the identified section to obtain a total of 3 sections per brain.

Each section was imaged as previously mentioned. Similarly, we identified

the motor cortex by the appearance of the body of the caudoputamen and

the visual cortex by the disappearance of the lateral ventricle as a reference

landmark. Again, 3 alternating sections were chosen for each cortical area

per brain along these referred landmarks. The cell density of GFP+ neurons

was counted by electronically superimposing a 250 3 550 pixel area on the

region of interest. We determined the cell density in the somatosensory cortex

by taking the average of 3 sections per animal. A similar analysis was done

for each brain, and the values obtained were averaged to calculate the

mean and the SEM. For quantification of the interneuron subtypes, we

calculated the density of each subtype by co-immunostaining of immuno-

markers like Reelin and VIP with GFP. A similar analysis was done for cleaved

caspase-3 staining.

Statistical Analysis

All statistical analyses were performed using unpaired t test or Mann-Whitney

U test. For all electrophysiology data analyses, the nonparametric Mann-

Whitney test was chosen because the number of values compared was not

high enough to justify a normality test and usage of the unpaired t test. All

values represent mean values ± SEM. For all other data, normality and an

estimate of variance were formally tested with GraphPad Prism. For the

tamoxifen-induced experiments, a paired t test was used to take into account

the day-to-day variability between different litters injected with tamoxifen. The

analyses of the integrated density of NFATc4 immunostaining under different

conditions were blinded to genotype. For the statistics of cultured neurons,

ANOVA was used to determine significance. No statistical methods were

used to predetermine sample sizes, but our sample sizes were similar to those

reported in previous publications.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at https://doi.org/

10.1016/j.celrep.2018.01.007.

ACKNOWLEDGMENTS

We are grateful to Richard W. Tsien and Robert Machold for comments on

the manuscript. We also thank Latika Khatri for helping us with western blots.

This work was supported by NIH grants R01-NS081297, R01-MH071679, and

P01-NS074972 and generous support from the Simons Foundation (grant no.

274578). Work in the Alvarez- Buylla laboratory is supported by NIH grants

K08NS091537-01A1 and R01-EY025174 and a generous gift from the

John G. Bowes Research Fund. A.A.-B. is the Heather and Melanie Muss En-

dowed Chair and Professor of Neurological Surgery at UCSF.

AUTHOR CONTRIBUTIONS

R.P. and G.F. conceived the project. I.G. provided the CnB fl/fl mouse. R.P.,

M.F.P., T.K., X.L., N.Y., and X.J. performed the experiments. X.J. provided

the AAVs. R.P. and G.F. wrote the manuscript with the help of all authors.

DECLARATION OF INTERESTS

A.A.-B. is a co-founder and on the Scientific Advisory Board of Neurona

Therapeutics.

Received: September 14, 2016

Revised: September 26, 2017

Accepted: December 30, 2017

Published: February 13, 2018

REFERENCES

Allène, C., Cattani, A., Ackman, J.B., Bonifazi, P., Aniksztejn, L., Ben-Ari, Y.,

and Cossart, R. (2008). Sequential generation of two distinct synapse-driven

network patterns in developing neocortex. J. Neurosci. 28, 12851–12863.

Alvarez-Buylla, A., Kirn, J.R., and Nottebohm, F. (1990). Birth of projection

neurons in adult avian brain may be related to perceptual or motor learning.

Science 249, 1444–1446.

Bando, Y., Irie, K., Shimomura, T., Umeshima, H., Kushida, Y., Kengaku, M.,

Fujiyoshi, Y., Hirano, T., and Tagawa, Y. (2016). Control of Spontaneous

Ca2+ Transients Is Critical for Neuronal Maturation in the Developing

Neocortex. Cereb. Cortex 26, 106–117.

Batista-Brito, R., Machold, R., Klein, C., and Fishell, G. (2008). Gene expres-

sion in cortical interneuron precursors is prescient of their mature function.

Cereb. Cortex 18, 2306–2317.
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