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A B S T R A C T

Arid grassland ecosystems undergo degradation because of increasing environmental and human pressures.

Degraded grasslands show vegetation cover reduction and soil-patch development, leading to grassland frag-

mentation and changes in spatial heterogeneity. Understanding grassland degradation that involves soil-patch

development remains a challenge over large areas with limited accessibility such as the Qinghai-Tibetan Plateau.

We hypothesized that vegetation cover, its spatial heterogeneity and changes thereof over time retrieved from

satellite data can indicate grassland development and degradation levels. To test the hypothesis, we studied

these indicators from 2000 to 2016 and related them to previously described degradation levels on the eastern

Qinghai-Tibetan Plateau (QTP) in 2004. We further use these indicators to map the new grassland development

and degradation levels in 2016.

We found that lower vegetation cover does not always indicate a more severe degradation; instead, higher

spatial heterogeneity is a better correlate of degradation. Combined temporal changes in grassland cover and its

spatial heterogeneity are related to the literature-defined degradation levels. We found that grassland areas on

the eastern QTP have moved into new degradation stages from 2000 to 2016 using changes in grassland cover

and its spatial heterogeneity as indicators. The normalized difference vegetation index (NDVI) as a proxy for

grassland cover declined over time in the literature-defined degraded areas but increased in the desert areas from

2000 to 2016. Spatial heterogeneity generally increased across different degradation levels from 2000 to 2016;

however, this increase was less pronounced in severely degraded and slightly deserted areas. Our newly defined

degradation levels in 2016 included degradation, desertification, and improving levels. Across our study area,

63% of all areas were classified as degraded and 2% were at risk of desertification. The remaining areas (35%)

classified as improving and re-growing occurred in higher-elevation or previously severely degraded grassland.

Our study demonstrates that a combination of changes in grassland cover and in its spatial heterogeneity can

indicate grassland degradation levels and serve as an early-warning signal for desertification threats.

1. Introduction

Human activities and climate change are causing ecosystem de-

gradation, especially in arid ecosystems where degradation has affected

the livelihood of a large part of the world’s population (Berdugo et al.,

2017; Kéfi et al., 2007). Arid-ecosystem degradation is commonly

characterized by vegetation fragmentation interspersed with small

bare-soil patches at the early stage of degradation and eventually large

bare soil-patch development that potentially leads to desertification

with increasing environmental and human pressures (Bestelmeyer

et al., 2013; Kéfi et al., 2007). Vegetation fragmentation and bare soil-

patch development result in changes in vegetation cover and spatial

heterogeneity, which have been used as indicators of arid-ecosystem

degradation (Kéfi et al., 2014, 2007; Lin et al., 2010; Maestre and

Escudero, 2009; Rietkerk et al., 2004) and serve as early-warning sig-

nals of desertification in drylands (Berdugo et al., 2017; Lin et al., 2010;

Maestre and Escudero, 2009; Rietkerk et al., 2004).

Grassland ecosystems on the Qinghai-Tibetan Plateau (QTP) have

been degraded. The natural grassland was first encroached by non-ed-

ible and poisonous invasive species (Cai et al., 2015; Chen et al., 2017;

Liu et al., 2008; Wang et al., 2015), and followed by grassland cover

reduction and bare-soil patches development, the latter eventually

turning into larger areas of bare soil called “black soil patches” (Liu

et al., 2008; Qin et al., 2019). The development of bare-soil patches

causes spatially discontinuous grassland cover and therefore brings

about changes in spatial heterogeneity like in other arid ecosystems.
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Severe degradation occurred at the “Three-River Headwaters” region

(Li et al., 2018b) on the eastern QTP, where degraded grasslands with

“black soil patches” are the very common (Li et al., 2014b). This region

was selected as our study area as it is the source region of three of Asia’s

major rivers, Yangtze, Yellow River and Mekong, and therefore ecolo-

gically very important (Fig. 1). Grassland degradation in this area re-

sults in soil erosion, rangeland productivity reduction (Dong et al.,

2013) and hydrological disturbances (Harris, 2010), threatening the

livelihoods of a large part of the population, especially people living in

downstream areas depending on freshwater coming from the QTP

(Lehnert et al., 2014; Liang et al., 2013).

For the above reasons, monitoring grassland degradation stages on

the QTP especially at the “Three-River Headwaters” region is important

for developing and implementing conservation strategies. Previous re-

searchers have studied soil organic matter, species composition, vege-

tation cover and numbers of small-mammals to identify grassland de-

gradation levels via field observations (Wang et al., 2010a, 2010b; Guo

and Wang, 2013; Feng et al., 2005). However, these field studies fo-

cused on small areas and short time periods, therefore providing limited

insights in grassland degradation on a larger and long-term scale.

However, such insight is important because grassland degradation is a

slow and gradual process and widely spread on the QTP. As we show in

this paper, large-scale and long-term assessment in this area can be

achieved using remote sensing data (Kennedy, 1989; Li et al., 2014a;

Purevdorj et al., 1998; Tucker, 1979).

Vegetation cover and changes therein have been considered as in-

dicators of degradation levels by interpreting satellite images from

different years (Fassnacht et al., 2015; Li et al., 2014b; Liu et al., 2008).

Both positive (Zhang et al., 2014; Zhong et al., 2010) and negative

trends have been reported in past decades (Song et al., 2009; Wang

et al., 2011). However, so far no attention has been paid to spatial

heterogeneity related to soil and vegetation patches on the QTP, al-

though such heterogeneity has been identified as a relevant indicator

for evaluating degradation in other arid ecosystems (Kéfi et al., 2007).

In this study, we aim to develop indicators that can be used to

quantify the spatial variation of grassland degradation and develop-

ment status. We first test whether the combination of changes in

grassland cover and spatial heterogeneity derived from remote sensing

data are informative indicators for mapping grassland degradation and

development stages on the QTP. We justify these two indicators by

studying how changes in vegetation cover and spatial heterogeneity

from 2000 to 2016 are related to published degradation levels in 2004

at the “Three-River Headwaters” region on the eastern QTP. Second, we

use the new indicators of changes in vegetation cover and in its spatial

heterogeneity to derive new degradation levels for 2016.

2. Data

Grassland cover and its spatial heterogeneity can be derived from

satellite data of the Normalized Difference Vegetation Index (NDVI) for

large spatial extents. We used the Moderate Resolution Imaging

Spectroradiometer (MODIS) Bidirectional Reflectance Distribution

Function (BRDF) Adjusted Reflectance (MCD43A4) product from 2000

to 2016 (Schaaf et al., 2002).

The advantage of using this product is that it has good quality be-

cause it has removed view-angle effects and minimized cloud and

aerosol contaminations (Xulu et al., 2018). The product is available

every 16 days and has a spatial resolution of 500 m.

Road network data from OpenStreetMap (Haklay and Weber, 2008)

and river network data extracted from hydrological data (HydroSHEDS:

Hydrological data and maps based on SHuttle Elevation Derivatives at

multiple Scales) (Lehner et al., 2008) were used to mask higher spatial

heterogeneity value caused by roads and rivers. Elevation and slope

data obtained from the National Aeronautics and Space Administration

(NASA) Shuttle Radar Topographic Mission (SRTM) Version 4 (Farr

et al., 2007) were used to analyze how spatial heterogeneity was related

to topography. We accessed and processed the above satellite data in

the Google Earth Engine Platform (Gorelick et al., 2017).

A grassland degradation-level dataset covering the study area for

2004 (Fig. S1) (Liu et al., 2008) was used to justify that changes in

grassland cover and spatial heterogeneity can indicate different de-

gradation levels. This dataset covers the whole study area, which pro-

vides more efficient samples to study how two indicators have changed

in different degradation groups than studies providing data only for

particular sites (Wang et al., 2010a, 2010b; Guo and Wang, 2013; Feng

et al., 2005). Grassland cover and vegetation-patch size were used for

generating the 2004 grassland degradation-level dataset along with

field photos, topography maps, land-use maps and vegetation-type

maps (Liu et al., 2008). The authors classified grassland into (1) areas

without degradation, (2) areas with grassland fragmentation, (3) de-

sertification/salinization, (4) cover decline, (5) drying swamp and (6)

areas with improving grassland. Each degradation category had been

subdivided into the three intensity levels slight, medium and severe. In

this study, we focus on the first three categories (no degradation,

Fig. 1. Map of the Qinghai-Tibetan Plateau in-

dicating main grassland vegetation types and

major rivers and lakes. Our study area of the

“Three-River Headwaters” region in the eastern

part of QTP is indicated by the black outline.

Inset indicates elevation data of the extended

area based on the NASA Shuttle Radar

Topographic Mission (SRTMVersion 4) (Farr

et al., 2007).
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grassland fragmentation, and desertification/salinization) which are

characteristic for soil-patch development and therefore relevant to as-

sess grassland degradation using spatial heterogeneity. The above three

groups all together accounted for a representative 90% of the study

area. We refer to these three categories as (1) non-degraded, (2) de-

graded and (3) desertified areas. Together with three intensity levels of

slight, medium, and severe in the degraded and desertified categories,

we further refer to these categories as seven degradation levels (Fig. 6).

3. Methods

3.1. Grassland spatial heterogeneity

Grassland cover and its spatial heterogeneity can be measured from

satellite data for large spatial extents. The NDVI spectral index was

introduced to map vegetation cover (Kennedy, 1989; Li et al., 2014a;

Purevdorj et al., 1998; Tucker, 1979). NDVI is a well-developed and

easily available product from MODIS and widely used for monitoring

grassland cover on the QTP (Gao et al., 2010; Zhang et al., 2013),

therefore being a better candidate than other vegetation indices such as

soil-adjusted (SAVI), modified soil-adjusted (MSAVI) and transformed

soil-adjusted vegetation indices (TSAVI) (Purevdorj et al., 1998) that

are not widely available.

In this study, we assessed grassland spatial heterogeneity in terms of

the spatial distribution of vegetation and bare-soil patches. On the QTP

such patches vary in size ranging from less than one meter to above one

kilometer (Fig. 2) depending on topography, soil properties and vege-

tation types (Chen et al., 2017). We measured spatial heterogeneity of

vegetation cover within a 3 × 3-pixel moving window of

1500 × 1500 m area. Considering the bare-soil patch size and grid size

of satellite images, measuring spatial heterogeneity within this window

size is reasonable for detecting grassland heterogeneity for our purpose

of large-scale degradation mapping. The corresponding 3 × 3-pixel

moving window provides nine NDVI samples with a grid size of 500 m,

which is statistically sufficient to calculate the coefficient of variation.

This window size selection further allows capturing the locality of the

spatial heterogeneity as the output of spatial heterogeneity becomes

spatially smoother with the increasing window size. The coefficient of

variation (CV) of NDVI within the selected moving window was cal-

culated to quantify the spatial heterogeneity that we use as a leading

indicator of ecosystem heterogeneity (Carpenter and Brock, 2006) and

spatial variance (Kéfi et al., 2014). High spatial heterogeneity around

rivers and roads may not indicate degradation as commonly understood

but represent more heterogeneous land-cover types. We identified these

using buffers of river and road networks and excluded them when

calculating the CV of NDVI. In the end, all land-cover types other than

grasslands were masked out.

3.2. Temporal changes in NDVI and in its spatial heterogeneity

The median NDVI and its CV within 3 × 3-pixel moving windows

during the growing season (June–September) were calculated for each

year from 2000 to 2016. We applied linear regression which is a

common method (de Jong et al., 2011; Piao et al., 2005) to study long-

term changes in vegetation cover. To analyze and visualize differences

of NDVI and spatial heterogeneity among degradation categories

identified in the literature, we calculated their means and plotted their

distributions. Both significant values of changes in NDVI and its spatial

heterogeneity were extracted for the above analysis (Fig. S2).

3.3. Combining temporal changes in NDVI and its spatial heterogeneity to

map new degradation levels for 2016

Our study is based on the hypothesis that the combination of

changes in NDVI and its spatial heterogeneity can be used to identify

grassland degradation levels. This hypothesis is based on the fact that

bare-soil patches have developed in the degraded grassland on the QTP.

The bare-soil patches can be observed both in the field and from sa-

tellite images (Fig. 2 (b, e-f)). The development of bare-soil patches

results in the increase of spatial heterogeneity from intact to degraded

grassland (Fig. 2 (a-b)) but the reduction of spatial heterogeneity in

severely degraded grassland or in the stage of desertification (Fig. 2 (f)).

However, the grassland cover does not always decline with degradation

level because exotic species have invaded grasslands in the degraded

regions on the QTP. The invasive species increase vegetation cover but

indicate degradation because the species are unpalatable for livestock

or even toxic (Fig. 2 (c-d)). In the following sections, we introduce our

hypothesis in detail.

a. Increases in NDVI and decreases in spatial heterogeneity com-

bined represent improving conditions

Because NDVI represents vegetation photosynthesis and has been

widely used as a proxy of vegetation cover (Kennedy, 1989; Li et al.,

2014a; Purevdorj et al., 1998; Tucker, 1979), significant increases of

NDVI in the long-term indicate increasing vegetation cover. The healthy

and intact grasslands on the QTP are characteristic of a homogeneous

landscape (Fig. 2 (a)), showing a spatially consistent vegetation

greenness and NDVI from the satellite data, representing low spatial

heterogeneity. Therefore, increases in NDVI and decreases in spatial

heterogeneity indicate that grasslands become more productive and

homogeneous, suggesting improving conditions (Fig. 2 (a)).

b. Increases in NDVI and spatial heterogeneity combined represent

re-growing conditions or slight degradation

Combined increases in NDVI and spatial heterogeneity may indicate

two different cases. In desert or sparsely-vegetated regions, where

average NDVI is lower than 0.2 (Piao et al., 2011; Zhang et al., 2013),

increases in NDVI show that the landscape likely turns from non-ve-

getative to low vegetative status, where NDVI increases but shows

spatial variation, leading to increased spatial heterogeneity (Fig. S3).

Thus, in the sparsely or non-vegetated areas we interpret an increase in

NDVI and in spatial heterogeneity as regrowth of vegetation.

In the vegetated areas (NDVI > 0.2) with slight degradation, in-

vasive species commonly colonized grasslands (Fig. 2 (c-d)). The in-

vasive species are characteristic of higher plant cover compared with

the native species Kobresia pygmaea (Milton and Siegfried, 1994; Wang

et al., 2015) (Fig. 2 (c-d)), contributing to an increase of vegetation

greenness. At this stage, vegetation patches (Li et al., 2014b) with

exotic species are interspersed with soil patches, leading to increasing

spatial heterogeneity. Therefore, in vegetated areas we interpret in-

creases in NDVI combined with increases in its spatial heterogeneity as

a sign of initial or slight degradation.

c. Decreases in NDVI and increases in spatial heterogeneity com-

bined represent medium degradation

In degraded and already fragmented grassland, the bare-soil patches

continue to increase in number and size with increasing environmental

and grazing pressures, which further increases the spatial heterogeneity

and reduces the vegetation cover, and therefore results in negative

NDVI trends. Therefore, decreases in NDVI and increases in spatial

heterogeneity indicate a medium level of degradation (Fig. 2 (b, e)).

d. Decreases in NDVI and decreases in spatial heterogeneity com-

bined represent severe degradation or desertification

Vegetation-patch sizes decrease and bare-soil patches become larger

and connected as degradation becomes more severe (Fig. 2 (f)); this is

reflected in reduced vegetation cover and spatial heterogeneity. In the

sparsely vegetated area where vegetation cover is relatively low

(NDVI < 0.2), combined decreases in NDVI and spatial heterogeneity

indicate that vegetation shifts from a patchy stage to bare soil, i.e. the

stage of desertification (Milton and Siegfried, 1994; Rietkerk et al.,

2004).

To summarize, changes in vegetation cover and its spatial hetero-

geneity are not linearly correlated with degradation level, and a com-

bination of changes in these two variables allows for a richer analysis of

grassland development and therefore can better indicate different
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degradation stages. Examples of healthy grasslands, degraded grass-

lands with invasive species and bare-soil patches at different scales are

displayed in Fig. 2. We summarize the above characteristics of grass-

land development and degradation stages with the decision tree shown

in Fig. 3. Here we further use this decision tree for assigning areas with

particular NDVI and CV trends to the six new degradation levels in-

troduced in this study. Because less than 0.01% of the total area showed

no detectable changes in NDVI and its spatial heterogeneity from 2000

to 2016, these areas defined as non-degraded grassland were not con-

sidered when classifying new degradation levels.

4. Results

4.1. Linking grassland cover and spatial heterogeneity to degradation levels

We mapped spatial heterogeneity of grassland cover represented by

the CV of NDVI within a 3 × 3-pixel moving window in an area of

1500 × 1500 m (Fig. 4). Lower spatial heterogeneity was found in the

eastern meadow-dominated region, higher spatial heterogeneity in the

northwestern steppe-dominated and mountainous regions (Fig. 1 and

Fig. 4). Spatial heterogeneity increased with slope and was lowest at

medium elevations of 3000–4500 m (Fig. 5 (a)).

Fig. 2. Example images of grassland showing the changes in vegetation cover and spatial heterogeneity, development of soil patches and invasive species at different

degradation levels. a). Picture of healthy grassland on the northeastern QTP in July 2015 showing the typically homogeneous landscape. b) Pictures of degraded

grassland with invasive species at Naqu on 8 August 2016 and c): Pictures of degraded grassland with invasive species at Minxian county on the eastern QTP in 2008

(Yan et al., 2014). d). Picture of degraded grassland with bare-soil patches at Zekog, Zequ county in July 2015. e). Picture of severely degraded grassland showing

vegetation-patch sizes decrease and bare-soil patches become larger and connected at Wudaoliang, Qinghai province in August 2016. f): Satellite image of frag-

mented grassland representing spatially heterogeneous grassland landscape over a larger scale in Madoi county (Sentinel-2 image ID:

20160819T040552_20160819T093629). This image was extracted from the Google Earth Engine platform. The above pictures are original from this study except for

picture (c) which was extracted from the study (Yan et al., 2014).
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We analyzed differences in NDVI and its spatial heterogeneity for

the different degradation levels defined in Liu et al. (2008) (Fig. 6). We

found the mean NDVI is lower in non-degraded compared with de-

graded areas, and higher in degraded and severely desertified areas

(Fig. 6 (a)). This shows that the mean NDVI was not sufficient to order

areas into a monotonic sequence of degradation levels. Adding the CV

of NDVI, we found higher spatial heterogeneity in more severely frag-

mented and deserted areas (Fig. 6 (b)). However, it did not show a

linear trend with the increased literature-derived degradation levels

from non-degradation to severe degradation and desertification.

4.2. Temporal changes in NDVI and spatial heterogeneity among different

degradation levels

NDVI temporal trends over 2000–2016 varied spatially (Fig. 7 (a))

over the study area, being negative in the central and southern regions

(Fig. 7) and positive in the northeastern region of the study area. Spatial

heterogeneity showed mainly increasing trends from 2000 to 2016

(Fig. 7 (b)), with an exception in the northeastern region, where it

decreased in areas with increasing mean NDVI values (overlapping

green areas in Fig. 7 (a) and (b)). Less than 0.01% of the total area

showed no detectable changes in NDVI and its spatial heterogeneity

from 2000 to 2016. These areas were not considered when classifying

new degradation levels. Examples of time-series analyses of change

trends of NDVI and CV from 2000 to 2016 are shown in the supple-

mentary material (Figs. S4, S5).

We analyzed changes in NDVI and its spatial heterogeneity in dif-

ferent degradation levels as defined in 2004 by Liu et al. (2008). Trends

of NDVI and its spatial heterogeneity largely varied between but also

within the degradation levels. In non-degraded areas that accounted for

75.3% of the study region, both decreasing and increasing NDVI trends

were found, while spatial heterogeneity mostly increased (Fig. 8). In

fragmented-grassland areas that covered 10.3% of the entire study re-

gion, the NDVI mainly decreased and spatial heterogeneity mainly in-

creased. In desertification areas, both the NDVI and its spatial hetero-

geneity generally increased (Fig. 8). Overall, the vegetation cover

represented by NDVI showed decreasing trends from 2000 to 2016 in

slightly- to medium-fragmented areas, which contrasted with the in-

creasing trends in desertification areas. The spatial heterogeneity gen-

erally increased over time and this increase was weakest in severely

degraded areas and early stages of desertification, i.e. slightly deserted

areas (Fig. 8).

The temporal trends of NDVI and its spatial heterogeneity were

found to be elevation-dependent (Fig. 9). The NDVI decreased at

Fig. 3. Flowchart for defining new degradation levels

in 2016 based on linear trends of NDVI and its spatial

heterogeneity (measured as CV of NDVI in 3 × 3-

pixel moving windows of 1500 × 1500 m). For fur-

ther details see Section 3.3 and the discussion in

Section 5.2. Note that non-degraded grassland is not

included in this decision tree.
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Fig. 4. Spatial heterogeneity of grassland at the “Three-River Headwaters” region on the eastern QTP in 2016. Spatial heterogeneity was calculated as the CV of NDVI

within a 3 × 3-pixel moving window (with the median NDVI value for the growing season from June to September).
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intermediate elevations and increased in lower and higher elevations

(Fig. 9a). The spatial heterogeneity increased in most elevation zones

except for areas above 5500 m (Fig. 9b). When correlating the NDVI

trends with its spatial heterogeneity trends, we found an overall ne-

gative correlation between them. Areas with decreasing NDVI trends

mostly showed increasing CV trends, but areas with increasing NDVI

trends occurred with both decreasing and increasing CV trends,

meaning that vegetation cover reduction tends to intensify spatial

heterogeneity, however, increases in vegetation cover can lead to either

a more homogeneous or more heterogeneous landscape (Fig. S6).

4.3. Combining temporal changes in NDVI and spatial heterogeneity to map

new degradation levels for 2016

NDVI and its spatial heterogeneity had changed in most of the study

area over 2000–2016, spatial heterogeneity mostly increased from 2000

to 2016 and NDVI showed both increasing and decreasing trends. These

changes indicated that grassland areas may have moved into new
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Fig. 5. Distribution and mean (blue dots) of spatial heterogeneity of grassland cover along elevation (a) and slope (b) gradients in 2016. Spatial heterogeneity was

calculated as the CV of NDVI within a 3 × 3-pixel moving window.

Fig. 6. Grassland cover (NDVI) (a) and its spatial heterogeneity (CV of NDVI) (b) in 2004 along increasing degradation levels from non-degraded to degraded and

desertification levels as defined in Liu et al. (2008). Violin bars show the distribution of NDVI and CV, blue dots show the mean of NDVI and CV.
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degradation stages over the time interval. We used these changes to

define degradation levels and mapped them for 2016 (Fig. 10). Com-

pared with the earlier study of Liu et al. (2008), who classified 75% of

the total study area as non-degraded grasslands, we found that these

non-degraded grasslands have been degraded to different levels. We use

the combination of increasing NDVI and increasing spatial hetero-

geneity as an indicator of slight degradation and the combination of

decreasing NDVI and increasing spatial heterogeneity as an indicator of

medium degradation (see Fig. 3 and Section 3.3). According to our

degradation classification framework, we found that 21% of the total

study area became slightly degraded and 34% and 8% became medium

degraded and severely degraded, respectively. These degraded areas

mainly occur in meadow-dominated regions (Fig. 1 and Fig. 10). In-

creasing NDVI and decreasing spatial-heterogeneity trends showed that

grasslands had become more productive and less fragmented, indicating

improving conditions across 24% of the total study area. In the sparsely

vegetated areas where NDVI was less than 0.2, increases in NDVI and

spatial heterogeneity indicated re-growing conditions and these

Fig. 7. Linear temporal changes (including significant and non-significant ones) in NDVI (a) and its spatial heterogeneity (b) from 2000 to 2016. The changes with

only significant values can be found in the supplementary Fig. S2.

Fig. 8. Significant (P less than 0.05) linear temporal trends in means (a) and CVs (spatial heterogeneity) (b) of NDVI from 2000 to 2016 along increasing degradation

levels from non-degraded to fragmented and desertification levels defined in Liu et al. (2008). Violin bars show the distribution of NDVI and CV linear trends, blue

dots show their mean values.
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occurred across 11% of the total study area (Fig. 10). On the western

part of the study area, on the other hand, decreases in NDVI and its

spatial heterogeneity indicated that vegetation shifted from a patchy

stage to bare soil (2% of our study area), indicating being at the risk of

desertification.

5. Discussion

5.1. Heterogeneity in grassland cover as a degradation indicator

Degraded arid ecosystems show self-organized vegetation patches

and soil patches; and thus the pattern and size of vegetation patches in

drylands have previously been identified as a warning signal for po-

tential catastrophic ecosystem shifts (Barbier et al., 2006; Kéfi et al.,

2007; Rietkerk et al., 2004). Likewise, degraded grasslands on the QTP

have been characterized by mosaics of soil patches and vegetation

patches (Cai et al., 2015; Chen et al., 2017; Liu et al., 2008; Wang et al.,

2015). Previous studies have measured vegetation patch size to char-

acterize ecosystem degradation (Kröpfl et al., 2013; Sheffer et al.,

2013), which is an accurate way to understand ecosystem status over a

small area. However, the same measures would not be efficient and

sustainable on an extensive geographic area such as the QTP. Remote

sensing offers the possibility to monitor the development of soil patches

over large areas and on a long-term scale. In this study, we quantify soil

patches in degraded grasslands using the spatial heterogeneity defined

by the coefficient of variation of the vegetation index NDVI within

1500 × 1500 m neighborhoods consisting of nine 500 × 500 m pixels.

We found that lower vegetation cover does not always suggest more

severe degradation of grassland because vegetation cover could actually

be higher in some degraded areas than in non-degraded areas.

Considering that low vegetation cover is a characteristic of grassland

ecosystems on the QTP, we argue that vegetation cover at one single

time is not a representative indicator of grassland degradation level.

Our new findings point to the limitations of previous degradation as-

sessments based mainly on vegetation cover (e.g. Li et al., 2014b).

We found that in areas identified as severely degraded in a reference

study from 2004 (Liu et al., 2008), the spatial heterogeneity of vege-

tation cover was generally high (Fig. 6 (b)), suggesting that spatial

heterogeneity of vegetation cover could be a good candidate to indicate

degradation on the QTP. Larger bare-soil patches increase in size and

number with environmental pressure like wind erosion, which en-

hances desertification risks (Dong et al., 2009). Such degradation and

a b 

Fig. 9. Average of significant NDVI trends (a) and trends in spatial heterogeneity (CV of NDVI) (b) along the elevation gradient.

32

33

34

35

36

37

92 96 100

Desertification Severe Medium Slight Regrowing Improving

21%34% 24% 11% 8% 2% 

Fig. 10. Spatial distribution of grassland-development (“re-growing”, “improving”) and degradation (“slight”, “medium”, “severe”, “desertification”) levels identified

with the classification system presented in Fig. 3.
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desertification processes are more obvious in steeper areas where soil

erosion is higher and spatial heterogeneity is also higher (see Fig. 5(b)

and Fig. S7).

Considering the various scales of soil patches that occurred on the

QTP (Fig. 2), the size of soil patches that can be detected depends on the

spatial resolution of satellite data and the neighborhood (moving

window in this study) over which spatial heterogeneity is calculated.

Satellite data with high or coarse spatial resolution can be used to de-

fine spatial heterogeneity related to soil patches. To test the impacts of

spatial resolution and moving window size on the spatial heterogeneity,

we compared spatial heterogeneity quantified at a spatial scale of

500 m with spatial heterogeneity at 30 m (Landsat 8 satellite data),

using a moving window size of 3 × 3 pixels for both scales. As ex-

pected, the outputs of spatial heterogeneity differed between the two

scales, however, we found that the general pattern was comparable

between two (see Fig. S8). Higher spatial-resolution satellite data (i.e.

Landsat dataset (30 m) and Sentinel-2 dataset (10–20 m)) can be used

to map spatial heterogeneity on the QTP, but are limited to monitor

changes in spatial heterogeneity because of lower temporal resolutions

than the MODIS dataset.

Spatial heterogeneity monitored at a lower resolution (500 m)

might involve different processes from those monitored at a higher

resolution (30 m). For example, high spatial heterogeneity and bare-soil

patches caused by burrowing activities of small mammal (Chen et al.,

2017; Wei et al., 2007) are more likely to be detected at 30 m scale

rather than at 500 m scale. Spatial heterogeneity defined at 500 m in

this study possibly indicates a response to increased resource scarcity

(Lejeune et al., 2002) under climate change such as rising temperature

and precipitation decline on the QTP (Lehnert et al., 2016). The soil

patchiness further results in ecosystem degradation by reducing vege-

tation productivity (Zhang et al., 2019) and altering carbon emission

process (Qin et al., 2019).

5.2. Combining temporal changes in NDVI and spatial heterogeneity to map

new degradation levels for 2016

We found that vegetation cover reduction mostly results in grass-

land fragmentation but increases in vegetation cover lead to changes in

spatial heterogeneity in two directions: either a spatially more homo-

geneous or a spatially more heterogeneous landscape (Fig. S6). Changes

in spatial heterogeneity and vegetation cover form a unique combina-

tion among groups with different degradation levels (Fig. 8). Our study

showed that a combination of changes in vegetation cover and its

spatial heterogeneity could better indicate grassland degradation levels

than vegetation covers alone. Previous studies have indicated grassland

degradation based on negative NDVI trends and grassland improve-

ments based on positive trends (Wang et al., 2016b). According to only

changes in NDVI, these and other authors concluded that vegetation

that accounts for 61.2% of the QTP had been recovering (Wang et al.,

2016b, Fan et al., 2010; Xu et al., 2011). In contrast, we found that a

large fraction of the study area with increasing NDVI also shows in-

creases in spatial heterogeneity. One of the plausible interpretation is

that invasive species (Zeng et al., 2013) have been colonizing degraded

grassland. Previous studies have found that sedges were gradually re-

placed by forbs in the slightly degraded grasslands (Zhang et al., 2019)

because forbs take up low soil nitrogen more efficiently (Zhang et al.,

2020). These invasive forb species are generally taller and have larger

leaf area than indigenous species (Fig. 2 (c-d). Therefore, the occur-

rence of forb species increases the vegetation cover and NDVI, leading

to increases in spatial heterogeneity. Here we caution that increases in

vegetation cover can be a sign of degradation (Liu et al., 2015) when

considering the case of invasive species (Fig. 2 (c-d)). We, therefore,

suggest that in vegetated areas the increase of spatial heterogeneity is

an indicator of the early stage of degradation — even if the NDVI shows

increasing trends.

On the QTP, around 26% of the alpine grasslands have been

degraded by encroachment with invasive species (Wen et al., 2013). A

wide distribution of forb-dominant degraded grassland on the QTP (Ren

et al., 2013) (see Fig. 2) makes it possible to monitor these grasslands

with invasive species using long-term satellite data, though the in-

dividual invasive species cannot be easily detected from the satellite

data with a spatial resolution of 500 m used in this study. We found that

21% of the whole study area both vegetation cover and its spatial

heterogeneity have been increasing (see Fig. S6 and Fig. 10), which

indicates that these areas potentially contained fragmented grassland

being colonized by invasive species. Field studies on species composi-

tion, vegetation cover and soil properties (Liu et al., 2018; Zeng et al.,

2013) will be needed for further verification. Field spectrometric

measurement of species composition (Fava et al., 2010) will further

help to map degraded grassland dominated by invasive species (Liu

et al., 2015).

The changes in grassland cover and spatial heterogeneity from 2000

to 2016 suggest that grasslands have turned into new development and

degradation stages. In the slightly and medium-degraded areas in 2004

(Liu et al., 2008), we found that NDVI mostly decreased and spatial

heterogeneity increased from 2000 to 2016 (Fig. 8), showing that the

grasslands have been fragmented and more soil patches have devel-

oped, therefore indicating more severe degradation. With the in-

creasing environmental and grazing pressures, the severely degraded

and sparsely vegetated areas are now under risk of desertification,

making recovery over short time-scales unlikely (Kéfi et al., 2007).

Therefore, our new indicators can serve as early warning indicators of

severe grassland degradations and desertification. However, areas that

were classified as desertified in 2004 showed an increasing NDVI and

spatial heterogeneity trend over time (Fig. 8), suggesting that grassland

was re-growing there. This condition was the most apparent in the

medium and severely desertified areas.

We found that degraded grasslands were more dominant at eleva-

tions of 3500–4500 m, indicated by increasing spatial heterogeneity

and decreasing vegetation cover from 2000 to 2016, which is consistent

with a previous study that found more severe degradation at this ele-

vation (Wang et al., 2015). In areas above 5000 m altitude, we found

that NDVI increased and spatial heterogeneity decreased over time,

suggesting an improvement of grasslands. A recent study also found

increased vegetation cover at high altitudes in the Himalayas using

Landsat satellite data and the strongest trend appeared between 5000 m

and 5500 m altitude (Anderson et al., 2020).

Our results suggest that the grasslands on the eastern part of the

QTP have undergone degradation during the study period. The de-

gradation levels vary depending on climate, soils and management

practices (Wang et al., 2018). Climate change, rodent damage and

human factors such as overstocking, population increases and land-use

change have been discussed as causes of grassland degradation (Harris,

2010; Lehnert et al., 2016; Miehe et al., 2019). Specifically, climate

variability of rising air temperature combined with declining pre-

cipitation could be an explanation of vegetation cover decline on the

QTP (Lehnert et al., 2016), except at the highest altitudes where ve-

getation may move upwards due to global warming (see Fig. S3)

(Dolezal et al., 2016). Increasing human disturbance via road and

township development and grassland privatization (Li et al., 2018a)

resulted in grassland loss, furthermore, overgrazing in the vicinity of

human settlements caused vegetation cover reductions (Li et al., 2019).

Reduced vegetation cover creates a favorable condition for the invasion

of pikas (Ochotona curzoniae) therefore causing soil-patch development

and grassland degradation (Li et al., 2013). Heavy grazing and intensive

activities of pika further encourage the invasion of unpalatable and

poisonous plant species (Wen et al., 2013).

Warming and wetter climate along with sustainable stocking density

of grazing animals might improve vegetation growth (Huang et al.,

2016), especially climate warming facilitating vegetation growth by

reducing growth constraints and increasing photosynthetic rates (Peng

et al., 2012; Wang et al., 2016a), which might explain the improving
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conditions indicated by increasing NDVI (Zhang et al., 2014; Zhong

et al., 2010) and decreasing spatial heterogeneity. Furthermore, eco-

system restoration projects revegetated severely degraded grasslands,

which can be a reason for improving conditions monitored in this study

(Cai et al., 2015; Gao et al., 2019). However, many of these are spec-

ulative explanations and further research is needed for understanding

causes of grassland degradation on the QTP (Cao et al., 2019).

Defining solid criteria for evaluating grassland degradation on the

QTP is essential for quantifying the extent of degradation and exploring

drivers of grassland degradation (Cao et al., 2019), although widely

accepted criteria are challenging to define considering wide ranges of

grassland types and climate conditions (White et al., 2000). In this

study, we defined the grassland degradation levels based on a sequen-

tial degradation process on the QTP, which proceeds from intact

grassland to species invasion, grassland fragmentation and cover re-

duction, development of bare-soil patches and finally to the removal of

all vegetation at the desert stage (Liu et al., 2008). Our study char-

acterise this degradation sequential process using indicators of changes

in grassland cover and spatial heterogeneity. However, only these two

indicators can not tell a complete picture of grassland degradation. On

the QTP, varying standards and indicators have been used to define

degradation at different spatial scales, resulting in uncertainties about

the real situation and trends of grassland degradation (Liu et al., 2018;

Miehe et al., 2019). Currently, all indicators used for classifying

grassland degradation are either only based on field observations

(Wang et al., 2010a, 2010b; Guo and Wang, 2013; Feng et al., 2005) or

only satellite-data analysis (Fassnacht et al., 2015; Li et al., 2014b; Liu

et al., 2008, Zhang et al., 2014; Zhong et al., 2010). We propose that

combined indicators based on field measurements on soil properties,

species composition and satellite analysis are important to upscale field

measurements to large areas for a complete view of grassland de-

gradation on the QTP. We found that combined changes in NDVI and its

spatial heterogeneity offer a better indicator for assessing grassland

degradation than only using vegetation cover. The proposed indicators

allow researchers to assess grassland degradation at various scales both

at field level and from satellite observations. They therefore serve as

indicators for evaluating grassland degradation on the QTP. The in-

dicators may also be applicable to other arid ecosystems where the

development of bare-soil patches has also widely been observed (Aguiar

and Sala, 1999; Bestelmeyer et al., 2013; Kéfi et al., 2007).

6. Conclusion and outlook

We studied whether vegetation cover, spatial heterogeneity and

their changes can be used to define grassland degradation levels on the

eastern QTP. We found that a combination of changes in vegetation

cover and in its spatial heterogeneity during 2000–2016 could indicate

previously defined degradation levels (Liu et al., 2008). Grassland cover

and its spatial heterogeneity have changed in most of the study area,

indicating that grassland areas have moved into new degradation stages

over the studied time interval.

Areas classified as degraded in 2004 generally became more de-

graded, as suggested by the reduction of vegetation cover and increases

in the number of bare-soil patches. However, areas classified as de-

sertified in 2004 showed signs of recovery or re-growth, as suggested by

increasing vegetation cover and increasing spatial heterogeneity. Based

on these observations, we define new degradation levels for the QTP

grasslands in 2016. Our results suggest that large parts of the total study

area (63%) have undergone degradation during the study period, and

2% of the western part of the study areas are now at risk of desertifi-

cation. Nevertheless, 24% and 11% of the total study area have been

improving or recovering, respectively, and these areas are concentrated

at high elevation or in severely degraded grassland.

However, grassland degradation is a complicated process that not

only involves changes in vegetation cover and spatial heterogeneity but

also changes in soil properties and species composition, among other

factors (Zhang et al., 2018). The proposed new indicators of changes in

vegetation cover and spatial heterogeneity can be estimated with both

field and satellite observations, which is important for upscaling field

observations to a larger scale to have a comprehensive picture of

grassland degradation on the QTP. Combining the remote sensing in-

dicators with field-based indicators on plant community and soil

characteristics might be the future direction for evaluating grassland

degradation levels and developing efficient mitigation strategies.
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