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ARTICLE OPEN

Deep learning-based behavioral analysis reaches human

accuracy and is capable of outperforming commercial

solutions
Oliver Sturman1,2, Lukas von Ziegler1,2, Christa Schläppi1,2, Furkan Akyol1,2, Mattia Privitera1,2, Daria Slominski1,2, Christina Grimm2,3,

Laetitia Thieren2,4, Valerio Zerbi2,3, Benjamin Grewe2,5,6 and Johannes Bohacek 1,2

To study brain function, preclinical research heavily relies on animal monitoring and the subsequent analyses of behavior.

Commercial platforms have enabled semi high-throughput behavioral analyses by automating animal tracking, yet they poorly

recognize ethologically relevant behaviors and lack the flexibility to be employed in variable testing environments. Critical

advances based on deep-learning and machine vision over the last couple of years now enable markerless tracking of individual

body parts of freely moving rodents with high precision. Here, we compare the performance of commercially available platforms

(EthoVision XT14, Noldus; TSE Multi-Conditioning System, TSE Systems) to cross-verified human annotation. We provide a set of

videos—carefully annotated by several human raters—of three widely used behavioral tests (open field test, elevated plus maze,

forced swim test). Using these data, we then deployed the pose estimation software DeepLabCut to extract skeletal mouse

representations. Using simple post-analyses, we were able to track animals based on their skeletal representation in a range of

classic behavioral tests at similar or greater accuracy than commercial behavioral tracking systems. We then developed supervised

machine learning classifiers that integrate the skeletal representation with the manual annotations. This new combined approach

allows us to score ethologically relevant behaviors with similar accuracy to humans, the current gold standard, while outperforming

commercial solutions. Finally, we show that the resulting machine learning approach eliminates variation both within and between

human annotators. In summary, our approach helps to improve the quality and accuracy of behavioral data, while outperforming

commercial systems at a fraction of the cost.
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INTRODUCTION
Accurate analysis of rodent behavior is crucial when assessing
treatment efficacy in preclinical research. The rapid development
of new tools and molecular interventions in rodents, as well as the
growing number of available transgenic mouse lines, increase the
need to accurately and efficiently detect and quantify rodent
behavior [1, 2]. Typically, behavioral analysis relies on commercial
equipment to track an animal’s path of movement or measure the
time spent in specific areas of testing arenas. Commercial
solutions usually use video tracking or infrared beam grids, and
are available either as stand-alone software packages (EthoVision,
Anymaze), or are integrated with hardware to create all-in-one
behavioral analysis apparati (e.g., TSE Systems, Campden Instru-
ments, Med Associates). Such systems enable researchers to
conduct semi high-throughput behavioral screenings [3]. How-
ever, commercial solutions are not only expensive, but also lack
the ability to flexibly define and score specific behaviors of interest
and often cannot be adapted to fit changing experimental needs.
Even more problematically, their tracking ability is often

suboptimal and they measure ethological behaviors with poor
sensitivity [4–7]. As a result, human scoring has remained the gold
standard when quantifying ethological behaviors. However,
human annotators tire when performing repetitive tasks and their
performance may vary across days. Further, the complexity of
animal behavior can overwhelm the annotator, and subtle
differences in the definition of complex behaviors can further
increase the variability between human annotators, leading to
high inter-rater variability [4, 8–11].
Recently, major advances in machine learning have given rise to

the first descriptions of unsupervised analyses of behavior,
revealing the stunning temporal and structural complexity of
rodent behavior [12–16]. However, these advanced analyses are
challenging for many biology and behavioral research labs to
establish, which probably explains why they have not yet been
widely implemented by the behavioral research community. An
elegant and accessible implementation of deep learning for
motion tracking and markerless pose estimation is DeepLabCut
(DLC), an open source software package that has been rapidly
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disseminating across animal behavior laboratories throughout the
world [17, 18]. In contrast to commercial systems, DLC allows the
user to define and track specific points of interest (e.g. specific
body parts). Due to this increased level of detail and flexibility, we
tested if DLC could be harnessed to replace existing commercial
tracking packages, and whether it could be combined with
machine learning to help reach human accuracy when scoring
complex, ethological behaviors. Behavior tracking and analysis is
performed in a vast number of behavioral tests for rodents. In this
report, we focus on three of the most popular behavioral assays
routinely used in preclinical research: the open field test [19]; the
elevated plus maze [20, 21]; and the forced swim test (FST) [22]. A
search on pubmed showed that these tests have been used in
more than 10,000 research papers to date, with a steady increase
over the last decade (Fig. S1). Several task-specific ethological
behaviors have been documented [23, 24] including head dipping
in the elevated plus maze [21, 25]; rearing in the open field test
[6, 26, 27]; and floating in the FST [28], which are three prominent
examples of ethological behaviors associated with emotional and
disease states [29, 30]. For instance, reduced exploration (rearing/
head dipping) indicates anxiety [6], and floating in the FST has
been linked to adaptive stress-coping behaviors [31], although it is
also frequently used to screen the antidepressant activity of new
drugs [32]. Therefore, being able to accurately score and report
these behaviors adds an important layer of information to
the basic motion path of the animal. In this work we couple
DLC-tracking with supervised machine learning. We then
carefully compare this approach to commercial platforms
(the video tracking software EthoVision XT14 from Noldus, and
the ‘all-in-one’ Multi Conditioning System from TSE systems), and
to behavior rated by several human annotators (the gold
standard).

MATERIALS AND METHODS
A detailed description of all procedures is found in Supplementary
Materials and methods.

Animals
C57BL/6J (C57BL/6JRj) mice (male, 2.5 months of age) were
obtained from Janvier (France). Mice were maintained in a
temperature- and humidity-controlled facility on a 12-h reversed
light–dark cycle (lights on at 08:15 am) with food and water ad
libitum. Mice were housed in groups of 5 per cage and used for
experiments when 2.5–4 months old. For each experiment, mice
of the same age were used in all experimental groups to rule out
confounding effects of age. All tests were conducted during the
animals’ active (dark) phase from 12–5 pm. Mice were single
housed 24 h before behavioral testing in order to standardize their
environment and avoid disturbing cage mates during testing
[33, 34]. All procedures were carried out in accordance to Swiss
cantonal regulations for animal experimentation and were
approved under license 155/2015.

Open field test (OFT)
OFT took place inside sound insulated, ventilated multi condition-
ing chambers (TSE Systems Ltd, Germany). The open field arena
(45 × 45 × 40 cm [L ×W × H]) consisted of four transparent Plex-
iglas walls and a light gray PVC floor. Animals were tested for
10min under dim lighting (4 lux). Distance, time in center,
supported rears and unsupported rears were recorded.

Elevated plus maze (EPM)
The EPM was made from gray PVC, with arms measuring 65.5 ×
5.5 cm (L ×W), elevated 61.5 cm. Light intensity in the open arms
was at 19–21 lux. All EPM tests were 10min in duration. Distance,
velocity, time in zone (open/closed arms + center) and head dips
were recorded.

Forced swim test (FST)
Animals were forced to swim in a plastic beaker (20 cm diameter,
25 cm deep) filled to 17 cm with 17.9–18.1 °C water for 6 min.

Noldus EthoVision
EthoVision XT14 was used to acquire all forced swim and elevated
plus maze videos and to analyze all of the open field videos. The
automatic animal detection settings were used for all tests, slight
tuning of these settings was performed using the fine-tuning
slider in the automated animal detection settings to ensure the
animals could be tracked throughout the entire arena. We ensured
that there was a smooth tracking curve and that the centerpoint
of the animal remained stable before analysis took place.

DeepLabCut (DLC)
DeepLabCut 2.0.7 was used to track 13 body points and several
points of the various arenas (Fig. 1). The networks for different
tests were trained using 10–20 frames from multiple randomly
selected videos for 250,000–1,030,000 iterations (for details
see Supplementary Materials and methods). The data generated
by DeepLabCut were processed using custom R Scripts that are
available online (https://github.com/ETHZ-INS/DLCAnalyzer).

TSE Multi Conditioning System
Locomotion was tracked using an infrared beam grid; an
additional beam grid was raised 6.5 cm above the locomotion
grid to measure rearing. The central 50% (1012.5 cm2) was defined
as the center of the arena. To automatically distinguish supported
from unsupported rears, we empirically determined the area in
which mice could not perform a supported rear. Thus, all rears
within 12.5 cm of the walls were considered supported rears, while
rears in the rest of the field were considered unsupported rears.
Rearing was defined as an interruption of a beam in the z-axis for a
minimum of 150 ms. If another rear was reported within 150 ms of
the initial rear, it was counted as part of the initial rear.

Analysis of DLC coordinates
X and Y coordinates of DLC-tracking data were imported into R
Studio (v 3.6.1) and processed with custom scripts (https://github.
com/ETHZ-INS/DLCAnalyzer). Values of points with low likelihood
(>0.95) were removed and interpolated using the R package
“imputeTS” (v 2.7). The speed and acceleration of each point was
determined by integrating the animal’s position over time. Points of
interest relating to the arenas were tracked and median XY
coordinates were used to define the arenas in silico. The pixel-to-
cm conversion ratio for each video was determined by comparing
the volume of the arena in silico in px2 to the measured size of the
arena in cm2. Zones of interest were calculated from the arena
definitions using polygon-scaling functions. Detailed descriptions of
how individual behaviors were computed can be found in Supple-
mentary Materials and methods.

Time resolved skeleton representation
A position and orientation invariant skeletal representation was
created from the DLC tracked coordinates at each frame. Based on
distances, angles and areas, 22 variables were used as features for
the supervised machine learning. For details of the feature
description see Supplementary Materials and methods.

Machine learning approach
In order to create a training dataset, 20 videos of the OFT were
manually labeled (using VIA video annotator [35]), indicating
the onset and offset of selected behaviors. Labeled behaviors
include ‘supported rear’, ‘unsupported rear’, and by default ‘none’.
Videos were labeled by three independent raters. These sets of
labeling data were used to train multiple neuronal networks for
the classification of the selected behaviors. Labeling data are
deposited online (https://github.com/ETHZ-INS/DLCAnalyzer), as
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well as all videos (https://zenodo.org/record/3608658). The
machine learning approach is described in the Supplementary
Materials and methods.

Computer specifications and prior experience of experimenters
We used a Dell XPS 8930 workstation (Intel Core i7-8700K, 16GB
RAM(DDR4), 512GB SSD, 2TB HDD, Nvidia GTX 1080 GPU) to
implement the DLC-based approach, and to train the machine learn-
ing classifiers. We investigated the labeling, training, and analysis
times of networks that use different numbers of labeled points. It
takes an experienced experimenter ~5min to label 20 frames with
18 points of interest (13 labels on the mouse and 4 or more labels
on the arena, based on its complexity). Using the same computer
described above, the network then trains overnight (ca. 11 h), and a
10-min video (928 × 576 pixels, 25 fps) is analyzed in ca. 9min (see
Supplementary Table S1). However, analysis/processing speed
depends heavily on the hardware used, with GPU type and pixel
number/frame size being of great importance [36].

Behavior analysis
All annotators were trained by an expert behaviorist and reached
a consensus on what constitutes each behavior before scoring any
behavior. In the case of large discrepancies between annotators,
the annotator in question was retrained, re-blinded and given the
opportunity to score again. This was not the case for the live
scoring, where the annotators initial values were reported. For
detailed descriptions of behavior definitions see Supplementary
Materials and methods.

Statistical analysis
Data were tested for normality and all comparisons between
normally distributed datasets containing two independent groups

were performed using unpaired t-tests (two-tailed), whereas all
comparisons between more than two groups were performed
using one-way ANOVAs in order to identify group effects.
Significant main effects were then followed up with post-hoc
tests (Tukey’s multiple comparison test). We also report the
coefficient of variation (CV) in order to show the dispersion of the
data around the mean.

RESULTS
Accurate animal tracking
Our goal was to compare the tracking performance of DLC to
commercial solutions using three of the most popular rodent
behavior tests in basic neuroscience research: the open field test,
the elevated plus maze, and the FST. Robust tracking was
previously demonstrated using DLC [17] and other open source
tracking software (e.g. ezTrack) [37], thus we established DLC
tracking in arenas that are compatible with commercial systems
we routinely use in our lab. We labeled 13 standardized body
points when tracking the mouse in each test (Fig. 1a). The labels
relating to the arenas are particularly important (Fig. 1b–d), as they
enable the calculation of standard parameters such as time spent
in certain areas and distance traveled.

Open field. We benchmarked DLC-tracking performance against
commercial behavioral tracking solutions. Where possible, we
scored each test using the “tracking-only” software EthoVision
XT14 (Noldus), and the “all-in-one” TSE Multi Conditioning system.
We tested 20 mice in the TSE Multi Conditioning System’s OFT
arena, the videos acquired from these tests were then analyzed
using EthoVision XT14 and DLC. In the OFT, simple tracking
parameters such as distance traveled and time spent in zone
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(center) were comparable between DLC and EthoVision. However,
TSE’s Multi Conditioning system reported a significantly different
mean distance traveled (One-way ANOVA, F(2,57)= 331.9, P <
0.0001, CV= DLC:12.24%, EthoVision: 11.03%, TSE: 16.83%). TSE
reported a similar value to that of DLC and EthoVision for time in
center (CV time in center= DLC:46.28%, EthoVision: 45.05%, TSE:
43.09%) (Fig. 2). Heatmaps can also be plotted from all systems
showing that time in zone is for the most part comparable
(Fig. S2). The vastly different distance reported by the TSE system
is likely due to its reliance on an infrared beam grid, which
predicts the centerpoint of the animal based on the number and
location of the beams that are broken. Thus, slight movement of
the animal can lead to relatively large movements of the
centerpoint, which could inflate the total distance traveled. This
issue does not appear to affect the time spent in zones, since the
fluctuation of centerpoint is unlikely to be large enough to move
across zones. The distance recorded by the TSE system also
correlates poorly with the other systems, thus we were concerned
that such an inaccurate measure would lead to imprecise
experimental results. To address this, we used a large cohort of
mice (n= 59) available to us from another study, which were
either normally reared in our facility (same 5 mice per cage after
weaning, n= 29), or they were reared with high social exchange
(new cage mates twice a week starting at weaning, n= 30). We
tested these mice in adulthood in the open field test. When
tracking with the DLC-based approach, we found that the social
exchange group had higher locomotor activity (Fig. S3a, t(57)=
4.34, q= 0.004, multiple testing adjustment using Benjamini and
Yekutieli correction) and spent more time in the center of the

open field (t= 3.03, q= 0.015, Fig. S3b). When analyzed with the
TSE system, ‘distance traveled’ did not reach statistical significance
between groups (t= 2.57, q= 0.053, Fig. S3a), while time in center
was significant (t= 3.07, q= 0.028, Fig. S3b). Therefore, the
inaccurate distance tracking of TSE indeed occludes a clear
biological effect. A power analysis shows that it would require 60
animals per group to achieve a 95% chance of successfully
replicating the effect using the TSE system, but only 20 animals
per group to replicate the effect with the DLC-based approach
(Fig. S3e).

FST and EPM test. The FST and EPM analyses could not be scored
using the TSE Multi Conditioning System, since the EPM/FST
apparatus is not compatible with its “all-in-one” setup. We
therefore acquired videos of 29 mice performing the FST, and
24 mice performing the EPM using EthoVision, which were later
analyzed using DLC. Using DLC and EthoVision XT14, we found no
significant differences regarding distance traveled in the FST or
EPM (CV distance swim= DLC:23.71%, EthoVision:26.76%, CV
distance EPM= DLC:32.75, EthoVision:32.74) or time in zones (CV
Time in Open EPM= DLC:59.88, EthoVision:58.79; CV Time
in Closed EPM= DLC:37.66, EthoVision:36.26; CV Time in Center
EPM= DLC:55, EthoVision:56.73) (Fig. 3), again showing that both
approaches can accurately track movement.

Quantifying ethological behaviors with post-hoc analyses
Floating in the FST. Providing evidence that DLC can perform
basic tracking functions similarly to commercial software/hard-
ware packages, we next attempted to score ethological behaviors
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using the coordinates for each datapoint tracked by DLC. Animals
were considered to be floating depending on the rate of change
of the polygon “body area” (Fig. 4b). To establish the best possible
‘ground truth’, three human annotators manually scored floating
behavior in a set of ten FST videos. Using the same videos, we
were able to accurately identify floating behavior (Fig. 4d). In
addition, we compare this to the ‘activity’ module for EthoVision

XT14, which can be used to score floating behavior. We detected
no significant differences in time floating, with EthoVision
showing a better correlation with manual scoring than DLC.

Head dips in the elevated plus maze. In the EPM, we recorded
head dips—an exploratory behavior—using DLC and EthoVision
(Fig. 4d). Here we saw significant group effects (One-way ANOVA,

DeepLabCut EthoVision

0

1000

2000

3000

4000

5000

Distance

cm

Distance

0

100

200

300

400

Time in Open Arms

S
e
c
o
n
d
s

0

200

400

600

Time in Closed Arms

S
e
c
o
n
d
s

0

1000

2000

3000

4000

5000

Pearson's Correlation: 

Distance

DeepLabCut (cm)

E
th

o
V

is
io

n
(c

m
) r=0.99

Pearson's Correlation: 

Distance

0

100

200

300

400

Pearson's Correlation: 

Time in Open Arms

DeepLabCut (s)

E
t h

o
V

i s
io

n
( s

) r=0.98

0

200

400

600

Pearson's Correlation:

Time in Closed Arms

DeepLabCut (s)

E
th

o
V

i s
io

n
( s

) r=0.99

Videos

DeepLabCut

EthoVision

Post-hoc Analysis Results

Results

a)

b) c)

d) e)

f) g)

h) i)

DeepLabCut EthoVision 0 200 400 600

DeepLabCut EthoVision 
0 100 300 400200

0 1000 3000 40002000

0

1000

2000

3000

4000

cm

0

1000

2000

3000

E
th

o
V

is
io

n
( c

m
)

r=0.99

DeepLabCut EthoVision

DeepLabCut (cm)

0 1000 2000

Fig. 3 A comparison of basic tracking parameters in the forced swim test and elevated plus maze. a Schematic showing the workflow of
the comparison between systems. b, d, f, h Basic tracking parameters in the forced swim test and elevated plus maze as reported by both
DeepLabCut (with post-hoc analysis) and EthoVision XT14. c, e, g, i Correlation between the scores of the two systems. Data expressed as
mean ± standard error of the mean. Colors represent individual animals and are consistent across analysis techniques for comparison (FST n=
29, EPM n= 24) *p < 0.05.

Deep learning-based behavioral analysis reaches human accuracy and is. . .

O Sturman et al.

1946

Neuropsychopharmacology (2020) 45:1942 – 1952



F(4,20)= 23.82, P < 0.0001, CV head dips= R1:50.71 %, R2:46.38 %,
R3:45.54 %, DLC:47.03 %, EthoVision:28.33%), with differences
between all groups and EthoVision (Tukey’s multiple comparisons
test, q= 10.96(R1), 11.50(R2), 10.83(R3), 9.60(DLC), df= 20, p <
0.0001), but no differences between human annotation and DLC.

To test whether these differences have direct biological relevance,
we injected a small cohort of mice with either 3 mg/kg yohimbine,
an alpha2-adrenoceptor antagonist known to trigger anxiety
through increased noradrenaline release in the brain [38, 39].
Fifteen minutes after injection, mice were tested on the EPM
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(Fig. 4h). We observed no significant differences between the time
both groups spent on the open arm, with either our DLC approach
or EthoVision (Fig. 4i). However, when measuring head dips, both
manual scoring and our DLC-based analysis detected a significant
reduction in head dips after yohimbine injection (manual: t= 3.68,
df= 10, p= 0.004; DLC: t= 3.21, df= 10, p= 0.009), showing the
expected decrease in exploratory behavior associated with
increased anxiety. In contrast, EthoVision failed to detect a
significant group effect (t= 2.08, df= 10, p= 0.064.) (Fig. 4j). This
is likely due to EthoVision’s lower correlation to manual scoring
(r= 0.82 as opposed to 0.92 with DLC-based tracking) (Fig. 4k),
presumably caused by an inappropriate parametric definition of
head dip behavior, which is addressed in more detail in the
discussion.

Flexible tracking in a variety of scenarios. To further demonstrate
the versatility of our approach, we extended our tracking analysis
to two tests that rely on accurate tracking of the animal in slightly
more complex environments, the 3 Chamber Sociability Test
(3CST) and the Barnes Maze. Neither of these tests are available for
static systems like the TSE setup, but can be scored with
EthoVision. The 3CST assesses sociability in mice, by measuring
how much social approach/interaction a freely moving mouse
displays toward an enclosed conspecific [40]. We demonstrate
that the amount of social interaction (defined as time the tip of
the nose is in the interaction zone) is highly correlated between
the DLC-based tracking and EthoVision tracking (Pearson’s r=
0.95, p < 0.001, Fig. S4c), and that mice spend more time
investigating the enclosure containing the conspecific than the
enclosure with a novel object (Fig. S4). Similarly, the Barnes Maze
relies on accurate tracking to test how fast an animal acquires a
spatial memory by finding an escape tunnel or a food reward in
one of many holes placed around a circular platform [41]. Our
approach precisely tracks the movement of a mouse across the
maze, and records the time it spends investigating different holes
(Fig. S5).
We then leveraged the increased flexibility and accuracy of our

approach to quantify changes in head angle, using tracking data
from nose, neck, and tailbase (see Fig. S6b), which is currently
impossible to track with commercially available systems. Head
angle is an important, biologically relevant measure in many
different circumstances (e.g., object exploration tasks or swim
direction in the Morris water maze). Here, we aimed to quantify
the rapid changes in head angle induced by optogenetic
stimulation of striatal D2 medium spiny neurons. This manipula-
tion is well-known to elicit ipsiversive (clockwise) head rotations,
which can lead to full-body rotations when the animal is moving.
Full-body rotations can be quantified with commercial systems
[42–44], yet it is not possible to continuously track the mouse
head angle over time, which hampers the quantification of subtle
changes driven by D1/D2 excitation:inhibition imbalances. Our
analysis shows that head-turns (up to 40°) are immediately
triggered by optogenetic stimulation, and quickly disappear after
stimulation has terminated (Fig. S6c). This effect is robust and it
can be reliably quantified at the single-subject level (Fig. S6d), as
well as at the group level (Fig. S6e)

Quantifying ethological behaviors with machine learning
Floating in the FST. So far, we have demonstrated that manually
defined parameters can be used to automatically determine
distinctive behaviors based on custom-defined criteria and simple
post-hoc scripts to analyze tracking data generated by DLC.
However, we found that using this approach for more complex
behaviors was labor intensive, arbitrary and sometimes inaccurate,
as exemplified by the fact that this ad-hoc approach could not
outperform the floating analysis performed by EthoVision (see
Fig. 4d). Therefore, we first determined whether we could improve
the detection of floating behavior by training a supervised
classifier on the acceleration of all body points. To gain enough
data to train a neural network, we increased the number of
labeled videos provided by one experimenter to 20. We then
trained a small artificial neural network (2 layers, L1= 256
neurons, L2= 128 neurons, fully connected) to recognize short
sequences of body point accelerations during epochs of floating
and not floating. We used the data of one annotator (Rater 1) to
train ten behavior classifiers. To cross validate classification
performance we trained each classifier on 19 videos and then
tested on the remaining video. We cross validated with the same
videos that were used for Fig. 4d. The new classifier showed the
highest correlation with human labeling of Rater 1 (Pearson’s r=
0.97), thus outperforming the manual cutoff (Pearson’s r= 0.89)
and EthoVision (Pearson’s r= 0.95). The classifier also outper-
formed EthoVision when compared to the other two raters
(Fig. S7b). Notably, the classifier showed a similar correlation to
other human raters as the original rater, indicating that it
performed just as well (Fig. S7b). Interestingly, when taking the
average of all raters (“Rater Average”, Fig. S7b), the correlation of
both EthoVision and the new classifier each reach near perfect
correlation (r= 0.99), strongly suggesting that individual human
raters are less reliable than well-calibrated automated approaches.

Rearing in the open field test. We then applied supervised
machine learning to recognize complex behaviors in the open
field test. We used the coordinates for each datapoint tracked by
DLC to reconstruct a rotation and location invariant skeletal
representation of the animal (Fig. S8). We then trained a small
artificial neural network (as described above) to recognize short
sequences of the skeletal representation during epochs of
supported and unsupported rears. We focused on rearing in the
open field since supported and unsupported rears are very similar
movements (both include standing on hind legs), which are
difficult to score automatically [6]. Again, we had three annotators
scoring 20 videos (10 min long) to set the ground truth for rearing
frequency, and annotate the exact onset and offset of each
behavior. We used the data of each annotator to train 20 behavior
classifiers. To cross validate classification performance we trained
each classifier on 19 videos and then tested on the remaining
video. This allowed us to assess the classifier’s performance and to
calculate correlation to the human annotation. Overall our
behavior classifiers reached a frame-to-frame accuracy of 86 ±
3% (Fig. S9). No significant differences were observed between
any of the human investigators (R1–3) or the machine learning
classifiers trained using their data (MLR1–3) in the scoring of either

Fig. 4 A comparison of quantifying ethological behaviors in the forced swim test and elevated plus maze. a Schematic of the workflow for
the comparison between systems. b, c The polygon used in the definition of floating, and the body points taken into account when defining
head dips. d, e Floating in the forced swim test and head dips in the elevated plus maze as reported by three human annotators (rater 1–3),
DeepLabCut (with post-hoc analysis), and EthoVision XT14’s behavioral recognition module. f, g Correlation analysis for comparison between
approaches. h Schematic showing the experimental design for yohimbine injections. i Time spent in the open arms after injection with
yohimbine (3 mg/kg) or vehicle, as reported by DeepLabCut and EthoVision. j Head dips as reported manually, by DeepLabCut (with post-hoc
analysis) and EthoVision. k Correlation analysis for comparison between approaches regarding head dips. Data expressed as mean ± standard
error of the mean. Colors represent individual animals and are consistent across analysis techniques for comparison (FST n= 10, EPM n= 5)
**p < 0.01, ****p < 0.0001.
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supported rears (CV= 16.41% (R1), 16.04% (R2), 19.04% (R3),
15.75% (MLR1), 16.85% (MLR2), 17.23% (MLR3)) or unsupported
rears (CV= 50.33% (R1), 48.86% (R2), 45.84% (R3), 47.76% (MLR1),
50.67% (MLR2), 42.43% (MLR3)). Therefore, supported and
unsupported rearing can be measured as accurately by supervised
machine learning algorithms as by human manual scoring, the
gold standard in the field (Fig. S10). To address whether our
approach can be directly implemented in female mice and in
animals of different ages, we randomly selected 4 OFT tests that
had previously been conducted in females under the same
conditions in our lab. We found a high correlation and significance
between the manual and automated scoring of supported rears (r
= 0.968, p= 0.032) and unsupported rears (r= 0.969, p= 0.032)
also in females (Fig. S11). Notably, two of the female mice were
3 months old at the time of testing, and two were ~6 months old,
indicating that the algorithm appears to be reliable also when
testing mice of different ages and sizes.
We then returned to the male data to compare performance

between our approach and the commercial systems. We took the
mean score from the human investigators and the mean score
from the machine learning classifiers for each type of rearing and
compared them to those reported by the TSE Multi Conditioning
System, which includes a separate infrared tracking grid (z-grid,
which counts beam-breaks as rears) and to EthoVision’s behavior
recognition module (Figs. 5 and S10). Significant group effects
were observed in the scoring of unsupported rears (one-way
ANOVA, F(3,76)= 9.547, p < 0.0001) with differences between the
human raters and EthoVision (Tukey’s multiple comparison test,
q= 4.590, DF= 76, p= 0.0093), the machine learning-based
behavioral classifiers and EthoVision (Tukey’s multiple comparison
test, q= 6.841, DF= 76, p < 0.0001), and between EthoVision and
TSE (Tukey’s multiple comparison test, q= 6.213, DF= 76, p=
0.0002). We observed significant group differences between the
number of supported rears reported by EthoVision, TSE, and the
human and machine learning classifiers (one-way ANOVA, F(3,76)
= 104.5, p < 0.0001). Post-hoc tests reveal significant differences
between the human raters and EthoVision (Tukey’s multiple
comparison test, q= 4.518, DF= 76, p= 0.0108), and between
the human annotators and the TSE system (Tukey’s multiple
comparison test, q= 18.72, DF= 76, p < 0.0001). Similarly, the
machine learning classifiers reported significantly different results
to those reported by EthoVision (Tukey’s multiple comparison test,
q= 5.670, DF= 76, p= 0.0008) and the TSE system (Tukey’s
multiple comparison test, q= 17.57, DF= 76, p < 0.0001). The TSE
system and EthoVision were also in disagreement (Tukey’s
multiple comparison test, q= 23.24, DF= 76, p < 0.0001). Again,
no significant difference was detected between the performance
of the humans or machine learning classifiers, which were highly
correlated (Fig. 5d, e). We conclude that EthoVision reports an
inaccurate number of unsupported rears, while both EthoVision
and TSE perform very poorly on supported rears. It is important to
note that we spent a considerable amount of time and effort
calibrating the TSE system specifically to report unsupported rears
accurately. However, it appears that the TSE system cannot score
both supported and unsupported rears accurately at the same
time. In contrast, the supervised machine learning-based behavior
classifiers performed as well as the human annotators, the gold
standard in the field.

DISCUSSION
This report shows that DeepLabCut (DLC) video tracking
combined with simple post analyses can detect and quantify
behavioral data as well as—if not better than—commercial
solutions. Moreover, we developed supervised machine learning
approaches that use features extracted from the DLC-tracking
data to score complex, ethologically relevant behaviors. We
demonstrate that the machine learning classifiers approach

human accuracy, while outperforming commercial systems at a
fraction of the cost. We show that the flexibility and accuracy of
our approach can increase statistical power by reducing variability,
and that it can be readily applied to a wide variety of different
setups and more specialized measurements.
Scoring complex ethological behaviors with human-like accu-

racy is an important step forward in the analysis of behavior
[4, 15, 45–48]. Commercial attempts to automatically score
ethological behaviors have reduced intra-rater variability and
increased throughput, but at the cost of accuracy. The
machine learning approaches used here are capable of reducing
intra-rater variability by eliminating factors such as fatigue or
human bias, whilst scoring with similar accuracy as trained human
investigators. Analyzing “head dips” or “rearing” requires the
purchase of an additional module from EthoVision. In addition,
commercial packages often give explanations as to how they
define their parameters, but these definitions are not consistent
between different commercial solutions and cannot be altered.
These differences are likely the reason that EthoVision scores head
dips so poorly in comparison to human investigators (Fig. 4).
EthoVision also poorly scored grooming behavior [4], although the
reason for the poor performance often remains unclear, since the
code is not open source. Similarly, the TSE system, which relies on
infrared beam grids, is less flexible, it cannot distinguish between
different behaviors that may break the z-grid beam and is
therefore inaccurate. It is important to highlight that commercial
systems allow altering the analysis parameters (to varying degrees).
For the purposes of this report we tried to use the default/
suggested settings where possible, and invested approximately
equal amounts of time into the setup of all systems, thus giving a
representable comparison whilst acknowledging that the perfor-
mance of any system could still be improved (within limits). The
data presented here show that inaccurate tracking provided by
grid-based, commercial tracking systems (TSE) can occlude highly
significant behavioral differences between experimental groups
(Fig. S3), and that it would require a cohort of mice three-times
larger to reveal the group difference using the TSE system. Video
analysis packages such as EthoVision also have limitations, for
instance EthoVision requires the test arena to be defined prior to
analysis. Once the test arena has been defined this is no longer
flexible, meaning that if the apparatus is moved slightly
during cleaning it has to be returned to exactly where it was
when the arena was defined. Although seemingly only a
minor issue, this can drastically increase the amount of time
required to score videos in which the camera/arena moved slightly,
which can easily happen during cleaning. Since DLC-tracking also
detects the arena, it is impervious to these slight movements and
the calibration of the arena is always optimal regardless of the size
of objects in the video, making it less prone to errors when the
setup is used for multiple tests. DLC could also prove useful when
working under more ethological conditions in arenas with bedding
material/variable backgrounds. In these settings commercial
solutions will likely struggle even more, while the powerful deep-
learning approaches will get to flex their muscles.
Beyond the behaviors investigated here, researchers are of

course interested in many different behaviors such as stretching,
grooming, or social interactions. While TSE cannot detect any of
these behaviors, EthoVision can detect them with some degree of
accuracy [49], after the individual behavioral recognition modules
have been purchased. However, approaches based on point-
tracking data can be used to identify any behavior of interest
either by defining simple post-analysis parameters (e.g., elonga-
tion of body-length vectors to detect streching), or by training
machine learning classifiers. This not only saves time but also
money as similar approaches can be used to score any number of
behaviors at no cost, and ensure consistency within and between
labs. While machine learning has been used successfully to score
complex ethological behaviors before [for review, see [2]], the
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major innovation of our approach is that the input features are
based on tracking using DLC [17, 18]. DLC offers extremely precise
tracking of individual body parts, and is amongst the most
widespread and most user-friendly deep-learning-based pose

estimation tools [50–53]. In our opinion, the exact choice of pose
estimation software is not essential, although two recent preprints
have similarly opted to use DLC data for automated recognition of
complex rodent behaviors [54, 55].

Fig. 5 A comparison of complex behavioral scoring between human raters, machine learning classifiers and commercially available
solutions. a Schematic of the workflow. b, c Unsupported and supported rears in the open field test as reported by three human raters
(averaged and plotted as manual scoring) and three machine learning classifiers (averaged and plotted as ML classifiers), EthoVision XT14 and
the TSE Multi Conditioning System (TSE). d, e Correlation analysis for comparison. Data expressed as mean ± standard error of the mean.
Colors represent individual animals and are consistent across analysis techniques for comparison (n= 20). *p < 0.05, **p > 0.01, ***p < 0.001,
****p > 0.0001.
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Another key advantage of using pose estimation software to
generate the input data for machine learning classifiers is that it
offers increased tracking flexibility by enabling users to define and
record the parameters of interest themselves. In contrast,
commercial systems have unnecessary constraints or paywalls in
place. Although our training set did not contain sufficient
instances of grooming behavior to train a classifier (only 20–30
events in our entire training dataset), a recent report used
transgenic mice that show an over-grooming phenotype to train
machine learning algorithms to accurately quantify grooming
behavior, vastly outperforming EthoVision [4]. Recently, DLC-
based tracking was combined with unsupervised clustering to
reveal different subtypes of grooming (face groom, head groom
etc.) [54]. In addition, complex social behaviors can be analyzed by
combining point-tracking with supervised machine learning [55].
This confirms the enormous potential of approaches like ours,
which couple pose estimation data with machine learning
classifiers [2]. Notably, we have chosen a dense skeletal labeling
approach (13 body points) in order to have maximal flexibility
when scoring complex behaviors in multiple setups, yet similar
approaches have achieved very good accuracy with only 8 or
fewer labeled body points [54, 55].
Regarding human scoring, our annotators were all trained at the

same time by an expert behaviorist, and reached a consensus about
what constituted each behavior before beginning to score the
videos. In the case of notable discrepancies between annotators,
the annotator in question was trained again, re-blinded and given
the opportunity to re-score the videos again. This reduced inter-rater
variability that can arise from differences in the definitions of the
behaviors even within a given lab, or from subtle differences in
human judgment [4, 10, 11]. In addition, the behaviors reported here
were not scored in live, but offline, which enabled stop-and-play
analysis of videos for frame-by-frame labeling. This offers advan-
tages over live scoring, especially regarding fast or complex
behaviors. We show that human accuracy drops when scoring
behavior videos in real time (live), and that behaviors that occur in
quick succession are particularly challenging for human raters (see
Fig. S10 for live vs. offline behavioral scoring comparisons). Together,
these factors likely explain why our inter-annotator scoring
correlations are higher than some of those previously reported
(approximately r= 0.96 instead of r= 0.90 for floating [9, 56]).
Although offline labeling with this level of accuracy is extremely
time consuming (~1 h per 10-min video), once the machine learning
classifiers have been trained, no further manual scoring is required,
thus reducing the overall time and effort required to accurately
score behavior in the future.
As behavioral analysis moves more toward video tracking as

opposed to reliance on beam grids, recent developments in
unsupervised behavioral identification approaches have widened
the horizons of what was previously thought possible [1, 2].
Approaches that focus on the unsupervised identification and
separation of behavioral patterns are beginning to reveal the true
complexity and richness of animal behavior [12, 13, 16, 54],
However the interpretation of the findings from unsupervised
machine learning techniques are more difficult. Although
impressive, the implementation and use of many of these
unsupervised behavior recognition approaches is out of reach of
many basic science labs that lack the necessary programming and
machine learning know-how. Therefore, widespread use/dissemi-
nation of new cutting-edge techniques will likely depend on their
commercialization as part of user-friendly software/hardware
solutions. In contrast, modern deep learning/machine vision-
based tracking and behavioral identification approaches such as
those demonstrated here using DeepLabCut, are already taking
over the field of behavioral neuroscience. Efforts are currently
underway to generate user-friendly free software tools to facilitate
the implementation of markerless point-tracking with
machine learning approaches [54, 55]. Such advances are poised

to revolutionize the ease and consistency with which rodent
behavior can be quantified in labs across the world. In this first
systematic, head-to-head comparison, we show that such
approaches outperform commercial systems, achieve human-like
accuracy and surpass human reliability, all while being fully
automated, flexible, and affordable.
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