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SUMMARY

Coronavirus disease 2019 (COVID-19)manifests with a range of severities, but immune signatures ofmild and

severe disease are still not fully understood. Here, we usemass cytometry and targeted proteomics to profile

the innate immune response of patients with mild or severe COVID-19 and of healthy individuals. Sampling at

different stages allows us to reconstruct a pseudo-temporal trajectory of the innate response. A surge of

CD169+ monocytes associated with an IFN-g+MCP-2+ signature rapidly follows symptom onset. At later

stages, we observe a persistent inflammatory phenotype in patients with severe disease, dominated by

high CCL3 and CCL4 abundance correlating with the re-appearance of CD16+ monocytes, whereas the

response of mild COVID-19 patients normalizes. Our data provide insights into the dynamic nature of inflam-

matory responses in COVID-19 patients and identify sustained innate immune responses as a likely mecha-

nism in severe patients, thus supporting the investigation of targeted interventions in severe COVID-19.

INTRODUCTION

Coronavirus disease 2019 (COVID-19) was first identified in

December 2019 in Wuhan, China.1 The disease developed into

a global pandemic, with 60 million confirmed cases and close

to 1.5 million confirmed deaths as of the end of November

2020.2 The clinical presentation of COVID-19 can vary from

asymptomatic cases to an acute respiratory distress syndrome

(ARDS), requiring mechanical ventilation.3 Approximately 5%

of those clinically diagnosed with COVID-19 develop ARDS

and generally experience a sudden deterioration after �1week

of symptom onset.4

Severe acute respiratory syndrome-coronavirus-2 (SARS-

CoV-2), a positive-sense, single-stranded RNA virus, has been

identified as the causative pathogen of COVID-19. This virus

shows a tropism for cells expressing the angiotensin-converting

enzyme 2, which serves as an entry receptor for SARS-CoV-2

into cells of the respiratory tract, kidneys, liver, heart, brain,

and blood vessels.5 Upon infection of epithelial cells, pattern

recognition receptors that sense viral RNA initiate interferon

(IFN) production and innate immune cell recruitment, triggering

an inflammatory response that has also been linked to inflamma-

some activation in COVID-19.6,7

Early data indicated that patients with severe disease mount a

strong inflammatory response, as shown by increased levels of

proinflammatory cytokines, such as tumor necrosis factor

(TNF), monocyte chemoattractant protein 1 (MCP-1/CCL2),

and macrophage inflammatory protein 1a (MIP-1a/CCL3).8

Other studies further revealed a distinct cytokine response with

activated interleukin-1 (IL-1) and IL-6 pathways as well as che-

mokine-enriched signatures.9,10 Type I IFN response during

SARS and SARS-CoV-2 infection has gained particular attention

since a deficient or delayed type I IFN response may be associ-

ated with a severe disease course as observed in patients with

inborn errors in type I IFN response or with neutralizing autoan-

tibodies against type I IFN.11–16

Myeloid cells have been implicated in the pathophysiology of

COVID-19 by contributing to local tissue damage and as poten-

tial producers of cytokines that lead to the hyperinflammatory

state seen in severe COVID-19.17–19 Studies applying high-

dimensional single-cell analysis have shown distinct phenotypic

changes within the monocytic compartment in patients with
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COVID-19.20,21 A recent single-cell RNA-sequencing study of

bronchoalveolar lavage fluid showed changes in the local

myeloid environment toward a proinflammatory, peripheral

monocyte-derived phenotype and a depletion of alveolar macro-

phages in severe COVID-19 patients.22

These data suggest a distinct role of themyeloid compartment

in the pathogenesis of COVID-19; however, these studies have

focused mainly on the early disease course of the infection,

and data on the cellular innate immune response combined

with the underlying cytokine and chemokine network, at high

phenotypic and temporal resolution, are still sparse. Here, we

describe an in-depth, cross-sectional characterization of the

myeloid compartment in 66 patients with mild to severe

COVID-19 and 22 healthy controls by using 40-parameter

mass cytometry and targeted proteomics up to 47 days after

symptom onset. Using this systems approach, we could recon-

struct phenotypic changes arising throughout the course of the

disease both in mild and severe patients.

RESULTS

Clinicopathological assessment of patients with mild

versus severe COVID-19

To better understand the role of the myeloid compartment in the

pathophysiology of COVID-19, we established a multicenter

cohort, comprising 66 COVID-19 patients. At blood sampling,

28 patients were classified as mild COVID-19 with either mild

flu-like illness ormild pneumonia, whereas 38 patients were clas-

sified as severe COVID-19 experiencing severe pneumonia or

ARDS (Figure 1A; Table 1).23 The patient outcomes were pro-

spectively recorded, and one individual died of COVID-19. Sam-

ples of 22 healthy donors were included in the study as controls.

Patients suffering from severe disease were on average older

than those with mild disease (Figure 1B; Table 1), which is

consistent with previously published results.3 Furthermore, hy-

pertension and heart disease were significantly associated with

a severe disease course (Table 1).

The laboratory findings at admission revealed a prominent in-

flammatory state for patients with both mild and severe disease,

as evidenced by higher levels of C-reactive protein (CRP) and

pathological values of lactate dehydrogenase (LDH) in mild and

severe COVID-19 patients (Table S1). Complete differential

blood counts showed normal white blood cell counts (WBCs),

despite significant changes in the granulocyte subsets, with an

increase in neutrophils in severe COVID-19 patients and a

decrease in basophils and eosinophils in both mild and severe

COVID-19 patients compared to healthy controls (Figure 1B;

Table S1). Natural killer (NK) cell cytopenia in the

CD3�CD56brightCD16dim population was also associated with a

severe disease course (Figure 1B; Table S1), confirming previous

publications.24–26A correlationmap that included additional clin-

ical metadata of COVID-19 patients revealed that high CRP and

neutrophil counts positively correlate with measures of disease

severity, whereas lymphocytes and NK cells show an inverse

relationship to these parameters (Figure 1C). Thus, we could

recapitulate the strong inflammatory state, the changes in the

complete blood count, and the prolonged clinical course before

deterioration, which make COVID-19 a distinct disease.27

Systems-wide profiling of innate compartment in

COVID-19 patients

To comprehensively characterize the innate immune response

against SARS-CoV-2, we took a systems-level approach based

on mass cytometry and targeted proteomics (Figure 1A). We

used a 40-plex mass cytometry panel designed to identify

main immune cell types and further characterize myeloid cell

subsets in depth (Key Resources Table; Figures S1A–S1D).

The main cell types were identified using a random forest classi-

fier trained on manually gated cells from a representative subset

of data (Figure S1E). The cell annotation was consistent with the

t-distributed stochastic neighbor embedding (t-SNE) map visu-

alization (Figures 1D and S1F) and the expression of canonical

markers (Figure 1E). In line with previous reports,26 we observed

a decrease in T cell frequencies in severe COVID-19 cases

compared to mild cases and healthy controls, which was

accompanied by an increased monocyte frequency (Figure 1F).

Since peripheral blood mononuclear cells (PBMCs) were iso-

lated following a density gradient separation, only low-density

neutrophils were included in the analysis. Consistent with a pre-

vious report,28 this subset was present at very low frequency in

healthy controls but increased in patients infected with SARS-

CoV-2, accounting for >50% of the PBMCs in some patients

(Figure 1F).

Different myeloid landscape in patients with mild and

severe COVID-19

Neutrophils have been reported to play a key role in the develop-

ment of severe COVID-19. In particular, a high neutrophil:lympho-

cyte ratio has been associated with poor clinical outcomes, and a

CD16intCD44lowCD11bint low-density neutrophil population, asso-

ciatedwith high IL-6andTNFconcentrations,was increased in se-

vere COVID-19 patients compared to healthy controls.28 To

assess the low-density neutrophil subsets in our cohort, we used

t-SNE to visualize the expression of relevant markers on this cell

type (Figure 2A). Although all cells were positive for the canonical

neutrophil markers CD15 and CD66ace, differences in the abun-

dance of CD11b, CD11c, and CD16 were observed. Visualizing

the disease status on the t-SNE map revealed an enrichment of

CD16low neutrophils in patients with severe disease (Figure 2B).

To confirm this observation, we classified neutrophils into

CD16hi, CD16int, andCD16lowpopulationsbased onmanual anno-

tation of PhenoGraph clusters (Figures S2A and S2B). The propor-

tion ofCD16low neutrophils was significantly higher in patientswith

severe disease than in the other 2 groups (Figure 2C). TheCD16low

subset was associated with an increased proliferation rate, based

on Ki-67 expression (Figures 2A and S2C). Since mature

neutrophils do not proliferate in the periphery, this observation in-

dicates the release of immature or alternatively activated neutro-

phils into the circulation, consistent with their CD11blowCD16low

phenotype.29–31

To characterize the phenotypic diversity in the monocytic

compartment across the cohort, we visualized the myeloid-

related markers on the t-SNE map of the monocyte population

(Figure 2D). To identify monocyte subsets in an unsupervised

way, we performed automated clustering using the PhenoGraph

algorithm, which led to the identification of 13 distinct cell sub-

sets (Figure 2E). Clusters M1–M7 were characterized by a high
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Figure 1. Experimental approach, clinical

characteristics, and identification of the

main immune cell types in COVID-19 pa-

tients based on mass cytometry

(A) Schematic of the study design of the cohort.

(B) Boxplots showing the age distribution,

selected clinical parameters at admission, and the

NK cell counts in the patient cohort split by dis-

ease severity (n = 22 healthy controls, 28 mild

COVID-19 patients, and 38 severe COVID-19

patients).

(C) Correlation map of the indicated parameters

and clinical features grouped by a hierarchical

clustering on the COVID-19 patients. The circle

color reflects the magnitude of the Pearson’s

correlation coefficient (red indicates positive cor-

relation, blue indicates negative correlation). As-

terisks represent the statistically significant cor-

relations (*p < 0.05, **p < 0.01, ***p < 0.001).

(D) t-SNE plot of a random subset of 1,000 im-

mune cells of the mass cytometry analysis from

each sample (n = 78 individuals) colored by main

cell types as identified based on a random forest

cell classification.

(E) Heatmap of the normalized marker expression

in the main cell types. Relative abundances of

each cell type are plotted to the right of the

heatmap.

(F) Boxplots comparing the frequencies of the

indicated cell types in healthy controls and pa-

tients with mild and severe disease.

Statistical analyses were performed with a Mann-

Whitney-Wilcoxon test corrected for multiple

testing using the Holm method, and p values are

shown if the results were significant (p < 0.05).
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abundance of CD14, CD36, and CCR2 and the absence of

CD16, corresponding to classical monocytes. Based on CD16

expression and reduced levels of CD14, CCR2, and CD36, M8

and M9 were identified as non-classical (CD16+CD14dim) and in-

termediate (CD16+CD14+) monocytes, respectively.32M10–M13

showed an activated CD169+ phenotype. While clusters M11–

M13 shared similarities with classical monocytes, M10 was

closely related to intermediate monocytes (Figure 2F). Strikingly,

CD169+ activated monocytes (M10–M13) were found exclu-

sively in SARS-CoV-2-infected patients (Figures 2E and 2G).

The fact that CD169+ monocytes could derive both from clas-

sical and intermediate monocytes was supported by a diffusion

map analysis (Figures S2D and S2E), which aligns cells along pu-

tative developmental trajectories.33 CD169 upregulation was

accompanied by the induction of other activation markers,

including CD64, CD68, and CD38, compared to the classical

monocyte clusters M1–M3 (Figure 2G). CD141, which is associ-

atedwith anticoagulant properties,34was particularly induced on

M11 (Figure 2H). Markers involved in antigen presentation and

co-stimulation, including HLA-DR, CD86, TIM-3 and VISTA, pro-

gressively decreased in clusters M10–M13, suggesting these

clusters were part of a phenotypic continuum (Figures 2G and

2H). Proliferation, based on Ki-67 expression, was found to be

induced in these clusters, especially in M12, compared to non-

classical or CD169� intermediate and classical monocytes (Fig-

ures 2G and 2H).

Among CD169� classical monocytes, clusters M1–M3 were

found predominantly in healthy controls, whereas clusters M4–

M7weremostly found in SARS-CoV-2-infected patients (Figures

2E and 2G). Overall, CD169� classical monocytes found in

COVID-19 patients tended to express markers associated with

activation, including CD38 and CD86, compared to the classical

Table 1. Clinical and laboratory characteristics of the healthy controls and the COVID-19 patients

Disease severitya Healthy controls (n = 22) Mild cases (n = 28) Severe cases (n = 38)

Disease gradeb
Mild

illness

Mild

pneumonia

Severe

pneumonia

Mild

ARDS

Moderate

ARDS

Severe

ARDS

Grade at sampling, no. – 18 10 20 7 7 4

Maximal grade, no. – 16 8 19 7 8 8

Characteristics

Age, y, median (IQR) 32.50 (29.25–48.0) 50.5 (34.50–60.25)d 67.5 (59.0–79.0)c,d

Gender, M/F 11/11 12/16 24/14

Time after symptom onset, days – 12.86 ± 10.71 20.21 ± 11.96c

Level of care at blood sampling

Outpatient, no. (%) – 14 (50) –

Inpatient, no. (%) – 14 (50) 38 (100)c

Ward, no. (%) – 14 (50) 28 (73.7)

Respiratory supporte required, no. (%) – – 36 (94.7)

ICU, no. (%) – – 10 (26.3)

Comorbidities

Hypertension, no. (%) – 7 (25) 22 (57.9)c

Diabetes, no. (%) 1 (4.5) 4 (14.3) 12 (31.6)

Heart disease, no. (%) – 3 (10.7) 17 (44.7)c

Cerebrovascular disease, no. (%) – 1 (3.6) 4 (10.5)

Lung disease, no. (%) – 3 (10.7) 6 (15.8)

Kidney disease, no. (%) – 7 (25) 10 (26.3)

Malignancy, no. (%) – – 4 (10.5)

Systemic immunosuppression, no. (%) – 3 (10.7) 4 (10.5)

Outcome

Released/recovered, no. (%) – 28 (100) 37 (97.4)

Death, no. (%) – – 1 (2.6)

IQR, interquartile range.
aCOVID-19 disease severity at the time of blood sample collection.Mild illness andmild pneumonia are consideredmild COVID-19 disease, and severe

pneumonia and any grade of ARDS are considered severe COVID-19 disease.
bCOVID-19 grade according to World Health Organization guidelines, recorded at sampling and prospectively followed until recovery.23

cIndicates significance (p value threshold < 0.05) compared to ‘‘mild.’’
dIndicates significance in comparison to ‘‘healthy’’. Mann-Whitney-Wilcoxon test was used to test for differences between continuous variables

adjusted for multiple testing using the Holm method. Categorical variables were compared between ‘‘mild’’ and ‘‘severe’’ using Fisher’s exact test.
eSupplemental oxygen, non-invasive ventilation, or mechanical ventilation are considered respiratory support.
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Figure 2. In-depth characterization of the myeloid cells in the peripheral blood of COVID-19 patients

(A) t-SNE plots of normalized expression of the indicated markers across a maximum of 1,000 neutrophils per patient (n = 22 healthy controls, 27 mild COVID-19

patients, and 29 severe COVID-19 patients).

(B) t-SNE plot generated as indicated in (A) and colored by disease severity.

(C) Left: t-SNE plot generated as indicated in (A) and colored by CD16 expression level based on manual assignment of PhenoGraph clusters. Right: boxplot

showing the frequency of CD16low neutrophils in COVID-19 patients and healthy controls. Statistical analyses were performed with a Mann-Whitney-Wilcoxon

test corrected for multiple testing using the Holm method, and p values are shown if the results were significant (p < 0.05).

(legend continued on next page)
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monocytes found in healthy donors (Figure 2I). ClusterM7, which

expressed intermediate levels of CD169, could constitute a

stage between CD169� classical monocytes and CD169+ clas-

sical monocytes. Similar to theM11CD169+ cluster, theM6 clus-

ter displayed an increased expression of thrombomodulin

(CD141) and CD163. M4 showed a distinct phenotype with

decreased expression of CCR2, HLA-DR, CD38, CD86, and

the co-inhibitory receptors TIM-3 and VISTA, consistent with

chemotactic paralysis in a murine model.35 In summary, high-

dimensional single-cell mass cytometry analysis allowed us to

characterize the monocyte compartments of COVID-19 patients

and healthy controls with unprecedented depth and to uncover

profound changes upon SARS-CoV-2 infection.

Stratification of COVID-19 patients based on monocyte

composition

We next assessed the distribution of the 13 identified mono-

cyte clusters across patients. This analysis revealed 3 main

groups, which were enriched for either mild COVID-19 pa-

tients, healthy controls, or severe cases of COVID-19 (Fig-

ure 3A). In the group that included more mild cases, the mono-

cyte compartment consisted almost exclusively of CD169+

activated clusters (M10–M13) in different ratios, with only a mi-

nor fraction of cells from clusters M4–M7. The healthy controls

were relatively homogeneous: �80% of cells consisted of

classical monocytes (M1–M3) and �15%–20% of cells were

intermediate and non-classical monocytes (M9 and M8,

respectively), consistent with the literature.32 The group domi-

nated by patients with severe COVID-19 was characterized by

a high frequency of distinct classical monocyte subsets (M4–

M7), with frequencies of intermediate and non-classical mono-

cytes slightly higher than in the group dominated by healthy

controls.

We observed similar patterns when directly comparing differ-

ences of the monocyte cluster frequencies in healthy subjects

and patients with mild and severe disease (Figure 3B). Most

strikingly, the CD169+ clusters M10–M13 were completely ab-

sent in healthy controls. Conversely, the classical monocyte

clusters M1–M3 were present at high abundance in healthy

donors, at lower abundance in patients with mild disease, and

at intermediate abundance in patients with severe disease. The

HLA-DRlow CCR2low and the CD141+ monocytes (M4 and M6,

respectively) were virtually absent in healthy controls and were

present at higher abundance in patients with severe than in

mild disease, while the phenotypically similar M5 monocytes

originated mainly from a single patient with severe illness. The

non-classical (M8) and intermediate monocytes (M9) were signif-

icantly reduced in patients with mild disease compared to

healthy controls and were present at higher abundance in a sub-

set of patients with severe disease than in healthy controls. To

exclude a confounding effect due to age or gender differences

between the severity groups, we compared the cluster fre-

quencies in the different age and gender groups.While non-clas-

sical (M8) and intermediate (M9) monocytes increased slightly

with age in both COVID-19 patients and healthy controls, which

is consistent with the literature,37 we could not observe any

evident age or gender association for the other clusters (Figures

S3A and S3B).

To gain further insight into the relationship between the innate

immune signature and disease status, we performed a principal-

component analysis (PCA) of monocyte and neutrophil cluster

frequencies across the cohort and found that the first two prin-

cipal components enabled the stratification of subjects based

on disease status (Figure 3C, top panel). A biplot graph display-

ing simultaneously the subjects as dots and the contribution of

the different cell types on the principal components as arrows re-

vealed a strong association between clusters M1–M3 and

healthy controls (Figure 3C, bottom panel). A group dominated

by mild patients was characterized by a high abundance of clus-

ters M10–M13. A more heterogeneous set of predominantly se-

vere COVID-19 cases was defined by a higher abundance of the

clusters M4–M6, M8, and M9, as well as by CD16low low-density

neutrophils. A correlative analysis performed across innate cell

subsets and patients confirmed the pattern observed based on

the PCA analysis (Figure S3C). Thus, despite the expected diver-

sity across individuals, these multiparametric analyses identified

innate immune signatures that stratified different groups of pa-

tients. However, this stratification could be only partly explained

by disease severity, suggesting that other factors are also at

play.

Changes in innate cell frequencies over the course of

SARS-CoV-2 infection

Since the samples for different patients were collected at

different points in their disease course, the time component is

likely to have an influence on the cell cluster composition. To

investigate this possibility, we plotted the different cell type fre-

quencies as a function of time after symptom onset. The total

monocyte compartment remained relatively constant over the

disease course, while the low-density neutrophils tended to in-

crease in COVID-19 patients, compared to healthy controls early

after symptom onset, before their counts went back to baseline

values at later stages of the disease (Figure 4A). These changes

were accompanied by a decrease in CD16hi neutrophils over

time in patients with severe disease, whereas CD16low neutro-

phils remained consistently high (Figure 4B).

(D) t-SNE plots of normalized expression of the indicated markers across a maximum of 1,000 monocytes per patient.

(E) t-SNE plots generated as indicated in (D) colored by disease severity (top) and by clusters identified with the PhenoGraph algorithm (bottom).

(F) Contour plots showing the distribution of a subset of 10,000 cells from the indicated clusters for a selected set of markers. For this analysis, classical

monocytes M1–M7 were merged in a single cluster.

(G) Heatmap of the normalized marker expression in PhenoGraph monocyte clusters. The frequency of each cluster in patients with mild and severe disease and

in healthy controls is indicated as a stacked histogram to the right of the heatmap. Cell numbers for each cluster are plotted to the right of the stacked histogram.

(H) Overlaid histograms showing arcsinh transformed counts on a linear axis for selected markers for the CD169+-activated monocyte clusters.

(I) Overlaid histograms showing arcsinh transformed counts on a linear axis for the indicated markers for the classical monocyte clusters. Values in the plot

indicate median untransformed count intensities.

In (H) and (I), values on the plot indicate the median raw ion count intensity for each cluster and marker indicated.
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B C

Figure 3. Patient stratification based on myeloid signature

(A) Stacked histogram of the PhenoGraph monocyte clusters per patient (n = 75 individuals), ordered by cluster composition similarities. Disease severity and

grade for each patient are shown on top of the stacked histogram.

(B) Boxplots of frequencies of the indicated monocyte clusters in the different disease severities. Statistical analyses were performed with a Mann-Whitney-

Wilcoxon test corrected for multiple testing based on the Holm method, and p values are shown if the results were significant (p < 0.05).

(C) Top: principal-component analysis (PCA) of monocyte and neutrophil cluster frequencies andmyeloid immune cell subset frequencies across the cohort. The

PCA plot (top) shows the first 2 principal components separating the samples. The percentage of explained variance for each component is shown in brackets.

Each dot represents a patient, colored by disease status. A concentration ellipse and the mean point are shown for each group. Bottom: biplot displaying

simultaneously the observations (patients) as gray dots and the variables (cell subsets) as vectors.36 Vectors indicate the direction and strength of each cell

component to the overall distribution. Variables grouping together are positively correlated.
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Figure 4. Myeloid cell frequencies over the course of the SARS-CoV-2 infection

(A–C) Scatterplot of indicated subset frequencies of (A) total PBMCs, (B) total neutrophils , and (C) total monocytes, relative to time after symptom onset. The dots

are colored by disease grade at sampling time (n = 75 individuals). The frequencies in healthy controls are shown as a reference on the left, with a horizontal line

indicating themedian. The pseudo-time course wasmodeled using a generalized additive model for the disease severities separately (mild, blue lines; severe, red

lines). p values of generalized additive models using time as a covariate were calculated for both the mild (blue) and severe (red) patient group and are shown

when significant (p < 0.05).

(legend continued on next page)
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Themonocyte clustersM1–M13 also showed distinct changes

over the disease course. Classical monocytes typically found in

healthy controls (M1–M3) were observed at very low frequencies

in mild and severe cases sampled early during the disease

course but gradually increased in patients sampled later (Fig-

ure 4C, purple frame). The frequencies of these clusters tended

to remain at lower levels than in the healthy controls even as late

as 47 days after symptom onset. In contrast, frequencies of dis-

ease-specific CD169� classical monocytes (M4 and M6)

increased during the disease course of severe COVID-19 cases,

peaking at �3 weeks after symptom onset (Figure 4C, purple

frame). Intriguingly, mild COVID-19 cases with increased fre-

quencies of cluster M4 corresponded to patients who required

hospitalization or showed prolonged symptoms (Figure S4A).

The activated CD169+monocyte clusters M10–M13 were pre-

sent at high frequencies early during the disease course (Fig-

ure 4C, orange frame). Within the first 20 days after symptom

onset, the monocyte compartment was strongly dominated by

this phenotype, which decreased thereafter and was undetect-

able in most patients sampled >20 days after symptom onset.

This pattern was similar in mild and severe COVID-19, suggest-

ing that the time after symptomonset had a stronger influence on

CD169+-activated cluster frequency than disease severity.

The non-classical (M8) and intermediate (M9) monocyte clus-

ters were virtually absent early upon viral infection (Figure 4C,

green frame). The initial reduction was followed by their recovery

at later stages, showing a trend toward higher frequencies in pa-

tients with severe compared to mild disease for both clusters.

This finding could be explained in part by the fact that severe

COVID-19 patients tend to be older (Figure S3A).

The disappearance of non-classical monocytes and the in-

crease of CD169+ cells among classical, intermediate, and

non-classical subset at early time points was confirmed based

on a manual gating approach (Figure 4D, S4B, and S4C). Using

this strategy, we further investigated the evolution of marker

expression in classical monocytes throughout the disease

course and found that the quick induction of CD169 was accom-

panied by the upregulation of CD141, CD38, indoleamine 2,3-di-

oxygenase (IDO), and Ki-67, which is consistent with the fact that

these markers are predominantly found in CD169+-activated

clusters (Figure 4E). In summary, the analysis of cluster fre-

quencies in relation to the time after symptom onset revealed

distinct dynamic patterns of monocyte frequencies in patients

with mild and severe disease, which were most obvious at later

stages.

Temporal changes in cytokine signatures in COVID-19

patients

Monocyte development, homeostasis, and fate are strongly inter-

linked with the cytokine and chemokine environment. To probe

potential correlates to the changes seen in the myeloid compart-

ment during COVID-19 progression, we used the targeted prote-

omicsOlink assay tomeasure 92 inflammation-associated serum

proteins. The comparison of data from healthy controls and pa-

tients with severe COVID-19 showed a strong upregulation of

proinflammatory cytokines and chemokines (Figure 5A). IL-6,

TNF, IFN-g, and IL-18 were significantly upregulated (false dis-

covery rate [FDR] 1%) in patients with severe disease (Figure 5A)

consistent with previous reports.9,10 The elevated concentrations

of IL-18 and LDH may indicate a contribution of inflammasome

activation,7,13,18 although we did not detect an increase in IL-1b

(Figure S5A).

Several chemokines important for myeloid cell trafficking were

significantly upregulated in patients with severe COVID-19.

These chemokines included MCP-1, an IFN-stimulated gene

(ISG), MCP-2, MCP-3, CX3CL1 (chemotactic for non-classical

monocytes), CXCL1 (a potent neutrophil-recruiting chemokine),

the more promiscuous CCL3 and CCL4, and macrophage-col-

ony-stimulating factor (M-CSF), which is crucial for myeloid pre-

cursor survival and lineage commitment (Figure 5A).38,39

Distinct expression patterns emerged by plotting cytokine

expression versus time after symptom onset. In comparison to

healthy controls, IFN-g and MCP-2 were present at significantly

higher concentrations in patients with severe disease sampled

early after symptom onset but returned to near normal values

later in the disease course. Interestingly, in the mild group, con-

centrations of proinflammatory cytokines remained lower in pa-

tients with mild illness compared to individuals with pneumonia

(Figure 5B). Consistent with ELISA measurements, M-CSF, IL-

6, and TNF were present at higher concentrations in patients

with severe disease compared to mild disease; these cytokines

tended to be present at high concentrations throughout the dis-

ease course in patients with severe disease, whereas a decrease

was observed in patients with mild symptoms as the disease

progressed (Figures 5B and S5A). The chemokines CXCL1,

CX3CL1, MCP-1, and MCP-3 were significantly increased

compared to healthy controls in patients with severe COVID-19

independent of time after symptomonset (Figure S5B). In striking

contrast, CCL3 and CCL4 were not elevated in the first days of

the disease but were significantly increased at later stages in pa-

tients with severe disease (Figure 5B). These time-dependent

changes were confirmed with a differential expression analysis

and by binning the time after symptom onset (Figures S5C and

S5D).40 In summary, these results are indicative of a more exac-

erbated inflammatory phenotype late during the disease course

in patients with severe disease than in those with mild

symptoms.

Temporal correlation of cytokine signatures and innate

cell subsets

To better understand the interplay between these serumproteins

and innate immune cell subsets, we performed a hierarchical

clustering on a correlation map of all significantly changed

(FDR 1%) serum proteins, immune cell subsets, and myeloid

(D) Contour plots showing expression of CD14 andCD16 onmonocytes from a representative sample of a healthy donor aswell as an early- and late-stage patient

(left column). Gates and percentage of cells in each gate for classical, intermediate, and non-classical monocytes are indicated for each sample. Expression of

CD169 in each gate for each sample is displayed as overlaid histograms on the left.

(E) Scatterplots of indicated marker median ion count (MIC) in the classical monocyte gate relative to the time after symptom onset. Dots are colored by disease

grade at sampling time and healthy controls are displayed in green on the left as reference.
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clusters (Figure S6A). This approach demonstrated a strong as-

sociation of the activated CD169+ monocyte clusters M10–M13

with proinflammatory cytokines, including IFN-g, MCP-2, IL-18,

and IL-6, as well as an association of the disease-related

CD169� classical monocyte clusters M4 and M6 with transform-

ing growth factor-a (TGF-a), CCL3, and CCL4. To further under-

stand these relationships in the context of the patients in our

cohort, we performed PCA. A biplot graph revealed that certain

combinations of cell types and soluble factors stratified patients

and healthy controls (Figures 6A and 6B). One group, dominated

by patients with mild symptoms and patients sampled early in

the disease course, was defined by activated CD169+ mono-

cytes (M10–M13) in combination with MCP-2 and IFN-g. A sec-

ond group of patients, enriched for more severe, late-stage

cases, was defined primarily by disease-related CD169� clas-

sical monocytes (M4–M6) in combination with CCL3, CCL4,

and CCL23 (Figures 6A and 6B). The healthy donors were

defined by classical monocytes (clusters M1–M3) and were

located close to the majority of late-stage mild patients. Interme-

diate (M9) and non-classical (M8) monocytes contributed to both

healthy and severe groups. These data strongly suggest an

innate signature shift between the early and late stages of the

disease, leading to a divergence of patients with mild and severe

COVID-19 over the disease course. While the former become

similar to healthy controls, the latter exhibit signs of

hyperinflammation.

To further characterize the relationships between monocyte

subsets and soluble factors identified in the PCA, we performed

a direct correlation between the cluster frequencies and cytokine

levels. There was a strong correlation between the activated Ki-

67+ monocyte cluster M12 and M-CSF, IFN-g, IL-6, and TNF,

which was most evident in early-stage patients (Figures 6C

and S6B). We also found that the non-classical monocyte M8

and the intermediate monocyte cluster M9 were strongly corre-

lated with CCL3 and CCL4, but in this case the correlation was

most prominent in late-stage patients (Figures 6C, right column,

and S6C). These results suggest that the inflammatory environ-

ment found in late stages of COVID-19 is predominantly associ-

ated with the presence of the intermediate monocytes.

To determine whether the switch in signatures observed in

our pseudo-temporal analysis could be observed in individual

patients over time, we compared the cluster frequencies and

cytokine levels in 4 patients who were sampled twice. We

confirmed that the frequencies of the activated CD169+ clus-

ters M10–M13 were reduced, and the frequencies of the non-

classical (M8) and intermediate (M9) monocytes were

increased over time (Figure 6D). Confirming our pseudo-longi-

tudinal analysis, we observed decreases in IFN-g and MCP-2

over time in these re-sampled patients, accompanied by in-

creases in CCL3 and CCL4 (Figure 6E). These observations

were also confirmed in a separate, publicly available, longitu-

dinal dataset of 37 hospitalized COVID-19 patients (Fig-

ure S6D).24 Overall, these data suggest there is a coordinated

change from a signature characterized by a high abundance

of activated CD169+ monocytes, IFN-g, and MCP-2 to a

signature with increased intermediate and non-classical

monocytes, CCL3 and CCL4, in the first 2 weeks after

SARS-CoV-2 infection. Severe COVID-19 patients showed

long-lasting high concentrations of CCL3 and CCL4, demon-

strating a marked phenotypic switch.

DISCUSSION

Early in the COVID-19 pandemic, data began to suggest that pa-

tients with severe disease show hyperinflammatory immune re-

sponses with changes in the myeloid compartment toward a

proinflammatory phenotype.8,22,41 Using a systems-wide char-

acterization of immune parameters in a multicenter cohort of

COVID-19 patients and healthy controls, we identified marked

changes in the innate immune signature in SARS-CoV-2-in-

fected individuals.

Among the phenotype changes occurring early upon SARS-

CoV-2 infection, we identified a decrease in non-activated clas-

sical monocytes, a depletion of non-activated intermediate and

A B

Figure 5. Cytokine signature shift between early and late stages of disease

(A) Volcano plot of the Olink proteomics data comparing the healthy control data (n = 17) to that from patients with severe COVID-19 (n = 35). An FDR of 1% was

taken as significance cutoff. The identity is given for factors reaching significance, with the color code indicated on the right.

(B) Scatterplot of serum protein expression levels relative to the time after symptom onset. Plotted is normalized protein expression (NPX) on a log2 scale. The

dots are colored by disease grade at sampling time (n = 77 individuals). The expression levels of the healthy controls are shown as a reference on the left, with a

horizontal line indicating the median. The pseudo-time course was modeled as described in Figure 4A, and p values are shown when significant (p < 0.05).
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non-classical monocytes, and a surge of CD169+ activated

monocytes as well as low-density neutrophils.42

CD169 is quickly induced in a type I IFN-dependent manner on

the surface of monocytes upon Epstein-Barr virus (EBV) or hu-

man immunodeficiency virus (HIV) infection.43,44 CD169 has

been found on circulating monocytes in mild COVID-19 pa-

tients.20,42,45 Furthermore, CD169+ monocytes have been

shown to have a strong ISG signature in single-cell RNA

sequencing (scRNA-seq) data, which is consistent with the in-

duction of ISGs observed in our study, including CD64, CD38,

and IDO. We find that this phenotype can also be present in

severe COVID-19. Although the fate of these CD169+ CCR2+

monocytes remains elusive, the recruitment to the lung through

the CCR2-CCL2 axis is a possible option, as MCP-1 (CCL2) is

significantly upregulated in COVID-19 patients. SARS-CoV

mouse models have shown that the recruitment of proinflamma-

tory monocytes to the lungs, promoted by delayed type I

IFN signaling, drives immunopathology, and interestingly, a

A C

B

D E

Figure 6. Temporal correlation of cytokine signature and innate cell subsets

(A) Biplot of the first two principal components of a PCA based on monocyte and neutrophil cluster frequencies, myeloid immune cell subset frequencies, and

expression values of selected serum proteins. Dots represent the COVID-19 patients and healthy controls (n = 70 individuals), and the arrows indicate the di-

rection and strength of each cell and soluble components to the overall distribution. Variables that group together are positively correlated. The percentage of

explained variance for each component is shown in brackets.

(B) Scatterplot of the first two principal components of a PCA generated as indicated in (A), colored by the time since symptom onset. The shape of each dot

corresponds to the patient groups.

(C) Scatterplots of frequencies of the indicated clusters versus NPX of selected serum proteins in individual patients. The dots indicate data for individual patients

colored by disease grade. Relationship between the 2 variables is visualized with a linear regression line and quantified using a Spearman’s correlation coefficient

(Rho) with the corresponding p value. Fq, frequency.

(D and E) Scatterplots of frequencies of the indicated monocyte clusters (D) or the NPX of the indicated soluble factors (E) as a function of time after symptom

onset in individual patients who were sampled twice during the course of the study. Dots are colored by patient number, and lines connect paired samples.

Sample indicated with an asterisk was excluded from the cohort analysis due to low cell number.
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scRNA-seq study in bronchoalveolar lavage fluid of SARS-CoV-

2 infected individuals found an accumulation of monocyte-

derived macrophages and high levels of inflammatory cytokines

in severe patients.16,22 Several factors, such as a maladapted

IFN response or an inadequate T cell response in severe

COVID-19,46 may contribute to the dysregulated monocyte

response in severely ill patients. The latter could be due to sub-

optimal viral control, although T cells have also been shown to

control an overactive innate response in a murine coronavirus

infection model.47,48

The reduction of non-classical CD16+ monocytes early in the

disease course is striking and has been evaluated as a potential

marker of severeCOVID-19.20Severalmechanismssuchasdiffer-

entiation or migration, potentially dependent on CX3CL1,49 could

be involved. A recent study in bronchoscopy samples from inten-

sive care unit (ICU)-admitted COVID-19 patients found an enrich-

ment of CD16+ monocytes in the lung.50 Based on our diffusion

map analysis, CD169+ monocytes could also arise from CD16+

monocytes, similar to what was reported upon simian immunode-

ficiencyvirus (SIV)orHIV infection.51,52 Intriguingly,we founda ten-

dency toward elevated levels of activatedCD169+HLA-DRhi inter-

mediate monocytes in individuals with mild COVID-19, which is of

interest as CD16+ monocytes are critical for viral sensing. There-

fore, a strong response of this subset may be important for an

effective adaptive response to be mounted.53–55

Analysis of the inflammatory cytokine and chemokine profile to

SARS-CoV-2 infection identified a response dominated by TNF

and IL-6, in agreement with a previous report.9 The initial inflam-

matory response was dominated by IFN-g, MCP-2, M-CSF, and

IL-6, which were co-regulated with the activated CD169+ mono-

cyte subsets, most prominently with the cluster showing

increased proliferation, and the low-density granulocytes. IL-6

and M-CSF contribute to increased hematopoiesis under inflam-

matory conditions, a process called emergency granulopoiesis,38

potentially explaining the initial increase in activated monocytes

and granulocytes after SARS-CoV-2 infection. Alternatively, a

small subset of monocytes has been shown to retain proliferative

capacity, especially under inflammatory conditions, which may

also contribute to the initial surge, as we detected increased Ki-

67 positivity in these cells. However, Ki-67 positivity may

also be explained by a more immature cell phenotype.56–58 Our

proteomics panel did not include granulocyte-CSF (G-CSF) and

GM-CSF, 2 other cytokines crucially involved in myeloid homeo-

stasis.59 Immature granulocytes were increased in severely ill pa-

tients, and such dysregulated, emergency granulocytes may

contribute to severe COVID-19 pathogenesis, as previously

suggested.20,21,28

Late in the disease course, COVID-19 patients with severe dis-

ease continued to show signs of ongoing inflammation, including

abnormally high levels of TNF. The cellular signature at this stage

was driven by a surge of severe COVID-19-associated CD141+

CD163+ classical monocytes, markers recently associated with

severe COVID-19,20,21,55 and HLA-DRlow CCR2low VISTAlow

classical monocytes, reminiscent of an immune paralysis pheno-

type in monocytes. Such dysregulated monocytes may

contribute to an insufficient antiviral immune response; however,

the phenotype can also be the product of an hyperinflammatory

environment.27 We find that the chemokine signature was

dominated by CCL3 and CCL4, which were correlated with the

reappearance of intermediate and non-classical monocytes.

These CCR5 ligands drive the recruitment of a variety of immune

cells such as neutrophils and monocytes, but also adaptive im-

mune cells, and are increased early in the serum and lungs of pa-

tients with certain acute respiratory viral infections.60,61 In

contrast, these chemokines quite distinctly increased late during

the disease course in our cohort, and their production at this

stage in severe COVID-19 seems to be a correlate of ongoing

local inflammation and may contribute to tissue damage. Both

chemokines have been shown to be produced on a transcrip-

tional level by monocytes isolated from the lungs of severe

COVID-19 patients.13,22

In summary, our systems-level analysis of the innate immune

response to SARS-CoV-2 shows that there are profound

changes in the peripheral monocyte compartment of COVID-

19 patients, with a previously underappreciated temporal dy-

namic. Even though patients with mild and severe disease

showed similar phenotypic changes early after symptom onset,

we found a stronger inflammatory phenotype throughout the dis-

ease course of patients experiencing severe symptoms, and

could show for the first time that severe COVID-19 patients

had a distinct innate signature at later stages of the disease.

These results provide evidence for a strong inflammatory

response to SARS-CoV-2 infection, further supporting the inves-

tigation of targeted interventions in severe cases of COVID-19.18

The distinct temporal changes in immune signatures indicate

that specific interventions may benefit from precise timing to

maximize therapeutic efficacy.59,62

Limitations of study

A limitation of our study is that the cellular trajectories identified

during acute infection rely on cross-sectional samples collected

from patients at different times after symptom onset. We were

able to analyze only 4 patients in a longitudinal manner, but

confirmed our findings by analyzing a publicly available longitu-

dinal dataset,24 which provided strong support for our pseudo-

temporal analysis.

Another limitation of the study is that the different groups

could not be completely age and gender matched due to

COVID-19-associated clinical risk factors. However, our ana-

lyses revealed that time after symptom onset and disease

severity are the key factors that explain signature shifts upon

SARS-CoV-2 infection. Furthermore, mild COVID-19 patients

are underrepresented at time points later than 30 days after

symptom onset, which reduces the statistical power of our

analyses.
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bernd

Bodenmiller (bernd.bodenmiller@uzh.ch).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The raw mass cytometry data and the Olink protein data generated during this study are available for download at Mendeley Data:

https://doi.org/10.17632/vyy8ttw7n9.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients were recruited at the Hospital Uster, Hospital Limmattal, Triemli Hospital, and the University Hospital Zurich (Switzerland)

from an outpatient aswell as inpatient setting. The patients were eligible if they were symptomatic at the time of inclusion, had a newly

diagnosed SARS-CoV-2 infection confirmed by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR), and were

more than 18 years old. Healthy donors (n = 22) were recruited as controls. All participants, patients and healthy controls, signed a

written informed consent. This non-interventional, observational study was approved by the Cantonal Ethics Committee of Zurich

(BASEC #2016-01440) and performed in accordance with the Declaration of Helsinki. The sample size was based on availability

of the samples. Investigators were blinded to disease severity, while performing experiments. While the analysis was cross-sectional,

the patient outcomes were recorded prospectively after inclusion.

Standard clinical laboratory data (CRP, LDH, complete blood count with differential) was collected from the first day of hospi-

talization until the end of hospitalization. Patients were classified according to WHO guidance23 into mild cases (mild illness and

mild pneumonia) and (b) severe cases (severe pneumonia and ARDS). Pneumonia was considered severe if the patient required

supplemental oxygen or had an oxygen saturation < 94%, in accordance with WHO guideline.23 ARDS was classified as defined

by the Berlin definition.69 36 of the severe COVID-19 patients required respiratory support at the time of sampling, such as sup-

plemental oxygen, non-invasive ventilation or mechanical ventilation. A blood sample was collected from each patient, if possible

coordinated with the usual care. For longitudinal analysis of SARS-CoV-2-specific immune responses, two subjects with mild

COVID-19 and two subjects with severe COVID-19 were sampled twice during their disease course. All samples were processed

in the same hospital laboratory.

At time of themanuscript, 70COVID-19 patients and 22 healthy subjects were recruited. Four patients were excluded from analysis

(two due to chronic lymphocytic leukemia and two due to unclarity whether the current disease was the primary infection). All healthy

controls were tested for SARS-CoV-2 specific IgA and IgG antibodies and all were below the diagnostic reference value. We have

previously described the SARS-CoV-2-specific antibody response in a subset of this cohort.70 The complete characteristics of

the cohort are given in Table 1.

All patients received a standard clinical laboratory sampling and cytokines were measured. Furthermore, samples from 27 COVID-

19 patients with mild, 29 with severe disease and all healthy subjects were processed for CyTOF. Samples from 26 COVID-19 pa-

tients with mild, 36 with severe disease and 17 healthy patients were evaluated with Olink proteomics. 54 patients and 17 healthy

individuals were analyzed by CyTOF and Olink concomitantly. Longitudinal samples from patient CovP45 homogeneously failed

the Olink incubation control, and could thus only be compared with each other, but were excluded from other analysis, together

with one other sample which was not correctly processed prior to analysis. Three samples had less than 100 myeloid cells and

were excluded from the monocyte analyses (samples: CovP17, CovP58, CovP74). Routine flow cytometry for NK cell quantification

was performed on all samples in the accredited immunological laboratory at the University Hospital Zurich, as previously

described.46 The cohort characteristics and a selection of the Olink dataset are also shown in Adamo et al.46 describing the T cell

response of this cohort.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rphenograph_0.99.1.9003 Levine et al.67 https://github.com/i-cyto/Rphenograph/

R 4.0.0 R Core Team, 2016 https://www.R-project.org

Rtsne 0.15 Van Der Maaten and Hinton68 https://github.com/jkrijthe/Rtsne
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METHOD DETAILS

Blood collection and sample preparation for CyTOF

Venous blood samples were collected in BD vacutainer EDTA tubes, centrifuged, plasma removed, and the remaining blood diluted

with an equal amount of PBS. This mixture was then layered into a SepMate tube (STEMCELL) filled with lymphodex (Inno-Train Di-

agnostik GmBH) solution. The tube was centrifuged, and the PBMCs were washed with PBS and re-centrifuged. Aliquots of 1x106

PBMCs were then centrifuged, resuspended in 200 mL 1.6% PFA (Electron Microscopy Sciences) diluted with RPMI 1640 medium,

and fixed at room temperature for 10min. Subsequently the reaction was stopped by adding 1mL of cell stainingmedium (CSM, PBS

with 0.5% bovine serum albumin and 0.02% sodium azide). The cells were centrifuged and the disrupted pellet was frozen at�80�C.

The remaining PBMCs were frozen and stored in 1.5 mL 90% FBS, 10% DMSO at �80�C for at least 4 h. For long-term storage, the

frozen cells weremoved to liquid nitrogen. Reference cells for CyTOF analysis were derived fromPBMCs from a healthy donor, which

were stimulated with either 0.1 mg/mL phytohemagglutinin for 24 h or 1 mg/mL lipopolysaccharide and 1.5 mg/mL monensin for 48 h.

One-third of the PBMCs were unstimulated. The three sets of PBMCs were fixed and frozen as described above.

Mass cytometry barcoding

We ensured homogeneous staining by barcoding 1 3 106 PBMCs from each patient using a 60-well barcoding scheme consisting of

unique combinations of four out of eight barcoding reagents as previously described.71 Six palladium isotopes (102Pd, 104Pd, 105Pd,
106Pd, 108Pd, and 110Pd, Fluidigm) were chelated to 1-(4-isothiocyanatobenzyl)ethylenediamine-N,N,N’,N’ tetraacetic acid (Dojino).

Two indium isotopes (113In and 115In, Fluidigm) were chelated to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris-acetic acid 10-maleimide

ethylacetamide (Dojino) followingstandardprocedures.72Wetitratedmass tagbarcoding reagents toensureequivalent staining for each

reagent; final concentrations were between 50 nM and 200 nM. We used the previously described transient partial permeabilization

approach to barcode the cells.73 PBMCs from all samples were randomly loaded into wells of two 96-well plates and were analyzed

in two independent experiments.Threestandardsampleswere loadedontoeachplate toenableassessmentof inter-run variability.Cells

were washedwith 0.03% saponin in PBS (PBS-S, Sigma Aldrich) and incubated for 30min with 200 mL of mass tag barcoding reagents

diluted in PBS-S. After washing three times with CSM, samples from each plate were pooled and stained with the antibody panel.

Antibodies and antibody labeling

The antibodies used in this study, including provider, clone, and metal tag, are listed in the key resources table. Antibody conjugation

was performed using theMaxPARantibody labeling kit (Fluidigm). Upon conjugation, the yield of recovered antibodywas assessedon a

Nanodrop (Thermo Scientific) and then supplemented with Candor Antibody Stabilizer. We performed titrations to determine optimal

concentrations of all conjugated antibodies. All antibodies used in this study were managed using the cloud-based platform AirLab.74

Sample staining and data acquisition

After barcoding, pooled cells were incubated with FcR blocking reagent (Miltenyi Biotec) for 10 min at 4�C. Cells were stained with

400 mL of the antibody panel per 107 cells for 45 min at 4�C. Cells were washed three times in CSM, once in PBS, resuspended in

0.4 mL of 0.5 mM nucleic acid Ir- labeled intercalator (Fluidigm) and incubated overnight at 4�C. Samples were then prepared for Cy-

TOF acquisition by washing the cells once in CSM, once in PBS, and once in water. Cells were then diluted to 0.5 3 106 cells/mL in

Cell Acquisition Solution (Fluidigm) containing 10% EQ Four Element Calibration Beads (Fluidigm). Samples were acquired on a

Helios upgraded CyTOF 2 in independent FCS files.

Cytokine ELISA

Serum was collected in BD vacutainer tubes. The samples were processed in the accredited immunological laboratory at the Uni-

versity Hospital Zurich. IL-1b, IL-6, IFNg, TNFa were quantified using R&D Systems ELISA kits.

Proteomics analysis using Olink

For serum proteomics, the commercially available proximity extension assay-based technology from Olink� Proteomics was used.

Heat-inactivated plasma samples were sent to the Olink analysis laboratory in Davos, Switzerland for analysis using the inflammation

panel. The Olink technology has been described previously.75Briefly, binding of paired cDNA-tagged antibodies directed against the

targeted serum proteins lead to hybridization of the corresponding DNA oligonucleotides allowing subsequent extension by a DNA

polymerase. The protein level is quantified using real-time PCR. Only samples that passed the quality control tests are reported. If

expression was below the detection limit, the value reported is the lower limit of detection. Only proteins that were detectable in at

least 50% of samples were used for subsequent analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass cytometry data preprocessing and automated cell classification

Individual FCS files collected from each set of samples were pre-processed using a semi-automated R pipeline based on CATALYST

to perform individual file concatenation, bead based normalization, compensation, debarcoding, and batch correction as previously
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described.76 During this process, inter-sample doublets were excluded based on the debarcoding scheme and intra-sample dou-

blets were excluded based on DNA content. Spillover matrix for CyTOF compensation was assessed on all antibodies used in

this study as previously suggested.63

Upon pre-processing, a subset of 1,000 randomly selected cells from each sample were exported as FCS files and loaded on Cy-

tobank. Immune cell subsets weremanually gated according to the schemedescribed in Figure S1E. FCS files corresponding to each

gate were exported and used to train a random forest classifier (R package randomForest), based on 500 trees and 6 variables tried at

each split, leading to an OOB estimate of error rate of 0.43%. The resulting random forest model was used to assign each cell of the

dataset to the predefined cell types. Based on a 40% assignment probability cutoff and a 20% delta cutoff, 98% of the cells were

retained in the analysis.

Dimensionality reduction and clustering analysis

To visualize the high-dimensional data in two dimensions, the t-SNE algorithm was applied on data from a maximum of 1,000

randomly selected cells from each sample, with a perplexity set to 80, using the implementation of t-SNE available in CATALYST.77

Channels which were not relevant for these cell subsets or which were affected by different background stainings across batches

were excluded and not used for monocyte cluster characterization (CD15, CD66ace, CD3, CD45, CD8a, CD20, CXCR2, Granzyme

B). Data were displayed using the ggplot2 R package or the plotting functions of CATALYST.77

Visualization of marker expression on t-SNEmaps was performed upon data normalization between 0 and 1. The maximum inten-

sity was defined as the 99th percentile.

Clustering analysis of the myeloid and neutrophil subsets was performed using the R implementation of PhenoGraph run on all

samples simultaneously, with the parameter k, defining the number of nearest neighbors, set to 100.67 For the myeloid subset, clus-

ters with less than 600 cells were excluded from the analysis.

In order to perform hierarchical clustering, pairwise distances between samples were calculated using the Spearman correlation or

Euclidean distance, as indicated in the figure legend. Dendrograms were generated using Ward.2’s method. Heatmaps were gener-

ated based on the pheatmap package.

To identify putative single-cell trajectories among monocyte clusters, we used the implementation of the diffusion map algorithm

available in the R package scater using the default parameters and the same channels used to perform the t-SNE analysis. A

maximum of 1,000 cells randomly selected from each cluster were included in the analysis.

The principal component analysis to identify the variations in the data described by the cluster frequencies or the combination of

cluster frequencies and cytokine levels was performed based on the FactoMineR package. Data were visualized using the Factoextra

R package.

Statistical analyses

The statistical analysis was performed using GraphPad Prism (version 8.4.3, GraphPad Software, La Jolla California USA) and R soft-

ware (version 4.0.1) using the package ‘‘mgcv.’’ Statistical normality testing was not performed. In general, non-parametric Mann-

Whitney Wilcoxon test was used to test for differences between continuous variables and p values were adjusted for multiple testing

using the Holm method. The Olink data was tested using parametric tests as recommended by the company. Categorical variables

were compared using Fisher’s exact test. Generalized additivemodels were used to evaluate relationships between time since symp-

tom onset and different variables, with the number of knots used to represent the smooth term set at three. The correlationmapswere

displayed using the corrplot or pheatmap packages and the implemented hclust method.

The correlations between cellular subsets and the serum protein expressions were analyzed using non-parametric Spearman cor-

relations. The significance threshold was set at an alpha < 0.05. For the differential expression analysis, a false-discovery rate78 of 1%

was used as significance threshold, except for the late versus early comparison where 5% was used as indicated. The respective

statistical tests used, as well as the exact n values, are given in each figure legend.
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