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A B S T R A C T

Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identi-

fication of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability,

time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that

enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-

established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50

subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without

relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different

acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our

proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs

and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual

ROI placement for TGN selection and hence yields a higher successful TGN identification rate.

1. Introduction

The trigeminal nerve (TGN) is the largest and most complex of the 12

pairs of cranial nerves in the brain. It includesmultiple segments, including

brainstem, cisternal, Meckel’s cave and peripheral branches (see Fig. 1 for

an anatomical overview) (Go et al., 2001; Joo et al., 2014). It supplies

sensation to the skin in the face, the ear, the mucous membranes orally and

endonasally aswell asmotor innervation to themuscles ofmastication. The

TGN has been shown to be affected in many diseases such as trigeminal

neuralgia (Jannetta, 1967), multiple sclerosis (Love and Coakham, 2001;

Yadav et al., 2017), local ischemia (Balestrino and Leandri, 1997; Delitala

et al., 1999; Golby et al., 1998) and brain cancer (Timothee Jacquesson

et al., 2019). Many research studies have also suggested that the identifi-

cation of TGN is important for understanding and/or potential treatment of

various neurological disorders such as major depressive disorder (Schrader

et al., 2011), attention-deficit/hyperactivity disorder (McGough et al.,

2015), and Parkinson’s disease (Barz et al., 1997).

Magnetic resonance imaging (MRI) techniques have been used to

identify the TGN for clinical and research purposes (Casselman et al.,

2008; Ciftci et al., 2004; Timothee Jacquesson et al., 2019; Ruiz-Jur-

etschke et al., 2018; Tsutsumi et al., 2018; N. Yoshino et al., 2003).

Among these techniques, traditional T2-weighted MRI is the most widely

used, e.g., to confirm the presence of neurovascular compression at the

root entry zone (REZ) of the TGN (Casselman et al., 2008; Xie et al.,

2020). There have also been studies applying MRI techniques, such as

constructive interference in steady-state sequence (CISS), fast imaging

employing steady-state acquisition (FIESTA) and driven equilibrium

radio frequency reset pulse (DRIVE), which have advanced performance

in visualizing human nerves compared to a conventional T2-weighted

image (Ciftci et al., 2004; Ruiz-Juretschke et al., 2018; Tsutsumi et al.,
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2018; N. Yoshino et al., 2003). However, these MRI sequences can only

localize the cisternal portion of the TGN, while the continuity and

pathological alteration of the TGN and brainstem nuclei, as well as the 3D

relationship of the TGN with surrounding structures, cannot be assessed

(Li et al., 2017; Liu et al., 2013; Neetu et al., 2016).

Diffusion MRI (dMRI), via a process called tractography, can track

brain white matter and nerve fibers in vivo non-invasively based on the

principle of detecting the random motion of water molecules in neural

tissue (Basser et al., 1994, 2000). dMRI tractography has been applied

successfully for tracking of the TGN (Fujiwara et al., 2011; Hung et al.,

2017; Ishida et al., 2011; Jacquesson et al., 2019; Wei et al., 2016; M.

Yoshino et al., 2016). One advantage of dMRI tractography is that it

enables tracking of the 3D trajectory of the TGN for visualization of TGN

structures not visualized by conventional MRI sequences (e.g.,

T2-weighted image, T2w), such as the course of the TGN within the

brainstem as well as anterior to the cisternal portion (Jacquesson et al.,

2019; Xie et al., 2020).

Currently, identification of the TGN from dMRI tractography data re-

lies on the region of interest (ROI) selection strategy, where trained ex-

perts select TGNs in an interactivewaybyplacingROIs. In the literature, to

our knowledge all related studies of the TGN have applied the expert ROI

selection strategy (Behanet al., 2017;DavidQ.Chen,DeSouza et al., 2016;

DavidQixiangChen et al., 2011; Coskun et al., 2017; Fujiwara et al., 2011;

Hung et al., 2017; Kabasawa et al., 2007; Moon et al., 2018; Wei et al.,

2016; Xie et al., 2020;M.Yoshino et al., 2016; Zolal et al., 2017); however,

practical problems remain. First, identification of the TGN is sensitive to

ROI placement (Jacquesson et al., 2019; Xie et al., 2020), where selection

of the best-performingROIs is a challenge. In relatedwork, ROI placement

is variable across studies, where adopted ROIs include cisternal portion

(CP, also called prepontine cistern, cisternal segment or midpoint of the

cisternal segment), root entry zone (REZ), and/or the Meckel’s cave (MC)

(Behan et al., 2017; David Q. Chen, DeSouza et al., 2016; David Qixiang

Chen et al., 2011; Coskun et al., 2017; Fujiwara et al., 2011; Kabasawa

et al., 2007;Moon et al., 2018;Wei et al., 2016; Zolal et al., 2017). Second,

placement of ROIs can be affected, or even fail, because of imaging arti-

facts and/or noise at the complex skull base environment (containing

nerve, bone, air, soft tissue and cerebrospinal fluid) (Xie et al., 2020).

Third, placement of ROIsmay require inter-modality registration between

dMRI and anatomical MRI (e.g. T2-weighted) data, which is challenging

for dMRI with low image resolution (Malinsky et al., 2013) and

echo-planar imaging (EPI) distortions (Albi et al., 2018). While ROI

placement for TGN identification can be done using dMRI data directly

(Behan et al., 2017; Fujiwara et al., 2011; Kabasawa et al., 2007; Moon

et al., 2018; Xie et al., 2020), most studies have obtained ROIs from

high-resolution anatomical MRI images for a better tissue contrast,

requiring a co-registration to the low-resolution dMRI space (David Q.

Chen, DeSouza et al., 2016; DavidQixiangChen et al., 2011; Coskun et al.,

2017; Fujiwara et al., 2011; Hung et al., 2017; Krishna et al., 2016; M.

Yoshino et al., 2016; Zolal et al., 2017). Fourth, ROI placement depends

critically on the experience of trained experts and hence inter-observer

variability is a real and ongoing issue of accurate image interpretation

(Hakulinen et al., 2012). Last but not least, manual interpretation is also

time-consuming, inefficient and has clinical and expert labor costs.

In neuroscience, there has been an enduring interest in automated

image processing and interpretation to resolve inter-observer variability

and improve clinical efficiency, e.g., automatically locating brain

anatomical structures and functions with references to common atlas

spaces (Fischl, 2012; Maldjian et al., 2003). There are voxel-wise atlases

that enable automated identification of cranial nerves in terms of the

presence at a particular location in the brain (Fischl, 2012; Kikinis et al.,

1996; Sultana, 2017). However, these atlases cannot be used to auto-

matically identify tractography fibers belonging to the cranial nerves.

Another type of voxel-wise atlas can define ROIs that are useful for

selecting tractography fibers. While this approach has mainly been

applied in the cerebrum (Lawes et al., 2008; Y. Zhang et al., 2010), Chen

et al. demonstrated successful automated subject-specific identification

of several cranial nerves (the facial/vestibular-cochlear nerve complex

and the vagus nerve) using a voxel-wise ROI atlas (David Q. Chen, Zhong,

et al., 2016). However, such ROI-based methods can be challenged by

highly sensitive tractography methods, which require more ROIs to select

due to their increased sensitivity (O’Donnell et al., 2017; Xie et al., 2020).

Rather than creating a voxel-wise atlas, in brain white matter analysis,

many studies have created brain dMRI tractography atlases (Guevara

et al., 2017; Maddah et al., 2005; O’Donnell and Westin, 2007; Rom�an

et al., 2017; Yoo et al., 2015; Fan Zhang, Wu et al., 2018; Ziyan et al.,

2009). These studies have successfully demonstrated automated identi-

fication of anatomical white matter fiber tracts (e.g. arcuate fasciculus),

with several advantages including 1) consistent tract identification in the

dMRI data from different acquisition protocols, 2) using dMRI data only,

thus not requiring inter-modality registration, and 3) high efficiency to

reduce expert labor costs and enable tractography analysis in large-scale

dMRI datasets. However, to our knowledge there are no existing trac-

tography atlases that can enable automated identification of the TGN in

tractography.

In this study, we present what we believe is the first study to create a

dMRI tractography TGN atlas, which enables automated identification of

the TGN in new tractography data without relying on expert ROI place-

ment. Our method relies on a well-established groupwise fiber clustering

pipeline from our research group (O’Donnell et al., 2012; O’Donnell and

Westin, 2007), which has been successfully applied in multiple research

studies (Fan et al., 2019; Gong et al., 2018; O’Donnell et al., 2017; Sto-

janovski et al., 2019; Wu et al., 2018; Fan Zhang, Savadjiev, et al., 2018;

Fan Zhang, Wu et al., 2018) and has been used recently for creation of an

anatomically curated white matter tract atlas (Fan Zhang, Wu, et al.,

2018, 2019). In the present study, we employ this fiber clustering pipe-

line to identify common TGN structures in an atlas population, including

50 subjects from the Human Connectome Project (HCP) (Van Essen et al.,

2013) that provide high-quality dMRI data. Leveraging population-based

brain anatomical information and expert neuroanatomical knowledge,

we identify a total of 40 fiber clusters belonging to the TGN in the atlas.

Each cluster represents a certain anatomical subdivision of the TGN and

its variability in the atlas population. The curated TGN model includes

not only the cisternal portion but also the putative mesencephalic tract

(Shigenaga et al., 1989) and the putative spinal trigeminal tract (M.

Yoshino et al., 2016), which are important portions of the TGN but have

been relatively less studied. The created TGN atlas and the fiber clus-

tering pipeline also provide a method to automatically identify the TGN

in new subject datasets. We demonstrate a successful application to dMRI

datasets from two different acquisition sites, including those from a

clinical acquisition protocol (a lower spatial resolution than the HCP

data). The fiber clustering pipeline is open source1 and the TGN atlas will

be made available online,2 as part of the SlicerDMRI project3 (Norton

et al., 2017; Fan Zhang et al., 2020).

In the rest of the paper, we first describe the datasets in this study.

Fig. 1. A schematic anatomical overview of the TGN.

1 https://github.com/SlicerDMRI/whitematteranalysis.
2 https://dmri.slicer.org/atlases.
3 https://dmri.slicer.org/.
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Here, we leveraged several findings about data processing, TGN tracking

and ground truth identification from our previous work, where we

compared different TGN fiber tracking strategies (dMRI data with

different b-values, in combination with both single- and multi-tensor

tractography methods) (Xie et al., 2020). Then, we introduce the crea-

tion of the proposed TGN atlas from 50 healthy adults, followed by a

demonstration of our method with an application of the atlas to dMRI

datasets that were scanned at two different acquisition sites (with

different spatial and angular resolutions). Quantitative and qualitative

evaluations are performed to evaluate our method’s TGN identification

performance, with comparison to expert selected TGNs.

2. Methods

2.1. Datasets and data processing

2.1.1. Datasets

In this study, we used dMRI data from two acquisition sites, including

the HCP database (Van Essen et al., 2013) and the Parkinson’s Progres-

sion Markers Initiative (PPMI) (Marek et al., 2011) database. The HCP

data was used for the TGN atlas creation (50 atlas subjects) and experi-

mental evaluation (an independent set of 50 testing subjects), while the

PPMI data (40 subjects) was used only for experimental evaluation.

Table 1 gives an overview of the demographics and the dMRI acquisitions

of the HCP and PPMI datasets under study.

The HCP provides dMRI data that was acquired with a high quality

image acquisition protocol using a customized Connectome Siemens

Skyra scanner and processed using a well-designed processing pipeline

(Glasser et al., 2013) including motion correction, eddy current correc-

tion and EPI distortion correction. The acquisition parameters of the

dMRI data in HCP were: TE ¼ 89.5 ms, TR ¼ 5520 ms, and voxel size ¼

1.25 � 1.25 � 1.25 mm3. A total of 288 images were acquired in each

dMRI dataset, including 18 baseline images with a low diffusion

weighting b ¼ 5 s/mm2 and 270 diffusion-weighted (DW) images evenly

distributed at three shells of b¼ 1000/2000/3000 s/mm2. More detailed

information about the HCP data acquisition and preprocessing can be

found in (Glasser et al., 2013). In our study, we used the single-shell b ¼

1000 s/mm2 data to perform TGN tracking (see Section 2.1.2 for details)

because it represents the clinical acquisition protocol and was shown in

our previous study to be more effective for TGN identification than

higher b values (Xie et al., 2020). We also used the anatomical T2w data

for evaluation of the TGNs. The acquisition parameters used for the T2w

data were TE ¼ 565 ms, TR ¼ 3200 ms, and voxel size ¼ 0.7 � 0.7 � 0.7

mm3. Imaging data from a total of 100 HCP subjects was used in our

study, including 50 subjects for the TGN atlas creation and another 50

subjects for experimental evaluation. We note that to ensure high quality

TGN representations for atlas creation, we selected 50 atlas subjects

whose dMRI data did not have apparent imaging artifacts and/or noise

(In our previous work (Xie et al., 2020), we showed that manual TGN

identification failed in several of the 100 HCP subjects because of im-

aging artifacts and/or noise at the skull base region.).

The PPMI data was used to test TGN identification performance using

an acquisition protocol that was different from the HCP data. We chose

data from Parkinson’s disease because it has been suggested to be closely

related to the TGN (Tremblay et al., 2017). The acquisition parameters of

the dMR data were: TE ¼ 88 ms, TR ¼ 7600 ms, voxel size ¼ 2 � 2x2

mm3, 1 baseline image with b ¼ 0 s/mm2 and 64 DW images with b ¼

1000 s/mm2. T2-weighted data (co-registered with the dMR data) was

also used for TGN experimental evaluation. The acquisition parameters

for the T2w data were: TE¼ 101 ms, TR¼ 3000 ms, and voxel size¼ 1�

1 � 1 mm3. The dMRI data was pre-processed with the following steps.

Eddy current-induced distortion correction and motion correction were

conducted using the Functional Magnetic Resonance Imaging of the

Brain (FMRIB) Software Library tool (Jenkinson et al., 2012). An

echo-planar imaging (EPI) distortion correction was performed with

reference to the T2-weighted image using the Advanced Normalization

Tools (ANTS) (Avants et al., 2009). For each subject, a nonlinear regis-

tration (registration was restricted to the phase encoding direction) was

computed from the b0 image to the T2w image to make an EPI corrective

warp. Then, the warp was applied to each diffusion image. Data from 40

PPMI subjects (20 healthy controls and 20 Parkinson’s disease patients)

was used in our experiment.

2.1.2. Multi-tensor TGN tractography

For each subject under study, we performed TGN tractography from

the dMRI data. We used the two-tensor unscented Kalman filter (UKF)

tractography method4 (Malcolm et al., 2010; Reddy and Rathi, 2016) to

perform TGN tracking, as illustrated in Fig. 2(a). We chose the two-tensor

UKF tractography method because it has been demonstrated to be

effective in tracking the TGN in our previous study (Xie et al., 2020), as

well as tracking the brain white matter fiber tracts (Z. Chen et al., 2016;

Gong et al., 2018; Liao et al., 2017; Fan Zhang, Wu, et al., 2018). The UKF

method fits a mixture model of two tensors to the dMRI data while

tracking fibers, providing a highly sensitive fiber tracking ability, in

particular, in the presence of crossing fibers (Z. Chen et al., 2016; Gong

et al., 2018; Liao et al., 2017; Fan Zhang, Wu, et al., 2018). This is

important for tracking the intra-brainstem portions of the TGN (including

the putative spinal trigeminal and putative mesencephalic trigeminal

tracts, as demonstrated in our previous study (Xie et al., 2020) and in

Suppl Fig. 2), where nerve fibers cross with white matter fibers. In

contrast to other methods that fit a model to the signal independently at

each voxel (Behan et al., 2017; Qazi et al., 2009), the UKF method fits a

model to the diffusion data while tracking fibers, in a recursive estima-

tion fashion (the current tracking estimate is guided by the previous one).

One benefit of the recursive estimation is to help stabilize model fitting;

thus fiber tracking can be robust to a certain amount of imaging arti-

fact/noise. Another benefit of UKF is that fiber tracking orientation is

controlled by a probabilistic prior about the rate of change of fiber

orientation (defined as the parameter Qm introduced below), instead of

cutoffs or limits on the fiber curvature as in typical tractography algo-

rithms. Consequently, sharp fiber curvatures are avoided as they are very

unlikely, whereas fiber curvatures (e.g., the branching structures of the

TGN) supported by the dMRI are still allowed. These properties of UKF

are different from other tractography algorithms such as the single DTI

tractography (Basser et al., 2000) and the two-tensor eXtended Stream-

line Tractography (Qazi et al., 2009) that have been applied for TGN fiber

tracking (David Q. Chen, DeSouza et al., 2016; David Qixiang Chen et al.,

2011; Coskun et al., 2017; Kabasawa et al., 2007). (To demonstrate our

Table 1

Demographics and dMRI acquisition of the HCP and PPMI datasets under study.

Dataset Demographics dMRI acquisition

HCP (atlas

subjects)

50 healthy (29 females and 21

males, age: 28.94 � 3.61)

18 b0 images

90 gradient directions (b ¼

1000)

TE/TR ¼ 89/5520 ms

resolution ¼ 1.25 mm3

(isotropic)

magnetic field strength ¼ 3T

matrix ¼ 168 � 144

FOV ¼ 210 � 180 mm

HCP (testing

subjects)

50 healthy (25 females and 35

males, age: 29.28 � 3.77)

PPMI (testing

subjects)

20 healthy (4 females and 16

males, age: 64.63 � 7.48)

20 Parkinson’s disease (6 females

and 14 males, age: 63.10 � 7.10)

1 b0 image

63 gradient directions (b ¼

1000)

TE/TR ¼ 88/7600 ms

resolution ¼ 2 mm3

(isotropic

static magnetic field

strength ¼ 3T

matrix ¼ 68 � 68

FOV ¼ 222 � 222 mm 4 https://github.com/pnlbwh/ukftractography.

F. Zhang et al. NeuroImage 220 (2020) 117063

3



automated TGN identification method’s ability to generalize to tractog-

raphy data from different methods, we have included an additional two

tractography methods, as introduced in Supplementary Material S1.)

TGN tractography was seeded from all voxels within a mask, which

was larger than the possible region through which the TGN passes. This

procedure was similar to whole brain seeding but it was restricted to the

potential TGN region for efficiency. We note that our method does not

require sophisticated masking as long as the mask covers the TGN and is

approximately in a similar place across all subjects. We used the 3D Slicer

Segment Editor tool to do this by placing a spherical or oval mask with a

diameter about 35 mm, centered at the anterior portion of the pons (as

illustrated in Fig. 2(a)). There are five major parameters of the UKF

method, including seedingFA, stoppingFA, stoppingThreshold, Qm and Ql.

These parameters function as follows. Tractography is seeded in all

voxels within a providedmaskwhere fractional anisotropy (FA) is greater

than seedingFA. Tracking stops in voxels where the FA value falls below

Fig. 2. Schematic diagram of the proposed method, where the blue boxes represent the computational steps and the green boxes represent the input/output. The

major steps are linked to a pictorial illustration, as follows. (a) to (c) show the creation of the TGN atlas. (a) Multi-tensor tractography is seeded within a mask that

covers the possible region through which the TGN passes. (b) Given the tractography data (co-registered to a common space, i.e., the atlas space) from the 50 atlas

subjects, spectral clustering is performed to generate a fiber clustering atlas, where each cluster has a unique color. (c) Using expert neuroanatomical knowledge

(involving three experts, GX, MAM, and NM), 40 clusters were identified to belong to the TGN, where each cluster represents a specific subdivision of the whole TGN.

Three example clusters are displayed, belonging to the cisternal portion, the mesencephalic trigeminal tract, and the spinal trigeminal tract, respectively. (d) to (f)

show identification of the TGN of a new subject. (d) TGN tractography of the new subject is performed, in the same way as the atlas subjects. (e) Fiber clustering of the

tractography data (registered to the atlas space) is conducted according to the fiber clustering atlas. (f) Identification of the TGN clusters in the new subject is

conducted by finding the corresponding subject-specific clusters to those annotated in the atlas. Three example subject-specific TGN clusters, corresponding to the ones

shown in (c), are displayed.
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stoppingFA or the sum of the normalized signal across all gradient di-

rections falls below stoppingThreshold (a parameter to distinguish be-

tween white/gray matter and cerebrospinal fluid (CSF) regions). During

the tracking, the UKF method uses Qm to control process noise for an-

gles/direction, andQl to control process noise for eigenvalues. These UKF

tractography parameters were well tuned and were set as: seedingFA ¼

0.06, stoppingFA ¼ 0.05, stoppingThreshold ¼ 0.06, Qm ¼ 0.001 and Ql ¼

300. Two seeds per voxel were used for seeding the tractography, which

resulted in about 70,000 fibers in the TGN tractography per subject.

Visual and quantitative quality control of the tractography data was

performed using the quality control tool in the whitematteranalysis5

software. We note that in the present study, we used a relatively low

seeding sampling setting (2 seeds per voxel) because it was sufficient to

generate visually reasonable TGNs corresponding to the anatomy, while

keeping a low computational cost. To increase the tract density, a higher

number of seeds per voxel can be used (see Supplementary Material S1

for a visualization of an identified TGN from tractography data computed

using 5 seeds per voxel).

2.1.3. Identification of ground truth TGN using manual selection

For selected subjects, we performed manual ROI-based TGN identi-

fication from the tractography data. These manually selected TGNs were

used for initial selection of fiber clusters potentially belonging to the TGN

in the atlas (see Section 2.2.1) and were used as ground truth for eval-

uation of the automatically identified TGNs (see Section 2.4). (We note

that for identification of the TGN in new subjects using our method, there

is no need to perform manual TGN selection.)

We performed manual TGN identification using predefined manually

drawn ROIs from the MC and the CP of the TGN, as described in (Xie

et al., 2020). We note that these two ROIs were most commonly used in

the literature for expert TGN selection (Behan et al., 2017; Coskun et al.,

2017; Fujiwara et al., 2011; Kabasawa et al., 2007; Wei et al., 2016; Xie

et al., 2020; M. Yoshino et al., 2016; Zolal et al., 2017), and they were

relatively easily identified. The manual TGN identification method was

previously validated in an inter-rater experiment (by two practicing

neurosurgeons GX and MAM), showing a high joint probability of

agreement (Xie et al., 2020). The ROI in MC was drawn on the mean b ¼

0 image from the coronal view, and the ROI in CP was drawn on themean

directionally encoded color (DEC) map of diffusion tensor imaging (DTI)

from the coronal view. For the HCP data, we attempted to perform

manual TGN selection on all of the 100 subjects; however, 8 testing

subjects failed because their dMRI data had artifacts and/or noise at the

skull base region that prevented placement of ROIs. (We note that we also

attempted to draw ROIs on the T2w image, on which the ROIs could be

recognized. However, this attempt also failed because the imaging arti-

facts and/or noise affected the registration between the dMRI and T2w

data at the skull base region.) For the PPMI database, we performed

manual TGN identification on two randomly selected subjects (a 69 year

old female healthy control and a 72 year old male Parkinson’s disease

patient).

2.2. Creation of TGN atlas

We created the TGN fiber clustering atlas using the tractography data

from the 50 atlas subjects. This involved 1) generating a data-driven fiber

clustering atlas for TGN tractography parcellation into multiple fiber

clusters and 2) curating fiber clusters anatomically belonging to the TGN,

as illustrated in Fig. 2(b and c).

2.2.1. Generation of TGN fiber clustering atlas

The TGN fiber clustering atlas was generated using groupwise fiber

clustering to simultaneously parcellate TGN tractography from multiple

subjects (Fig. 2(b)). First, the TGN tractography data of the 50 atlas

subjects was registered into a common space (i.e. atlas space). This was

done by performing an affine registration between the b ¼ 0 image of

each subject (moving image) and a population-mean T2-weighted image

(reference image) using 3D Slicer. We chose T2w data for co-registration

because it has similar contrast to the b ¼ 0 images for promising inter-

MRI-modality registration (Albi et al., 2018). Also, T2w data has a

good contrast of the cisternal portion of the TGN and has been widely

used to confirm the presence of the TGN (Casselman et al., 2008; Xie

et al., 2020). Specifically, we used the population-mean T2 image, that

has been successfully applied to co-register tractography data (Fan et al.,

2019), provided in the white matter atlas from our group (Fan Zhang,

Wu, et al., 2018). Then, the obtained transform was applied to the

subject-specific TGN tractography data. In the present study, we per-

formed a semi-automated quality control of the registration results, using

in-house developed Matlab scripts that enable a visualization of the

registered b0 and the population-mean T2 image together.

Next, spectral clustering was used to compute a high-dimensional

fiber clustering atlas (O’Donnell and Westin, 2007) to divide the TGN

tractography into K clusters, where K is a user-given parameter to define

the parcellation scale. The spectral embedding created a space that

robustly represented each fiber according to its affinity to all other fibers

across subjects. This fiber representation gives a robust feature vector or

“fingerprint” that describes the fiber for clustering. The fiber affinity was

computed by converting pairwise fiber geometric distances (the popular

mean closest point distance is used (Moberts et al., 2005; O’Donnell and

Westin, 2007)) using a Gaussian-like kernel, representing fiber similarity

according to the fiber geometry and trajectory. One benefit of such fiber

similarity matching was that it was highly robust to local fiber tract

variation to ensure morphology agreement across subjects. Therefore,

roughly aligned tractography data using the above volume-based affine

co-registration was sufficient to co-register across different subjects.

Nystrom sampling (Fowlkes et al., 2004) was used to reduce the com-

putations considering the large number of fiber pairs across subjects.

Bilateral clustering, simultaneously segmenting TGN fibers on both sides

of the cranial base to improve parcellation robustness (O’Donnell and

Westin, 2007), was applied to obtain the K fiber clusters. Bilateral clus-

tering is beneficial for accounting for potential laterality of the TGNs

because it can robustly find the corresponding fiber structures on both

sides of the cranial base. Our previous studies have demonstrated the

benefit of the bilateral fiber clustering in identifying corresponding white

matter structures across hemispheres and in investigating potential white

matter lateralized changes (Propper et al., 2010; Wu et al., 2018). In

addition, we incorporated an outlier removal process to remove

improbable fibers for cluster consistency in the atlas. In this process, a

fiber was considered as an outlier if it was distant from other fibers

within its cluster (over 2 standard deviations from the cluster’s mean

fiber affinity, as applied in our previous work (O’Donnell and Westin,

2007; Wu et al., 2018; Fan Zhang, Savadjiev, et al., 2018; Fan Zhang, Wu,

et al., 2018)). In the present study, all fiber clustering computations were

performed using the whitematteranalysis software, with the suggested

settings for related parameters. 10,000 fibers were randomly sampled

from each subject’s TGN tractography for a total of 0.5 million fibers for

the atlas creation.

We generated multiple fiber clustering atlases to investigate the TGN

tractography parcellation at different scales (number of clusters, K,

ranging from 500 to 3000). The TGN atlas consisting of K¼ 2500 clusters

was chosen because it represented the minimum scale to identify the pu-

tative mesencephalic trigeminal tract. The putative mesencephalic tri-

geminal tract was a small TGN structure with fewer fibers than the TGN

cisternal portion. Using a coarser parcellation scale (e.g. K ¼ 2000), the

putativemesencephalic trigeminal tractwas clustered togetherwith other

TGN structures. On the other hand, while using a finer parcellation scale

(e.g. K ¼ 3000) could also provide a reasonable TGN clustering result, it

would increase the workload for expert curation of the TGN clusters and

decrease parcellation consistency (i.e. consistent identification of each

individual cluster) across subjects as suggested in our previous work (F.5 https://github.com/SlicerDMRI/whitematteranalysis.
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Zhang, Norton, et al., 2017; Fan Zhang, Wu, et al., 2018).

2.2.2. Curation of TGN fiber clusters

Given the chosen TGN fiber clustering atlas (K ¼ 2500), each fiber

cluster (including bilateral fibers on both sides of the cranial base) was

annotated to indicate whether it belongs to the TGN or not. This fiber

cluster annotation was performed by an initial cluster annotation

computation, followed by expert judgment. This resulted in a curated

atlas TGN with multiple fiber clusters, where nerve fibers in each cluster

have similar trajectories, representing a particular anatomical subdivi-

sion. In the way, the curated TGN atlas provides an effective way to

describe the complex anatomy of the TGN, e.g., the branching structures

of the TGN that are subdivided into multiple clusters.

We leveraged the manually selected TGNs (Section 2.1.3) to perform

an initial selection of potential clusters belonging to the TGN. The pur-

pose of this initial computation step is to bootstrap the expert cluster

annotation with a first pass that can be performed automatically by the

computer. From the 10,000 fibers that were randomly sampled from each

subject’s TGN tractography for the atlas generation, we first identified

the fibers that were manually selected to be the TGNs. Then we calcu-

lated a probability for each bilateral atlas cluster belonging to the TGN,

i.e., the number of fibers that were manually selected to belong to the

TGN divided by the number of total fibers in the cluster. We initially

selected the fiber clusters that had a probability over 0, which resulted in

a total of 127 candidate clusters for expert judgment.

Next, an expert rater (GX who is a practicing neurosurgeon) per-

formed expert annotation of the 127 candidate bilateral clusters. Spe-

cifically, the expert rater viewed each atlas fiber cluster with reference to

the population-mean T2 image that was used to register all atlas TGN

tractography into the atlas space (Section 2.2). This enabled viewing of

the nerve structure and its variability across all atlas subjects. To confirm

the population-based decision, the corresponding subject-specific clus-

ters from five randomly selected subjects were checked with reference to

the subject’s T2-weighted image. Another expert rater (NM who is a

neuroanatomist) viewed the curated TGN clusters and confirmed their

anatomical correctness.

Overall, there are a total of 40 TGN clusters in the atlas (Fig. 2(c)).

Each cluster represents a particular anatomical subdivision of the TGN,

including the TGN cisternal portion (35 clusters), the putative mesen-

cephalic tract (2 clusters), and the putative spinal trigeminal tract (3

clusters) (example clusters are shown in Fig. 2(c)).

2.3. Application of the TGN atlas to new subjects

Automated identification of the TGNof a new subject was conducted by

applying the atlas to the subject’s TGN tractography, as illustrated in

Fig. 2(d,e,f). First, the TGN tractographywas registered into the atlas space,

by performing an affine registration between the subject’s b¼ 0 image and

the population-mean T2-weighted image and then applying the obtained

transform to the TGN tractography data. (This was the same process as

registering the TGN tractography data of the atlas subjects.) Then, subject-

specific fiber clusters were detected using spectral embedding of the

registered tractography, followed by assignment of eachfiber to the closest

atlas cluster (O’Donnell and Westin, 2007). As a result, the new subject’s

TGN tractography was divided into multiple fiber clusters, where each

cluster corresponded to a certain atlas fiber cluster. Outlier fibers were

removed if theirfiber affinity regarding theatlas clusterwasover2 standard

deviations fromthe cluster’smeanfiber affinity.Next, TGN identificationof

thenewsubjectwas conductedbyautomaticallyfinding the subject-specific

clusters that corresponded to the annotated atlas clusters.

2.4. Experimental evaluation

All subjects’ TGN tractography (including the 50 HCP atlas subjects,

the 50 HCP testing subjects and the 40 PPMI subjects) was parcellated

using the proposed atlas. We note that our atlas was created using only

the 50 HCP atlas subjects, while the additional 50 HCP testing subjects

and the 40 PPMI subjects were used for testing the performance on new

data. We performed the following experiments to evaluate the TGN

identification performance of our method.

2.4.1. TGN identification rate

We computed the mean TGN identification rate (percentage of suc-

cessfully identified TGNs) across all subjects in each dataset. We per-

formed this evaluation for the overall TGN, as well as for the subdivisions

including the cisternal portion of the TGN, the mesencephalic trigeminal

tract and the spinal trigeminal tract. The identified TGNs and their sub-

divisions were confirmed (i.e., visually assessed as belonging to the TGN)

by the expert rater (GX). We note that this expert visual inspection pro-

vided a complementary assessment to ground truth comparison with

manual ROI selection, which is especially important to ensure the

anatomical viability of the automatically identified TGNs when manual

ROI selection failed. We reported the mean identification rate of the 50

HCP testing subjects (a total of 100 TGNs) and the 40 PPMI testing

subjects (a total of 80 TGNs). For comparison, we also reported the mean

identification rate of the 50 HCP atlas subjects (a total of 100 TGNs) to

show how the atlas generalized to data from the atlas population. Finally,

we reported the mean TGN identification rates of the expert TGN selec-

tion in the 50 HCP atlas subjects and in the 50 HCP testing subjects.

2.4.2. TGN spatial overlap

We performed a quantitative comparison to assess if the TGNs iden-

tified using the atlas spatially overlapped with the manually identified

TGNs. Specifically, we computed the weighted Dice (wDice) coefficient

between the automatically and manually identified TGNs from each

subject. wDice coefficient was designed specifically for measuring volu-

metric overlap of fiber tracts (Cousineau et al., 2017; Fan et al., 2019).

wDice extends the standard Dice coefficient (Dice, 1945) taking account

of the number of fibers per voxel so that it gives higher weighting to

voxels with dense fibers. For the HCP database, we reported the mean

and the standard deviation of the wDice values across the 50 atlas sub-

jects and those across the 42 testing subjects with successful manual TGN

selection. (Note that the other 8 HCP testing subjects were not included

in the quantitative comparison because manual selection failed.) For the

PPMI database, we reported the wDice score for each of the two selected

subjects with manually selected TGNs.

2.4.3. TGN visualization

For visual comparison of the automated TGN identification and the

manual selection, we rendered the automatically and manually identified

TGNs from three example subjects. These included one HCP testing subject

with successful manual TGN identification, one HCP testing subject with

unsuccessful manual TGN identification, and one PPMI testing subject

(healthy control). We also provided a visualization to demonstrate the

effects of the dMRI imaging artifacts and/or noise on the ROI placement in

the HCP testing subject with unsuccessful manual TGN identification.

We then provided a visualization of TGNs to show the anatomical

regions where the TGN passed. We first showed the curated TGN in the

atlas. This was done by rendering a voxel-based fiber density heatmap

that quantifies the number of fibers present in each voxel and the regions

through which the TGN passed on the population-mean T2-weighted

image (used for co-registering the TGN tractography data). We also

showed subject-specific TGNs, by rendering their fiber density heatmaps

and the regions through which the TGN passed on the corresponding

subject T2w images. Three example subjects (the same subjects as used in

the above visual comparison) were used in this visualization.

3. Results

3.1. TGN identification rate

All TGNs were successfully identified using the proposed automated
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identification method in all subjects under study, including the 50 HCP

atlas subjects, the 50 HCP testing subjects (including the 8 subjects where

manual selection failed), and the 40 PPMI testing subjects (Table 2).

Regarding the different subdivisions, the cisternal portion was identified

in all subjects under study. We also obtained relatively high identifica-

tion rates for the mesencephalic trigeminal tract (on average 50.0%) and

spinal trigeminal tract (on average 52.4%) across all 100 HCP subjects,

where the manual selection could successfully identify 34.5% of the

mesencephalic trigeminal tracts and 37.0% of the spinal trigeminal

tracts. For the PPMI data, the identification rates of the mesencephalic

trigeminal and spinal trigeminal tracts using the proposed automated

method were relatively low compared to those in the HCP data.

3.2. TGN spatial overlap

Table 3 gives the mean and the standard deviation of the wDice scores

across the 50 HCP atlas subjects and those of the 42 HCP testing subjects

with successful manual TGN identification. High mean wDice scores, on

average over 0.75, were obtained. The threshold for a good wDice score

to evaluate tract spatial overlap was suggested to be 0.72 according to

Cousineau et al. (2017). Table 3 also gives the wDice scores of the two

PPMI testing subjects with manually selected TGNs, which were about

0.79 for both subjects.

3.3. TGN visualization

Fig. 3 gives a visual comparison between the automatically (pro-

posed) and manually identified TGNs for three example subjects. Highly

visually comparable results were obtained between the two methods for

the two subjects with successful manual identification. Our proposed

method could also successfully identify a visually reasonable TGN on the

subject where manual identification failed. In the testing subject with

unsuccessful manual TGN identification, the skull base region is affected

by imaging artifacts and/or noise, where the predefined ROIs at the

Meckel’s Cave and the cisternal portion were not visually accessible. (To

confirm the anatomical validity of the automatically identified TGN in

the testing subject, we have performed another manual TGN identifica-

tion method that is based on interactivelymoving ROIs. A visualization of

the TGNs is provided in Suppl Fig. 3.)

Fig. 4(a) shows the 3D fiber trajectory and the fiber density map of the

TGN curated in the atlas, overlaid on the population mean T2w image. In

general, the TGN had an anatomically correct shape and corresponded

well to the known anatomy of the TGN pathways, i.e., passing through

the Meckel’s Cave (MC) and overlapping well with the cisternal portion

(CP), as appearing on the T2w image. Fig. 4(b) gives the TGN visuali-

zation of the example HCP subject with successful manual selection. The

TGNs identified using our method were anatomically correct, passing

through the MC and overlapping with the CP as appearing on the T2w

image. Fig. 4(c) renders the identified TGNs from the example HCP

subject with unsuccessful manual selection. In this subject, our obtained

TGNs are visually anatomically correct in terms of the shape; however,

they do not pass through the MC and do not overlap with the CP as

appearing on the T2w data. This was because the dMRI data of this

subject had imaging artifacts in the skull base region, which affected the

registration with the T2w data at the skull base region. (This also

explained the failure of our attempt to perform manual selection using

ROIs drawn on the T2w data.) Fig. 4(d) displays the TGNs identified from

the example PPMI subject. The identified TGNs were anatomically cor-

rect, passing through the MC and overlapping with the CP as appearing

on the T2w data.

4. Discussion

In this paper, we present a TGN tractography fiber clustering atlas to

enable automated identification of TGN in dMRI tractography from new

subjects. We show not only highly comparable TGN identification per-

formance of our method with comparison to expert TGN identification,

but also several advantages. First, our method performed automated TGN

identification, without required expert ROI placement; thus, it provides

an efficient tool to reduce expert labor costs and inter-operator bias.

Second, our method was robust to potential imaging artifacts and/or

noise and thus obtained a higher successful TGN identification rate. We

have several overall observations about the results, which are discussed

below.

We demonstrated successful application of the TGN atlas for subject-

specific TGN identification, where 100% of the TGNs of all subjects under

study were successfully identified. Importantly, our method could suc-

cessfully identify the TGNs of the 8 HCP testing subjects where manual

TGN selection could not because of failed ROI placement within the MC

and the CP. In our work, we found that manual ROI placement was

affected by imaging artifacts and/or noise at the skull base region from

two aspects. First, ROIs could not be drawn because the anatomical

structures of interest were not visible on the noisy dMRI data. Second,

ROIs from inter-modality imaging (e.g. anantomcal T2w) could not be

applied because of bad image registration at the skull base region. Our

method identified the TGNs from dMRI tractography directly, without

relying on the success of ROI placement. Therefore, our method provided

a robust tool for TGN identification, in spite of the potential imaging

artifacts and/or noise at the skull base region.

We showed the proposed atlas’s high TGN identification performance

despite the heterogeneity of the dMRI data, specifically in the dMRI with

Table 2

TGN identification rate (percentage of successfully identified TGNs) of the overall TGN and its subdivisions using the proposed automated identification method

(highlighted in gray) and the manual selection method. For the PPMI data, we did not perform manual TGN identification; thus, the TGN identification rate was not

reported.

Overall TGN cisternal portion Mesencephalic

trigeminal tract

Spinal trigeminal tract

Automated Manual Automated Manual Automated Manual Automated Manual

HCP atlas subjects (n ¼ 50) 100% 100% 100% 100% 45.0% 40.0% 59.0% 35.0%

HCP testing subjects(n ¼

50)

With successful manual identification(n ¼

42)

100% 100% 100% 100% 58.3% 34.5% 47.7% 46.4%

With unsuccessful manual identification (n

¼ 8)

100% 0% 100% 0% 37.5% 0% 31.3% 0%

PPMI testing subjects (n ¼ 40) 100% – 100% – 6.9% – 20.0% –

Table 3

Spatial overlap (wDice score) between automatically (proposed) and manually

identified TGNs.

50 HCP atlas subjects 0.7585 � 0.0883

42 HCP testing subjects(with successful manual identification) 0.7534 � 0.1127

PPMI testing subjects Subject 1 0.7892

Subject 2 0.7887
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relatively low spatial resolution. Our testing data included the dMRI data

from the PPMI database, which was independently acquired using a

different scanning protocol and processed in a different manner

compared to the HCP data. These factors could affect the tractography

results and thus influence the identification generalizations between

different dMRI datasets. However, despite any potential effects from the

heterogeneity of the dMRI data, we showed excellent TGN identification

generalization performance across the multiple testing datasets. One

important contributing factor was the application of the two-tensor UKF

tractography (Malcolm et al., 2010; Reddy and Rathi, 2016) which is

highly sensitive and robust in fiber tracking in dMRI data from different

acquisition protocols.

We demonstrated the anatomical validity of the identified TGN using

the proposed atlas. First, the automatically identified TGNs were highly

comparable to the ground truth manual TGN selection results, where we

showed highly visually similar TGN fiber trajectory and good spatial

overlap. Second, the automatically identified TGNs corresponded well to

the known anatomy, passing through the MC and overlapping with the

CP, as appearing on the T2w image. T2w data has a good contrast of the

cisternal portion of the TGN and has been widely used to confirm the

presence of the TGN (Casselman et al., 2008; Xie et al., 2020).

The proposed atlas enabled identification of subdivisions of the TGNs.

The TGN covers an extensive nerve distribution territory, including

several segments such as the cisternal portion, the branching structures,

the mesencephalic trigeminal tract, and the spinal trigeminal tract (Go

et al., 2001; Joo et al., 2014). Unlike the cisternal portion of TGN that has

been studied in multiple previous works, the mesencephalic trigeminal

tract and spinal trigeminal tract are relatively less studied. The spinal

trigeminal tract is important for mapping the pain-temperature sensory

functions of the face, mouth and nose (Grant and Arvidsson, 1975). The

mesencephalic trigeminal tract is an important portion of the TGN that

conveys proprioceptive information from the teeth, masticatory muscles

and temporomandibular joints (Shigenaga et al., 1989). To our knowl-

edge, our recently published work (Xie et al., 2020) demonstrated, for the

Fig. 3. Visual comparison of the TGN 3D fiber trajectory between the automatically (proposed) and manually identified TGNs. The three example subjects include one

HCP testing subject with successful manual TGN identification, one HCP testing subject with unsuccessful manual TGN identification, and one PPMI testing subject

(healthy control). For the HCP testing subject with unsuccessful manual TGN identification, the b0 and DTI image are distorted, preventing successful placement of the

ROIs in CP and MC.
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first time, the possibility of identification of the putative mesencephalic

trigeminal tract using dMRI tractography techniques, where we have

shown that the highly sensitive fiber tracking UKF algorithm can effec-

tively track through the intra-brainstem region where the mesencephalic

trigeminal tract fibers cross white matter fibers. In the present study,

using the same underlying tractography method, we have shown a better

identification rate using the proposed automated atlas-based method

than previously applied manual selection method. However, while we

showed modestly successful performance on identifying the mesence-

phalic trigeminal tract and spinal trigeminal tract, we noticed that the

identification of these substructures could be affected by the image

quality. In the PPMI data, we found a lower identification rate of these

two tracts compared to the high-quality and high-resolution HCP data.

This result suggested that improving the imaging acquisition would be

helpful for identification of the more comprehensive anatomy of the

TGN.

The proposed atlas-based TGN identification method aimed to

address the known tractography issues of false negative and false positive

fiber tracking (Maier-Hein et al., 2017; Thomas et al., 2014). In our study,

we applied the multi-tensor UKF tractography method that has been

shown to be highly sensitive tracking in the presence of crossing fibers

and peritumoral edema in the cerebrum (Z. Chen et al., 2015, 2016; Gong

et al., 2018; Hong et al., 2018; Liao et al., 2017; O’Donnell et al., 2017; F.

Zhang, Kahali, et al., 2017; Fan Zhang, Savadjiev, et al., 2018; Fan Zhang,

Wu et al., 2018). The multi-tensor UKF tractography has also been

demonstrated to be highly sensitive in tracking the different anatomical

subdivisions of the TGN (Xie et al., 2020). The high sensitivity has been

suggested to be important to reduce false negatives, but at the expense of

increased false positive fiber tracking (Maier-Hein et al., 2017; Thomas

et al., 2014). Therefore, the multi-tensor UKF fiber tracking method may

introduce more false positive or anatomically incorrect errors compared

to a standard single-fiber diffusion tensor fiber tracking method. In our

method, we included two solutions to remove possible false positive fi-

bers. First, during expert judgment, we excluded the fiber clusters that

were anatomically incorrect to belong to the TGN. For instance, we found

and excluded false positive fiber clusters entering the temporal lobe.

While the expert judgement could reject the entire cluster if the cluster

was not anatomically correct, improbable fibers within a cluster could

not be ameliorated. To handle such tractography errors, we included a

data-driven outlier fiber removal process to reject improbable fibers

Fig. 4. Visualization of the TGN 3D fiber trajectory and the voxel-based fiber density map, overlaid on T2w data. (a) The TGN in the atlas, overlaid on the population

mean T2w image. (b, c) Subject-specific TGNs of the two example HCP subjects, overlaid on the corresponding T2w images. (d) Subject-specific TGNs of the example

PPMI subject (healthy control), overlaid on the corresponding T2w image. For each sub-figure, inset images are provided for better visualization of the regions where

the TGN passes through. The value of a voxel in the heatmaps represents the number of fibers that have fibers passing through the voxel. For visualization of the fiber

density map at the same scale, each map is normalized by the maximal value on the map for each sub-figure.
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within a cluster.

While the aforementioned two processing steps have largely

ameliorated the issue of false positive fibers, we still found false positive

fibers entering the cerebellar peduncles, e.g., fibers that are parallel to

the middle cerebellar peduncle. (See Suppl Fig. 4 for a graphic illustra-

tion of the false positive fibers entering the cerebellar peduncles). False

positive tracking of the TGN has been reported in several studies, in

particular, false positive streamlines entering the cerebellar peduncles

(Behan et al., 2017; David Q. Chen, DeSouza et al., 2016; David Qixiang

Chen et al., 2011; Hung et al., 2017; Jacquesson et al., 2019; M. Yoshino

et al., 2016). In our previous study that compared different fiber tracking

strategies (dMRI data with different b-values, in combination with both

single- and multi-tensor tractography methods), we have also found that

false positive tracking into the cerebellar peduncle was a large challenge,

as this false positive tracking was present in all datasets even with expert

selection of TGN fibers (Xie et al., 2020). While this issue can be

ameliorated by removing the fiber clusters that have fibers entering the

cerebellar peduncles, unfortunately this strategy will remove a large

number of fibers, reducing the possibility of identifying other structures

such as the cisternal portion and the branching structures. Therefore, we

included these fiber clusters in the curated TGN atlas. We note that there

is a false negative tracking of the fibers that travel towards the trigeminal

sensory nucleus, in particular the chief sensory nucleus; however, the

TGN fibers to the other parts of the trigeminal sensory nucleus including

the spinal nucleus and the mesencephalic nucleus can be identified using

our method. (The trigeminal sensory nucleus is composed of three nuclei

including the chief sensory nucleus, the spinal nucleus and the mesen-

cephalic nucleus (Go et al., 2001; Joo et al., 2014).)

The proposed TGN atlas can be useful in both scientific and clinical

applications. For example, our method provides a useful tool to enable

large-scale population-wise statistical analysis. Many research studies

have suggested that TGNs are important for understanding and/or po-

tential treatment of various neurological disorders such as major

depressive disorder, attention-deficit/hyperactivity disorder and Par-

kinson’s disease (Barz et al., 1997; McGough et al., 2015; Schrader et al.,

2011). To identify disease-population-specific characteristics of the TGNs

compared to healthy controls, statistical group-wise comparison is

needed. Our automated method is efficient and can ensure a highly

reliable population-wise statistical analysis, where TGN identification is

performed in a consistent way across the subjects. Another example

application of our TGN atlas is to identify and locate the vulnerable TGNs

in tumor patients for surgical planning research. In particular, presurgical

visualization of TGN displacement due to tumor/lesion compressions

offers a significant asset to predict the vulnerability of the TGNs in

neurosurgery (Jacquesson et al., 2019). Our atlas can also be useful by

providing a possibility to quantify the spatial CN trajectory deviation

(displacement due to peritumoral effects) from the TGNs of healthy

brains in the atlas. Another potential use of our method is to study TGN

pathologies related to neurovascular conflict, e.g., in trigeminal neural-

gia. Our method uses diffusion MRI tractography, which is sensitive to

water diffusion and fiber myelination but not vessels or arteries. In

combination with other MRI modalities where vessels and arteries are

highly visualized (Donahue et al., 2017; Haller et al., 2016; Kontzialis

and Kocak, 2017), our method can provide an effective tool to separately

identify nerve structures to confirm neurovascular conflict.

Potential limitations of the present study, including suggested future

work to address limitations, are as follows. First, in the present study, we

demonstrated improvement to the manual ROI-based TGN selection

methods on the testing HCP datasets that were affected by imaging arti-

facts and/or noise. To perform consistent processing across subjects and

provide fairly comparable results to the literature, we chose a widely used

method based on predefined manually drawn ROIs within the MC and CP.

For this particular manual selection strategy, ROI placement was affected

by imaging artifacts and/or noise so that TGN selection was not able to be

performed. However, we acknowledge that a manual TGN identification

method that requires more sophisticated processing, e.g., interactively

moving ROIs (Chamberland et al., 2012; Golby et al., 2011; Fan Zhang

et al., 2020), may also identify the TGNs in these testing datasets (see

Suppl Fig. 3). Second, we demonstrated our method on TGN identification

of subjects with different health conditions, including healthy and Par-

kinson’s disease. A further evaluation could include an investigation of

patients with secondary pathologies that affect the TGN, e.g. trigeminal

neuralgia and neurosurgical patients with skull base tumors. Third, in this

study, we created the TGN atlas using UKF tractography because it has

been demonstrated to be effective in tracking TGNs (Xie et al., 2020). In an

initial experiment, we have shown successful applications of the atlas to

tractography data computed using two additional fiber tracking methods,

including diffusion tensor tractography (Basser et al., 2000) and con-

strained spherical deconvolution (Jeurissen et al., 2011) tractography (see

Supplementary Material S1 for details). An interesting future work could

include a comprehensive comparison to investigate the differences of the

TGNs identified from different tractography methods. Fourth, given the

success in atlas curation of the TGN, as well as the brain white matter (Fan

Zhang,Wu, et al., 2018), we believe that it is highly feasible and promising

to leverage our fiber clustering techniques for atlas curation of other cra-

nial nerves, which is interesting further work to be investigated. Fifth, a

more comprehensive assessment of the automatically identified TGNfibers

could include a comparison to advanced CISS or FIESTA data that can

provide better visualization of the cisternal portion of the TGN. However,

due to the unavailability of such advanced data in the HCP and PPMI

datasets under study, we chose to use the T2w data that provide reason-

ably good contrast of the cisternal portion of the TGN and have been

widely used to confirm the presence of the TGN (Casselman et al., 2008;

Xie et al., 2020).

5. Conclusions

In this paper, we have presented a novel dMRI tractography fiber

clustering atlas that enables automated identification of the TGN of new

subjects. Experimental results show successful application of the pro-

posed atlas to dMRI data with different MRI acquisition protocols and

demonstrate advantages over a traditional manual selection strategy.
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