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The extent to which nonhuman primate vocalizations are amenable to

modification through experience is relevant for understanding the substrate

from which human speech evolved. We examined the vocal behaviour

of Guinea baboons, Papio papio, ranging in the Niokolo Koba National Park in

Senegal. Guinea baboons live in a multi-level society, with units nested within

parties nested within gangs. We investigated whether the acoustic structure of

grunts of 27 male baboons of two gangs varied with party/gang membership

and genetic relatedness. Males in this species are philopatric, resulting in

increased male relatedness within gangs and parties. Grunts of males that

were members of the same social levels were more similar than those of males

in different social levels (N = 351 dyads for comparison within and between

gangs, and N = 169 dyads within and between parties), but the effect sizes

were small. Yet, acoustic similarity did not correlate with genetic relatedness,

suggesting that higher amounts of social interactions rather than genetic related-

ness promote the observed vocal convergence. We consider this convergence a

result of sensory–motor integration and suggest this to be an implicit form

of vocal learning shared with humans, in contrast to the goal-directed and

intentional explicit form of vocal learning unique to human speech acquisition.

1. Introduction
One of the key preconditions for the development of speech is the ability to

adjust vocal output in response to auditory input. Humans are exceptionally

proficient at vocal learning. Although effortless speech learning is confined to

the early years [1], humans still possess the ability to imitate sounds voluntarily

and acquire further languages throughout their lives. Numerous comparative

studies have aimed at elucidating the evolutionary origins of vocal learning

within the primate lineage, to uncover the extent to which nonhuman primates

reveal evidence for vocal plasticity, and whether such plasticity may be

conceived as a pre-adaptation for the evolution of speech [2,3].

Despite considerable research effort, it appears that the ability to learn sounds

from auditory experience in most nonhuman primate species is limited. Unlike

humans or some songbird species, nonhuman primates are not obligatory

vocal learners that require species-specific auditory input to develop their

normal vocal repertoires [4,5]. Early attempts to train a young chimpanzee to pro-

duce speech sounds yielded disappointing results and prompted most of the ‘ape

language’ projects to turn to another modality, using either symbol systems or

sign languages [6]. Studies of the neural basis of vocal production in different

monkey species found that the animals lack the neural connections necessary
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for the volitional control over the fine structure of vocaliza-

tions, although they exert greater control over the usage of

calls (reviewed in [2]). One exception to the rule of limited

vocal plasticity may be orangutans, which have greater control

over their vocal apparatus [7,8].

In addition to the limited ontogenetic plasticity, a range

of comparative studies within different nonhuman primate

species strongly suggest that the motor patterns underlying

vocalizations are evolutionarily highly conserved within

genera (reviewed in [2]). For instance, the structure of alarm

calls of members of the genus Chlorocebus differs only margin-

ally between East African vervets,Chlorocebus pygerythrus, and

West African green monkeys, Chlorocebus sabaeus. Moreover,

in response to a drone, naive West African green monkeys

spontaneously uttered calls that structurally were highly simi-

lar to East African vervet ‘eagle alarm calls’, indicating that

the link between the perception of a specific (potentially

dangerous) stimulus and the activation of a given motor

programme is also conserved [9].

At the same time, subtle modifications in vocal output

as a result of auditory experience appear to be possible. For

instance, common marmosets, Callithrix jacchus, increase the

amplitude of their calls in noisy environments (‘Lombard

effect’; [10,11]). More importantly, a range of species show

group-specific variations or ‘dialects’ in their vocalizations

(reviewed in [12]), while Japanese macaques matched some

of the acoustic features of calls presented in playbacks [13].

These instances of vocal plasticity have been described as

‘vocal accommodation’ [12,14,15] or ‘social shaping’ [15],

similar to the observation that humans may involuntarily

match the pitch, temporal patterning and prosody of the

people they are talking to.

Following the idea that auditory input may lead to vocal

convergence, subjects that interact more frequently with one

another using vocalizations should produce calls that are

more similar to each other than those that interact less

frequently. A higher acoustic similarity may also result from

genetic relatedness, however. For instance, highly related

subjects may also have a similar morphology of the vocal

production apparatus [16]. Before conclusions about the role

of experience can be drawn, it is necessary to assess whether

potential acoustic variation between individuals can (also)

be explained by genetic distance.

To date, few studies have investigated the effects of gen-

etic relatedness and interaction frequency at the same time.

Lemasson and colleagues reported that interaction frequency

but not genetic relatedness accounted for acoustic variation

in the calls of Campbell’s monkeys, Cercopithecus campbelli

campbelli [17]. The reported correlation of acoustic similarity

with grooming frequency may be spurious, however, as

data from two groups (with N = 6 and 4 females, respectively)

were pooled, and the correlation was largely driven by the

differences between the groups. Levréro and colleagues [15]

studied the acoustic structure of contact calls in 36 male

and female mandrills living in three social groups. Both gen-

etic relatedness and familiarity impacted acoustic similarity

of the species’ ‘kakak’ calls, while retaining cues to kin

memberships: playback experiments showed that subjects

responded significantly more strongly to calls recorded

from related kin, irrespective of familiarity [15].

We here set out to assess the impact of social interaction

while controlling for genetic relatedness by comparing the

acoustic variation in the grunts of male Guinea baboons, Papio

papio. Guinea baboons are an interesting model to examine

the influence of auditory experience and social group member-

ship, as they live in a nested multi-level society with male

philopatry [18]. At the base of the society are ‘units’ comprising

one adult male, one to six females and young. A small number

of units, together with bachelor males, form a ‘party’, and two

or three parties make up a ‘gang’ (figure 1a). Assignments to

parties and gangs are based on spatial proximity and affiliative

interactions [19]. During affiliative interactions with other

group members, males produce low-frequency tonal grunts

(figure 1b). The Guinea baboons’ social structure allowed us

to assess vocal convergence at two social levels, namely

within parties and within gangs.

If the frequency of interaction affects the structure of calls,

subjects that interact frequently with one another should pro-

duce calls that are more similar to each other. Thus, members

of the same party should have the greatest similarity, while

members of the same gang should produce calls that are

more similar to each other than to calls produced by members

of another gang. If genetic relatedness affects the vocal struc-

ture, dyads that are more highly related should reveal greater

acoustic similarity. Note that these two effects (interaction

frequency and relatedness) are not mutually exclusive.

2. Methods
We obtained recordings of grunts from a total of 27 male baboons

in 2010/11, 2014 and 2016. Thirteen of the males were members of

the ‘Mare’ gang and 14 were members of the ‘Simenti’ gang. The
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Figure 1. (a) The multi-level social organization of Guinea baboons. Several units form a party, and two or more parties form a gang. (b) Spectrogram of grunts

from four different males. Frequency (kHz) on the y-axis, time (s) on the x-axis. The spectrogram was created using Avisoft-SASLab Pro 5.2 (1.024 pt FFT, sampling

frequency: 11 kHz, time resolution: 2.9 ms, Flat Top window). (Online version in colour.)
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Mare gang comprised two parties of 6 and 7 males each; the

Simenti gang comprised two parties of 5 and 9 males each.

Twenty-three of the 27 males were confirmed or assumed

to be present throughout the study period (see electronic

supplementary material, table S1).

Vocalizations were recorded using Marantz PMD 661 recor-

ders (D&M Professional, Longford, UK) with Sennheiser

directional microphones (K6 power module +ME66 recording

head; Sennheiser, Wedemark, Germany) equipped with Rycote

windshields (Rycote Windjammer, Rycote Ltd, Stroud, UK).

We used Avisoft-SASLab Pro (Avisoft Bioacoustic, Berlin,

Germany) to check the recording quality and to label and extract

grunts with sufficient quality and low background noise. We

only used calls recorded at a maximum distance of 3 m. To maxi-

mize the number of grunts per male, we included grunts from

different contexts (electronic supplementary material, table S2).

In total, we included 756 grunts in the acoustic analysis. On aver-

age, we used 28 calls per subject in the analysis (range: 5–127).

The Mare and Simenti gang males were represented by 390

and 366 grunts, respectively. Ideally, one would have liked to

include further gangs with additional subjects to assess whether

the observed pattern holds beyond our study population, but

adding further groups was beyond our capacities.

We reduced the sampling frequency from 44.1 to 5 and 1 kHz

to obtain an appropriate frequency resolution for the estimation of

acoustic features and calculated two 1024-pt fast Fourier trans-

formations (FFTs), one resulting in a frequency range of 2500 Hz

(frequency resolution 5 Hz, temporal resolution 6.4 ms) and a

second FFT resulting in a frequency range of 500 Hz (frequency

resolution of 1 Hz, and a temporal resolution of 16 ms). Calculat-

ing two FFTs allowed us to maximize the temporal resolution for

the entire call type, and estimate the fundamental frequency at a

higher frequency resolution. The resulting frequency–time spectra

were analysed with a custom software program LMA 2019, which

allows visual control of the accuracy of parameter estimation

[20,21]. LMA outputs a total of 82 acoustic parameters.

To identify which parameters would be informative to

distinguish between individuals (and thus, social levels), we

entered all 82 acoustic features from the LMA output into a

stepwise discriminant function (DFA) with subject identity as a

grouping variable. The selection criterion for acoustic features

to enter the discriminant function analysis was Pin= 0.05 and to

be removed Pout = 0.1. The DFA used 31 acoustic features for indi-

vidual discrimination (electronic supplementarymaterial, table S3).

To quantify the acoustic distance betweenmales, we used the aver-

age pairwise F-value from the discriminant function analysis as a

dissimilarity score for each dyad. The dissimilarity score provides

an assessment of the similarity of calls, with higher values indi-

cating greater dissimilarity and lower values greater similarity. In

the following, we will simply refer to the similarity of calls. The

average pairwise F-value has been used in different studies exam-

ining relationships between acoustic structure and genetic or

geographic distance [22,23]. The discriminant function analysis

was performed using IBM SPSS v. 26.0 (IBM, Armonk, NY). To

assess whether the classification result of the individual discrimi-

nation of male grunts is higher than would be expected by

chance, we additionally performed a permuted DFA [24], which

controls for variation in individual contributions of grunts.

We extracted DNA from faecal samples using the First-DNA

all tissue kit (Genial®) and characterized genetic variation by

assessing the individual allele variation on 24 polymorphic auto-

somal microsatellite markers. The 24 markers were amplified

using the Multiplex PCR Kit (QIAGEN) and fluorescent-labelled

primers. PCR products were separated and detected through

capillary gel electrophoresis on an ABI 3130xL Genetic Analyzer

(Applied Biosystems®, USA). Microsatellite allele sizes were eval-

uated using GeneMapper 5 (Applied Biosystems®). One locus

(D1s548) showed signs of null alleles and significant deviations

from Hardy–Weinberg equilibrium and was therefore excluded,

resulting in a total of 23 loci included in the relatedness

estimation (calculated with MICRO-CHECKER v. 2.2.3 [25] and

the PopGenReport R package v. 3.0.0 [26]. We used the R pack-

age ‘related’ v. 1.0 [27,28] to estimate relatedness using R v. 3.4.4

and RStudio v. 1.1.456. The Wang estimator (hereafter W)

appeared to be most suitable for the present analysis (see elec-

tronic supplementary material, table S4). W ranges from −1 to

1. Negative values indicate that dyads are less related than on

average, while positive values indicate that they are more

highly related than on average (see [29] for a detailed description

of the analysis).

These and the following statistical analyses were conducted

in the R environment v. 3.6.3 [30], using the RStudio interface

v. 1.3.959 [31]. We used a Mantel matrix correlation test (package

‘vegan’; v. 2.5.6) to test the correlation between acoustic and gen-

etic variation. To test whether calls within a gang were more

similar to each other than between gangs, we applied a categori-

cal Mantel test, using ‘same gang membership’ (yes/no) as the

categorical predictor variable, and W or F (transformed as

ln(1 + F)) as the continuous variable. The analysis of the effect

of gang membership was based on 351 dyads. To study the

effect of party membership, we also used a categorical Mantel

test, but only considered pairs of males that lived in the same

gang (e.g. SNE and BAA, both members of the Mare gang, or

BEN and WLD, both members of the Simenti gang; total

number of dyads within both gangs, N = 169). We used a

restricted permutation approach where males were permuted

between parties within gangs. We used 1000 permutations in

all analyses, except the one for the variation between parties

within gangs, where we used 10 000 permutations. Effect sizes

were calculated with the package ‘effsize’ version 0.8.0. The

data and code for statistical analysis are deposited at https://

osf.io/h7q5r/.

3. Results
Confirming previous analyses, males were more highly

related within gangs than between gangs (categorical Mantel

test, p = 0.001, N = 351; figure 2a). The effect size (Cohen’s d )

was 0.52 (CIlower −0.73, CIupper, −0.31; medium effect size).

Within gangs, males in the same party were more highly

related on average than males that were not members of the

same party ( p = 0.035, N = 169; figure 2b), with a small effect

size (d = 0.24, CIlower −0.54, CIupper −0.07).

Grunts could be assigned to the correct individual signifi-

cantlymore frequently than by chance, with an average correct

assignment of 34.5% using the procedure in SPSS (chance level

3.7%, leave-one-out validation: 21.0% correct classification).

The classification in the permuted DFA (pDFA) with a

reduced set of N = 135 calls (see electronic supplementary

material, table S5) yielded an average classification of 11.2%

(p < 0.001). Acoustic similarity did not correlate with genetic

similarity (r =−0.006, p = 0.515). Because of the inherent uncer-

tainty with which dyadic relatedness can be estimated [32], we

ran an additional analysis in which we compared the acoustic

similarity of dyads in the top quartile (W > 0.125) versus the

bottom quartile (W <−0.117). Again, we found no effect of

relatedness on acoustic similarity (categorical Mantel test,

p = 0.933; figure 3).

Grunts of males within gangs were more similar to each

other than between gangs (categorical Mantel test, p = 0.012;

figure 4a), and grunts of males within a party were also

more similar to each other than between parties in the same

gang ( p = 0.001; figure 4b). The effect sizes were modest,
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however (d = 0.177, CIlower −0.03, CIupper 0.38 between gangs

and 0.152, CIlower −0.15, CIupper 0.46 between parties, respect-

ively). When we compared the mean acoustic similarity of

males that resided in the same party (mean logF = 0.29) with

those that were part of a different gang (mean logF = 0.33),

the effect size was small (d = 0.24, CIlower −0.02, CIupper 0.50).

Grunts varied with social level (party/gang) mostly in par-

ameters that are related to the filter function of the vocal

tract (electronic supplementary material, table S6). The funda-

mental frequency or call duration did not vary systematically

between social levels.

4. Discussion
The structure of male grunts varied between members of

different gangs, and also between members of parties within

a gang. The effect sizes of these two comparisons were

modest, however. Males in the same gang were also more

highly related to one another, but this did not account for

the acoustic variation between parties and gangs, as evidenced

by the lack of an effect of genetic relatedness on acoustic

similarity. In this regard, the Guinea baboons differ from

mandrills, where both relatedness and interaction frequency

predicted the structure of the vocalizations [15].

It may seem puzzling at first that genetic relatedness

did not account for the higher vocal similarity in Guinea

baboons despite the fact that genetic relatedness and acoustic

similarity were both higher within parties and gangs

than between. This can be explained by the fact that not all

dyads within a social level are indeed more highly related

than across these social levels. Acoustic similarity thus

appears mainly to be driven by social interaction, which is

not restricted to highly related dyads. To a certain degree,

relatedness and acoustic similarity vary independently of

one another.

How may auditory input affect vocal production? One

mechanism that may support the reported minor adjustments

in vocal output with experience may rest on sensory–motor

integration [33]. According to the idea of a ‘common coding’

framework, specific sensorimotor areas represent both sensory

input and motor commands generating that corresponding

pattern [34]. In humans, neuroimaging studies identified

specific motor activations when subjects listened to speech

sounds [35]. If such sensory–motor integration exists in the

auditory–vocal domain of nonhuman primates, the exposure

to specific auditory input may increase the likelihood to

produce the corresponding motor pattern via co-activation.

A recent study provided compelling evidence for the inte-

gration of auditory input with vocal output in a nonhuman

primate species. In common marmosets, activity in the audi-

tory cortex directly affected the monkeys’ control of vocal

production [36]. Firstly, a shift in the auditory feedback of the

monkeys’ vocalization led to compensatory changes in the fre-

quency patterns of the subsequent vocalizations. Secondly,

microstimulation of the auditory cortex during vocalization

led to abrupt shifts in vocal frequency [36]. In a translocation

experiment, commonmarmosets (N = 4) adjusted the structure

of their vocalizations in response to auditory input from con-

specifics, even if the individuals did not interact directly [37].

Beyond the immediate effects of auditory experience, there is

also evidence that feedback from parents affects the trajectory

of vocal development in marmosets [38–40].

It has been argued that the human ability to imitate the

utterances of others gradually evolved from the vocal plas-

ticity observed in nonhuman primates [17,41]. We contend

that vocal learning may be based on a variety of different

mechanisms, including vocal convergence, ‘learning from

success’, a form of usage learning that comprises the use of

specific call variants because they are more likely to yield

the desired response, as well as the spontaneous imitation

of a recently formed auditory template [42]. Instead of con-

ceiving vocal learning capacities as a continuum [43], we

agree with other authors that vocal learning may be sup-

ported by a variety of different mechanisms [44]. Future
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studies should aim to distinguish between these mechanisms,

and also consider the effect size of vocal plasticity.

Taking the extent of plasticityaswell as themechanisms that

support them into account will contribute to overcoming futile

debates about whether or not nonhuman primates reveal

evidence for vocal learning [45]. The vast majority of studies

in nonhuman primates that reported evidence for vocal

convergence observed only minor changes within the species-

specific range of calls. Thus, the small effect sizes reported

here are important aspects of the results. Humans, instead, are

not only able to work on their accents, as Eliza Doolittle in ‘My

fair lady’, but they can also sing ‘supercalifragilisticexpialido-

cious’ with Mary Poppins. The spontaneous imitation of new

words is open-ended, while it is much more difficult to

change one’s accent once a certain age has been reached. Vocal

convergence in nonhuman primates appears to be more similar

to the formation of an accent than the acquisition of novel pho-

netic combinations that make up new words. An interesting

open question is whether vocal convergence is simply a by-

productof the sensoryexperienceorwhether it has beenselected

for, since it may signal ‘in-group’membership and thus have an

important social function [46].

Irrespective of whether vocal convergence has been

selected for or not, we propose that it constitutes an implicit

form of motor learning shared between nonhuman primates

and humans, while speech production constitutes an explicit

form of motor learning. Implicit and explicit processes are not

entirely dichotomous: explicitly acquired motor skills can

become automatic (as when you learn to drive a car), while

implicit processes may be made explicit [47]. Yet, it has

proven useful to distinguish between implicit and explicit

forms of knowledge and knowledge acquisition [48]. Taatgen

suggested that implicit learning is a by-product of general

learning mechanisms, while explicit learning is tied to learn-

ing goals and thus intentionality [47]. This definition appears

useful for the distinction between vocal convergence as a

result of sensory–motor integration on the one hand and

the goal-directed acquisition of the patterns that result in

the production of speech, on the other.

A further open question is whether the observed acoustic

variation is salient to the animals themselves. In a previous

study [49], we tested male responses to the playbacks of grunts

of males that share the same home range as the study males

(neighbours) versus to grunts of males living 50 km away

(strangers). As a control, we played back the grunts of males

from their own gang. Surprisingly, males responded strongly

only to the grunts from males of their own gang, but largely

ignored neighbour or stranger males’ calls. In principle, these

responses could be explained by the recognition of the males’

voice characteristics. Yet, it might also be the case that males

recognize the ‘sound’ of their subgroup. Playbacks presenting

artificially created grunts bearing the own gang’s characteristics

versus another gang’s characteristicswouldbeneeded to test this

conjecture.

In summary, we find evidence for a moderate degree of

vocal convergence in the grunts of male Guinea baboons.

The magnitude of the change is difficult to compare with

those of other studies on nonhuman primates mentioned

above, given the differences in methodological approaches,

but broadly appears to be in a similar range. Our findings

add to the body of evidence that within species-specific con-

straints, subtle and potentially meaningful variation can be

found in nonhuman primate vocalizations. This variation

does not compare with the open-ended possibility of vocal

imitation found in human speech, however.
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