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Identification of Synthetic Activators of Cancer Cell
Migration by Hybrid Deep Learning

Dominique Bruns+,[a] Erik Gawehn+,[a] Karthiga Santhana Kumar,[b] Petra Schneider,[a]

Martin Baumgartner,[b] and Gisbert Schneider*[a]

Introduction

Machine learning models have become a cornerstone of com-

puter-assisted drug discovery. Among the many different ap-

proaches, neural networks constitute a particularly active field

of research. Deep convolutional neural networks (CNNs) were

initially developed for image recognition and have recently

been adopted by the life sciences,[1, 2] for example, for rapid

and robust microscopic and angiographic image analysis,[3]

and pattern recognition in genome data.[4] CNNs excel at fea-

ture extraction from images, which has been evidenced not

only by great success in computer vision, but also by promis-

ing use in medical imaging and radiotherapy.[1, 2] In this study,

CNN technology was used for ligand-based drug discovery.

The method combines CNN-based pattern recognition with

self-organizing maps (SOMs)[5] for representing molecular struc-

tures as standardized images. The results of a prospective

application provide proof-of-concept for this concept of collab-

orative machine intelligence.[6] The new hybrid deep learning

method enabled the identification of the first-in-class, synthetic

low molecular weight activators of chemokine receptor CXCR4.

The CXCR4 protein is a member of the G protein-coupled

receptor (GPCR) family.[7] Intracellular signaling is triggered by

the endogenous agonist CXCL12, a chemokine protein with a

molecular mass of 8 kDa, and involves both G-protein activa-

tion and the recruitment of b-arrestin with subsequent recep-

tor internalization.[8] CXCR4 can undergo dimerization to form

homodimers or heterodimers with ACKR3, leading to differen-

tial and complex signaling regulation.[9,10] The CXCR4 receptor

is constitutively expressed,[11] plays a key role in HIV infec-

tions[12,13] and has been identified as an anticancer target for

drug discovery. Several CXCR4 antagonists have been pub-

lished[14–16] including the marketed drug plerixafor. However,

finding novel CXCR4 modulators, especially synthetic low-

molecular-weight agonists as tool compounds that mimic the

CXCL12 chemokine, has been proven difficult. Here, we used

hybrid deep learning for virtual screening of a large screening

compound collection to find innovative chemokine receptor

modulators.

Results and Discussion

The first step of the deep learning approach was to develop a

technique for converting chemical structures to two-dimen-

sional images for further processing by the CNN (Figure 1). For

this purpose, we extracted 495827 bioactive compounds with

annotated nanomolar activities from the ChEMBL23 data-

base[17] and represented them in terms of their topological

pharmacophore features (chemically advanced template

search, CATS).[18] This process encoded each molecule as a 210-

dimensional “CATS descriptor” representation. Molecules with

similar CATS descriptors (i.e. , similar topological shape and

pharmacophore features) were then clustered on a two-dimen-

sional grid using Kohonen’s unsupervised SOM algorithm.[19]

Deep convolutional neural networks (CNNs) are a method of

choice for image recognition. Herein a hybrid CNN approach is

presented for molecular pattern recognition in drug discovery.

Using self-organizing map images of molecular pharmaco-

phores as input, CNN models were trained to identify chemo-

kine receptor CXCR4 modulators with high accuracy. This ma-

chine learning classifier identified first-in-class synthetic CXCR4

full agonists. The receptor-activating effects were confirmed by

intracellular cAMP response and in a phenotypic spheroid inva-

sion assay of medulloblastoma cell invasion. Additional macro-

molecular targets of the small molecules were predicted in sili-

co and tested in vitro, revealing modulatory effects on dopa-

mine receptors and CCR1. These results positively advocate

the applicability of molecular image recognition by CNNs to

ligand-based virtual compound screening, and demonstrate

the complementarity of machine intelligence and human

expert knowledge.
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The SOM identifies prototype patterns in the training data and

arranges the resulting data clusters as a neighborhood-preserv-

ing map, where each grid point corresponds to one of the pro-

totype patterns forming the cluster centroids.[20] The resulting

map was used to generate images of the molecular represen-

tations (CATS).[21] Different strategies to leverage the informa-

tion contained in SOM patterns have been proposed.[22,23]

Here, we used a CNN for feature extraction from the SOM

images (Figure 1) and applied the model to ligand-based

virtual compound screening. The trained CNN model predicts

ligand bioactivity based on the SOM excitation patterns

(images) evoked by the input molecular structures.

The motivation to perform deep learning on top of molecu-

lar descriptor encoding and similarity clustering was threefold:

Firstly, there is no best generic representation of a molecule

for drug design.[24] Secondly, combining human and machine

intelligence enables deep learning in low-data situations,

taking advantage of the expert knowledge ingrained in the

CATS descriptor, which is known to enable scaffold hopping in

combination with machine learning.[18] Thirdly, artificial neural

networks are not as flexible as the human mind when it comes

to abstraction from very few input examples.[25] This means

that learning essential known molecular pharmacophore fea-

tures or variants thereof cannot be ensured when the under-

lying ligand data is scarce, as is often the case when one at-

tempts to find compounds against new targets.[26] The method

presented here aims to leverage prior background information

in a semi-supervised fashion and enable deep learning in such

situations.

The machine learning model was developed in two steps.

First, a SOM was trained on a set small bioactive molecules, as

described.[21,27] Then, different CNN classifiers were trained and

tested for their ability to predict CXCR4 ligands, using the

trained SOM model as input layer. The best CNN architecture

contained an input layer with 28V28=784 neurons (i.e. , the

number of SOM clusters), a convolutional layer with a recep-

tive field size of 4V4 pixels, stride=1 and 40 feature maps, fol-

lowed by a pooling layer using max-pooling with a window

size of 2V2 pixels and stride=1, and finally a feedforward layer

with 200 input neurons and two output neurons, one for each

data class (Figure 1). For prospective application, this deep net-

work architecture was trained on all available data (392 CXCR4

modulators) and used for CXCR4 target prediction of the

screening compound pool. (Figure 2, Table 1)

Of the &5.7 million compounds in the screening compound

pool, 7423 were predicted as active against CXCR4 with a net-

work Score >0.995. These potentially active molecules were

Figure 1. Hybrid deep learning architecture. Compounds were represented in terms of CATS pharmacophore descriptors, and converted into SOM images

with a resolution of 28V28 pixels. Coloring (temperature scale) of the map pixels shows the local activation of the prototype pharmacophore patterns learned

by the SOM. These molecular images were used as input to the CNN classifier. The best-performing CNN contained a convolution layer with 40 feature maps,

a max-pooling layer, and a fully connected feedforward classifier with 200+2 neurons. The output value (Score) can be interpreted as the pseudo-probability

of belonging to the positive training set (here: CXCR4 ligands).

Figure 2. Convolutional neural network (CNN) training and prediction score

distribution. A) Development of mean and standard deviation of the Mat-

thews correlation coefficient (MCC, in [@1,1] with MCC=1 indicating perfect

prediction) for the best network architecture during cross-validation (red),

and the MCC for training on the complete CXCR4 data (blue). B) Distribution

of the predicted pseudo-probability of the CNN (Score) obtained for a library

of 5.7 million screening compounds. The top-ranking compounds (Score

>0.995) were considered for bioactivity testing.

Table 1. Statistical evaluation of the deep learning classifier model. Mean

and standard deviation of the Matthews correlation coefficient (MCC),

accuracy, precision, recall and the receiver-operator characteristic area

under the curve (ROCAUC, in [0,1] with ROCAUC=1 indicating perfect

prediction) both in five-fold cross-validation and after training the model

on all CXCR4 data (final model). Results were collected as streaming met-

rics, meaning that they were updated continuously during the learning

process.

Cross-validation Final model

Training data set Validation data set Complete data set

MCC 0.84:0.01 0.88:0.04 0.87

accuracy 0.92:0.01 0.94:0.02 0.93

precision 0.92:0.01 0.93:0.03 0.93

recall 0.92:0.01 0.95:0.02 0.94

ROCAUC 0.92:0.01 0.94:0.02 0.93
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further condensed to a set of 40 purchasable compounds

(Table S1 in the Supporting Information) by four methods:

* Method 1. Ten compounds were selected based on the

overall highest CXCR4 prediction probability of the CNN

(highest network Score). None of these compounds were

predicted as chemokine receptor ligands by SPiDER soft-

ware,[23] an independent tool for target prediction.

* Method 2. Ten compounds were selected based on the

overall most confident chemokine receptor predictions

made by the SPiDER target prediction software.[23]

* Method 3. The 7423 compounds with a CNN Score >0.995

were sorted by decreasing Score values and subjected to

target prediction by SPiDER.[23] From this sorted list, the ten

top-ranking compounds were selected that received SPiDER

predictions as potential chemokine receptor ligands. Their

ranks were between 17 and 95 of the sorted CNN Score list.

* Method 4. A scaffold tree of all 7423 screening compounds

with a CNN Score >0.995 was generated. The subtrees con-

taining the compounds selected by Methods 1, 2, and 3

were excluded. The remaining ten largest subtrees were pri-

oritized and the compounds from each subtree were sorted

according to their CNN Score. From each of the ten subtrees

the highest ranking molecule was selected which possessed

a framework extending the scaffold diversity of the com-

pounds selected by Methods 1, 2, and 3.

In total, 36 of the 40 selected compounds could be pur-

chased from commercial suppliers and biologically tested. Five

of the tested compounds showed an EC50 below 50 mm in cell-

based CXCR4-cAMP assays (Table 2, Figure S1). Compared with

the endogenous agonist CXCL12 (EC50=0.31–0.34 nm), these

observed activities are weak (Figure S2). However, the effect of

the most potent ligand (1, EC50=16–18 mm) had a maximal ag-

onistic effect of 128% in the cAMP assay, which is stronger

than the intracellular cAMP response evoked by CXCL12

(Figure 3). Cancer cell migration was significantly stimulated by

compound 1 (p<0.0001, Kruskal–Wallis test, Figure 4b). Super-

agonist 1 features a clover-like molecular structure of three ar-

omatic rings arranged around a central positively ionizable ter-

tiary amine. This arrangement of functional groups follows the

“three-finger pharmacophore model” of protein–protein inter-

action (PPI) inhibitors.[28] Apparently, the deep learning model

was able to implicitly identify this structural pattern in the

training data. To the best of our knowledge, compound 1 is

the first synthetic low-molecular-weight full CXCR4 agonist re-

ported to date.[29]

Morpholine scaffolds, like in compounds 2 and 3, were pre-

viously identified as CXCR4 antagonists.[30,31] Compounds 2 and

3 were also predicted as chemokine receptor ligands by

SPiDER.[23] Compound 4 is the first CXCR4 modulator contain-

ing the 3,6-diazabicyclo[3.2.2]nonane-6-yl substructure which

had previously been reported for orexin 1 and orexin 2 recep-

tor ligands.[32] Compound 5 features an 6-azaspiro[2.5]octane

scaffold with partial agonistic effects on CXCR4. This scaffold is

not reported in ChEMBL24 as active against any of the chemo-

kine receptors.

Regarding the compound selection method, compound 1

was on rank 11 according to the neural network Score

(Method 1). Compounds 2, 3, and 5 were selected based on

their high SPiDER score, ranging from 0.991 for 5 and 0.996

for 3 (Method 2). Compound 4 was among the top-ranking

Table 2. Compound activities in the cAMP assay performed in CHO cells

overexpressing human CXCR4. CXCR4 activity was tested for cAMP activi-

ty with CXCL12 as positive control and AMD3465 hexahydrobromide as

negative control (N=2).

Compound EC50 [mm] Maximal

effect [%]

16–18 119–126

37–42 86–91

39–43[a] 89–94

41–47[a] 44–46

40–43 70

[a] Approximated value from limited experimental data. Dose–response

curve fitting resulted in the values. Visual inspection of the curve shows

approximation.

Figure 3. Concentration-dependent activation of CXCR4 by CXCL12 and

compound 1 in the cAMP assay. Receptor activation is expressed as the rel-

ative effect compared with the effect of the endogenous ligand CXCL12

(N=2).
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molecules (rank 57) according to the neural network Score that

were also predicted as chemokine receptor ligands by SPiDER

(Method 3). No actives were retrieved based on scaffold diver-

sity (Method 4).

For phenotypic effect screening, the 36 compounds were

tested by a spheroid invasion assay (SIA, Figure 4a, b) using a

cell-based model of sonic hedgehog medulloblastoma tumors,

which express high levels of CXCR4 (Figure S4) and depend on

CXCR4 function for tumor propagation.[33] The SIA revealed a

significant invasion-activating effect of compounds 1 and 3–5

on DAOY medulloblastoma cells (Figure 4c). We then tested

the effect of compounds 1–5 on cells with silenced CXCR4

(Figures 4d and S5). The silenced cells still showed invasion

when stimulated with bFGF which induces cell invasion via a

CXCR4 independent pathway. Comparing 1, 4, and 5 to their

corresponding silencing control shows that invasion was signif-

icantly reduced after 24 hours of incubation. The average inva-

sion in the CXCR4 silenced cells caused by compounds 2 and

3 was statistically insignificant.

There was no correlation between the EC50 values in the

cAMP-based assay and cell migration in the SIA (r2=0.13). To

understand this discrepancy between the results of the func-

tional and the phenotypic assays, alternative modes of action

were considered. To this end, computational target predictions

by SPiDER[23] and TIGER[34] software were obtained for com-

pounds 1–5. Targets with an influence on cell migration or

chemotaxis, according to the respective gene ontology anno-

tation,[35] were considered and their expression on DAOY me-

dulloblastoma cells taken into account (Figure S5). A subset of

target proteins was selected for in vitro testing (Table 3).

All five compounds show activity against the predicted tar-

gets (Table 3). Chemokine receptor CCR1 is a receptor found

on cells of the immune system and plays a role in the signaling

in inflammatory sites.[36] It is part of a larger signaling network,

involving several chemokine ligands that also interact with

other chemokine receptors. Dopamine D1 receptors are GPCRs

that indirectly activate the adenylate cyclase, leading to elevat-

ed intracellular cAMP levels. In terms of downstream effects,

D2 dopamine receptors reduce cAMP levels by inhibiting the

adenylate cyclase.[37] D2 receptors exist as two alternatively

spliced isoforms with different functions, the long isoform

(D2L) and the short isoform (D2S). While D2L acts as a post-

synaptic Gi-coupled receptor,[38] D2S receptors are presynaptic

and act as D1 autoreceptors.[37] These receptors may also affect

intracellular calcium levels.[39,40]

In particular, D2 dopamine receptor binding with varying

preferences toward the different isoforms was observed. Com-

pound 1 showed D1 and D2S receptor antagonistic effects and

D2L binding. Whether this activity is causative for the observed

effect on DAOY cell migration remains an open question at

this time, because the protein expression in DAOY cells was

performed on the RNA level, and no comment can be made

on the isoform of the D2 receptor that is expressed in these

Figure 4. Spheroid invasion assay (SIA). a) Concept of the assay. Average dis-

tances di (arbitrary units) of cell invasion in the collagen matrix was deter-

mined by automated microscopy image analysis. b) Migration of DAOY cells

after incubation in the presence of the test compounds (concentration:

10 mm) or absence of test compounds (control) after 24 h (N=3). The effects

of compounds 1–5 were compared with the untreated control (**p=0.001–

0.01, ****p<0.0001). Boxplots show the mean (black line), the 1st and 3rd

quartiles (lines), and the 5th and 95th percentiles (whiskers). See SIA with

the endogenous ligand CXCL12 in Figure S3 and evidence for CXCR4 expres-

sion in Figure S4. c) SIA fluorescence microscopy images. d) SIA with CXCR4

knockdown. Invasion of DAOY (control), DAOY with the silencing control

(siControl) and DAOY with silenced CXCR4 (siCXCR4). Incubation in the ab-

sence of a stimulant (control), with bFGF (concentration: 100 ngmL@1]), or

compounds 1–5 (concentration: 10 mm) for 24 h (N=3). The effects were

compared with the corresponding silencing control (*p=0.01–0.05,

****p= <0.0001). Boxplots show the mean (black line), the 1st and 3rd

quartiles (lines), and the 5th and 95th percentiles (whiskers). See evidence

for CXCR4 expression in Figures S5 and S6.

Table 3. Potential targets profiled for compounds 1–5.[a]

Target (assay type) Compound

1 2 3 4 5

CXCR4 (agonist effect) 45–53 40–64 50–57 51–58 8–38

CXCR4 (antagonist effect) <0 <0 <0 <0 <0

CCR1 (agonist radioligand) <0 5–8 59–64 1–2 62–66

D1 (agonist effect) 1–5 <0 <0 <0 <0

D1 (antagonist effect) 49–71 <0 <0 <0 <0

D2L (antagonist radioligand) 99–100 8–17 44–51 22–38 95–97

D2S (agonist effect) 15–22 30 80–114 30–35 45–47

D2S (antagonist effect) 44–50 n.a. n.a. n.a. n.a.

[a] Values are percent (%, N=2) of the respective control. Compounds

were tested at a single concentration of 50 mm for CCR1, D1 (D1 dopa-

mine receptor), D2L (D2(long) dopamine receptor), and at 10 mm on

CXCR4 and D2S (D2(short) dopamine receptor). CXCR4 activity was tested

for cAMP activity with CXCL12 as positive control and AMD3465 hexahy-

drobromide as negative control. CCR1 activity was determined in a radio-

ligand displacement assay with [125I]MIP-1-a. D1 and D2S were assayed in

functional assays. D1 was tested for cAMP activity, with dopamine as pos-

itive control and SCH 23390 as negative control. D2L was tested in an an-

tagonistic radioligand assay using [3H]methylspiperone. D2S was tested in

an impedance assay, with dopamine as positive control and butaclamol

as negative control. Compounds inducing more than 25% agonism on

D2S were unsuitable for antagonism screening. n.a. : not available.
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cells. Compound 2 is a full agonist for CXCR4 according to the

cAMP-based assay. However it did not invoke significant cell

migration in the SIA (Figures 4d and S7). Activity testing re-

vealed compound 2 as a weak D2S agonist, a property it

shares with compounds 3–5. Compounds 3 and 5 were con-

firmed as CCR1 and D2L ligands, with 3 being a stronger D2S

agonist than 5. These newly identified bioactivities showcase

successful computational target prediction for the phenotypic

screening hits.

To determine whether these results of the deep learning ap-

proach justify its computational complexity, we compared the

CNN model to straightforward similarity searching with CATS,

because this molecular representation also provided the input

to the deep learning model. We calculated the Euclidean dis-

tance of each of the 392 known CXCR4 modulators in the

training set to the screening library and sorted the library com-

pounds by decreasing similarity to each reference ligand indi-

vidually. To determine the ranks of the hits 1–5 according to

CATS, we averaged their individual ranks in the 392 sorted lists.

With this similarity approach, compound 1 was found on rank

3634337, compound 2 on rank 2860603, compound 3 on

rank 3021870, and compound 4 on rank 1698982. The great-

est pairwise similarity was calculated for reference CXCR4

ligand IIk[41] and hit compound 3, which was found on average

rank 53. This result suggests that none of the actives 1–5

would have been retrieved by CATS similarity searching alone.

The CNN model enabled meaningful virtual screening and re-

trieved innovative bioactive compounds.

Conclusion

Drug design projects are often confronted with limited data

availability, rendering the straightforward application of data-

driven deep learning unfeasible. In this prospective application,

we explored the usefulness of CNNs to virtual compound

screening in such a situation. To enable the application of

CNNs, we devised a virtual screening workflow combining the

advantages of domain-specific data representation with deep

model learning. This concept of combining two types of neural

networks (SOM and CNN) proved successful for the given task

of identifying novel CXCR4 modulators. Structurally diverse li-

gands were identified in a cell-based assay, and for some of

the hits, a stimulating effect on cancer cell migration was con-

firmed. Model application led to the identification of the first

reported small molecular CXCR4 agonists from a large com-

pound collection. These bioactive compounds would not have

been identified by plain similarity searching with the identical

molecular representation (CATS) used for neural network mod-

eling. Results also suggest that the observed effects of the

compounds on cell migration are not or not exclusively linked

to CXCR4. Preliminary activity testing points to dopamine re-

ceptors playing a role in the regulation of medulloblastoma

cell migration.

Despite these encouraging results, the scope of the current

approach is limited and the concept requires further develop-

ment. Firstly, the model’s high accuracy level in retrospective

cross-validation did not translate to the prospective applica-

tion. This observation is most relevant as it highlights the ne-

cessity of prospective real-world application of deep learning

models in drug discovery. Theoretical retrospective estimations

of a model’s generalization ability might be overly optimistic.

Secondly, the moderate bioactivities of the hit compounds

suggest deficits of the overall modeling concept. Compared

with the endogenous agonist CXCL12, the synthetic com-

pounds are almost 50000-fold less active. However, one

should consider the fact that CXL12 is a protein agonist and

the hit compounds are isofunctional small molecule PPIs. This

discrepancy is not a specific issue of the CNN approach but

frequently observed in virtual screening. Future method devel-

opments will also have to tackle the problem of quantitative

activity prediction.[42,43] However, any data-driven model can

only be prospectively successful when trained with representa-

tive and reasonably accurate data sets that define chemically

meaningful boundaries of the model’s applicability domain. In

the present example, hybrid deep network training was suc-

cessful despite the comparably small number of training exam-

ples.

Experimental Section

Positive dataset: The set of CXCR4 ligands combined activity data

from ChEMBL23,[17] literature sources,[44–49] and compounds from in-

house projects[50] (together the “positive” set). Database entries

were removed that contained ‘the blockade of HIV entry“ as an

assay-endpoint annotation in ChEMBL, and entries without a nu-

meric activity value or without further information on the assay

conducted in the corresponding publications. Activities of different

standard types (IC50, EC50, Ki, EC) were considered. For entries with

several annotated activities, the median of the activities acquired

in binding assays was considered. When several values were given,

EC and values with the relation ’> ’ were excluded and the median

value calculated. Ligands were considered active if the correspond-

ing activity value was lower or equal to 10 mm. In total, the curated

positive dataset consisted of 392 molecules with reported activities

on CXCR4.

Negative dataset: The negative dataset consisted of ligands from

the ChEMBL23 database with non-negative activity comments, had

annotated assay confidence scores >7, had ’Single Protein’ as

target type as well as annotations for standard metrics (IC50, EC50,

Ka,b,d,e,i,m). Ligands annotated with the non-logarithmic activity

values were discarded if they: 1) lacked a unit annotation (‘stan-

dard_units’ is None), 2) were tested in assays with mutated pro-

teins, 3) had a molecular weight <110 gmol@1, and 4) were anno-

tated as CXCR4 ligands. All valid activity data were transformed in

to log10 units. Only ligands with log-activity values between 3 and

12 against targets other than CXCR4 were kept for model develop-

ment. This data processing resulted in 495827 molecules constitut-

ing the negative dataset for CNN training.

Screening library: For virtual compound screening we compiled a

pool consisting of commercially available compounds (Asinex,

Delft, The Netherlands; Chembridge, San Diego, CA, USA; Enamine,

Monmouth Jct. , NJ, USA; Specs, Zoetermeer, The Netherlands) and

an in-house virtual combinatorial library, resulting in a total of

5747961 compounds. Sanitation and standardization of all com-

pounds was performed using MOE 2016.08[51] software. The screen-

ing compounds were encoded as descriptor arrays using CATS2

software[18] prior to CXCR4 target prediction by the hybrid model.
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Convolutional neural network: For the deep learning approach, a

CNN was trained as binary classifier to predict ligands as either

active against CXCR4 or as belonging to the negative dataset. Prior

to feeding data to the CNN, a SOM with 28V28 neurons was used

to cluster all bioactive molecules from ChEMBL22 according to

their similarity in CATS descriptor space.[23] The activation image

generated by each molecule when fed to this trained SOM was

used as input data to the deep CNN implemented with Tensor-

flow.[52] To identify a suitable parameter set for the CNN, a grid-

search over the number of hidden layers (one to three layers),

types of hidden layers (convolutional layer, pooling layer, feedfor-

ward layer) and varying parameters for the different layer types

was performed, resulting in 108 network topologies for evaluation.

Convolutional layers had a receptive field size of 4V4 pixels with a

stride of 1, padded with periodic boundaries. The only variable pa-

rameter of the convolutional layers was the number of filters used

(the convolutional layer’s “depth”), which could be either 40, 50, or

60. A restriction was placed on network architectures containing

several convolutional layers, in that the depth from one convolu-

tional layer to another had to increase. Pooling layers always used

max-pooling with a pooling window size of 2V2 pixels and a

stride of 1. Feedforward layers could contain either 50, 100 or 200

neurons. All layers were trained with rectifier linear unit (ReLU) acti-

vation, apart from the output layer which used softmax activation.

Each architecture was trained for 1000 epochs using fivefold cross-

validation with a 4:1 ratio of training to test data. The different ar-

chitectures were trained using stochastic gradient descent with a

batch size of 256 and a stepwise decaying learning rate, starting at

0.007 with a decay factor of 0.9 every 40 epochs. Because the

number of negative molecules exceeded our positive dataset by

several orders of magnitude, negative subsampling was used for

each fold by using the positive dataset and adding an equally

large, randomly selected amount of ligands from the negative

dataset. Cross-entropy with an L2 regularization factor of 0.01 was

chosen as error function for CNN training, performed with a mo-

mentum (momentum=0.9) optimizer. Among the 108 architectures

tested, the architecture displaying the highest average Matthews

correlation coefficient (MCC)[53] during cross-validation was trained

on all the data and then used for virtual screening of CXCR4 active

ligands in the screening library.

The network models were implemented in Python (2.7) using the

libraries TensorFlow (1.4.0),[52] scikit-learn (0.19.1),[54] scipy (1.0.0),[55]

numpy (1.13.3),[56] matplotlib (2.1.1),[57] and pandas (0.21.0).[58] The

deep-learning calculations were performed on a Linux-computer

(Ubuntu 16.04) with four 3.6 GHz Intel Core i7 6850 K processors

and an ASUS GeForce GTX1080Ti STRIX graphics card. Further cal-

culations and analysis were performed on Macintosh Workstation

(OS X Yosemite, 10.10.5, 2V2.26 GHz Quad-Core Intel Xeon with

48GB memory). MOE 2016.08[50] was used for the standardization

of molecules. Analyses were performed using Python (3.5.3) with

seaborn (0.7.1), matplotlib (2.0.0)[57] Pandas (0.19.3),[58] RDKit

(2016.03.4),[59] and libraries. SPiDER predictions[23] were calculated

using Knime (2.12.02).

In silico target prediction with SPiDER: The SPiDER software pre-

dicts potential targets for given molecule queries.[23] The input mo-

lecular structures were standardized for pH 7 using MOE2016.08.[51]

CATS descriptors[18] and MOE descriptors were calculated and used

as input for SPiDER.[23] Only the target predictions with p values

<0.05 were considered.

Scaffold diversity : The diversity of generated scaffolds was ana-

lyzed using Scaffold Hunter software (scaffold-hunter-2.6.3).[60]

In vitro tests: Compounds selected for testing were ordered from

the respective suppliers and stock concentrations of 10 mm in

DMSO prepared. The stock solutions were used for subsequent

testing.

Functional assay for CXCR4: Functional assessment of the com-

pound was determined by antagonistic and agonistic effect at

10 mm in a cAMP assay. CXCR4 was tested for cAMP activity with

CXCL12 as positive control and AMD 3465 hexahydrobromide as

negative control. Where the efficacy was higher than 50%, dose–

response studies were conducted. The assays were performed by

DiscoverX (Fremont, CA, USA) on a fee-for-service basis.

Silencing CXCR4 using RNA interference: DAOY cells with a conflu-

ence of approximately 75% of total surface area were transfected

with small interference RNA (siRNA) specific for CXCR4 (assay ID:

s15412, Thermofischer Scientifc) or Silencer select negative control

(assay ID: 4390843, Ambion). The siRNAs were used at the final

concentration of 5 nmol. The transfection was facilitated using

DharmaFECT 4 transfection reagent (T-2004-03, Dharmacon). After

48 hours, RNA and proteins were isolated from DAOY cells. The

gene expression and protein expression were determined by qPCR

and Immunoblotting, respectively. Upon successful downregulation

of CXCR4, the transfected cells were used for SIA.

Spheroid invasion assay (SIA): The effect of compounds on cell inva-

sion and the phenotype of the medulloblastoma tumor cell line

were determined. DAOY cells were tested by SIA, as described.[61]

DAOY cells stably expressing lifeact (LA) enhanced green fluores-

cent protein (EGFP) produced by lentiviral transduction with

pLenti-LA-EGFP were used for SIA. In brief, 1000 DAOY LA-EGPF

cells per 100 mL per well were seeded in a 96-well cell-repellent mi-

croplate (650790, Greiner Bio-One). The cells were incubated over-

night at 37 8C to form spheroids. 70 mL of the medium was re-

moved from each well, and remaining medium with spheroid was

overlaid with 2.5% (final concentration) of ice-cold bovine colla-

gen 1 (5005-B, Advanced BioMatrix, San Diego, CA, USA). The colla-

gen was allowed to polymerize for 1 h at 37 8C. Following the poly-

merization of collagen, fresh serum free medium was added to the

cells and then treated with 10 mm (final concentration) of the com-

pounds. The embedded cells were allowed to invade the 3D colla-

gen matrix for 24 h, after which they were fixed with 4% PFA and

stained with Hoechst. Images were acquired on an Axio Observer 2

mot plus fluorescence microscope (Zeiss, Munich, Germany) using

a 5V objective. The extent of cell invasion was determined as the

average of the distance invaded by the cells from the center of the

spheroid, using automated cell dissemination counter.[52]

Screening assays for other targets : Functional assessment of the

compounds was determined at 10 mm. Radioligand displacement

assay with [125I]MIP-1-a was performed for CCR1. D1 and D2S were

assayed in functional assays. D1 was tested for cAMP activity, with

dopamine as positive control and SCH 23390 as negative control.

D2L was tested in an antagonistic radioligand assay using

[3H]methylspiperone. D2S was tested in an impedance assay, with

dopamine as positive control and butaclamol as negative control.

Compounds inducing more than 25% agonism on D2S were un-

suitable for antagonism screening. The assays were performed by

Cerep (Celle l’Evescault, France) on a fee-for-service basis.

Statistical analysis. All statistical analyses were as performed using

Prism v7 on Macintosh (GraphPad Software, La Jolla, CA, USA). Re-

sults of the phenotypic assay were tested on their intrinsic variabil-

ity by one-way ANOVA (Kruskal–Wallis test). Compounds that show

no significant intrinsic variability were compared with the control

using Dunn’s multiple comparisons test.
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