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h i g h l i g h t s

� An IFCN Workgroup supplies recommendations on EEG frequency and topographical analysis for

research.

� EEG recording, visualization, and extraction/interpretation best features are proposed.

� Pros and cons for clinical research of those features are discussed in light of controversies.

a b s t r a c t

In 1999, the International Federation of Clinical Neurophysiology (IFCN) published ‘‘IFCN Guidelines for

topographic and frequency analysis of EEGs and EPs” (Nuwer et al., 1999). Here a Workgroup of IFCN

experts presents unanimous recommendations on the following procedures relevant for the topographic

and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological

experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (envi-

ronmental conditions and instructions to participants; montage of the EEG electrodes; recording set-

tings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and
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control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of

‘‘synchronization” features based on frequency analysis (band-pass filtering and computation of rsEEG

amplitude/power density spectrum); (5) extraction of ‘‘connectivity” features based on frequency

analysis (linear and nonlinear measures); (6) extraction of ‘‘topographic” features (topographic mapping;

cortical source mapping; estimation of scalp current density and dura surface potential; cortical

connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG

features. As core outcomes, the IFCN Workgroup endorsed the use of the most promising ‘‘synchroniza-

tion” and ‘‘connectivity” features for clinical research, carefully considering the limitations discussed in

this paper. The Workgroup also encourages more experimental (i.e. simulation studies) and clinical

research within international initiatives (i.e., shared software platforms and databases) facing the open

controversies about electrode montages and linear vs. nonlinear and electrode vs. source levels of those

analyses.

� 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open
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1. Introduction

In clinical research, resting state electroencephalographic

(rsEEG) rhythms are often recorded from the patient’s scalp during

short (i.e., minutes) eyes-closed and -open conditions. This

research mainly focuses on abnormalities in the frequency and

topographical features of rsEEG rhythms to unveil neural dysfunc-

tions in the regulation of quiet wakefulness in psychiatric and neu-

rological diseases. Vigilance dysregulations may affect the

selectivity and efficiency of several higher cognitive functions such

as attention (i.e., focused, sustained, selective or reflexive), episodic

memory (i.e., encoding and retrieval of autobiographical events),

and executive frontal functions (i.e., working memory and inhibi-

tory control).

In 1999, the International Federation of Clinical Neurophysiol-

ogy (IFCN) published the Guidelines entitled ‘‘Recommendations

for the Practice of Clinical Neurophysiology: Guidelines of the IFCN”

(EEG Suppl. 52, Editors: G. Deuschl and A. Eisen). These Guidelines

286 C. Babiloni et al. / Clinical Neurophysiology 131 (2020) 285–307



included the Chapter 1.4 entitled ‘‘IFCN Guidelines for topographic

and frequency analysis of EEGs and EPs” (Nuwer et al., 1999), which

revised the most mature techniques for the recording, storage, and

subsequent topographic and frequency analysis of scalp rsEEG

rhythms and evoked potentials (EPs). Since 1999, many new tech-

niques and procedures for the topographic and frequency analysis

of scalp rsEEG rhythms have become available in the public

domain1 or in the market for clinical research (Baillet et al., 2011).

The present position paper reports the recommendations of a

Workgroup of field experts in frequency and topographic analysis

of rsEEG rhythms as an update for the clinical research of the men-

tioned IFCN Guidelines (Nuwer et al., 1999). In the present paper,

the concept of ‘‘clinical research” is defined as the ensemble of

experimental studies carried out in patients with neurological

and psychiatric diseases using the analysis of frequency and spatial

features of rsEEG rhythms to unveil neurophysiological correlates

of those diseases during their detection, natural evolution, and

treatment. Noteworthy, the terms and methodological procedures

discussed in this paper may not correspond to those used in the

daily medical practice supplied in services of Clinical Neurophysi-

ology, and we do not recommend that neurologists and psychia-

trists should necessarily use the present terms and

methodological procedures in that practice for diagnostic, prognos-

tic or monitoring purposes. In other words, this paper is not a col-

lection of guidelines for the application of techniques of Clinical

Neurophysiology in daily medical practice.

In this paper, the Workgroup presents unanimous recommen-

dations on the following procedures relevant for the rsEEG topo-

graphic and frequency analysis in clinical research: (1) recording

of rsEEGs; (2) digital storage of rsEEG and control data; (3) com-

puterized visualization of rsEEGs and control data; (4) extraction

of rsEEG features in frequency and spatial domains, and (5) statis-

tical analysis and neurophysiological interpretation of those rsEEG

features. In the revision of those methodological aspects, the

Workgroup briefly introduces some theoretical concepts and con-

troversies about the generation of scalp rsEEG rhythms (i.e., deter-

minism/randomness, linearity/nonlinearity, stationarity/

nonstationarity) as a basis for a judicious use of new techniques

of their frequency and topographical analysis. The choice of the

techniques of interest was based on the consensus of all co-

Authors on two main criteria: (1) the use by independent research

groups in the field of Clinical Neurophysiology resulting in consis-

tent results and (2) the production of insights in the neurophysio-

logical mechanisms underlying psychiatric or neurological

diseases. In some cases, earlier studies are mentioned to represent

the Workgroup theoretical position about those techniques. The

choice of those studies was not derived from a systematic and

structured literature review as those following the procedural indi-

cations of the Institute of Medicine, Oxford (U.K.), or other clinical

guidelines authorities.

Any techniques, procedures, or tools not explicitly men-

tioned in the following sections should not be considered as

unreliable or only partially reliable. They may be entirely valid

in limited experimental or clinical contexts, or only not yet

widely used.

The Workgroup acknowledges that this paper reports relevant

contents from the following papers: (1) ‘‘Committee report: publi-

cation guidelines and recommendations for studies using elec-

troencephalography and magnetoencephalography” produced by

the Society for Psychophysiological Research (Keil et al., 2014);

(2) ‘‘Best practices in data analysis and sharing in neuroimaging

using MRI” by the OHBM Committee on Best Practice in Data Anal-

ysis and Sharing (Nichols et al., 2017); (3) ‘‘Guidelines for the

recording and evaluation of pharmaco-EEG data in man” produced

by the International Pharmaco-EEG Society (IPEG; Jobert and

Wilson, 2012); (4) ‘‘Guidelines and consensus statements”

reported by the American Clinical Neurophysiology Society (ACNS)

in https://www.acns.org/practice/guidelines; and (5) Guidelines of

the IFCN such as ‘‘A revised glossary of terms most commonly used

by clinical electroencephalographers and updated proposal for the

report format of the EEG findings. Revision 2017” (Kane et al.,

2017), ‘‘Standardized computer-based organized reporting of

EEG: SCORE – Second version” (Beniczky et al., 2017), ‘‘IFCN stan-

dards for digital recording of clinical EEG. International Federation

of Clinical Neurophysiology” (Nuwer et al., 1998), and ‘‘The stan-

dardized EEG electrode array of the IFCN” (Seeck et al., 2017). This

paper also kept some still valid recommendations of the original

IFCN Guidelines by Nuwer et al. (1999).

2. Recording of scalp rsEEG rhythms for topographic and

frequency analysis

2.1. Preliminary assessment of subject’s condition

Firstly, a few days prior to the recording of rsEEG rhythms, sub-

jects should be instructed to have regular sleep on the night before

that recording. Subjects should also be instructed not to use psy-

choactive substances and medications (i.e., foods and drinks

including nicotine, caffeine, alcohol, and other stimulants in any

form in the morning of the experiment). Subjects may take their

psychoactive medication (i.e., benzodiazepines, antidepressant,

etc.) normally the day before the EEG recording but not in the

morning of that recording (the decision for this act should obvi-

ously be agreed after proper clinical consultation). It is assumed

that such a short withdrawal of medications should be insufficient

to cause therapeutic discontinuation problems and should allow

harmonizing the assumption of the therapeutic regimen in all sub-

jects enrolled without generating a truly unmedicated condition.

However, the following issues should be considered. In such cir-

cumstances, residual effects of benzodiazepines or other psychoac-

tive medications should be expected. For example, residual effects

on the rsEEG activity may occur the next day. Furthermore, the

residual drug agents may cause increased rsEEG beta rhythms

and other effects on the next day. Moreover, a patient dependent

on certain medications may experience some psychophysiological

state changes due to a delay in taking medications that day, thus

causing such personal effects as anxiety or early drowsiness. These

factors should be annotated in the general subject’s assessment

before the rsEEG recording and taken into considerations in statis-

tical models as confounding variables. These aspects should be

properly reported and discussed in related publications.

Secondly, the preferred time for the recording of rsEEG rhythms

is the morning after a satisfying light breakfast.

Thirdly, a brief interview of the subjects should confirm the

standard subjects’ quality of sleep during the night preceding the

recording and the above conditions. If negative, the recording

should be postponed to another date.

For more details, see the excellent IPEG (International

Pharmaco-EEG Society) Guidelines by Jobert and Wilson (2012).

2.2. Environmental conditions

Recording of rsEEG rhythms is an experiment in the Clinical

Neurophysiology of vigilance and should meet the following

conditions.

1 Popular WEB-based academic freeware platforms for EEG-MEG data analysis

were systematically reviewed in Baillet et al. (2011) https://www.hindawi.com/

journals/cin/2011/972050.
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� First, a quiet and dimly lighted room.

� Second, acoustic noise should be negligible in the recording

chamber.

� Third, the subject should rest on a comfortable half reclined

armchair or bed.

� Fourth, the wall in front of him/her should be painted with a

uniform light color (e.g., white, very pale yellow or green) with

only a central fixation target at the height of his/her eyes.

2.3. Instructions to subjects

Three resting state conditions are typically used. Two of them

are described in detail in the IPEG Guidelines for pharmaco-EEG

recordings (Jobert and Wilson, 2012).

The first condition tests the neurophysiological mechanisms

keeping the state of low vigilance with eyes-closed for several min-

utes (i.e., 5–15 min). It also probes the transition to drowsiness and

sleep, hence the experimenter (or trained technologist) should not

alert the subject in case of sleep. The instructions invite the subject

to sit quietly, stay relaxed in a state of mind wandering (i.e., no

goal-oriented mental activity), and keep the eyes closed. If the sub-

ject does not follow the instructions, the experimenter will repeat

them (for more details, see Jobert and Wilson, 2012; Beniczky

et al., 2017).

The second condition tests the neurophysiological mechanisms

regulating the increase and decrease in the vigilance level while

opening and closing the eyes sequentially (i.e., 5–10 min). The

periods of eyes-open and -closed in response to experimenter’s

cue are short (i.e., 1 min), and the sequence of eyes-open and –

closed is repeated (i.e., 2–4 times). The instructions to the subject

are like those of the first condition. The experimenter will have to

alert the subject in case of sleep to have enough EEG data related to

the proper mental state. If the subject does not follow the instruc-

tions, the experimenter will repeat them (for more details, see

Jobert and Wilson, 2012; Beniczky et al., 2017).

The third condition tests the neurophysiological mechanisms

underlying the steady maintenance of low vigilance at eyes closed

(i.e., 3–5 min) and moderate vigilance at eyes open (i.e., 3–

5 min). The instructions to the subject are like those of the second

condition.

In the above resting state conditions, instructions of the exper-

imenter to the subject must be very precise and consistent over

subjects. These instructions might be difficult for patients with

compromised brain function and cognitive decline and/or behav-

ioral disorders (e.g., patients with dementia due to Alzheimer’s dis-

ease). Therefore, experimenters should pay attention to behavioral

states of subjects during the rsEEG recording and take notes that

will guide the rejection of EEG recording periods characterized

by subjects’ drowsiness and alerts (for more details, see Jobert

and Wilson, 2012; Beniczky et al., 2017).

2.4. Montage of EEG electrodes for the topographical analysis

Temporal and spatial samplings should be substantially higher

than the temporal (spectral) and spatial information content of

rsEEG signals to avoid distortion of the low spatial frequencies

due to aliasing. Therefore, the use of a given electrode montage

depends upon assumptions about this content.

The IFCN Guidelines by Seeck et al. (2017) recommend the use

of 75 up to 256 electrodes for scalp rsEEG recording in clinical

research, especially for the localization of epilepsy sources (where

256 electrodes were claimed to enhance the localization accuracy

of epileptic sources compared with 128 electrodes). We agree with

the high spatial sampling of rsEEG rhythms in clinical research

(�48–64 until 128–256 electrodes) and the montage scheme pro-

posed in those Guidelines.

According to IFCN standards (Nuwer et al., 1998), digital record-

ing of scalp rsEEG data is usually made with a single cephalic

ground electrode and a referential montage using a single common

electrode as a physical reference. The choice of the referential elec-

trode location has important implications as it affects the ampli-

tude and polarity of scalp EEG voltage. In this line, left earlobe

(e.g., A1) is often used as a physical electrode reference while the

right one (e.g., A2) is recorded separately for later off-line re-

referencing to the average of A1 and A2 (Nuwer et al., 1998). Less

often, another non-cephalic (i.e., nose) or a cephalic location is

used as a physical reference. The off-line average of A1 and A2 sup-

plies a reference symmetrical on the body midline and preserves

the original phase of rsEEG rhythms recorded over the scalp. How-

ever, imbalance due to A1 and A2 impedance differences may topo-

graphically shift rsEEG rhythms. Furthermore, A1 can be affected

by high-amplitude electrocardiographic (ECG) activity (i.e., QRS

complexes), contaminating exploring (i.e., ‘‘active”) electrodes dis-

tant from the left ear. Moreover, nose electrode reference can be

affected by spike potentials generated by microsaccades (Yuval-

Greenberg et al., 2008). Therefore, a good experimental practice

is the use of montages with more than one referential electrode

(and always a non-cephalic electrode) for off-line data analysis.

Furthermore, experimenters should check for ear impedances

and the presence of EKG activities in rsEEG signals before the start

of the EEG recording.

2.5. Montage of other sensors for control data collection

For the control of eye movements (i.e., saccades) or blinking in

clinical research, vertical and horizontal electro-oculographic

(EOG) potentials should be recorded from bipolar electrode pairs

placed around the dominant eye. Other EOG montages as well as

infrared or optical eye tracking can be used for specific

applications.

For the control of the subject’s arousal and vital signs, EKG

Einthoven’s derivations (e.g., heart rate variability), hand skin con-

ductance, and respiration sensor belt are used, while neck elec-

tromyographic (EMG) activity probes vigilance state (Barry et al.,

2011).

For more details on the placement of EOG, EKG, and EMG elec-

trodes and recording settings, see earlier IFCN Guidelines (Nuwer

et al., 1998; Seeck et al., 2017).

2.6. Setting of rsEEG recording parameters

According to IFCN standards (Nuwer et al., 1998), rsEEG are

sampled at �2502 samples per second (Hz) and 12/14-bit resolution

per sample with a resolution down to 0.5 lV (0.1 Hz and �60–70 Hz

anti-aliasing passband filter at 256 Hz; Nilsson et al., 1993). Analog

50 or 60 Hz notch-reject filter or high-pass filter set at �1 should

be set when off-line digital filters are not available. Interest in EEG

activity up to 100 Hz implies the anti-aliasing filter to be higher than

100, and the sampling frequency to be 4 times the filter cut-off fre-

quency. Electrode-to-electrode variability of the amplifier gain

should be �1% on calibration pulses and bio-calibration compar-

isons. Additional noise (i.e., environmental such as residual AC

power line, lighting, electronic equipment in the vicinity, etc.) in

the recording of rsEEG activity from 0.5 to 100 Hz must be at most

2.0 lV, preferably �1.0 lV. Common mode rejection ratio should

be at least 85 dB for each electrode and inter-electrode crosstalk

should be �1%, i.e., 40 dB down or better. See also suggestions of

2 While traditional Fast Fourier Transforms (FFTs) require 2N samples per analysis

epoch, modern Discrete Fourier Transforms do not, and an acceptable modern lower

limit for Fourier analysis would be a sampling rate of 250 Hz if the interest is for EEG

frequencies <60 Hz.
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the International Pharmaco-EEG Society during pharmacological

experimental manipulations (Jobert and Wilson, 2012). Calibrations

with square wave signals should assess the range of frequencies,

sensitivities, and types of quantitative tests performed at the begin-

ning and the end of each recording session.

2.7. Control of rsEEG recording during the experiment

Short periods of EEG signals (few seconds) related to voluntary

blinking, bite-down, saccades, and small head movements allow

the characterization of the subject’s main artifacts before the start

of the experimental recording.

During the rsEEG recording, experimenters should limit com-

munications to the subject, strictly ensuring his/her general relax-

ation. They should report these communications as experimental

notes for later data analysis.

3. Storage of EEG and control data

According to IFCN standards (Nuwer et al., 1998), rsEEG and

control data are stored for the long-term in magnetic and optical

storage devices in line with local ethical protocols. The stored

recording should include demographic, personal (i.e., education

and occupational attainments relevant for the cognitive reserve),

clinical, and any instrumental information (e.g., genetic polymor-

phisms potentially explaining interindividual variance3) relevant

about the subject.

4. Visualization of EEG and control data

According to IFCN standards (Nuwer et al., 1998), visualization

of the scalp EEG and control data is based on a computer or tablet

monitor in clinical research. Standard software allows changing

the electrode montages from referential to bipolar or common

average reference, as well as fine manual regulation of all visual-

ization parameters (i.e., amplitude, frequency filtering, and veloc-

ity of the polygraph data).

For a detailed description and referral of the scalp rsEEG wave-

forms and graphoelements in adults and children, see the IFCN

Guidelines by Beniczky et al. (2017) updating the Standardized

Computer-based Organized Reporting (SCORE) of EEG activity.

4.1. Preliminary data analysis

In clinical research, two experts should blindly perform the pre-

liminary data analysis to define the artifact-free segments (i.e.,

epochs) of scalp rsEEG rhythms, and inter-rater variability in the

artifact identification should be computed.

The choice of the EEG epoch length is a tradeoff. Concerning the

frequency resolution, the longer the epoch, the higher the resolu-

tion (e.g., 1 s, 1 Hz; 2 s, 0.5 Hz, etc.). Furthermore, short rsEEG

epochs of a few seconds can be considered stationary and analyzed

with standard procedures of spectral analysis (see Section 5 for the

concept of rsEEG microstates according to the Fingelkurts’ theory;

Fingelkurts and Fingelkurts, 2006, 2014). A length around 2–10 s

is commonly used (Jobert and Wilson, 2012).

Instrumental artifacts are usually due to bad electrode-skin

contact (e.g., high resistance), a loop between exploring and refer-

ence electrode due to sweat or conductive material, strong electric

fields generated by external sources, magnetic fields of simultane-

ously acquired functional magnetic resonance imaging (fMRI), etc.

Biological artifacts include eye blinking, other eye movements (e.g.,

saccades, nystagmus, or roving eye movements), EKG or pulse

activity related to the cardiac cycle, head and face muscular ten-

sion, head movements, etc.

Traditional preliminary data analysis is also devoted to the con-

trol of the subject’s vigilance during the rsEEG recording. In this

analysis, epochs of rsEEG rhythms showing signs of drowsiness

(e.g., significant attenuation or slowing in frequency of posterior

dominant alpha rhythms and an increase of theta rhythms) and

sleep (e.g., K complexes and sleep spindles) should be rejected

from the quantitative data analysis. Important information about

the subject’s vigilance state also relies on slow-rolling eye move-

ments as revealed by EOG with a proper low-pass filtering. See

the American Academy of Sleep Medicine (AASM) rules for the

visual scoring of sleep onset in adults (Silber et al., 2007).

Preliminary data analysis can be semi-automatically performed

by analytical algorithms that supply a tentative detection of instru-

mental and biological artifacts in the rsEEG waveforms. They also

supply a tentative correction of some of those artifacts, particularly

precise for blinking, eye movements, EKG or pulse activity related

to the cardiac cycle4. Distortions due to simultaneous fMRI should

be carefully removed as well.

Other analytical algorithms are used to detect scalp rsEEG

waveforms related to sleep (K-complex, sleep spindles, slow

waves, cyclic alternating pattern, etc.) or epilepsy (spikes, ripples,

spike-wave complexes, etc.) automatically. However, there is no

conclusive consensus about the validity of these algorithms, and

IFCN Guidelines have not certified automatic reports based on

these technologies. We recommend the use of such algorithms

only with conservative exclusion criteria setting, followed by

visual inspection by physicians trained in EEG interpretation

(e.g., especially clinical neurophysiologists). Two or more indepen-

dent experts’ review of the results of these techniques is strongly

recommended for reaching consensus.

4.2. Identification of pathophysiological rsEEG waveforms

Physicians trained in EEG interpretation should control for the

presence of spikes, sharp waves, periodic discharges, triphasic

waves, and intermittent slowing in the EEG activity, due to epilep-

tic or non-epileptic processes. For more details, please find the

Guidelines of the European Federation of Neurological Societies

(EFNS; Waldemar et al., 2007), American Clinical Neurophysiology

Society’s Standardized Critical Care EEG Terminology (Hirsch et al.,

2013), Diagnostic Recommendations of the Dementia with Lewy

Bodies Consortium (McKeith et al., 2005, 2017), IFCN Guidelines

of Beniczky et al., 2017, and the 7th edition of Niedermeyer’s Elec-

troencephalography: Basic Principles, Clinical Applications, and

Related Fields (Part II and III; Schomer and Lopes da Silva, 2018).

3 Interesting discussions about the relation between rsEEG rhythms and genetic

polymorphisms of dopamine and acetylcholine metabolism can be found in

Bodenmann et al., 2009; Guindalini et al., 2014; Veth et al., 2014; Dauvilliers et al.,

2015.

4 Mathematical core features include autoregressive models, independent compo-

nent analysis, principal component analysis, artificial neural networks, and other

learning machines. In brief, autoregressive models construct a model of the artifact,

detect it in the rsEEG data, and remove it by (weighted) subtraction. Principal and

independent component analyses decompose the recorded rsEEG data in uncorre-

lated or orthogonally independent components. An experimenter identifies the

components mainly due to artifacts (e.g., blinking, eye movements, EKG, etc.),

reconstructs the rsEEG data without the rejected components, and inspects the

reconstructed rsEEG data to confirm (or not) the success of the procedure. Only

artifact free rsEEG data should be used in the subsequent quantitative analysis. More

details about the use of those procedures for specific artefacts of rsEEG signals can be

found in Moretti et al., 2003 and https://sccn.ucsd.edu/~jung/Site/EEG_artifact_

removal.html. For the online processing of artifacts during EEG recordings, the most

advanced methods consist of using adaptive filters allowing online processing. Such

methods have been successfully applied in the case of eye-related artifacts (see for

example, He et al., 2004).
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5. Frequency analysis of scalp rsEEG rhythms

5.1. Dimensions in the generation of scalp rsEEG rhythms

Scalp rsEEG rhythms derive from the summation at scalp elec-

trodes of the oscillatory component of post-synaptic potentials

generated in large masses of cortical pyramidal neurons (several

squared centimeters; Nunez and Srinivasan, 2006; Srinivasan

et al., 2007), this component being the output of the resting state

cortical system. Frequency analysis aims to decompose the basic

frequency bands forming the recorded rsEEG signals and relate

them to brain general arousal and vigilance.

The main inputs to the large neural mass generating rsEEG

rhythms may include afferents from other cortical neural masses

as well as thalamocortical and ascending reticular neurons (Nunez

and Srinivasan, 2006).

Those inputs and outputs are supposed to be linked by a mix-

ture of processes in deterministic-random (i.e., stochastic),

linear-nonlinear, stationary-nonstationary, and other dimensions.

In clinical research, the frequency analysis of rsEEG rhythms

specifically aims to clarify the impact of brain diseases and thera-

peutic interventions on these processes and dimensions.

In this theoretical framework, determinism (as opposed to ran-

domness) means that defined inputs to and parameters of the men-

tionedbrain systemproduce scalp rsEEG signals always showing the

same characteristics. In this strict meaning, rsEEG does not reflect a

pure determinism. For example, in a seminal study (Stam and Pijn,

1999), dominant rsEEG alpha rhythms showingwaxing and waning

features around 10 Hz could not be distinguished fromfiltered noise

and a random process in 98.75% of the data considered.

Linearity (as opposed to nonlinearity) means that any linear

combination of inputs to the mentioned brain system produces

the same linear combination of scalp rsEEG signals, each of which

would have been produced in isolation by a given input. When the

mentioned brain system is modeled as a random linear system,

amplitudes and phases across different rsEEG frequencies are for-

mally assumed to be independent of each other. Note this may

not be true in absolute terms in some cases. RsEEG rhythms may

be approximated to a random linear system with a deviation to

low-dimensional nonlinear deterministic behavior only in <5% of

data in healthy subjects (Lopes da Silva et al., 1997; Stam and

Pijn, 1999). In contrast, when these rhythms are modeled as gener-

ated by a random nonlinear system, their amplitudes and frequen-

cies may show harmonic relationships in the bispectrum and

bicoherence (Billings, 2013).

Stationarity (as opposed to nonstationarity) implies that the sta-

tistical properties of scalp rsEEG time series are constant over time.

This is not the case when long rsEEG time series lasting several sec-

onds to minutes are considered (Blanco et al., 1995). In short rsEEG

epochs of a few seconds, two types of stationarity of rsEEG

rhythms can be distinguished, namely the strong and the weak sta-

tionarity. The former implies that all the joint probability distribu-

tions do not change as a function of time. The latter is the most

commonly used and entails that the mean, variance, and autocor-

relation function (power spectra) of rsEEG rhythms are constant as

a function of time. These quasi-stationary patterns of rsEEG

rhythms can be analyzed by traditional linear procedures of fre-

quency analysis (Kaplan et al., 2005; Nunez, 2000) to unveil oper-

ational microstates (few milliseconds to seconds) and macrostates

(several seconds) of the brain system according to the Fingelkurts’

theory (Fingelkurts and Fingelkurts, 2006, 2014). Noteworthy, the

term ‘‘microstates” was first introduced by Dr. Dietrich Lehmann

with another meaning (Lehmann et al., 1987). Dr. Lehmann posited

that momentary rsEEG potential distributions can be decomposed

over time in a sequence of short (i.e. seconds) quasi-stable topo-

graphical patterns of EEG voltages, each defined as a brain electri-

cal microstate reflecting ongoing mental processes (Lehmann et al.,

1987). Recent reviews have insightfully revised earlier evidence of

alterations in Lehmann’s microstates in some neuropsychiatric dis-

orders and their relationship with cerebral networks derived from

neuroimaging research (Khanna et al., 2015; Michel and Koenig,

2018).

For both clinical practice and research, frequency analysis

should span the wide range of frequencies of scalp rsEEG

rhythms, considering that scalp electrodes limit the measurement

of high-frequency rsEEG rhythms generated by circumscribed cor-

tical neural populations, as the scalp and skull act as a spatial fil-

ter. Sensible amplitude of scalp rsEEG activity due to relatively

large cortical neural populations can be seen under 50 Hz in stan-

dard physiological conditions, while low-amplitude rsEEG activity

at 100–250 Hz can be detected in scalp recordings in certain con-

ditions (HFOs; Engel and Lopes da Silva, 2012). We recommend

that rsEEG frequencies of interest are related to defined peaks

in the spectrum of the rsEEG feature considered, as not all fre-

quencies may reflect substantial neural processes (Lopes da

Silva, 2013).

When the frequency analysis of scalp rsEEG rhythms is under-

taken, many different procedures can be used. Here we arbitrarily

considered two broad classes of features of scalp rsEEG rhythms

derived from frequency analysis, named as ‘‘synchronization” and

‘‘connectivity” (Babiloni et al., 2016a). In a broad sense, ‘‘synchro-

nization” features ideally probe spatially local cortical neural oscil-

latory activity, while ‘‘connectivity” ones refer to an inter-areal

interdependence of such activity as phase or amplitude.

5.2. ‘‘Synchronization”

In general, ‘‘synchronization” refers to a process wherein some

linear and/or nonlinear oscillatory components of a system adjust

a given property of their activity over time, showing a collective

behavior (Boccaletti et al., 2002).

In the context of scalp rsEEG rhythms, features of the ‘‘synchro-

nization” class reflect the temporal dynamics of the synchronized

activity in local cortical neural populations, showing a collective

oscillatory behavior at a macroscopic spatial scale of a few cen-

timeters5. In this regard, the perpendicular alignment of pyramidal

neurons with respect to the surface of cerebral cortex as well as

microscopic, mesoscopic, and macroscopic columnar structures of

the cerebral cortex result in synchronized post-synaptic potentials

showing an oscillatory behavior with phase, amplitude, and fre-

quency features. Distributed populations of those neurons in the

cerebral cortex are considered as the main source of scalp rsEEG

rhythms in both resting and task conditions.

Well-known linear features of scalp rsEEG rhythms are phase,

amplitude or power density of the oscillatory activity. The width

of the power spectral density and the spatial distribution of rsEEG

rhythms can be used as a measure of cortical neural synchroniza-

tion in quiet wakefulness.

The most typical nonlinear metrics showing complexity or syn-

chronization within the rsEEG rhythms are estimated from

phase-based cross-frequency coherence, auto-mutual information,

entropy, or dimensional complexity (Jeong et al., 1998a,b;

5 This activity subtends a fluctuating balance of cortical neural synchronization and

desynchronization over time (Pfurtscheller and Lopez da Silva, 1999). In the

‘‘synchronization” class, one can ideally include all linear and nonlinear features of

the rsEEG rhythms recordable at a given scalp electrode or estimated in one cortical

region of interest (ROI) with spatial characteristics for the generation of EEG at the

scalp level. These features characterize the amplitude, frequency, periodicity, and

complexity of the rsEEG rhythms at that place.
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Jeong, 2004; Dauwels et al., 2010; Sohn et al., 2010; Yang et al.,

2016).

In traditional clinical research, standard linear spectral fre-

quency analysis of scalp rsEEG rhythms is based on Fast

Fourier Transform (FFT) applied to artifact-free EEG epochs.6

Alternative procedures are also available (Pascual-Marqui

et al., 1988a,b). Among them, parametric autoregressive models

are statistically helpful (AR; Isaksson et al., 1981; Blinowska

and Zygierewicz, 2012). Two frequent applications of the EEG

frequency analysis are (1) the band-pass filtering of scalp rsEEG

waveforms in the preliminary analysis and (2) the computation

of the rsEEG amplitude/power density spectrum in the primary

data analysis.

5.2.1. Band-pass filtering of scalp rsEEG waveforms and identification

of graphoelements

Band-pass filtering of scalp rsEEG waveforms is mainly per-

formed to remove high-frequency components (due to external

electromagnetic noise or muscle activity) for two main research

purposes: (1) the control of the EEG quality using the evaluation

of artifactual low-frequency (<8 Hz) signals due to blinking, eyes

and head movements or bad electrode-skin contact; (2) the recog-

nition of physiological and pathological EEG graphoelements.

Physiological EEG graphoelements related to quiet wakefulness

are bursts of ample rsEEG oscillations at about 10 Hz during the

eyes-closed condition (i.e., posterior alpha rhythms) and their dis-

appearance during the eyes opening condition (i.e., the block of

alpha rhythms). In healthy control subjects, rsEEG rhythms should

present these graphoelements with a magnitude depending on

subjects’ age, brain integrity, and mental state during the record-

ing, so these variables should be carefully matched in control sub-

jects and patients (Barry and De Blasio, 2017; Gratton et al., 1992;

Babiloni et al., 2010). For example, posterior alpha rhythms and

alpha rhythm blocking may be attenuated in healthy seniors in

relation to a natural deterioration of projections from cholinergic

basal forebrain (Wan et al., 2019).

Concerning pathophysiological EEG graphoelements, typical

examples are (1) the prominent low-frequency waves at <8 Hz

during quiet wakefulness in seniors with cognitive deficits and

(2) spike-wave epileptic complexes and peculiar high frequency

oscillations and ripples (>70 Hz) generated by epileptogenic zones

in epileptic patients. In this line, some criteria and algorithms dis-

entangling physiologic from pathologic scalp EEG high frequency

oscillations and ripples are under scientific evaluation (Roehri

and Bartolomei, 2019; Thomschewski et al., 2019).

The detection of these rsEEG graphoelements can be automated

using thresholds based on time-frequency analysis of rsEEG

rhythms or considering their time varying spectral content. In this

line, a first critical aspect is the estimation of the trade-off between

the time and frequency resolutions of that spectral analysis. For

this purpose, several methodological procedures can be used,

based on diverse a priori settings (Principe and Brockmeier,

2015; Chandran et al., 2016). Among them, the spectrogram (i.e.,

windowed Fourier transform) provides a uniform time-frequency

resolution depending on the choice of the length of the rsEEG seg-

ments. Scalogram (i.e., wavelet transform) allows a higher tempo-

ral resolution for higher rsEEG frequencies. A few Wigner-derived

distributions of the Cohen’s class fit practically any setting of the

mentioned constraints. However, all these settings need a priori

decisions by experimenters about which functions can properly

model expected rsEEG transients. In this respect, Gabor functions

(i.e., Gaussian envelopes that are modulated by sinusoidal oscilla-

tions) are particularly useful as they can parametrically describe a

large variety of rsEEG transients. Of note, suboptimal choices of

Gabor functions can bias the reconstruction of time-frequency

readouts.

Compared to the mentioned procedures of time-frequency

analysis, matching pursuit decomposition presents at least two

advantages (Mallat and Zhang, 1993). It allows an excellent time-

frequency trade-off for the analysis of rsEEG segments and mini-

mizes the arbitrary choice of a model of transient EEG activity

(Durka and Blinowska, 1995). Indeed, matching pursuit decompo-

sition iteratively and adaptively subtracts from the EEG signal its

projection on ‘‘atoms” taken from a very wide and redundant dic-

tionary of Gabor functions. Usually, Gabor functions are used since

they provide the best time-frequency resolution. The resulting

time-frequency features (amplitude, frequency, time occurrence

and time span) can be used as inputs to the mathematical classi-

fiers for research applications in epilepsy (Durka et al., 2005;

Khlif et al., 2013; Z-Flores et al., 2016) and sleep (Malinowska

et al., 2009; Durka et al., 2015). Furthermore, matching pursuit

decomposition has been adapted for multivariate datasets and

EEG source estimation (Durka et al., 2005; Bénar et al., 2009).

5.2.2. Computation of rsEEG amplitude/power density spectrum

The computation of the rsEEG amplitude/power density spec-

trum by linear procedures is a primary step of the data analysis.

It allows the visualization of amplitude (lV) or power density

(lV2/Hz), frequency-bin-by-frequency-bin, for electrodes of

interest.

Although the rsEEG frequency bands are universally referred to

with the Greek letters (e.g., delta, theta, alpha, beta, and gamma),

there are several different classifications about their frequency

limits (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999;

Shackman et al., 2010; Lopes da Silva, 2011).

The IFCN Guidelines of Nuwer et al. in 1999 report two different

classifications of the rsEEG frequency bands for delta, theta, alpha,

beta, and gamma. The first classification is based on variable fre-

quency bins within the bands and overlapping frequency limits

across the bands. Instead, the second classification uses frequency

6 The exact characteristics of EEG signals are, in general terms, unpredictable. This

means that one cannot precisely foresee the amplitude of an EEG grapho-element or

the duration of an EEG wave. Therefore, it may be said that an EEG signal is a

realization of a random or stochastic process. It is important to note, however, that

successive values of an EEG signal have, in general, a certain degree of dependence.

This can be put in evidence by computing a time average, for one realization of an EEG

signal, of the product of the signal and a replica of itself shifted by a certain time

delay: this time average is called the auto-correlation function. Applying the Fourier

Transform (FT) to the EEG auto-correlation function, one obtains a representation of

the EEG signal in the frequency domain in the form of frequency power spectra or

power spectral density (units: lV2/Hz). In the case that one wishes to estimate the

correlation between two EEG signals, the cross-correlation function can be similarly

computed; the FT of which is the cross-power-spectrum. It is useful to use a

normalized quantity derived from the cross-power spectrum, namely the coherence

function to estimate the linear relationships between different EEG signals. Further,

the counterpart of the coherence function is the phase function which can provide

information about the time relations between EEG signals. The computation of power

spectra can be speeded up by applying the Fast Fourier Transform (FFT) algorithm. In

the data analysis, the FFT is preferably applied after multiplying by a ‘‘window”

(Hanning window, Welch’s method) to reduce the ends of the epoch to zero to avoid

spectral leakage. In the case that the signals are not Gaussian, higher order spectra

must be considered, namely the bi-spectrum that is obtained by applying a two-

dimensional FT to one signal that can reveal the existence of phase coupling between

different frequency components. Alternatively, one may estimate power spectra using

parametric models, namely autoregressive models, or autoregressive moving average

models, which are described by linear difference equations. These models allow a

considerable EEG data reduction and are being used mainly in estimating transfer

functions between EEG signals in the analysis of functional connectivity. An

important problem in EEG analysis is that EEG signals can only be considered as

stationary during relatively short epochs, which complicates the interpretation of

analyses based on the application of FT. This problem can be reduced by using

methods based on orthogonal sets of wavelets, i.e., waveform templates that usually

have the form of damped oscillations. For the band-pass filtering of scalp rsEEG data,

Finite Impulse Response (FIR) may be better than Infinite impulse response (IIR),

characterized by a nonlinear phase (although much faster since recursive).
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bands characterized by 4-Hz intervals and non-overlapping fre-

quency limits.7

In the literature, the beta range is extended in some cases to

30 Hz and other cases to about 35 Hz (Engel and Lopes da Silva,

2012). Above this, the frequency spectrum spans the gamma band.

Gamma frequency sub-bands (gamma 1, gamma 2, etc.) of rsEEG

rhythms range from 30 to 70 Hz. For components >70 Hz, the term

high frequency oscillations (HFOs) is used. It is advisable to name

the frequency range in parenthesis always and note whether the

HFOs show a transient (burst-like) or continuous (steady-state)

characteristic (Engel and Lopes da Silva, 2012).

The Guidelines of the IPEG report partially different frequency

limits of delta, theta, alpha, beta, and gamma for pharmaco-

rsEEG studies (Jobert and Wilson, 2012), based on previous inves-

tigations using spectral factor analysis. The limits of the fixed fre-

quency bands overlap. For the higher frequencies empirically

chosen, the following frequency ranges are suggested: 30–<65 Hz

(gamma 1), 65–<90 Hz (gamma 2), and 90–<135 Hz (gamma 3)

(see Footnote 7).

The IFCN Glossary of terms most commonly used by clinical

electroencephalographers (Kane et al., 2017) reports another clas-

sification of the rsEEG frequency bands. In that classification, the

limits of some fixed frequency bands overlap each other while

others do not overlap.

Table 1 reports the subdivision in fixed frequency bands pro-

posed in the Guidelines of IFCN (Nuwer et al., 1999; Kane et al.,

2017) and IPEG (Jobert and Wilson, 2012). Considering this lack

of consensus, we recommend the most recent IFCN and IPEG

Guidelines for clinical research (Jobert and Wilson, 2012; Kane

et al., 2017).

For some clinical research applications, the frequency analysis

of scalp rsEEG rhythms can consider individual differences. For

example, a clinical group may be characterized by a mean slowing

in the peak frequency of alpha power without any substantial

change in their amplitude. In this case, the use of fixed frequency

bands would result in a statistical effect erroneously showing

alpha amplitude/power density values lower in the clinical than

the control group. This confound can be avoided considering the

individual alpha frequency (IAF) peak, defined as the maximum

amplitude/power density peak in the alpha range (Klimesch,

1999; Klimesch et al., 1998). An analysis on this individual basis

would unveil a statistical effect showing IAF peak values lower in

the clinical than the control group with no difference between

the two groups in the alpha amplitude/power density.

For the mentioned individual frequency analysis of scalp rsEEG

rhythms, two frequency landmarks may be considered: (1) the

transition frequency (TF) between the theta and alpha bands and

(2) the IAF peak (Klimesch, 1999; Klimesch et al., 1998;

Klimesch, 2012, 2013). Based on the TF and IAF, delta, theta, and

alpha frequency bands are defined as follows: delta from TF � 4 Hz

to TF � 2 Hz, theta from TF � 2 Hz to TF, low-frequency alpha band

(alpha 1 and alpha 2) from TF to IAF, and high-frequency alpha

band (or alpha 3) from IAF to IAF + 2 Hz. The other bands are gen-

erally defined based on the above fixed frequency bands, as their

frequency peaks cannot be unambiguously detected in many

healthy and neurological subjects.

We recommend investigating topographical abnormalities of

rsEEG power density/amplitude spectra in patients with brain dis-

eases compared with healthy subjects. In healthy subjects, scalp

rsEEG rhythms at different frequency bands show reference topo-

graphical distributions, underlying neurophysiological generating

mechanisms and functions: (1) alpha 1 and 2 rhythms are promi-

nent in sensory and posterior associative cortical regions; they

may be associated with the endogenous regulation of brain arou-

sal, thalamocortical flows of sensory information, and retrieval of

stored semantic information from cerebral cortex (Klimesch

et al., 2007; Bas�ar, 2012; Fries, 2015); (2) beta 1, beta 2, and

gamma rhythms are dominant in frontal areas; they may be asso-

ciated with the regulation of thalamocortical flow of motor com-

mands, imagery, and plans across basal ganglia and motor

thalamus (Pfurtscheller and Lopes da Silva, 1999; Neuper et al.,

2006; Oswal et al., 2013a,b); (3) delta and theta rhythms are

mainly represented in associative frontal and posterior cortical

regions; they might synchronize long-range and multi-functional

brain regions, facilitating the generation of beta 2 and gamma

rhythms during a variety of task-specific cognitive information

processing (Canolty and Knight, 2010; Fries, 2015; Voytek and

Knight, 2015; Helfrich and Knight, 2016); (4) these delta and theta

rhythms may reflect the thalamocortical mechanisms underpin-

ning the transition from wakefulness to sleep (Steriade, 2006)

and the phase-locked low-frequency neurophysiological processes

accompanying sensory and cognitive events. These low-frequency

neurophysiological processes may play a key role in the formation

Table 1

Subdivision of the scalp-recorded resting state EEG rhythms in fixed frequency bands according to the Guidelines of International Federation of Clinical Neurophysiology (IFCN;

Nuwer et al. 1999), International Pharmaco-EEG Society (IPEG; Jobert and Wilson, 2012), and IFCN Glossary of terms most commonly used by clinical electroencephalographers

(Kane et al., 2017). Note that the Guidelines of IFCN by Nuwer et al. (1999) reported two alternative subdivisions (I and II).

Frequency (Hz) IFCN 1999 (I) IFCN 1999 (II) IPEG 2012 IFCN-2017 Glossary

Delta 0.5–4 0.5–4 1.5–<6 0.1–<4

Theta 4–8 5–7 6–<8.5 4–<8

Alpha a1: 8–10
a2: 10–12/13

8–12 a1: 8.5–<10.5
a2: 10.5–<12.5

8–13

Beta b1: 12–16

b2: 16–20

b3: 20–24

b4: 24–28

b5: 28–32

b1: 14–20

b2: 21–30

b1: 12.5–<18.5

b2: 18.5–<21

b3: 21.0–<30

14–30

Gamma ɣ1: 32–36

ɣ2: 36–40

ɣ3: 40–44

ɣ4: 44–48

. . .

ɣ1: 30–40

ɣ2: 40–. . .

30–<40

ɣ1: 30–<65*

ɣ2: 65–<90*

ɣ3: 90–<135*

>30–80

* Empirical subdivision.

7 Of note, this classification is quite similar to that obtained by Lopes da Silva in

2011 using a statistical factorial analysis of rsEEG spectral values. That analysis

unveiled infra-slow at <0.2 Hz, delta from 0.2 to 3.5 Hz, theta from 4 to 7.5 Hz, alpha

and mu from 8 to 13 Hz, beta from 14 to 30 Hz, gamma from 30 to 90 Hz, and high-

frequency oscillations >90 Hz. In this case, the limits of the fixed frequency bands did

not overlap each other.
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of evoked or event-related potentials (Klimesch et al., 2007; Bas�ar,

2013; Güntekin and Bas�ar, 2016).

The computation of the scalp rsEEG amplitude/power density

spectrum is performed for two main purposes in clinical research.

The first purpose is a second-level control of the quality of those

rsEEG epochs. A residual influence of eye blinking and movements

is expected to produce increased amplitude/power density values

in the delta-theta band of the frontal rsEEG activity. Furthermore,

head and neck muscle activity may generate increased rsEEG

amplitude/power density values at the frontal and temporal elec-

trodes in a broad range of high frequencies. The general effect of

those artifacts is a sort of step of amplitude/power density in fron-

tal and temporal electrodes when compared with the other elec-

trodes. In the presence of these artifactual spectral rsEEG

features, the preliminary analysis of rsEEG epochs must be

repeated.

After a correct removal of the rsEEG epochs contaminated by

artifacts, a rsEEG amplitude/power density spectrum is expected

to show the following physiological characteristic features: (1) a

characteristic peak of the alpha amplitude/power density (8–

12 Hz) in the resting condition with eyes closed and a reduction

in alpha amplitude/power during the condition of resting state

eyes open (These features can be less clear for neurological

patients and healthy seniors); (2) an inverse relationship between

the frequency bin and the amplitude/power density value from the

rsEEG rhythms; namely, the higher the frequency bin, the lower

the amplitude/power density value; and (3) the highest values of

the delta and theta band in the frontal electrodes while the alpha

rhythms are expected to achieve their highest values in the occip-

ital electrodes.

The second purpose of the scalp rsEEG amplitude/power density

computation is the extraction of quantitative markers from delta to

gamma frequency bands associated with physiological and patho-

physiological mechanisms of cortical neural synchronization. This

analysis usually includes the operations of integrating, summing,

or computing the ratio of the amplitude/power density values

between specific frequency bands (e.g., delta, theta, alpha, and sev-

eral beta and gamma bands). These frequency bands can have fre-

quency limits equal for all subjects (i.e., fixed frequency bands), or

those boundaries can be determined on an individual basis using

anchor frequencies.

An interesting branch of the ‘‘synchronization” analysis from

scalp rsEEG rhythms is represented by the computation of the

so-called bispectrum at a given electrode or rsEEG source. This

analysis unveils the intrinsic correlation between the phase of a

low-frequency (e.g., delta or theta) rsEEG activity and that at

higher (e.g., beta or gamma) rsEEG frequency. An important appli-

cation of this procedure in clinical research concerns the study of

the neurophysiological underpinning for monitoring the depth of

anesthesia (Mukamel et al., 2011).

5.2.3. Absolute and relative rsEEG amplitude/power density

FFT outcome corresponds to the absolute amplitude/power

density, measured in each frequency band. Relative amplitude/

power density is, instead, evaluated as the ratio between the abso-

lute amplitude/power density at a given frequency band (bin) and

the sum or the mean of the amplitude/power density across all fre-

quency bands (bins) of the scalp rsEEG spectrum (e.g., a good

choice may be from 0.5 to 45 Hz; in any case, the frequency range

used should be specified in the methodology section of papers). In

some cases, the result of this normalizing operation is expressed as

a percentage.

Hemispherical asymmetries of the amplitude (lV) or power

density (lV2/Hz) of scalp rsEEG rhythms are of interest as an

enrichment biomarker in testing research hypotheses in patients

with motor or language disorders, which typically show a domi-

nance in the left hemisphere. Left-right asymmetries of these

rsEEG variables are often evaluated by the asymmetry index (e.g.,

left minus right/left plus right), expressed as a percentage. This

index has the advantage that its values run from �100% to

+100%. Other specific parameters are optional. Frequency content

calculated in these ways is usually expressed as EEG amplitude val-

ues, in lV. Some users prefer to scale using power density instead

of amplitude.

5.2.4. Nonlinear processes underlying rsEEG rhythms: How to test and

measure them?

Although scalp rsEEG rhythms show prominent linear features

(Lopes da Silva, 1994; Stam and Pijn, 1999; Blinowska and

Zygierewicz, 2012), some brain diseases such as epilepsy (Pijn

et al., 1997), schizophrenia (Kim et al., 2000), and neurodegenera-

tive dementing disorders (Hernandez et al., 1996; Jeong et al.,

1998a,b, 2001a,b; Stam, 2005) may induce detectable nonlinear

rsEEG features to be better characterized in clinical research.

We think that the value of nonlinear procedures of scalp rsEEG

data analysis may be better understood comparing more systemat-

ically nonlinear procedures in neurological patients and healthy

controls. For this purpose, the following methodological

approaches are of interest.

Nonlinear autoregressive moving average model with exoge-

nous inputs (NARMAX) is a comprehensive approach to model

scalp rsEEG rhythms in the time, frequency, and spatio-temporal

domains as the outcome of a nonlinear brain system (Billings,

2013). In general, NARMAXmay represent many nonlinear systems

including those showing behaviors such as chaos, bifurcations, and

subharmonics. In the past, it has successfully been used to provide

measures of brain dynamics based on parametric and nonparamet-

ric methods (Hernandez et al., 1996; Valdes et al., 1999; David

et al., 2006).

Another approach is based on Takens’ Theorem (Takens, 1981).

This theorem allows reconstructing dynamics of nonlinear sys-

tems by an embedding procedure, namely a sequence of observa-

tions (i.e., embedding values) of system states at proper discrete

times (see an application to rsEEG features in Jeong et al.,

1999). In general, the behavior of these systems can be described

by the points of the embedding values as trajectories in the cor-

responding state space. These trajectories can converge to limit

sets of the state space, called attractors. Of note, it should be

stressed that to be valid, Takens’ theorem requires that (1)

dynamical systems examined be deterministic. This is not the

case in the large majority of rsEEG epochs recorded in healthy

subjects, which prominently show stochastic features (Lopes da

Silva, 1994; Stam and Pijn, 1999); and (2) mathematical modeling

takes into account formally if dynamics of the system and the

mentioned observations are autonomous as opposed to be gener-

ated by another deterministic system (Stark et al., 2003). Keeping

in mind these requirements, reliability and validity of Takens’

theorem application on rsEEG research strictly depend on its cor-

rect formulation, based on the knowledge of all driving forces and

deterministic or stochastic nature of the underlying nonlinear

system. Unfortunately, this knowledge is not easily obtained as

nonlinear behavior of deterministic and autonomous systems

can be mimicked by stochastic and externally driven systems in

some circumstances (Billings, 2013). Therefore, future research

should enhance our ability to obtain that knowledge more

precisely.

The mentioned attractors can show several features as a func-

tion of brain dynamics such as point attractors (linear system),

limit cycles, chaos, and others, with the chaotic attractors having

attracted a remarkable interest (for a review, see Faure and Korn,
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2001; Korn and Faure, 2003). An attractor is called chaotic when

the corresponding dynamic behavior is described by measures of

its degrees of freedom by a non-integer, fractal dimension, corre-

lation dimension, nonlinear parameters of Markov’s processes,

and positive Lyapunov exponents, using surrogate signals as a

reference (Faure and Korn, 2001; Korn and Faure, 2003). Chaotic

nonlinear systems are expected to show some typical behavior

(e.g., self-similarity, self-organization, and sensitive dependence

on initial conditions where small changes of control parameters

may lead to large variations of the system state). In general,

healthy subjects show limited rsEEG epochs subtending deter-

minist nonlinear systems (Lopes da Silva, 1994; Stam and Pijn,

1999). In contrast, epileptic (especially ictal zone) and neurode-

generative dementing disorders point to a significant increase

of features subtending nonlinear systems (Hernandez et al.,

1996; Stam, 2005).

Finally, a popular approach is based on Information theory

(Shannon, 1948). This theory provides basic concepts of mutual

information and entropy to compute the bounds and capacity of

neural information transfer underlying the generation of rsEEG

rhythms (Jeong et al., 1998a,b, 2001a,b; Hlavácková-Schindler

et al., 2007). Specifically, the entropy of a random variable defines

the average amount of information produced by a probabilistic

stochastic source of data, while mutual information of two random

variables measures the amount of information obtained about one

random variable through the other random variable. The

information-theoretical analysis may be of interest when rsEEG

variables with potential clinical value (diagnostic, prognostic) are

initially found to be multi-parametric (continuous parameters

coexisting alongside discrete settings) and with nonlinear relations

between the parameters (Jeong, 2004; Schwilden, 2006; Dauwels

et al., 2010). If rsEEG variables show these features, the

information-theoretical analysis may unveil a decreased complex-

ity of rsEEG rhythms in relation to disease severity or progression.

However, it should be remarked that entropy is just a measure,

applicable to even linear systems (Kullback, 1959).

For fruitful clinical research applications, the following recom-

mendations may be considered:

First, nonlinear measurements are inappropriate to analyze

rsEEG rhythms generated by linear processes, so we recommend

a preliminary evaluation of the linearity-nonlinearity dimension

in the data to avoid ungrounded applications of those

measurements.

Second, a deterministic nonlinear dynamical system may

produce observable variables with apparent statistical random

features. Furthermore, rsEEG rhythms may be generated by nat-

ural random fluctuations of linear or nonlinear systems.

Therefore, the random-deterministic dimension of rsEEG time

series examined should be carefully tested before nonlinear

data analysis (Lopes da Silva et al., 1997; Kanz and Schreiber,

1997).

Third, the time delay, embedding dimension, noise, and the

number of data samples substantially affect the outcome of nonlin-

ear measurements derived from Takens’ theorem (Takens, 1981).

Therefore, they should be determined and cross-validated with

extreme caution (for examples see Jeong et al., 1998a,b). When

there is uncertainty about how to tackle the above error sources,

linear measurements may be preferable even if nonlinearity

(deterministic or stochastic) of the brain system appears from

the data analysis, as one might approximate a parabolic function

with several straight lines.

Fourth, results of nonlinear measurements may be biased by

autocorrelation effects in rsEEG rhythms. A valid way to tackle

these effects it to discard vector pairs with time indices less than

the autocorrelation time (Theiler, 1986).

Fifth, some nonlinear measures were found to be sensitive to

relatively low levels (e.g., 5%) of colored or filtered noise in the data

(Osborne and Provenzale, 1989; Kanz and Schreiber, 1997), so this

aspect should be tested in the validation of new computational

procedures.

Some non-exhaustive methodological suggestions to

implement the above recommendations are reported in the

following.

First, 10,000 or more data points in rsEEG signals (more than

3 min) with a proper sampling frequency may be considered a

minimum requirement for the use of nonlinear measurements

of attractors, information content etc. (Eckman and Ruelle,

1992; Stam and Pijn, 1999; Jeong, 2004; Stam, 2005). The same

sampling and rsEEG power spectra should be imposed in the

generation of surrogate linear stochastic time series as control

data. Statistical differences of nonlinear measures between the

real and surrogate rsEEG rhythms may suggest nonlinear deter-

minism in the former (Theiler et al., 1992; Theiler and Rapp,

1996; Latchoumane and Jeong, 2011). We recommend that this

procedure is repeated for more than 20 independent surrogate

datasets with p < 0.05 corrected for multiple comparisons. How-

ever, it should be remarked that the use of the FFT with phase

surrogates only tests against a linear stochastic alternative. It

is not a test of general (possibly nonlinear) stochastic process

against a deterministic process (see for a discussion Hernandez

et al., 1996).

Second, if nonlinear character of rsEEG rhythms derive from the

Takens’ theorem, another preliminary run should test if the

dynamics of the system and the mentioned observations are

autonomous or reflect some other variables generated by another

deterministic system. Based on the outcome, the nonlinear mea-

surements will have to be adapted according to Stark et al. (2003).

Third, due to the lack of a pathophysiological model of deter-

ministic nonlinear processes in brain disorders, the outcome of

nonlinear analyses of rsEEG rhythms in clinical research should

not be interpreted in terms of disease effects on deterministic

chaos in the brain (see for an insightful discussion Pezard et al.,

1994, and Pardey et al., 1996). Instead, a conservative descriptive

approach should discuss the eventual correlation of nonlinear

measures with relevant clinical features such as disease trait (i.e.,

the pathophysiology of the disease) or status (i.e., its progression

or response to intervention). Furthermore, this characterization

might be related to and correlated with qualified neuroimaging

or fluid biomarkers of the disease to gain putative information on

the pathophysiological relevance of nonlinear measures of rsEEG

rhythms.

5.3. ‘‘Connectivity”

Resting state fMRI (rs-fMRI) unveiled separate brain networks

formed by interdependent neural masses that underpin (1) the

emotional coloring (i.e., salience), (2) planning, execution, and con-

trol of behavior (i.e., central executive), and (3) resting state condi-

tion (Damoiseaux et al., 2006). Their functional interdependence

can be deranged in patients with initial stages of brain disorders

(Damoiseaux et al., 2006; Chand et al., 2017).

In this theoretical context, connectivity is a key concept to

describe the statistical interdependence between neural masses

within and among those brain networks (Friston, 2011). The func-

tional connectivity denotes the mutual information or statistical

interdependence in the activity between two or more neural nodes
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of a brain network, while the effective8 connectivity designates

either the temporal precedence or a causal influence in the activity

of one neural node over another (Valdes-Sosa et al., 2011; Friston

et al., 2013). A more conservative theoretical position states that in

the framework of an experimental study, such an influence can be

proved to be causal only under conditions that are changing due to

an external intervention such as an experimental manipulation, a

pharmacological treatment, a brain stimulation, etc. (Pearl, 2010).

A general theory was proposed to test that hypothesis by a structural

causal model (Pearl, 2010).

Functional and effective brain connectivity can be probed by

fMRI, positron emission tomography (PET), EEG, magnetoen-

cephalography (MEG), and intracranial EEG recordings, each with

different spatial and temporal scales (for a review, see Sakkalis,

2011, and Damoiseaux and Greicius, 2009). EEG and MEG tech-

niques have an ideal millisecond time resolution to investigate

the role of brain oscillatory activity in that connectivity (Mantini

et al., 2007; Stam and Reijneveld, 2007; D’Amelio and Rossini,

2012) and unveil neurophysiological mechanisms underlying sen-

sorimotor, cognitive, and affective dysfunctions in patients with

neurological and psychiatric disorders. Three main methodological

approaches are reviewed in the following paragraphs.

A first approach estimates the interdependence of the phases of

rsEEG rhythms at the electrode level (Kamiński and Blinowska,

1991; Baccalá and Sameshima, 2001; Blinowska, 2011; Fraschini

et al., 2016; Stam, 2010; Stam and van Straaten, 2012). This

approach was adopted by Brazier (1972) in a pioneering study

aimed at estimating the individual spreading of spontaneous elec-

trical seizure activity at given frequencies within the brain of

epileptics during presurgical intracerebral EEG recordings. A basic

assumption of this approach is that such interdependence at scalp

electrode pairs may unveil the inter-relationship between the

underlying cortical regions, without significant distortions due to

head volume conduction effects connected with the spread of

source electric fields (Kaminski and Blinowska, 2017). Further-

more, some computational procedures of this approach can take

into account the inflating effects of an ‘‘active” reference electrode

on that interdependence (see the Section 5.3.1.). Overall, the

advantage of this approach is that the phase of scalp rsEEG

rhythms is not potentially distorted by source estimation proce-

dures (Kaminski and Blinowska, 2017). Its disadvantage is that it

ignores observational equations considering confounding effects

of head volume conduction and position/orientation of cortical

sources of scalp EEG activity (Schoffelen and Gross, 2009;

Brunner et al., 2016; Van de Steen et al., 2016). Due to head volume

conduction effects, electric fields can instantaneously spread from

a brain source to several scalp electrodes, thus generating a spuri-

ous interdependence between scalp rsEEG activity recorded at

those electrodes.

A second methodological approach adapts inverse solutions for

the estimation of functional and effective source connectivity

within spherical or realistic models of the head volume conductor

and equivalent current dipoles as generator models (for a review,

see Valdes-Sosa et al., 2011; Pascual-Marqui et al., 2011, 2014;

Karahan et al., 2015). In the past years, there has been an improve-

ment in the modeling of head volume conduction, EEG source esti-

mation, and the measurement of source localization errors

(Valdes-Sosa et al., 2011; Pascual-Marqui et al., 2011, 2014;

Karahan et al., 2015). However, there is no unique solution to the

inverse problem from the known scalp EEG activity to the estima-

tion of cortical source activity. Indeed, inverse estimates of EEG

cortical source activity and connectivity depend on forward and

inverse models and several parameters, e.g. the anatomical head

template and electrical source model, a-priori assumptions on

source number, placement, and orientation, and weights for the

lead field matrix linking scalp EEG activity and estimated source

current density. Therefore, these techniques suffer from limitations

in the biophysical modeling of head volume conduction and brain

sources (e.g., modeling the influence of thalamocortical neurons on

cortical pyramidal neurons). Furthermore, confidence limits of EEG

source connectivity solutions are known just for a limited number

of cases (Kaminski and Blinowska, 2017).

A good example of needed research for the second methodolog-

ical approach is reported in a recent study (Mahjoory et al., 2017).

The Authors of that study used scalp rsEEG data from two indepen-

dent cohorts, two anatomical head templates (i.e., Colin27 and

ICBM152), three electrical models (i.e., boundary element model,

finite element model, and spherical harmonics expansions), three

inverse methods (eLORETA, weighted minimum norm estimation,

and linearly constrained minimum-variance beamformer), and

three software platforms (Brainstorm, Fieldtrip, and a home-

made toolbox). The main findings showed that inverse estimates

of source activity were quite consistent across the above proce-

dures. In contrast, different inverse estimation methods and soft-

ware platforms induced a considerable variability in functional

source connectivity. In this framework, eLORETA and weighted

minimum norm estimation showed solutions more consistent with

each other when compared to the beamformer results. As

expected, these findings were more consistent within a given pop-

ulation cohort than between two cohorts.

A third methodological approach uses two basic methods. The

first is based on spline or Hjorth Laplacian estimation of the radial

current density inflowing or outflowing through the scalp from and

to the cerebral cortex (Nunez and Srinivasan, 2006). The second

computes the solution of the inner continuation inverse problem

of the EEG, supplying the spatial distribution of the voltages on

the dura mater model of the head volume conductor (Nunez and

Srinivasan, 2006). Both Laplacian estimation and the solution of

the inner continuation inverse problem use formal models of the

8 Interesting procedures estimate the effective (directional) interdependence from

rsEEG rhythms recorded at one scalp electrode to another, taking into account the

reciprocal correlations of those rhythms between the scalp electrodes of an array. This

directional relationship complements that indicated by the algorithms of functional

brain connectivity for clinical research. The most used mathematical algorithms are

based on Granger causality principle, multivariate autoregressive model and its

variant for the analysis of rsEEG rhythms in the frequency domain, namely the

directed transfer function (Blinowska and Kaminski, 2013). Furthermore, a procedure

called ‘‘isolated effective connectivity” applied this concept to the estimation of

effective connectivity of cortical sources of scalp EEG activity (Pascual-Marqui et al.,

2014). When selecting a linear or nonlinear measure of functional or effective

interdependence of rsEEG rhythms, several features of the estimator should be taken

into account: robustness in respect of measurement or biological noise (blinking,

saccades), sensitivity to ‘‘common drive” and ‘‘cascade flow” effects, and effects of

head volume conduction (for more explanation, see the main text in the Section 5.3.

Linear connectivity). Ideally, future research should compare the validity and

reliability of different linear and nonlinear estimators of interdependence of rsEEG

rhythms recorded at scalp electrodes and the application of those estimators in the

modeling of functional and effective connectivity of their cortical sources. It can be

speculated that a noticeable directionality of the connectivity from one electrode to

another would suggest an effective or causal (i.e., hierarchical) relationship in the

direction of the information flux from the former to the latter, although no

straightforward interpretation can be made in terms of underlying cortical sources

due to head volume conduction effects. Of note, directional interrelatedness might

not always imply causal interrelatedness, e.g., directionality derived from the phase of

coherence of rsEEG rhythms recorded at two scalp electrodes might not indicate

causality of the interactions between the cortical neural populations generating those

rhythms. Indeed, it is not entirely clear what is the specific neurophysiological

meaning of that directionality. It might be related to (1) the conduction of action

potentials between cortical and thalamic neural populations involved in the

generation of rsEEG rhythms recorded at the pairs of scalp electrodes and/or (2)

the modulation of synaptic potentials at those populations. To overcome the

mentioned intrinsic limitations, techniques of effective connectivity have been

implemented in the solution of the inverse problem to estimate EEG cortical sources

(Valdes-Sosa et al. 2011; Pascual-Marqui et al., 2014). However, these techniques are

model-dependent and do not provide a unique solution to the inverse problem. More

research is needed to clarify the effect of the rsEEG source estimation on the accuracy

of the reconstruction of that ‘‘directional flux.”
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head volume conductor to minimize the spread of electrical field

from the cerebral cortex to the scalp surface (Babiloni et al.,

2001). However, these methods may introduce inherent impreci-

sions in the estimated functional and effective cortical connectivity

as the effects of the position and orientation of cortical sources in

the head volume conduction are not explicitly modeled (Brunner

et al., 2016; Van de Steen et al., 2016).

The above measures of interdependence of scalp rsEEG rhythms

(scalp sensor level) or source connectivity (source level) can be

used as inputs to procedures based on Graph theory,9 which pro-

vides a metric for brain network analysis at the microscale, mesos-

cale, and macroscale (see D’Amelio and Rossini, 2012; Stam and

Reijneveld, 2007). The Graph theory markers represent the configu-

ration of network nodes and connectivity (e.g., nodes connecting

many-few nodes in the same module), their modular configuration

(e.g., nodes emanating many-few edges to nodes with high or low

reciprocal interconnection), and the overall system topology, respec-

tively (Medaglia, 2017). Among the outcome markers, a bulk of fMRI,

rsEEG, and rsMEG studies has suggested that a small-world topology

reflects system resiliency and effects of some brain disorders

(Bassett and Bullmore, 2006; Stam and Reijneveld, 2007). However,

this idea has been recently challenged (Blinowska and Kaminski,

2013). As with any relatively new methodological procedure, the

application of the Graph theory to rsEEG rhythms needs caution

and more clinical research before a final judgement. We recommend

future experiments to define opportunities and limitations of this

approach for Clinical Neurophysiology. Indeed, the topological Graph

patterns depend on several potentially confounding variables: (1)

the validity and reliability of the techniques used to estimate func-

tional or effective connectivity of rsEEG rhythms (bivariate estima-

tors may be prone to the common source effects potentially

producing multiple false connections); (2) the statistical thresholds

to qualify the significant associations between sensors or sources;

and (3) the results of the measurement noise and intrinsic auto-

correlation of rsEEG signals at scalp electrodes (Papo et al., 2016;

Blinowska and Kaminski, 2013; Hlinka et al., 2017).

5.3.1. Linear measures of ‘‘connectivity”

Historically, the most used linear measurement of the func-

tional interdependence of scalp rsEEG rhythms is the bivariate

analysis of FFT-based spectral coherence10 between single pairs of

electrodes. In this context, bivariate means that at a given frequency,

the estimation of the coherence of rsEEG activity at a single pair of

electrodes does not consider the coherence values computed

between other electrode pairs (In contrast, multivariate techniques

provide that estimation considering that interdependence between

all electrode pairs of the array). This bivariate measure of spectral

coherence is defined as a correlation coefficient (squared) that esti-

mates the consistency of relative amplitude and phase between any

pair of oscillatory signals in each frequency band (Nunez and

Srinivasan, 2006). Unfortunately, spectral coherence and other

(especially bivariate) measures of interdependence of rsEEG rhythms

between scalp electrodes may be confounded by effects of reference

electrode, head volume conduction, common drive, and cascade flow

(Blinowska, 2011).

Reference electrode effect is well-known. If a given cortical rsEEG

source is particularly active underneath the reference electrode

site, the phases and frequencies of that activity are reflected in

the rsEEG activity recorded at all exploring electrodes, inflating

the spectral coherence and other (especially bivariate) measures

of that interdependence computed between all scalp electrode

pairs.

Head volume conduction effect is due to the instantaneous (i.e.,

no time lag) spread of electric fields generated by brain sources

across cerebral cortex, cerebrospinal fluid, skull, and scalp. This

effect can inflate the spectral coherence and other (especially

bivariate) measures of interdependence of scalp rsEEG rhythms.

Fig. 1 (upper row) shows some paradigmatic cases of the effect

of head volume condition. In the figure, an ideal model of head vol-

ume conductor includes three exploring scalp electrodes (e.g., ‘‘a”,

‘‘b”, and ‘‘c”) and four underlying cortical sources (e.g., ‘‘At”, ‘‘ABr”,

‘‘Br”, and ‘‘Cr”) whose spreading neural electric fields are associ-

ated with variations of scalp EEG activity. In the model, EEG activ-

ity (not shown) would be recorded with respect to a distant

reference electrode (not shown). The source ‘‘At” is placed under

the electrode ‘‘a” and has a tangential orientation to the scalp.

The source ‘‘ABr” is placed between the electrodes ‘‘a” and ‘‘b”

and has a radial orientation to the scalp. The source ‘‘Br” is placed

under the electrodes ‘‘b” and has a radial orientation to the scalp.

The source ‘‘Cr” is located under the electrode ‘‘c” and has a radial

orientation to the scalp.

In the ideal model, the head volume conduction effect does not

ever mix the spatial correspondence between cortical sources and

scalp electrodes where EEG activity generated from those sources

is recorded. For example (Fig. 1, upper row, left), the neural electric

fields generated from the radial sources ”Br” and ‘‘Cr” would spread

to the overlying electrodes ‘‘b” and ‘‘c”, respectively.

In other cases, the head volume conduction effect does mix the

mentioned spatial correspondence. For example (Fig. 1, upper row,

right), the neural electric fields generated from the source ”At”

would spread to the distant electrode ‘‘b” but not to the overlying

electrode ‘‘a”. Unfortunately, this misleading effect of the head vol-

ume conduction may not be removed by the Laplacian estimates of

the scalp current density or the potential estimated at the dura

mater level. As another example (Fig. 1, middle row, left), the neu-

ral electric fields generated from the source ”ABr” would spread to

both electrodes ‘‘a” and ‘‘b”. Therefore, an activation of the source

‘‘ABr” would induce a significant coherence or other (especially

bivariate) measures of interdependence of the rsEEG rhythms

recorded at the electrodes ‘‘a” and ‘‘b”, especially at the zero-lag

component. A mistaken interpretation would explain that interde-

pendence as due to a functional connectivity between the underly-

ing cortical sources ‘‘At” and ‘‘ABr”. Finally, let us consider a

coherent activation of the sources ‘‘At” and ‘‘Cr” (Fig. 1, middle

row, right). Neural electric fields of those sources would spread

to the scalp electrodes ‘‘b” and ‘‘c”, respectively. Of note, the elec-

trode ‘‘b” does not overly the cortical source ‘‘At”. This effect would

determine a significant coherence or other (especially bivariate)

measures of interdependence of the EEG activity recorded at these

two exploring scalp electrodes, while the EEG activity recorded at

the scalp electrodes ‘‘a” and ‘‘c” (overlying the sources ‘‘At” and

‘‘Cr”) would show no significant coherence. A mistaken interpreta-

tion would explain that interdependence as due to a functional

connectivity between the underlying cortical sources ‘‘Br” and ‘‘Cr”.

9 The significant contribution of Graph theory to the EEG field is the attempt to

derive some general features of the brain connectivity in physiological and diseased

conditions. The most used topological features of the Graph theory include the

clustering coefficient, probing local neural network connectivity (C, pairs of near

electrodes), and the individual interconnectional path length (L), defined as the length

of the shortest paths connecting pairs of nodes as a measurement of the efficiency of

the parallel information transmission within a given network. The Graph topology has

been considered a promising variable to describe possible critical states of the brain

dynamic systems during the transition between ordered and random behavior (this

transition is supposed to have implications on information transfer, storage capacity,

and sensitivity to external stimuli). It has been proposed that criticality of the brain

dynamic system depends on phase synchronization and functional coupling of the

oscillatory activity of neural populations as reflected by EEG and magnetoencephalo-

graphic (MEG) rhythms (Bassett et al., 2006). Overall, the actual studies on rsEEG

‘‘graphs” in neurological patients did not produce converging findings sufficiently

mature for a systematic use in the clinical management of patients. Therefore, we will

not get into more details in this paper.
10 High coherence between the activity of two EEG brain sources means that their

relationship reflects a linear transformation, although their underlying dynamics may

be not necessarily linear (Srinivasan et al., 2007).
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Keeping in mind those examples, the head volume conduction

effect may confound the interpretation of measures of interdepen-

dence of rsEEG rhythms recorded at scalp electrodes in some cases.

However, this effect generally decays with the distance between

cortical sources and exploring scalp electrodes, although the curva-

ture of the head and tangential orientation of the EEG sources may

induce anti-correlated EEG activity and increased coherence at dis-

tant electrode pairs. A simulation study quantified this decay using

a head conductor model based on three confocal ellipsoidal sur-

faces (i.e., scalp, skull, and cortex) with equivalent current dipoles

as cortical source models (Srinivasan et al., 2007). Uncorrelated

oscillatory activities were imposed in these dipoles, and EEG spec-

tral coherence between virtual scalp electrode pairs was computed

to measure the head volume conduction effect. Despite the inco-

herence of the dipole source activities, results showed a large spu-

rious (false) EEG coherence between scalp electrodes separated

less than approximately 10–12 cm (Srinivasan et al., 2007). Fur-

thermore, there were mild spurious EEG coherence values even

for distances between paired scalp electrodes greater than 20 cm,

possibly due to head and source geometry (Srinivasan et al.,

2007). Noteworthy, impact of head volume conduction effects on

scalp EEG coherence may be magnified by the extension of under-

lying cortical EEG sources. In all frequency bands, EEG activity

recorded at a given scalp electrode is estimated to reflect the mean

over all synchronous cortical sources distributed in a vast cortical

region of many squared centimeters (Nunez and Srinivasan, 2006).

Common drive effect denotes the physiological conduction (i.e.,

with some time lag) of action potentials through axons from a

brain neural mass to two (or more) cortical neural masses

(sources) generating neural electric fields recordable as EEG activ-

ities at scalp electrodes. This effect is illustrated in Fig. 1 (lower

row, left). Let us consider the neural mass of the source ‘‘Cr” send-

ing action potentials through neuronal axons to the sources ‘‘Br”

and ABr” (where the ‘‘Br” and ‘‘ABr” sources have no functional

connectivity between them). In the example, the action potentials

would arrive before and be more effective at the source ‘‘Br” than

the source ‘‘ABr”. This sequential event would induce a significant

non-zero lag interdependence of the rsEEG rhythms between elec-

trodes ‘‘c” and ‘‘b”, ‘‘c” and ‘‘a”, and ‘‘b” and ‘‘a”. An erroneous inter-

pretation would explain that interdependence as due to a

functional connectivity between the sources ‘‘Br” and ‘‘ABr” as well

as between the sources ‘‘Cr” and ‘‘At”. In the same line, bivariate

inverse estimations of cortical source connectivity from scalp

EEG activity may suggest a (spurious) functional cortical connec-

tivity between ‘‘Br” and ‘‘ABr” sources. Overall, the common drive

effect may induce many spurious solutions of interdependence at

scalp (source) level (Blinowska, 2011; Blinowska and Kaminski,

2013).

Cascade flow effect is also related to the physiological conduc-

tion (i.e., with some time lag) of action potentials through axons

from a brain neural mass to another (or more) cortical neural

masses acting as cortical sources of scalp EEG activity. An example

of this effect is illustrated in Fig. 1 (lower row, right). Let us con-

sider the following sequence of cortical source activations. Firstly,

the neural mass of the source ‘‘Cr” sends action potentials through

neuronal axons to the source ‘‘Br”. When activated, the neural mass

Fig. 1. Some examples of the effects of the head volume conduction, ‘‘common

drive”, and ‘‘cascade flow” (for an explanation, see the main text in Section 5.3.1.

‘‘Linear measures of connectivity”) confounding the interpretation of the results of

the techniques for the computation of functional and effective connectivity from

rsEEG rhythms. UPPER ROW. Some examples based on a model with three exploring

scalp electrodes ‘‘a”, ‘‘b”, and ‘‘c” and four underlying cortical sources ‘‘At” (i.e.,

under the electrode ‘‘a” with a tangential orientation), ‘‘ABr” (i.e., halfway between

the electrodes ‘‘a” and ‘‘b” with a radial orientation), ‘‘Br” (i.e., under the electrode

‘‘b” with a radial orientation), and ‘‘Cr” (i.e., under the electrode ‘‘c” with a radial

orientation). In the model, the source ”At” electric fields are volume conducted to

the electrode ‘‘b”. The source ”ABr” electric fields are volume conducted to the

electrodes ‘‘a” and ‘‘b”. The source ”Br” electric fields are volume conducted to the

electrode ‘‘b”. The source ”Cr” electric fields are volume conducted to the electrode

‘‘c”. In this model, the electrode ‘‘b” records electric fields generated by both the

cortical tangential source ‘‘At” and the cortical radial sources ‘‘ABr” and ‘‘Br”. Due to

effects of cortical source localization/orientation and head as a volume conductor,

phase and amplitude of EEG signals collected at a given exploring scalp electrode

would reflect a weighted average of contributions of cortical sources in relation to

their respective distance from that electrode. Indeed, electric fields generated from

a cortical source decay to zero values at 10–12 centimeters of distance, with

possible additional mild effects for distances greater than 20 cm due to head and

source geometry (Srinivasan et al., 2007). Noteworthy, the impact of head volume

conduction effects is magnified by the extension of underlying cortical EEG sources.

In all frequency bands, EEG activity recorded at a given scalp electrode may reflect

synchronous cortical sources distributed in a vast cortical region of tens of squared

centimeters (Nunez and Srinivasan, 2006). In the ideal model of the figure, the

possible synchronizing influence of thalamocortical neural populations is not

shown. Furthermore, EEG activity (not shown) at exploring scalp electrodes ‘‘a”, ‘‘b”,

and ‘‘c” would be recorded relative to a distant reference electrode (not shown).

MIDDLE ROW, LEFT. Due to the effect of head volume conduction, an activation of

the source ‘‘ABr” may induce an interdependence of rsEEG rhythms recorded at the

electrodes ‘‘a” and ‘‘b”. Such interdependence could be erroneously interpreted as a

functional connectivity between the cortical sources ‘‘At” and ‘‘Br”, underlying

those electrodes. MIDDLE ROW, RIGHT. Due to the effect of head volume

conduction, a coherent activation of the sources ‘‘At” and ‘‘Cr” may induce an

interdependence of the rsEEG rhythms recorded at the electrodes ‘‘b” and ‘‘c”. Such

interdependence could be erroneously interpreted as a functional connectivity

between the cortical sources ‘‘Br” and ‘‘Cr”, underlying those electrodes. LOWER

ROW, LEFT. Due to the effect of ‘‘common drive”, a coherent activation of the source

‘‘Cr” with the sources ‘‘Br” and ABr” may induce an interdependence of the rsEEG

rhythms recorded at the electrodes ‘‘a” and ‘‘c” and those recorded at the electrodes

‘‘b” and ‘‘a”. Such interdependence could be erroneously interpreted as a functional

connectivity between the cortical sources ‘‘At” and ‘‘Cr” and between the cortical

sources ‘‘Br” and ‘‘ABr”, underlying those electrodes. LOWER ROW, RIGHT. A

directional connectivity from the source ‘‘Cr” to ‘‘Br” and from ‘‘Br” to ‘‘ABr” is

illustrated to show the difference between ‘‘direct” and ‘‘indirect” connection

pathways. In the figure, there is a ‘‘direct” connection pathway from the source ‘‘Cr”

to the source ‘‘Br”, while the connection pathway is ‘‘indirect” between the sources

‘‘Cr” and ‘‘ABr”. In the figure, the source ‘‘Br” also shows a directional connectivity to

the source ‘‘ABr”. Due to the effect of ‘‘cascade flow”, this pattern of source

connectivity may induce a directional interdependence of the rsEEG rhythms

recorded at the electrodes ‘‘c” and ‘‘a”. Two erroneous interpretations of that

interdependence at the scalp sensors would infer a functional connectivity between

the sources ‘‘Br” and ‘‘ABr” as well as between the sources ‘‘Cr” and ‘‘At”. In the

figure, the green arrows between the scalp electrodes indicate the interdependence

of EEG activity (not shown) at the sensor level that would correspond to the

functional connectivity between the underlying cortical sources, indicated by green

arrows as well. In this case, such interdependence unveils the true underlying

functional cortical connectivity. In contrast, the red arrows between the scalp

electrodes indicate the interdependence of EEG activity (not shown) at the scalp

level that would not correspond to the functional connectivity between the

underlying cortical sources, indicated by red arrows as well. In this case, such

interdependence provides a misleading representation of the underlying functional

cortical connectivity.
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of the source Br sends action potentials through neuronal axons to

the source ‘‘ABr” (where the sources ‘‘Cr” and ‘‘ABr” have no func-

tional connectivity between them). This example illustrates the

difference between ‘‘direct” and ‘‘indirect” connection pathways.

There is a ‘‘direct” directional connection pathway from the source

‘‘Cr” to the source ‘‘Br”, while the connection pathway is indirect

from the source ‘‘Cr” to the source ‘‘ABr”. This sequence of source

activations would induce the following directional interdepen-

dence of the scalp rsEEG activity: (1) from the electrode ‘‘c” to

the electrodes ‘‘b” and ‘‘a” and (2) from the electrode ‘‘b” to the

electrode ‘‘a”. A mistaken interpretation would explain that direc-

tional interdependence as due to an effective connectivity from the

source ‘‘Cr” to the source ‘‘At”.

Frontal positive and parietal negative P20/N20 peaks of

somatosensory evoked potentials following the electrical stimula-

tion of right median nerve at the wrist is an interesting example of

the remarkable effects of human head volume conduction in the

case of an activation of a physiological cortical generator oriented

tangentially to the scalp surface. These peaks are generated at

about 20 milliseconds post-stimulus in the primary somatosensory

cortex, buried in the Rolandic central sulcus (i.e., postcentral Brod-

mann area 3b). However, the maximum amplitude of these peaks

at the scalp is observed in anterior and posterior regions far from

the central sulcus (Seiss et al., 2002). It can be speculated that

when similar precentral, central, and postcentral tangential

sources show a fluctuating activation during a resting state condi-

tion, estimates of an intrahemispheric functional connectivity from

rsEEG rhythms between pairs of scalp electrodes or estimated cor-

tical sources might be inflated. Indeed, the influence of those phys-

iological tangential cortical sources in the resting state condition

might be relatively one-third lower when compared to cortical

radial sources (Srinivasan et al., 2007). However, more research

is needed to weight the effects of head volume conduction on

results of functional/effective connectivity and source estimation

techniques applied on rsEEG rhythms.

Keeping in mind the above considerations and examples, our

recommendations for future research are reported in the following.

First, the computation of interdependence of rsEEG rhythms

between scalp electrodes or inverse estimates of source connectiv-

ity can be improved by methods estimating lagged components of

that interdependence or source connectivity. These methods

include bivariate and multivariate techniques. Input EEG variables

for bivariate techniques refer to two paired (scalp) electrodes or

(cortical) sources, while those for multivariate techniques refer to

multiple electrodes or sources.

Bivariate techniques include the computation of imaginary part

of coherency between rsEEG rhythms at electrode or source pairs,

this part being zero with uncorrelated cortical source activity

(Nolte et al., 2004). Phase lag index estimates the interrelatedness

between rsEEG rhythms with lagged phase synchronization at

electrode pairs (Stam et al., 2007, 2010). Linear lagged connectivity

estimates linear inverse source connectivity as lagged phase syn-

chronization (Pascual-Marqui et al., 2011).

Multivariate methods based on Granger causality principle and

autoregressive (MVAR) model are the most used for application to

rsEEG data and are grounded on covariance matrices at different

lags of phase synchronization for all electrodes or sources of inter-

est. This approach assumes that causes temporally precede their

effects in a predictable way (Granger, 1969), and computational

procedures can account for the common-drive phase synchroniza-

tion of EEG rhythms mentioned above (Kamiński and Blinowska,

1991). Of note, this general multivariate approach can be applied

to compute the interdependence of EEG activity recorded between

electrodes placed at the scalp, cortical or sub-cortical level as well

as for the estimation of functional connectivity between brain

source activities modeled solving the EEG inverse problem. In line

with the article aim, here we will focus on its application on scalp

rsEEG potentials and estimated cortical source activities.

For the first time, the following procedures were derived from

methods based on Granger causality principle and MVAR model

to estimate the interdependence of EEG activity recorded from

scalp electrodes. Under assumptions of stationary EEG epochs

and linear processes, Directed Transfer Function (DTF) solutions

were used to estimate directional lagged phase synchronization

in EEG rhythms between scalp electrodes (e.g., ‘‘a” to ‘‘b” and ‘‘b”

to ‘‘a” scalp electrodes) by a procedure modeling the potential

effects of common-drive phase synchronizations of EEG rhythms

recorded at the other scalp electrodes of the array (Kamiński and

Blinowska, 1991). Under the same assumptions, partial directed

coherence (PDC) solutions were used to estimate ‘‘direct” lagged

phase synchronizations in EEG rhythms between two scalp elec-

trodes, taking into account ‘‘cascade-flow” phase synchronization

of EEG rhythms recorded at the other scalp electrodes of the array.

Theoretically, PDC solutions are not misled by indirect lagged

phase synchronizations of EEG rhythms between scalp electrodes

(e.g., ‘‘a” – ‘‘b” and ‘‘b” – ‘‘c” but not ‘‘a” – ‘‘c” scalp electrodes;

Baccalá and Sameshima, 2001).

More recently, the following advanced versions of above proce-

dures were proposed: (1) renormalized PDC (rPDC), for renormal-

izing PDC solutions taking into account the number of receiver

electrodes (Schelter et al., 2009) and (2) direct DTF (dDTF), for being

not affected by indirect lagged phase synchronizations of EEG

rhythms between scalp electrodes, similarly to PDC pros (for a

review see Blinowska, 2011). Furthermore, a procedure called iso-

lated effective coherence (iCoh) was proposed to provide measures

related to PDC under a MVAR model at (eLORETA) cortical EEG

source level, followed by zeroing all irrelevant associations to zero

to focus on directional associations of interest at that source level

(Pascual-Marqui et al., 2014).

The mentioned multivariate methods are more advantageous

than bivariate ones, since they reduce the spurious interdependen-

cies of rsEEG rhythms at the scalp or source level due to common

drive and cascade flow effects. In estimation of parameters of the

MVAR model, the following issues have to be considered: (1) ade-

quate model order and EEG epoch length should be chosen; (2) the

issue of signal stationarity across EEG epochs should be properly

taken into account (Pereda et al., 2005); (3) all major driving forces

of rsEEG rhythms have to be represented in that model (Blinowska

and Zygierewicz, 2012; Blinowska and Kaminski, 2013; Pascual-

Marqui et al., 2014). For example, there may be an under-

representation of the common sources localized in sensorimotor

thalamocortical populations targeting cortical pyramidal neurons

that contribute to the generation of scalp rsEEG rhythms.

Second, neurophysiological inferences from results of the above

multivariate methods should be considered with caution, although

their solutions are more helpful than the bivariate ones. On one

hand, it has been stated that multivariate approaches grounded on

Granger causality andMVARmodels can provide insights in clinical

research based on DTF and PDC solutions computed from scalp

rsEEG signals (Kuś et al., 2004; Blinowska and Kaminski, 2013). For

example, compared with healthy control subjects, Alzheimer’s dis-

ease patients with dementia were characterized by decreased

strengths of non-normalized DTF solutions, especially at posterior

electrodes, and lower rate of their decay as a function of scalp

inter-electrode distance (Blinowska et al., 2017). These variables

were clinically relevant as the combination of those DTF solutions,

MVAR-based spectral coherence, and feature extraction procedures

(e.g., principal componentanalysis and computationofMahalanobis

distance) resulted in a classification accuracy of 86% (area under the

receiver operating characteristic) in the discrimination of individual

control subjects and patients (Blinowska et al., 2017). On the other

hand, it should be remarked that those interdependence measures
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at the scalp level may not reflect the true connectivity between the

underlying cortical neural masses, due to the lack of biophysical

models of head volume conduction and sources (Brunner et al.,

2016; Van de Steen et al., 2016). In other words, under the men-

tionedassumptions, the familyofDTF andPDCsolutions reduce spu-

rious interdependencies at the scalp level due to common drive and

cascade flow (Blinowska and Zygierewicz, 2012). However, this

advantage does not ensure that the resulting pattern of interdepen-

dence reflects the underlying pattern of source cortical connectivity

(Brunner et al., 2016; Van de Steen et al., 2016). More research is

needed to clarify this issue.

Third, in ideal simulation studies, scalp and cortical rsEEG

rhythmsmight bemathematically-generated by different combina-

tions of equivalent current dipoles distributed in cortical and sub-

cortical compartments of a realistic head volume conductor

constructed using MRI. These combinations may include paradig-

matic cases of coherent and incoherent activations of dipoles with

different signal-to-noise ratio and experimentalmanipulations pro-

ducing common drive and cascade flow effects. Solutions of differ-

ent ‘‘connectivity” techniquesmay be compared to define their pros

and cons in the various experimental manipulations. Among

promising in-vivo studies, different ‘‘connectivity” techniques

may be applied to rsEEG data obtained by recordings from scalp

(a day before the implantation of intracranial EEG electrodes) and

intracranial electrodes (a day after that implantation) in epilepsy

patients resistant to pharmacological treatment. The comparison

of the interdependence pattern of scalp rsEEG activity vs inverse

estimates of cortical source connectivity may be invaluable to clar-

ify pros and cons of those ‘‘connectivity” techniques comparatively.

Fourth, another ideal in-vivo approach for the study of the head

volume conduction, common drive, and cascade flow effects on

EEG activity might be based on the transcranial magnetic stimula-

tion (TMS) of cortical sites and the simultaneous scalp EEG record-

ing (Bergmann et al., 2016; Ziemann, 2011). Indeed, the TMS over a

cortical site is a casual intervention that induces an unequivocal

effective connectivity from that site to other cortical sites produc-

ing evoked potentials (Rogasch and Fitzgerald, 2013) and, for

example, changes in ongoing alpha rhythms (Capotosto et al.,

2009, 2014). This effective connectivity can also be modulated by

enhanced cortical inhibition due to either paired-pulse TMS with

interstimulus intervals of 50–200 ms (Rogasch and Fitzgerald,

2013) or the administration of GABAergic receptor modulators

(Darmani et al., 2016; Premoli et al., 2014). However, it should

be remarked that TMS can induce not only neurotransmission from

the stimulated cortical site but also electromagnetic artifacts con-

founding the interpretation of EEG readouts (Bergmann et al.,

2016; Ziemann, 2011). Therefore, special attention must be

devoted to the removal of these artifacts by an accurate prelimi-

nary analysis (Rogasch and Fitzgerald, 2013).

Fifth, emerging techniques of frequency analysis of the rsEEG

rhythms explore the linear relationships between the phase of a

given frequency and the amplitude of another related frequency.11

They require further investigations about reliability and robustness

to signal-to-noise in the EEG data before the use in clinical research.

5.3.2. Nonlinear EEG time series models and measures of

‘‘connectivity”

Time series of two coupled nonlinear oscillators may display

phase synchronization even when the amplitude of the relative

oscillations is uncorrelated over time (Rosenblum et al., 1996). This

fact suggests that if two brain neuronal populations show oscilla-

tory nonlinear dynamics and reciprocal interaction, linear mea-

sures of their EEG activity such as spectral coherence could not

detect that interaction with accuracy. To overcome this limitation,

Information theory can be used to account for specific nonlinear

features of interdependence of rsEEG rhythms at scalp electrodes

or inverse estimates of cortical source connectivity (Jeong et al.,

2001a,b; Schlögl et al., 2002; Na et al., 2002; Huang et al., 2003;

Pascual-Marqui et al., 2011). The mutual information between

the measures of rsEEG rhythms at the electrodes or sources X

and Y can be estimated as the amount of information that the mea-

sured time series X provides about Y and vice-versa (Mars et al.,

1985). Another index of interest is the cross-prediction, which

measures the extent to which prediction of X is improved by

knowledge about Y as a directional information about the nonlinear

interdependence between X and Y.

Based on the above theoretical premises, several nonlinear pro-

cedures have been developed and applied to study functional and

directional interdependence of rsEEG rhythms at scalp electrodes

(for reviews, see Jeong, 2004; Pereda et al., 2005; Stam, 2005;

Sakkalis, 2011; Dauwels et al., 2010). They include phase synchro-

nization, general synchronization, synchronization likelihood,

state-space based synchrony, stochastic events synchronization,

the synchronization likelihood, mutual information, permutation

conditional mutual information, and nonlinear interdependence

(Jeong et al., 2001a,b; Pereda et al., 2005; Dauwels et al., 2010;

Wen et al., 2015).

Compared to the broad concept of ‘‘synchronization” defined in

a previous section, those techniques use it with the notion that two

or many brain areas or regions adjust some of the time-varying

properties of their activity to a common behavior due to coupling

or common external forcing. Among several indexes with these

properties, phase synchronization is suitable to detect nonlinear

dynamics in the interdependence between two rsEEG time series

when they are characterized by a non-uniform distribution of their

phase difference. Furthermore, generalized synchronization can be

used when the two rsEEG time series X and Y are expected to

reflect two interacting brain systems where the state of the first

system depends on that of the second one (Jansen et al., 2003; Le

Van Quyen et al., 1998; Breakspear and Terry, 2002).

We remark that the same concerns and limitations in the anal-

ysis of linear interdependence of two rsEEG time series apply to the

nonlinear analysis. For example, nonlinear estimates enumerated

above are bivariate, so they markedly suffer from the common drive

effect. When applied to rsEEG signals recorded from scalp elec-

trodes, their solutions are also influenced by the head volume con-

duction effect. When applied at source level, they suffer from the

lack of a unique solution to the EEG inverse problem as well as lim-

itations in the biophysical modeling of head volume conduction

and brain sources. Furthermore, other challenging issues are the

identification of best parameters and rsEEG epoch length as well

as the issue of signal stationarity across rsEEG epochs, except for

methods based on matching pursuit (Durka et al., 2005; Pereda

et al., 2005; Dauwels et al., 2010). Moreover, the performance of

nonlinear methods such as mutual information and phase-based

estimators may be affected by levels of noise that can be seen in

rsEEG data (>5%; Netoff et al., 2006). Finally, a practical method-

ological aspect is that the set-up of those nonlinear procedures

11 An emerging branch of the functional brain ‘‘connectivity” from rsEEG rhythms is

represented by the so-called phase-amplitude cross-frequency coupling (CFC). Phase-

amplitude CFC at a given electrode pair or rsEEG source pair does model the

dependence between the phase of a low-frequency (e.g., delta or theta) rsEEG

coupling and the amplitude of that coupling at higher (e.g., beta or gamma) rsEEG

frequencies (Canolty et al., 2006; Demiralp et al. 2007; Osipova et al., 2008; Cohen

et al., 2009) even in some clinical applications in movement disorders (Miocinovic

et al., 2015; Cole et al., 2017). However, the CFC analysis and the corresponding

interpretation from a physiological point of view should consider some problems. For

instance, some spectral CFC correlations can be merely due to common non-

stationarities and nonsinusoidal features of the neural oscillations. These phenomena

can arise even in the absence of true interactions between neural populations

oscillating at given frequencies. Some solutions and procedural recommendations

have been proposed to tackle these spurious CFC correlations and make more reliable

the results of the CFC analysis (Aru et al., 2015; Jensen et al., 2016).
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needs adequate expertise and computational resources when com-

pared to the standard spectral analysis of rsEEG data by linear pro-

cedures (e.g., spectral coherence, etc.). The above issues should be

carefully considered in the application of nonlinear rsEEG features

for clinical research.

A main scientific question is the specific and comparative value

of linear and nonlinear measurements of interdependence of rsEEG

rhythms or inverse estimates of cortical source connectivity. To

date, systematic comparisons of these measurements are scarce,

and findings cannot be considered as conclusive. Some relevant

findings are summarized in the following.

First, a comprehensive review of the literature reported that

nonlinear (e.g., generalized synchronization, phase synchroniza-

tion, and event synchronization) and linear methods estimating

interrelatedness of rsEEG activity produce indexes basically corre-

lated with each other (Pereda et al., 2005). Furthermore, general-

ized synchronization, nonlinear Granger causality, and the

information-theoretic solutions may be preferable for investigating

nonlinear interdependence considering amplitudes of rsEEG

rhythms, while phase synchronization may be preferable when

this is not the case (Pereda et al., 2005). The Authors of that review

(Pereda et al., 2005) concluded that the linear approaches should

be the first choice, going to the more complicated nonlinear ones

when there is an evidence of nonlinearity (surrogate data as con-

trol reference).

Second, in a comparative clinical study (Dauwels et al., 2010),

linear and nonlinear measures of interdependence of rsEEG

rhythms derived from the correlation coefficient, mean-square

and phase coherence, Granger causality principle (e.g., PDC, DTF,

dDTF, full-frequency DTF), phase synchrony indices, information-

theoretic divergence, state space based indices, and stochastic

event synchrony were applied on data recorded in elderly patients

with mild cognitive impairment (MCI) and age-matched control

(Nold) subjects. As a result, the only measures weakly correlated

with the coefficient of correlation were those derived from phase

synchrony indices, Granger causality, and stochastic event syn-

chrony. Therefore, it was concluded that each of them might reveal

an aspect of the interdependence between pairs of rsEEG time ser-

ies at the scalp level. Concerning the clinical validation of those

indices (Dauwels et al., 2010), only two could significantly discrim-

inate MCI patients from the controls, namely stochastic event syn-

chrony12 (SES) and full-frequency DTF. On one hand, SES quantifies

the similarity between point processes (of a countable subset) from

the time-frequency representations of rsEEG rhythms obtained at a

pair of two electrodes (sources). The procedure for the SES computa-

tion can be applied at rsEEG rhythms generated by any kind of brain

process, namely deterministic-random, linear-nonlinear, stationary-

nonstationary, etc. (For this reason, it belongs to methods for the

analysis of nonlinear processes underlying EEG rhythms; Pereda

et al., 2005). On the other hand, ff-DTF is a measure derived from lin-

ear Granger causality (for a review, see Blinowska and Zygierewicz,

2012). Results showed that the SES reached 68% and 75% of classifi-

cation accuracy in the discrimination of Nold and MCI individuals as

measured by linear and quadratic discriminant analyses, respec-

tively. Instead, the ff-DTF reached 70% by both linear and quadratic

discriminant analyses. When those two measures were combined,

the classification accuracy reached 83% by both linear and quadratic

discriminant analyses. These findings were confirmed by another

study of the same research group (Dauwels et al., 2010), the two

studies being good research models for future comparisons of linear

and nonlinear measures.

Third, in another mentioned study (Wendling et al., 2009), lin-

ear and nonlinear regression, phase synchronization, and general-

ized synchronization methods of interdependence of EEG activity

were applied on virtual data mathematically generated to produce

three classes of functional interdependence: (1) coupled stochastic

signals; (2) coupled nonlinear dynamical systems (e.g., Rössler-

Rössler and Hénon-Hénon coupled systems); and (3) coupled neu-

ronal populations by a physiologically-relevant computational

model. In each class, properties of paired virtual EEG signals

included (1) a coupling from 0 (independent signals) to 1 (identical

signals) as phase or amplitude relationship; (2) narrow vs broad

frequency band; and (3) added noise 0% and 50% to signal on con-

nectivity measures. Findings indicated that (1) somemethods were

insensitive to the imposed coupling parameter; (2) performance of

those methods was dependent on the extension of the frequency

band; and (3) there was no idealmethod, namely none of the meth-

ods performed better than the other ones in all studied situations

and evaluation criteria (e.g., mean square error, mean variance,

and local relative sensitivity; Wendling et al., 2009).

Keeping in mind the above considerations, we recommend that

future investigations compare linear and nonlinear measures of

interdependence of rsEEG rhythms at scalp electrodes and inverse

estimates of cortical source connectivity in healthy and neurologi-

cal subjects. Furthermore, this comparison may be performed on

data generated by physiologically-relevant computational models

as a basis of future consensus statements guiding an application

of nonlinear rsEEG connectivity estimates in clinical practice.

5.3.3. The steps of ‘‘connectivity” analysis

In general, the computation of interdependence of rsEEG

rhythms at scalp electrodes and inverse estimates of cortical

source connectivity allows the visualization of absolute or normal-

ized magnitude values of those indices, frequency-bin-by-

frequency-bin (i.e., the normalized values across all frequencies

of interest, typically ranging from 0 to 1), for electrode pairs of

interest or pairs of rsEEG cortical sources (vide infra). This compu-

tation is performed for the extraction of quantitative markers from

delta to gamma frequency bands. The extracted indices probe

physiological and pathological mechanisms of coupling/interde-

pendence of the cortical neural synchronization for the regulation

of vigilance in the resting state condition. Specifically, rsEEG con-

nectivity is typically tested for intra-hemispherical frontoparietal

regions and inter-hemispherical frontal, parietal, and temporal

regions. The same frequency bands of the rsEEG amplitude/power

density analysis (e.g., delta, theta, alpha, and several beta and

gamma bands) are used. It should be remarked that this approach

is mostly used in an exploratory context of clinical research, and

consensus on its physiological interpretation and standardized

use still is to be determined.

In a similar vein, to date, there is insufficient standardization of

some steps of the analysis, namely the length and number of the

rsEEG epochs to be used for the different linear or nonlinear indices

of interdependence of rsEEG rhythms at scalp electrodes and

inverse estimates of cortical source connectivity. Furthermore,

there is no clear consensus on the statistical thresholds for the con-

firmation of a significant effect at the scalp or source level. More-

over, there is no consensus yet on the best-validated markers for

clinical research, even if the most frequently-used measurement

is the computation of the lagged part of linear spectral coherence

of rsEEG rhythms between scalp electrode pairs. We recommend

that future studies will clarify the above procedural points.

12 With stochastic event synchrony (SES), the time-frequency transform at each

electrode is approximated as a sequence of ‘‘bumps” in the time-frequency readout.

At one electrode, each ‘‘bump” is considered as an ‘‘event” and reflects a prominent

EEG oscillation in narrow frequencies during a brief period in the EEG epoch analyzed

(Dauwels et al., 2010). SES is an index of the degree of ‘‘synchrony” between the

‘‘bumps” at the two paired electrodes. The higher that ‘‘synchrony”, the higher the

linear or nonlinear interdependence between the rsEEG rhythms at the paired

electrodes.
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6. Topographic analysis of scalp rsEEG rhythms

Topographical mapping of the rsEEG rhythms may be consid-

ered as part of the statistical parametric mapping, which is based

on two general statistical frameworks such as change distribution

analysis and significance probability mapping (Friston et al., 1994).

In this frame, the significance probability mapping was developed

in the analysis of multichannel EEG data and the construction of

interpolated pseudomaps of a statistical parameter (Friston et al.,

1994).

Here we arbitrarily considered three broad classes of topograph-

ical procedures to be applied to scalp rsEEG rhythms: (1) the scalp

topographic mapping, which refers to the spatial distribution of fre-

quency features over the scalp; (2) the cortical source mapping,

which denotes the estimates of neural currents in source models

located within a model of the head volume conductor; (3) the sur-

face Laplacian and the solution of the inner continuation problem,

which provide estimates of current density at the scalp electrodes

and dura surface potential distribution, respectively (Nunez and

Srinivasan, 2006). These analyses are performed frequency-bin-

by-frequency-bin or for frequency bands of interest from delta to

gamma. The three classes of procedures can probe pathophysiolog-

ical mechanisms of cortical neural synchronization for the regula-

tion of brain arousal and vigilance in the resting state condition.

6.1. Topographic mapping

Topographic mapping allows the visualization of the spatial dis-

tribution of the absolute or normalized rsEEG amplitude/power

density or other linear or nonlinear measures of local cortical neu-

ral synchronization. Topographic mapping algorithms are variable,

employing a linear, quadratic or spline interpolation of the rsEEG

variables in the spatial samples (electrodes or sources). Since there

is no consensus about the best interpolation procedure, we suggest

using a few interpolation techniques for cross-validation purposes.

Furthermore, any inference of the underlying cortical source activ-

ity should be considered with caution for the head volume conduc-

tion effects.

Although the isopotential lines in instantaneous maps of the

EEG potential distribution are invariant to the choice of reference

electrode (see Michel et al., 2004), the EEG time course and thereby

the spectral estimates of the rsEEG rhythms created with single

electrode references placed at scalp sites (i.e., cephalic references)

have the risk of being substantially distorted (‘scalloping’) near the

scalp reference site. This distortion problem can be partially

avoided by using spatial average references or the computation

of rsEEG scalp current density estimates (e.g., surface Laplacian

operator; Perrin et al., 1987, Hjorth, 1991). When spline interpola-

tion is used, results at border electrodes should not be used for

possible computation artifacts.

When research hypotheses target scalp voltage (but not scalp

current density) distributions of rsEEG rhythms, the average refer-

ence across all exploring electrodes and the computation of the

infinite reference provide valid solutions. For a practical computa-

tion of the infinite reference, a procedure called reference electrode

standardization technique (REST) is available in the literature (Yao,

2001; Yao et al., 2007) and has been validated by independent

groups (Chella et al., 2016; Lei and Liao, 2017).

6.2. Cortical source mapping

Compared with scalp rsEEG topographic mapping, rsEEG source

estimation allows disentangling the respective contribution of dif-

ferent cortical generators of scalp rsEEG rhythms (Babiloni et al.,

2015).

Several linear and nonlinear mathematical procedures can be

used for the estimation of the activity (i.e., neural current density)

in cortical sources of the rsEEG rhythms (Valdés-Sosa et al., 2009;

Gramfort et al., 2013). The techniques typically estimate an

inverse solution with the minimum norm, weighted resolution

optimization or weighted minimum norm solution (Pascual-

Marqui et al., 2002, 2007; Phillips et al., 2002; Yao and He,

2001). They typically model 3D tomographic neuroimages of dis-

tributed rsEEG cortical generators. The estimates of the inverse

solutions approximate the neural current density into a spherical

or an MRI realistically-shaped head model formed by compart-

ments representing the electrical properties of the scalp, skull,

and cerebral cortex. The compartment for the cerebral cortex is

usually co-registered to statistical parametric mapping (SPM)

software coordinates or the Talairach brain atlas (Talairach and

Tournoux, 1988).

In tomographic methods, the brain compartment of the head

model is formed by hundreds to thousands of voxels with a vari-

able (mm) spatial resolution. Any voxel contains an equivalent cur-

rent dipole, fixed as position and orientation. Solutions estimate

the current intensity of all equivalent current dipoles of the cere-

bral cortex to explain the scalp rsEEG amplitude/power density.

Noteworthy, solutions of the EEG inverse problem are under-

determined and ill-conditioned, when the number of spatial

samples (e.g., scalp electrodes) is lower than that of the unknown

samples (e.g., equivalent current dipole used). For this reason,

these solutions are mathematically regularized to estimate the

best rsEEG cortical source solution. Essentially, the feature of the

regularization procedures is one of the main aspects that distin-

guish the different techniques for the rsEEG cortical source estima-

tion13. As the use of different regularization techniques returns

different source solutions starting from the same scalp EEG topogra-

phy, it follows that there is no unique solution to the EEG inverse

problem. This limitation should be considered in the interpretation

of findings of clinical research.

To reduce the natural variance across the individuals of a given

population, the estimated rsEEG source activity is normalized per

subject. A typical procedure consists in scaling any estimated

dipole current density at each voxel and frequency bin by the mean

or the sum of the dipole current density computed across all fre-

quencies of interest (e.g., 0.5–45 Hz) and voxels of the brain vol-

ume. This procedure of normalization typically fits rsEEG

variables into a Gaussian distribution and reduces inter-subject

variability (Leuchter et al., 1993). After this normalization, rsEEG

source solutions lose the original physical dimension and are rep-

resented by normalized units. In this scale, the value ‘‘1” is equal to

the mean or the sum of the dipole current density at all frequencies

(e.g., 0.5–45 Hz) and voxels of the brain volume.

For the analysis of rsEEG sources, the above techniques are

more often applied than an alternative historical approach chang-

ing the location and orientation of one or few single equivalent

current dipoles until the best fit of the scalp distribution of the

rsEEG amplitude/power density is reached (Mosher et al., 1999).

In this approach, the a priori knowledge on the number and posi-

tion of those sources can inspire the procedure to derive the time

evolution of estimated cortical activity.

13 There are diverse ways to measure the quality of the solutions of the inverse

problem of the EEG. Three usual solutions are EEG source localization error, full width

at half-maximum (FWHM), and visibility (i.e., the ratio of the reconstructed to actual

source amplitude). The FWHM is affected by the number of electrodes as well as the

amount of regularization. The simulation studies should use all of them. Interesting

examples of proper simulation studies used normative databases (Bosch-Bayard et al.,

2001) and tested the presence of signal at each voxel of the EEG source space of the

head model (Pascual-Marqui et al., 2002; Pascual-Marqui, 2007).
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6.3. Estimation of scalp current density and dura surface potential

The estimation of scalp current density and dura surface poten-

tial estimation is often performed by spline-Laplacian algorithms

and the solution of the inner continuation problem, respectively

(Perrin et al., 1987, 1989; Pascual-Marqui et al., 1988a,b; Nunez,

1989, 2010, 2012; Babiloni et al 2001; Nunez and Srinivasan,

2006; Kayser and Tenke, 2015). Less often, Laplacian estimation

is computed using the Hjorth’s procedure (Hjorth, 1991).

The scalp spline-Laplacian and the solution of the inner contin-

uation problem act as a sort of band pass spatial filter with peak

sensitivity to 3–6 cm scale synchronous cortical source regions (a

very approximate diameter), while unprocessed potentials are

most sensitive to roughly the 5–15 cm scale (Nunez and

Srinivasan, 2006). The advantages of these techniques are (1) full

independence of the choice of reference electrode site and (2) inde-

pendence of assumptions about the unknown sources, e.g., isolated

dipoles. Compared with the solution of the inner continuation

problem, the scalp spline-Laplacian is based on a quite simple

model of the head volume conductor (Nunez and Srinivasan,

2006). Good spline Laplacian estimates need dense scalp electrode

arrays (i.e., �48–64 electrodes) and low to moderate noise

(depending on applications) in the rsEEG data (Nunez and

Srinivasan, 2006; Bosch-Bayard et al., 2012). To mitigate noise

influences, we recommend that Laplacian estimation is performed

and averaged across 200 or more contiguous spatial samples (i.e.,

instantaneous) potential distributions).

6.4. Mapping cortical ‘‘connectivity‘‘

As mentioned in an earlier section, the activity at any rsEEG

source is often related to instantaneous (zero-lag) voltage changes

at all scalp electrodes. Furthermore, the estimation of the instanta-

neous coherence between two cortical rsEEG sources might also be

affected by another rsEEG source (i.e., the common drive effect).

Therefore, a conservative approach to functional connectivity esti-

mates is to compute the lagged part of EEG coherence between

sources (Pascual-Marqui et al., 2011, 2014). That said, many data,

especially in the alpha band, show cases where coherence falls

off with moderate electrode separation (10–12 cm; Srinivasan

et al., 2007) but then rises to near zero-lag levels at large

(>10 cm) distances. Furthermore, Laplacian-based coherence can

be moderate to large at big distances, and these might not be

due to reference or volume conduction effects (Nunez and

Srinivasan, 2006). Therefore, future basic research should provide

new insights about how to manage the zero-lag coherence solu-

tions in the analysis of functional interdependence of rsEEG

rhythms. An ideal multimodal approach may compare functional

interdependence of rsEEG rhythms at scalp electrodes, inverse esti-

mates of cortical source connectivity, the solution of the inner con-

tinuation problem, the scalp spline-Laplacian distribution, and raw

EEG data (Nunez and Srinivasan, 2006; Pascual-Marqui et al., 2011;

Blinowska and Zygierewicz, 2012).

The spatial resolution of the procedures estimating functional

or effective cortical source connectivity from rsEEG rhythms is an

open issue for basic research, but high-resolution EEG approaches

are recommended to explore default mode, frontoparietal atten-

tional, and other established cortical neural networks (Teipel

et al., 2016). However, high-resolution EEG techniques may

under-evaluate cortical sources buried in the inter-hemispherical

fissure such as those of the default mode network (i.e., medial pre-

frontal, cingulate, and precuneus).

When the rsEEG source connectivity is calculated, both inter-

and intra-hemispherical analyses are recommended. For the

inter-hemispherical analysis, the rsEEG source connectivity can

be calculated between all (equivalent current) dipoles of the men-

tioned cortical regions of interest for each hemisphere with the

corresponding ones of the other hemisphere. The rsEEG source

connectivity solutions for all dipoles of a given pair of cortical

regions of interest are typically averaged. For the intra-

hemispherical analysis, the rsEEG source connectivity estimates

are computed for all dipoles of a cortical region of interest with

all dipoles of another cortical region of interest in the same hemi-

sphere. The rsEEG source connectivity solutions for all dipoles of a

given pair of cortical regions of interest are then averaged.

6.5. The issue of cortical tangential sources

One should keep in mind the example of Fig. 1 (upper row) in

the critical evaluation of any solution obtained by both (1) EEG

source estimation techniques modeling cortical sources and head

volume conductor, and (2) those based on Laplacian estimation

or the solution of the inner continuation problem. In the figure, a

given cortical source oriented tangentially to the scalp surface

(e.g., sources located in cortical sulci and fissures) generates neural

electric fields spreading relatively far from the scalp sensor overly-

ing that source (10–12 cm; Srinivasan et al., 2007). As mentioned

above, these neural electric fields would be conducted to distant

scalp electrodes and could be erroneously interpreted as due to

underlying cortical radial sources.

6.6. The number of electrodes for the spatial analysis of rsEEG rhythms

There is no consensus on the minimum number of scalp elec-

trodes to be used for the spatial analysis of the rsEEG rhythms by

‘‘synchronization” and ‘‘connectivity” features. In the past years,

these techniques have repeatedly been used in neurological sub-

jects in whom rsEEG rhythms were recorded from 19 electrodes

placed according to 10–20 system (Riba et al., 2004; Huang et al.,

2000; Mulert et al., 2001; Winterer et al., 2001; Babiloni et al.,

2004, 2006, 2015, 2016b; Veiga et al., 2003; Hata et al., 2016).

Indeed, these rsEEG rhythms are generated by largely distributed

cerebral networks that may mitigate inaccuracy and spatial alias-

ing in the source estimation based on the 10–20 systemwhen large

cortical regions of interest are used. Source estimations based on

the 10–20 system may be limited to existing rsEEG databases for

the exploratory testing of proof-of-concepts in retrospective stud-

ies. Findings of those retrospective studies should be cross-

validated and extended by studies based on high-resolution EEG

techniques, defined as the experimental procedures using �48–

64 (until 128–256) electrodes and cortical source mapping includ-

ing the computation of (1) brain source estimates, (2) scalp current

density (surface Laplacian transformation), and (3) dura surface

potential based on mathematical models of head volume

conductor.

A high number of electrodes in the rsEEG recordings is welcome

on the condition that the quality of the experimental procedure is

good enough, namely an equal and low impedance (<5–10 KX) in

all electrodes used for the final rsEEG source estimation. The higher

the number of electrodes, the smaller the regions of interest in the

rsEEG source estimation. In particular, high-resolution EEG tech-

niques are recommended to probe cortical neural networks show-

ing a correlation between blood oxygen level-dependent (BOLD)

activity recorded during rs-fMRI and rsEEG rhythms (Goncalves

et al., 2006; Jann et al., 2010; Mantini et al., 2007). These studies

found that power fluctuation of rsEEG rhythms are correlated with

BOLD signal fluctuations in the thalamus (Goncalves et al., 2006)

and cortical regions including the default mode network (Mantini

et al., 2007; Jann et al., 2010).
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7. Statistical analysis and interpretation of scalp rsEEG variables

7.1. Statistical analysis of rsEEG variables

In clinical research, main statistical analyses of rsEEG variables

include (1) the preliminary computation of the sample size to

determine the adequate number of subjects for any experimental

group of an experiment as a function of the desired statistical

power (a significant effect may not be observed due to an insuffi-

cient sample size); (2) comparison of the means between subjects

belonging to disease and control groups; (3) correlation of those

variables with relevant clinical and neuropathological disease

markers across patients; (4) the classification of individuals of

two groups (i.e. disease and control); and (5) the belonging of a sin-

gle patient to a control group. For these statistical analyses, we rec-

ommend a particular care to the following aspects.

First, reproducibility of values of a given rsEEG variable should

be tested in at least two periods lasting a minimum of 1 minute of

artifact-free rsEEG epochs (even non-consecutive) for any experi-

mental condition. At the individual level, the variable values

should be (1) similar in each period and (2) consistent at more than

one scalp recording site or source. At the group level, the variable

values should not statistically differ between the two periods at

more than one scalp recording site or source at the desired statis-

tical threshold.

Second, the measured value of reproducible individual rsEEG

variables can be compared with normative databases of healthy

controls or pathological groups as a preliminary test of an underly-

ing pathological condition (see as examples procedure using rsEEG

variables derived from scalp and source spaces; Szava et al., 1994;

Bosch-Bayard et al., 2001). For this analysis, pathological groups

may include not only the group of patients with the disease of

interest but also control disease groups to test the specificity of

experimental results. At the group level, such rsEEG variables can

be compared between cohorts of healthy controls, patients of the

disease of interest, and patients with a control disease. If such

rsEEG variables were able to distinguish the disease group of inter-

est from the other ones, the discriminant rsEEG variables should be

cross-validated in independent groups before final conclusions.

However, a statistical abnormality of rsEEG variables is not neces-

sarily indicative of a pathological condition. Eventual statistical dif-

ferences may be merely due to confounding factors including age,

education, inter-subject genetic variability (e.g., BDNF, COMT), past

major neurological and psychiatric diseases, past historical brain

infections, an agitated night’s sleep before the recording day,

drowsiness, non-annotated emotional reactions or environmental

noise during the EEG recording, psychoactive substances (e.g., cof-

fee, tea, psychoactive medications), and skull defects.

Third, statistical analyses should consider false positive findings

due to multiple comparisons.

Noteworthy, commercial tools and databases of potential inter-

est for clinical research are available to test normality of rsEEG

variables with z-scores expressed as a significance probability

mapping or other statistical analyses. The outcome of those proce-

dures should be evaluated with caution due to, for example, pre-

disposition for false positives, statistical assumptions,

development with a given set of equipment but application on

other sets of equipment, and the limited access of users and

researchers to more methodological and technical details for care-

ful evaluation and independent cross-validation testing.

7.2. Interpretation of rsEEG variables

In clinical research, results of the rsEEG frequency and topo-

graphical analysis should be interpreted with great caution and

in-depth expert knowledge. We recommend some precautions in

communicating those results in any scientific report or dissemina-

tion activity. The Authors of a scientific study should make clear

and distinct: (1) the specific clinical hypothesis at the basis of any

kind of frequency or topographical analysis of rsEEG rhythms (clin-

ical or not); (2) the methodological assumptions at the base of the

techniques used for the analysis of the frequency and topography

of rsEEG data at sensor or source level; (3) the study results (in

terms of specific rsEEG variables and their statistical associations);

(4) the interpretation of the results in terms of neurophysiological/bio

physical models of cortical activity and connectivity based on quoted

previous evidence and explicit theoretical speculations; and (5)

any new hypothesis generated on the basis of the results.

8. Overview and concluding remarks

As mentioned above, in the present study the term ‘‘clinical

research” is strictly related to experimental studies in patients

with neurological and psychiatric diseases, so the following con-

cluding remarks may not pertain to methodological procedures

and terms used in the daily medical practice supplied in services

of Clinical Neurophysiology.

First, recording of rsEEG rhythms is an experiment on brain

neurophysiological mechanisms underpinning the control and

maintenance of cerebral arousal and vigilance in quiet wakeful-

ness. As mentioned above, the instructions to the subject can vary

as a function of the specific research interest, namely the neural

basis of rapid brain reactivity to eyes opening/closing or the main-

tenance of quiet wakefulness with eyes closed for several minutes.

We recommend controlling environmental conditions and to

instruct the subject in a repeatable way to compare results in

cross-modal and longitudinal clinical studies.

Second, we recommend the use of high-resolution EEG tech-

niques (up to 128–256 electrodes and more than one referential

electrode) to enhance spatial information content in cortical topo-

graphic mapping. The use of these techniques implies a careful bal-

ance of the impedance in all scalp electrodes to ensure the good

quality of EEG recordings. EKG (e.g., heart rate variability), EMG,

and skin galvanic resistance (or skin conductance) should be used

to monitor brain arousal underlying rsEEG rhythms.

Third, fixed EEG frequency bands should be used only if the IAF

peak of patients did not differ from that of control subjects. In case

of a frequency slowing in that peak in patients, the frequency

bands should be adjusted on an individual basis in all subjects.

Fourth, two broad classes of rsEEG features can be arbitrarily

derived from frequency analysis. The ‘‘synchronization” features

(e.g., amplitude/power density spectrum, etc.) might reflect under-

lying local mechanisms of synchronization of cortical neurons at

different frequencies, generating rsEEG activity. The ‘‘connectivity”

features (e.g., spectral coherence, etc.) might probe either the inter-

dependence of recorded or transformed (i.e., surface Laplacian or

inner continuation inverse problem) rsEEG rhythms at the elec-

trode level or the rsEEG source connectivity. The former may be

biased by head volume conduction effects, while the latter just

approximates real head volume conduction properties and lacks

a unique solution. We recommend to cross-validate the results

using more than one technique for each class of those features.

Fifth, compared to the mentioned procedures of time-frequency

analysis, matching pursuit decomposition presents some advan-

tages, even for multivariate datasets and EEG source estimation.

Sixth, the first preliminary step of the rsEEG nonlinear data

analysis should confirm if these data display nonlinearity or deter-

minism. If affirmative, a promising research approach for future

clinical research is the comparison of several linear and nonlinear
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measurements to understand their value and neurophysiological

underpinnings.

Seventh, we recommendmore international cooperation among

the experts of frequency and topographical analysis of rsEEG vari-

ables to create a public repository for the following contents that

would be very useful in clinical research: (1) shared software tools

for the computation of the above ‘‘synchronization” and ‘‘connec-

tivity” features of rsEEG rhythms. They may allow consensus stud-

ies about the effects of volume conduction, common drive, and

cascade flow on the validity and reliability of the frequency and

topographical analysis of the rsEEG variables at sensor and source

levels (see Fig. 1); (2) real rsEEG data collected in groups of healthy

and neurological subjects. Ideally, the solutions of the rsEEG fre-

quency and topographical analysis should be compared to the

scalp, modeled dura mater, and modeled cortical sources. The find-

ings of such an international initiative may represent a reference

for a future public consensus on the use of the different techniques

of rsEEG frequency and topographical analysis in clinical research.
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