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1. Introduction

Brugada syndrome (BrS) is an inherited cardiac disorder first
described by Pedro and Josep Brugada in 1992. The term “Brugada
syndrome” was coined later in recognition of their identification of
this important disease [1]. Four years after Yan and Antzelevitch
[2] approached the cellular basis underlying the ECG abnormalities
displayed by patients affected by Brugada syndrome ECG, BrS is
frequently associated with mutations in the SCN5A gene, which
encodes for the pore-forming alpha subunit of the cardiac Na*
channels. To date, multiple pathogenic variants of genes have been
shown to alter the normal function of Na*, K*, Ca?* and
hyperpolarization-activated cyclic nucleotide-gated (HCN) chan-
nels, which mediate the ionic currents responsible for the cardiac
action potentials [3]. Both depolarization and repolarization abnor-
malities have been described in BrS [4,5]. Patients with this syn-
drome can present with aborted sudden cardiac death, agonal
breathing syncope, or palpitations. Precipitating factors include
fever, increased vagal tone and other drugs such as tricyclic antide-
pressants and alcohol [6,7]. These in turn predispose to malignant
ventricular tachycardia and fibrillation (VT/VF) and sudden cardiac
death (SCD) [8]. BrS was also found to be associated with sick sinus
syndrome (SSS) [9], atrial flutter, atrial fibrillation [10], AV nodal
reentrant tachycardia and Wolff-Parkinson-White syndrome [11].

2. Types of Brugada ECG patterns

Brugada patterns can be divided into two types (Fig. 1) [12].
Type 1 pattern has a characteristic coved-shaped ST segment

elevation (STE) > 2 mm, J-point elevation, a gradually descending
ST segment which terminates with a negative T-wave in the right
precordial leads (Vq, V, and V3) with or without a class I anti-
arrhythmic drug challenge, such as flecainide [13]. Type 2 pattern
is characterized by a saddleback morphology with a minimum
2 mm J-point elevation along with ST segment elevation of at least
1 mm. A type 2 pattern can be converted to a type 1 pattern upon
pharmacological challenge or other stressors such as fever.

3. Epidemiology

In 1992, the Brugada investigators initially estimated that BrS
was responsible for 12% of SCD cases in the general population
[14], but recent epidemiological studies suggested the prevalence
to be much lower, at least 0.05% with marked regional variability
[15,16]. It was also found that Southeast Asians are at an increased
risk of BrS as compared to other ethnicities, with only 0.1% show-
ing BrS-type ECG pattern [17]. This variance is supported by com-
paring epidemiological studies in Denmark against Chinese
subjects. In Denmark, a low prevalence of 0.001% was found as
compared to the 3.3% found in Chinese subjects (although a Type
1 pattern was only observed in 0.08% of these subjects) [18,19].
In terms of gender distribution, BrS has a strong male correlation,
affecting men four times more frequently than women and also
affecting younger adults than infants or children [20]. Recent
insights from SABRUS a multi-center survey, which reported
important ethnic differences [21]. They found that Asians present
almost exclusively as male adults, with a higher frequency of
aborted SCD and spontaneous type 1 ECG pattern but showed
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Fig. 1. Type 1 (top) and type 2 (bottom) Brugada ECG patterns.



K.H.C. Li et al./IJC Heart & Vasculature 26 (2020) 100468 3

lower frequency of family history of SCD and SCN5A mutations
compared to Caucasians.

4. Genetic basis and heterogeneity underlying BrS

There is significant genetic heterogeneity underlying BrS. The
most common mutation is loss-of-function mutations in SCN5A,
the gene responsible for the a-subunit of the Na* channel, are fre-
quently associated with a type 1 pattern. Since 2001 there have
been more than 80 mutations in SCN5A gene that have been asso-
ciated with Brugada syndrome [22]. These lead to reduced expres-
sion or function of Na® channels, leading to conduction or
repolarization abnormalities that produce the characteristic ECG
patterns of right bundle branch block and ST segment elevation
primarily observed in the right precordial leads [23]. Type 2 pat-
tern has also been associated with mutations in SCN5A, glycerol-
3-phosphate dehydrogenase 1-like (GPD1L), which is the domain
responsible for a site homologous to SCN5A [24], and CACNA1C,
the gene responsible for the a-subunit of cardiac L-type calcium
channels (LTCC) [25].

BrS was believed to be a Mendelian disease with an autosomal
dominant inheritance pattern with incomplete penetrance [26].
However recent evidence suggests that this may not be completely
true [27]. There is a poor genotype-phenotype correlation. A recent
study investigated co-segregation of SCN5A mutations amongst
large genotyped families, demonstrating that some affected family
members did not carry the familial mutation [28]. This could mean
that mutations in other genes are responsible for BrS [29,30].
Another possibility is incomplete penetrance despite the presence
of the mutated gene or variable expressivity [31]. This has been
observed in a frameshift mutation in SCN5A found in a proband
from Spain with recurrent episodes of ventricular fibrillation and
presenting bradycardia and paroxysmal atrial fibrillation without
a spontaneous or drug-induced Brugada pattern [32]. By contrast,
two family members of the proband showed type 1 BrS following
flecainide challenge, and another suffered from only permanent
atrial fibrillation. Some putatively pathogenic genetic mutations
do not produce an abnormal clinical phenotype [33]. Recently, a
genome-wide association study successfully identified two com-
mon genetic variants in SCN5A-SCN10A and HEY2, a translational
repressor [34]. This approach will continue to elucidate the role
of proteins that may serve as genetic modifiers to influence the dis-
ease phenotype [35].

5. Differential diagnosis: J-wave syndromes and other causes of
Brugada pattern

BrS has been classified as part of the J-wave syndromes that
include early repolarization (ER) variants. Antzelevitch’s group
suggested dividing ER syndrome into three types [36]. Type 1 ER
pattern in lateral precordial leads is prevalent in healthy male ath-
letes and rarely observed in VF survivors. Type 2 refers to ER pat-
tern in inferior or inferolateral leads and is associated with
idiopathic VF and is also prevalent in healthy young males. Type
3 refers to ERS pattern observed globally in the inferior, lateral
and right precordial leads. This subtype is thought to be high risk
of VT/VF [37]. Another classification scheme divides ERS into
benign and malignant forms [38]. A J-wave followed by an ascend-
ing ST segment is considered benign, whereas J-wave followed by
horizontal or descending ST segment is considered malignant. A
recent consensus conference report addresses the similarities and
differences between BrS and ERS [39]. ERS continue to be associ-
ated with higher risk of SCD [40]. The estimated prevalence of
ERS spans between 1 and 13% of the general population and is
thought to contribute to 15 to 70% of idiopathic VF cases [41,42].

The cellular basis of J-point elevation has been intensively stud-
ied in pre-clinical models using coronary-perfused wedge prepara-
tions. Thus, the ventricular epicardium expresses the transient
outward current (I;,) in high levels, resulting in an AP notch,
whereas the ventricular endocardium expresses I;, at low levels
and therefore does not have this notch [43,44]. These differences
therefore create a transmural repolarization gradient that is
responsible for J-point elevation seen in ERS. However, it has been
pointed out that a wedge is not a heart, and the electrophysiolog-
ical mechanisms may be different in the intact heart [45].

The term Brugada phenocopy (BrP) has been coined to describe
a group of heterogeneous conditions that induce Brugada ECG pat-
terns [46], such as hyperkalaemia [47], hypokalaemia [48], left
ventricular aneurysm [49], pericarditis [50], pulmonary embolism
[51], and many other causes. These conditions must be distin-
guished from true BrS as these are potential reversible causes
and do not necessitate invasive treatments such as implantable
cardioverter-defibrillator (ICD) insertion. The diagnosis of BrP is
established with a negative drug challenge [52].

6. Electrophysiological mechanisms underlying
arrhythmogenesis in Brugada syndrome

To understand the electrophysiological basis of BrS, the ionic
determinants of the normal cardiac action potential (AP) need to
be discussed. AP depolarization (phase 0) is mediated by voltage-
gated Na* channels (In,) [53]. This is followed by early repolariza-
tion (phase 1) due to activation of the fast and slow transient out-
ward potassium currents, Iy, ¢ and Iy, 5. The AP plateau (phase 2) is
determined by a balance between inward currents mediated by the
voltage-gated L-type Ca®* channel (LTCC, Ic,;) and Na*-Ca**
exchanger (Incx), and outward currents mediated by the voltage-
gated delayed rectifier K* channels (Ix: Ix, and Igs) [54]. During
delayed repolarization (phase 3), relatively greater outward K* cur-
rents compared to inward currents are due to LTCC inactivation.

(i) Sodium channels and BrS

The voltage-gated Na* channels are made of o subunits associ-
ated with other proteins, such as B subunits (SCN1B, SCN2B and
SCN3B). The SCN5A gene encodes for the o subunit of the cardiac
sodium channel. Loss-of-function mutations in SCN5A have been
associated with BrS [55,56], SSS [57], progressive cardiac conduc-
tion defect (PCCD, or Lenegre disease) [58] and overlap disorders
between these conditions [59]. Loss-of-function mutations are
observed in approximately 25% of BrS cases [60]. These lead to
reduced sodium current availability during the phases 0 (upstroke)
of the cardiac action potential, which is associated with impaired
expression of non-functional proteins and reduced ionic exchange
across the cell membrane. Even though most mutations involved in
the development of BrS are found in the SCN5A gene, mutations in
the associated B subunit proteins have also been observed [61-64].
Interestingly, a study by Hu et al. also discussed the involvement of
the SCN10A gene, mainly involved in expressing the sodium chan-
nel specific to neurons, in causing a large proportion of BrS cases.
However, there is increasing conjecture about the genotype-
phenotype correlation between Brugada syndrome and previously
reported “pathogenic variants” in genes other than SCN5A” [65].
The reduction in sodium current availability is not limited to genes
encoding for the sodium channels. Genes expressing the glycerol-
3-phosphate dehydrogenase 1-like (GPD1-L) protein [24], cardiac
sodium channel regulator MOG1 [66], sarcolemmal membrane-
associated protein (SLMAP) [67], desmosomal component
plakophilin-2 [68], fibroblast growth factor homologous factor-1
(FGF-2) [69] and the transcriptional factor HEY2 [34] have been
suggested to give rise to BrS.
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(ii) Calcium channels and BrS

The calcium current is mediated by L-type calcium channels
(LTCC). Each LTCC consists of 4 protein subunits o1 (CACNA1C),
B2 (CACNB2), a2 (CACNA2D), and 5 (CACNA2D). Similar to SCN5A
mutations, Antzelevitch et al. suggested that loss-of-function
mutations in these genes precipitate abnormal trafficking, reduced
expression or function of LTCC, leading to reduced calcium influx
current during phase 2 [25,70]. As a result, BrS secondary to the
reduced functionality of LTCCs are associated with shorter QT
intervals compared to classical SCN5A mutation BrS where QT
interval remains unaltered.

(iii) Potassium channels and BrS

Gain-of-function mutations in genes encoding for potassium
channels have also been implicated in BrS. Genes influencing I,
include KCNE3, KCND3 and SEMA3A (semaphoring, an endogenous
K" channel inhibitor) [71-76] while KCNJ8 and ABCC9 (encoding
for SUR2A, the ATP-binding cassette transporter for the Katp chan-
nel) mutations affected the Ixarp [77,78]. KCNH2, which encodes
for Ik, was also proposed by Wang et al. to be involved in BrS devel-
opment [79]. Most recently, dysfunction in the KCNAB2, which
encodes the voltage-gated K* channel p2-subunit, was associated
with increased I, activity and identified as a putative gene
involved in BrS [80].

(iv) Other proteins

The potassium/sodium hyperpolarization-activated cyclic
nucleotide-gated channel 4 is a protein mainly found in the pace-
maker region of mammalian hearts, encoded by the HCN4 gene,
controlling the heart rate [81]. Mutation in the HCN4 gene was

associated with bradycardia and idiopathic VT [82]. Lastly, the
transient receptor potential melastatin protein protein 4 gene
(TRPM4), which encode for a calcium-activated nonselective ion
channel that mediates transport of monovalent cations across the
plasmolemma, was also found to be associated with BrS [83].

7. Brugada phenotypes

There are three leading theories on the electrophysiological
mechanisms underlying BrS, which based on abnormal depolariza-
tion, abnormal repolarization and current-load-fmismatch [4]
(Fig. 2).

(i) Depolarization hypothesis

Conduction velocity (CV) of the propagating cardiac action
potentials involves both sodium channel activation leading to cel-
lular depolarization, followed by gap junction conduction across
successive cardiomyocytes. Any form of disruption to the normal
AP generation or propagation can lead to conduction defects and
arrhythmogenesis [84]. Approximately a quarter of BrS cases have
been attributed to loss-of-function mutations in the SCN5A gene,
leading to a decreased inward current during phase 0 [85]. The
resulting slower upstroke during phase 0 and the consequent delay
in AP generation has been shown to play an important role in
mediating ventricular arrhythmogenesis in BrS. Martini and col-
leagues in 1989 observed fibrotic changes in the right ventricles,
which may produce the RBBB and ST segment elevation on the
ECG [86]. This theory has been supported by multiple studies
investigating the disruption of SCN5A in mice models, which found
targeted disruption of Scn5a (Scn5a*/~), Scn5a!798insDi* gnd
SCN5aC1%8R mice to be associated with reduced CV in interstitial

Arrhythmogenic Mechanisms in
Brugada syndrome

Reduced Ina

Reduced I, or
increased I,

/

/

Subepicardial

. . Reduced CV
excitation failure

Epicardial APD

. APD alternans
shortening

Loss of AP dome at
epicardial sites

Reduced A
/ Increased local
Increased TDR dispersion of
repolarization
!
Unidirectional Refractory
conduction obstacle
block /
Circus-type or / Phase 2
spiral wave reentry reentry

Fig. 2. Summary of arrhythmogenic mechanisms underlying Brugada syndrome. Adapted from [189] with permission.
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fibrosis [87-89]. Scn5a*/~ mice also show progressive conduction
defects that are suggestive of Lenégre disease [90]. In an explanted
heart and in right ventricular biopsies it was found that structural
changes such as fibrosis, apoptosis and myocarditis were present
[91,92]. These findings are in concordance with the observed late
potentials and fragmented electrograms, which reflect discontinu-
ous conduction through a diseased myocardium [93,94].

Under physiological conditions, the specific subcellular distri-
bution of gap junctions together with the tight packaging of the
rod-shaped cardiomyocytes underlies anisotropic conduction,
which is continuous at the macroscopic scale. Due to its nature,
it was initially assumed that gap junctions were predominantly
found at the ends of the cardiomyocytes to facilitate AP conduc-
tion, away from sodium channel sites. However, it was shown by
Cohen et al. in 1996 that both sodium channels and gap junctions
co-exist at the intercalated disks [95]. This phenomenon was later
confirmed by numerous studies by the macrostructure known as
the connexome. The concept of the connexome revolves around
the notion that the cardiac intercalated disc is the host of a protein
interacting network including desmosomes, gap junctions and
sodium channel complexes [96]. Autopsy findings support the idea
that components of the connexome are not independent of each
other, by demonstrating increased myocardial fibrosis from colla-
gen deposition and reduced gap junction expression in the RVOT
of hearts from BrS patients [97].

There is a close relationship between BrS phenotype on the ECG
and RVOT abnormalities. An abnormal delayed potential was
recorded from the epicardium of the RVOT in patients with BrS
through the electrode inserted into the conus branch of the right
coronary artery (RCA) [98]. Also, individuals with a normal ECG
at baseline occasionally display BrS-type ECG patterns during an
AMI of the RVOT [99]. Most recently, a panoramic ventricular map-
ping study in humans showed electrogram prolongation and frac-
tionation, reflecting reduced CV and increased CV dispersion [100].
Defective depolarization may contribute to the pathology to differ-
ent extents depending on the subtype. For example, in cases of BrS
where abnormal function in calcium or potassium is observed,
repolarization abnormalities may play a dominant role since the
currents mediated by these channels contribute to the plateau
rather than the depolarizing phase of the cardiac action potential.

(ii) Repolarization hypothesis

The repolarization theory states that differential action poten-
tial duration (APD) shortening across the myocardial wall is pri-
marily responsible for the BrS phenotype. Loss-of-function SCN5A
mutations can have opposing effects on the fast and slow inactiva-
tion of Na* channels with distinct effects on repolarization [101].
Disruptions in fast inactivation leads to a sustained Na* current,
which prolongs repolarization at slow heart rates. However, the
intermediate kinetic component of slow inactivation is augmented,
delaying Na® channel recovery, reducing the Na* current and
shorten APD at fast heart rates. This biphasic behaviour of APD of
prolongation followed by shortening has subsequently been
observed in a panoramic mapping study in BrS patients [100].

Experiments conducted on transmural ventricular wedges of
canines have provided important information on the mechanism
underlying the heterogeneities in repolarization and re-entry due
to reduced inward currents [8,102,103]. Comparing APD values
obtained from the epicardium (specifically the RVOT epicardium)
with those obtained from the endocardium, shortening of the
APD was seen at greater degree in the epicardium due to a rela-
tively greater transient outward current (Iy,). This is reflected in
the more prominent loss of dome-shaped AP morphology seen in
the epicardium. This is thought to underlie reentry by a phase 2

reentrant mechanism, initially hypothesized by Yan and Antzele-
vitch in 1999. Phase 2 reentry requires electrotonic interactions
and propagation of epicardial sites with an AP dome to sites where
this dome is abolished [104]. It could well underlie the R-on-T phe-
nomenon leading to an extrasystolic action potential that can ini-
tiating ventricular arrhythmias in the presence of favourable
reentrant substrates [8]. Steep and reversal of repolarization gradi-
ents lead to the ST segment elevation and T-wave inversion,
respectively, in the ECG. Increased Tpeak — Tend, an ECG marker of
repolarization, is observed in BrS patients and associated with
higher incidence of arrhythmic events or sudden cardiac death
[105]. Indeed, studies of electrogram recordings have found a com-
bination of steep repolarization gradient and delayed repolariza-
tion at the right ventricular outflow tract (RVOT) [100]. In
patients with BrS due to defective calcium or potassium currents,
a defective repolarization is the likely cause of VT/VF. Indeed, a
reentrant mechanism as a result of loss-of-function Ca®* channel
mutation has been proposed [25].

Lastly, the restitution hypothesis states that a slope of the APD
restitution curve >1 has been associated with the generation of
repolarization alternans [106]. APD alternans can produce steep
gradients in repolarization and refractoriness, unidirectional con-
duction block, wavebreak, and reentry. Both abnormal restitution
and T-wave alternans have been observed in BrS [107-110].

(iii) Current-load-mismatch, depolarization-repolarization bal-
ance and excitation wavelength (1)

In 2010, Hoogendijk and colleagues introduced the current-to-
load mismatch phenomenon in the subepicardium to underlie ven-
tricular arrhythmias in patients with BrS signs. This was performed
using computer simulations of right ventricular structural discon-
tinuities. Reduction in sodium current due to channel dysfunction
or size of the pores was found to cause subepicardial excitation
failure or delayed activation by current-to-load mismatch. Compu-
tational modeling work also showed that disruption to the inward-
outward current equilibrium could affect excitation and therefore
causing ST segment elevation subsequently [111,112]. It was con-
firmed in an explanted human heart model that only the failure of
local excitation correlated with ST-elevation, not delayed activa-
tion or early repolarization [113]. Therefore, by altering the I, or
Ica accordingly to compensate for reduced sodium current, the
extent of ST-elevation will decrease [111]. In order to simulate
similar conditions of ST-elevation in pseudo-ECG recordings, con-
duction block and excitatory failure via sodium channel blocking
was induced using ajmaline [112]. At sites of local ST-segment ele-
vation, the subepicardium was interspersed with adipose tissue
and contained more fibrous tissue than either the left ventricle
or control hearts [114].

Cardiac structural abnormalities are observed in BrS patients,
specifically in the right ventricle (RV) and RVOT, predisposes to
current-load-mismatch and excitation failure. This was confirmed
recently by Ten Sande and colleagues using cardiac activation
mapping, illustrating that structural abnormalities in the subepi-
cardial sites in the RV and RVOT are the likely cause of conduction
changes and ST segment elevation [114]. This structural-electro
physiological relationship is in keeping with ventricular arrhyth-
mias found in BrS patients in their 30 s, when cardiac interstitial
fibrosis is more evident [91]. Another study suggested that
current-to-load mismatches at discontinuities were capable of
causing a degree of conduction block, which explains the RBBB
morphology found in BrS patients. It should also be recognized that
discontinuities are usually associated with depolarization abnor-
malities when producing arrhythmia in BrS [115]. It also interacts
with action potential repolarization and recovery to determine the
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Table 1
Electrocardiographic indices for risk stratification in Brugada syndrome.

Depolarization

Repolarization

Depolarization-
repolarization

Prolonged QRS
Increased QRS dispersion

QT and QTc intervals
QT and QTc dispersion

iCEB (QRS/QT), iCEBc

fQRS Tpeak-Tends Tpeak-Tend/QT ratio, Tpeak-Tena dispersion

Epsilon-like waves
Concomitant RBBB
leads

First degree AV block
RVOT delay signs: positive R-wave in aVR, S-wave in lead I, SII > SIII
Positive Tzou criteria:

V1 R-wave > 0.15 mV

V6 S-wave > 0.15 mV

V6 S-wave: R-wave ratio > 0.2

JTpeakv JTpeak dispersion
Early repolarization pattern (in >=2 contiguous inferior/lateral

excitation (1) given by CV x ERP. Decreased A has been associated
with increased likelihood of reentrant arrhythmias not only in pre-
clinical animal models, but also in BrS patients [116,117].

8. Therapy and arrhythmic risk stratification

Since the underlying cause of BrS is reduced magnitude of
inward currents, pharmacological agents that act to increase the
inward currents or decrease the outward currents can restore the
balance. Currently available drugs which are effective in prevent-
ing arrhythmic episodes in BrS are quinidine (a Class la Na* chan-
nel and I, inhibitor), bepridil (I, inhibitor and Iy, enhancer) and
cilostazol (phosphodiesterase III inhibitor) [118-121]. Beta ago-
nists and phosphodiesterase III inhibitors can be used to treat VF
storms [122,123]. Future therapy can aim to restore the inward-
outward balance, by enhancing Ca?* currents (e.g. with cilostazol
or milrinone [124]) or suppressing I, (e.g. 4-aminopyridine
[125]) to reduce the AP notch, TDR and the likelihood of phase 2
reentry. Interventional options include ICD insertion and radiofre-
quency ablation [126,127]. ICD insertion appears to be safe in the
long term and reduces cardiovascular mortality in BrS patients
[128,129]. However, its use is not without significant morbidity,
as complications such as lead failure and infections can occur
[130]. Moreover, the quality of life is affected from inappropriate
shocks, most often due to the presence of supraventricular arrhyth-
mias [127]. In some cases, radiofrequency ablation can be used to
successfully prevent VT/VF occurrence [131]. The electrophysiolog-
ical substrates have frequently been localized to the RVOT in BrS.
Once the location of the substrates are confirmed by epicardial
and endocardial mapping, they can be eliminated using radiofre-
quency ablation [132]. A multicenter randomized study, Ablation
in Brugada Syndrome for the Prevention of VF Episodes (BRAVE
study), will provide exciting findings on the utility of ablation
without the need of ICD insertion [132].

There are many risk factors that have been associated with
higher likelihood of developing VT/VF [133-135]. These include
male gender [136,137], occurrence of syncope [138], genetic muta-
tions in SCN5A [139,140], the presence of a spontaneous type 1
Brugada pattern [141,142], early repolarization pattern in infero-
lateral leads [143], S-wave in lead I [144], T-wave alternans
[145], fragmented QRS morphology [94], burden of Brugada ECG
pattern on Holter monitoring [146], augmented ST elevation dur-
ing exercise recovery [147], an abbreviated ventricular refractory
period of <200 ms [148], activation-recovery interval prolonga-
tions [149], and inducible arrhythmias observed during pro-
grammed electrical stimulation [150]. Several ECG repolarization
markers have been proposed to stratify arrhythmic risk in the
BrS population (Table 1) [151]. First, Tpeakx — Tena, the interval
between the peak and the end of the T wave, have been associated

with increased arrhythmic risk [152]. Experiments conducted in
arterially-perfused canine wedge preparations showed that the
end of epicardial repolarization coincided with the Tpeak and at
the M-cell coincided with Tenq suggesting that Tpeai — Tenq reflected
increased TDR [153]. Subsequent experiments in swines later
reported that Tpeak — Tena Was a marker of global rather than trans-
mural dispersion of repolarization [152,154,155]. Tpeak — Tend
changes with heart rate and demonstrate significant inter-
individual variability [156]. Dividing it by the QT interval produces
relatively constant values of 0.17 to 0.23 and has been proposed to
be a better indicator for arrhythmia prediction [156]. Increases in
Tpeak — Tend and (Tpeak — Tena) /| QT have been associated with
arrhythmia inducibility. Thus, Letsas and colleagues reported that
patients with spontaneous or drug-induced Type 1 Brugada pat-
tern with inducible VT/VF displayed an increased Tpeak — Tend inter-
val in leads V, (88.82 vs. 78.33 ms) and Vg (76.33 vs. 66.66) and a
greater (Tpeak — Tena)/QT ratio in lead Vg (0.214 vs. 0.180) compared
with those without arrhythmias [157]. Recent meta-analyses con-
ducted by our group confirmed the value of both indices for risk
stratification in BrS [158,159]. Moreover, markers based on con-
duction have also demonstrated utility for risk stratification. Frag-
mented QRS complex, represents an increased dispersion of
conduction [160-162], can create unidirectional block, whereas
wide QRS reflecting reduced conduction velocity, will shorten the
excitation wavelength [163]. Both will predispose to reentrant
arrhythmias.

Given the insights from pre-clinical studies, it was recognized
that conduction abnormalities need to be incorporated into the risk
markers to increase their accuracy of risk prediction [164-169]. For
example, the index of Cardiac Electrophysiological Balance (iCEB),
given by QT / QRS, is a surrogate marker of L and its use has led
to improved risk stratification [170,171]. Furthermore, abnormal
action potential restitution appears to contribute to the arrhythmic
substrate [172,173], and given recent work has developed restitu-
tion indices in clinical cohorts [174-176], whether they will incre-
mental value in risk stratification in patients with Brugada
syndrome remains to be elucidated. Finally, given the dynamicity
in both the Brugada pattern [177-179] and arrhythmic risk
[180], it would follow that temporal variability in ECG indices
could offer additional value for risk stratification. Indeed, a high
temporal burden of type 1 ST-segment elevation assessed using
24-hour Holter monitoring has been associated with an increased
arrhythmic risk in BrS [146,178].

Other techniques such as electroanatomical mapping are also
crucial for aiding risk stratification. For example, endocardial
unipolar voltage mapping of the RVOT can detect low voltage
areas that possibly reflect epicardial structural lesions in BrS
[181]. We have recently shown that BrS patients with broad
endocardial unipolar voltage abnormalities are more vulnerable
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to VF induction during programmed ventricular stimulation. On
the contrary, subjects with normal electroanatomical maps were
non-inducible [182]. Detection of magnetic signals has tradition-
ally been used to characterize structural properties [183-185],
but recent work shown that magnetocardiography can provide
incremental value for arrhythmic risk prediction [186-188].

9. Conclusion

The Brugada syndrome is an inherited primary arrhythmia syn-
dromeoriginally thought to involve structurally normal hearts.
Recent evidence implicates structural alterations of fibrotic change
in the right ventricle. Risk stratification is based on a combination
of genetic studies, symptoms, the presence of spontaneous or
induced Brugada pattern on the ECG, ECG conduction and repolar-
ization parameters as well as programmed electrical stimulation
procedures to test for VT inducibility. High risk patients require
ICD implantation. New developments such as subcutaneous ICDs
might reduce the complication rates of transvenous ICDs, but its
use is limited by the considerable rate of sensing screening failure.
If electrophysiological substrates arising from the RVOT are con-
firmed by mapping, they can be eliminated using catheter ablation.
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