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ABSTRACT 

General design principles for visualization have been relatively 
well-established based on a combination of cognitive and 
perceptual theory and empirical evaluations over the past 20 years. 
To determine how these principles hold up across use contexts and 
end-users, I argue that we should emphasize conceptual replication 
focused on determining practical significance and reducing 
methodological biases. This shift in thinking aims to determine how 
design principles interact with methodological approaches, laying 
the groundwork for visualization meta-science.  
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1 INTRODUCTION 

The past few decades of visualization research have increasingly 
implemented empirical evaluations [1,2]. As understanding of 
human perception and decision-making advance, they suggest 
general principles to guide visualization design. Ample research 
has been conducted on visual encoding choices, such as color 
choice, object spacing, and object movement [3,4]. Others have 
focused on decision-making, noting that specific biases, such as 
boundary effects when summarizing uncertainty estimates or 
truncating y-axes, lead to systematic biases and misunderstandings 
about underlying data distributions [5,6,7].  

Along with increases in empirical evaluation come new 
challenges – such as responsible use of experiments and statistical 
inference. Methods and statistics training is not always well-
integrated with researchers’ training, which could inadvertently 
lead to false, misleading, or overgeneralized claims. This issue is 
not unique to visualization research and has become a hotly debated 
issue more broadly in the social sciences, and sometimes referred 
to as the “replication crisis”, resulting in an open science movement 
[8]. Within visualization research, Kosara and Haroz have called 
for a revolution focused on replication, which can be achieved by 
addressing threats to study validity [9]. 

In this paper, 1) we argue that visualization researchers should 
familiarize themselves with issues in measurement and statistics, 2) 
provide examples of where biases can occur, and 3) provide a 
roadmap for moving forward to address common empirical issues.  

2 POTENTIAL SOURCES OF BIAS 

Sources of bias are inevitable in empirical research, but as 
responsible researchers, we should take as many steps to reduce 
bias as reasonably possible. Not only will seeking to minimize 
biases in our research result in more accurate conclusions with 
greater external validity and replicability, but will also generate 
more ethical research by design. I focus on experimental and 
statistical sources of bias: study sampling bias, and data averaging, 
modeling, and measurement bias. 

2.1 Sampling bias, ethics, and generalizability 

Relying on a majority White, Educated, Industrialized, Rich, and 
Democratic (WEIRD) sample for research is a well-documented 
phenomenon in academic research [10]. Not only do biased 
samples limit the generalizability of studies to minority groups, 
they also can give misleading estimates of results in the first place. 
For example, a sample selected based on a collider variable that 
correlates with two study measures of interest can suggest a 
correlation in the study sample, even if there is no correlation 
between the study measures of interest in the general population 
[11]. This could manifest by selecting for individuals from a third 
collider variable, such as WEIRD demographics (see Figure 1).  

Figure 1: A hypothetical relationship between working memory load 

and reaction time (M  = 0, SD  = 1). Even though there is no 

relationship between the variables in the population (black dots 

and line), a spurious correlation might arise in a study due to 

sampling bias (red dots and line). Code for all figures and 

statistics available at https://osf.io/ebwx9. 

However, in Figure 1 there is no correlation between working 

memory and reaction time in the general population (simulated 

population r = -.01, 95% CI = [-.08, .05], n = 1000), which would 

have led to false conclusions in this study due to sampling bias 

(simulated sample r =  -.37, 95% CI = [-.51, -.21], n = 125). This 

example serves as a call to utilize more generalizable samples and 

temper claims about the general population from limited samples.  

Related, with the COVID-19 pandemic and pervasiveness of the 

internet, there have been increases in online studies. Visualization 

researchers have argued for the benefits of Mechanical Turk as a 

low-cost solution for fast, more diverse, and still accurate research, 

even replicating Cleveland and McGill’s visualization perception 
results with surprising precision [12]. However, it’s easy to 

overlook the ethical implications of this work: though participants 

may be willing to complete tasks for 0.01 to .10 cents per task, it 
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does not mean that we should be engaging in labor exploitation. 

Alternative platforms have emerged which pay participants fair 

wages, such as Prolific and Gorilla [13, 14]. Shifting to these 

platforms would result in more ethically conducted research with 

fair pay, while also potentially reducing sampling bias. 

Even when researchers are interested in a subpopulation and 

fairly compensate participants, results can differ by domain. For 

example, individuals treat uncertainty in visualizations differently 

when making real estate decisions versus safety-critical decisions 

[15]. Data domain and personal background should be considered 

when making claims from studies, not only visualization design.   

2.2 Measurement error and parameter bias 

Measurement error occurs because we do not have perfect 
measurements. Even using different rulers to measure distance 
often results in millimeters of difference in error, due to either the 
instrument and person. Now imagine that phenomena magnified in 
the case of measurements of complex human behavior. To address 
this problem, researchers should validate their measures before 
implementing them, or use models that address measurement error, 
such as latent variable modeling [16,17]. Model parameters can 
also be biased if regression assumptions are violated, or if data is 
averaged before modeling. One problem due to averaging before 
modeling occurs when groups in data have differing associations 
than the averaged data [18] (Simpson’s Paradox, see Figure 2).  

Figure 2: A hypothetical relationship between working memory and 

reaction time. Even though there is a positive relationship 

between variables on the within person level (colored dots and 

lines), there is a negative relationship between variables on the 

between person level (black dashed line).  

To solve this issue, a statistical model should reflect experimental 
design. For example, an experiment with multiple trials should be 
modeled in a multilevel model, not averaged, then modeled [19].  

Further, meta-insights are sometimes measured to determine the 
suitability of visualization encodings. For example, users have been 
asked about trust in uncertainty encodings (e.g. transparency) [20]. 
This measurement is thought to determine how icons intuitively 
communicate data concepts to users. However, the visualizations 
that users prefer are often not the most supportive of decision-
making, and in some cases, can be distracting without aiding 
visualization comprehension [21]. Simlarly to Padilla et al., I argue 
that we should utilize converging measurements in order to have a 
more complete picture of decision-making with visualizations, with 
preferences as one measurement amongst many [22].  

3 SOLUTIONS AND A WAY FORWARD 

3.1 Within-participants designs 

Within subjects, counterbalanced designs can help reduce sampling 

bias by manipulating variables such as working memory directly 

across different trials in the experiment, and presenting multiple 

trials with different visualizations to a single person. This would 

help to avoid the averaging and sampling bias problems, with the 

added bonus of increased statistical power [23]. There are also 

some drawbacks to the approach, such as the ability of competing 

visualizations to influence judgments on subsequent trials, as well 

as the ecological validity of a working memory manipulation 

during visualization comprehension. Tradeoffs should be weighed 

based on the practical and theoretical goals of the research.  

3.2 Towards practical significance 

Empirical research often emphasizes statistical significance.  For 
example, we compare whether one group mean is different from 
another group’s mean based on a p-value. A problem with these 
approaches is that researchers treat statistical inference as a series 
of binary decisions, with a focus on p < .05 as statistically 
significant. This approach overlooks that p-values can decrease 
with greater sample size and provide no magnitude information.  

These approaches can undermine a key goal of applied research 
– to determine practical significance. Another approach includes 
reporting effects of magnitude, such as confidence intervals. 
However, researchers also often dichotomize these intervals during 
interpretation (e.g. confidence intervals do not include 0, indicating 
a significant result) [24]. Solutions include implementing minimal 
effects hypothesis tests [25], which assess a range of practical 
significance, and justifying chosen alpha levels [26]. This will 
encourage consideration of the practical implications of research 
apriori [27]. Does it matter if there is a 100 millisecond difference 
in reaction time between visualizations, even if p < .001? Kay et al. 
have also argued for Bayesian approaches as a solution, which 
address issues of small sample size, integrate past research into 
models, and generate distributions of effects [28].  

3.3 Conceptual replication 

One way to reframe visualization research is to focus on conceptual 

replication with practical significance in mind. Exact replication 

alone is not enough, because exact replication can occur due to 

correlated measurement error across studies, even if a true effect is 

not present in the general population [29]. Instead, visualizations 

should be assessed with a variety of validated measurements, tasks, 

and domains, systematically determining when changes occur and 

if these changes are practically meaningful for a given context. 

While a full discussion of these issues is beyond the scope of this 

paper, others have considered 1) different contexts when evaluating 

visualizations [1], and 2) threats to visualization study validity [11].  

4 CONCLUSION 

An increased emphasis on bias and practical significance seeks to 
accomplish three main goals. First, it will increase generalizability 
of visualization research to historically overlooked groups. Second, 
it will help determine how design principles interact with 
approaches to empirical evaluation, providing a more complete 
picture of visualization “meta-science.” Lastly, it will reduce 
common methodological pitfalls and threats to validity while 
providing clearer practical implications.  
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