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The development of the neonatal gastrointestinal tract microbiota remains a poorly

understood process. The interplay between neonatal (gestational age, genetic

background), maternal (mode of delivery, nutritional status) and environmental factors

(antibiotic exposure, available nutrition) are thought to influence microbial colonization,

however, the exact mechanisms are unclear. Derangements in this process likely

contribute to various gastrointestinal diseases including necrotizing enterocolitis and

inflammatory bowel disease. As such, enhanced understanding of microbiota

development may hold the key to significantly reduce the burden of gastrointestinal

disease in the pediatric population. The most debatable topics during microbial seeding

and possible future treatment approaches will be highlighted in this review.
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INTRODUCTION

Humans are “holobionts”, which means that they host an assembly of their own human eukaryotic

cells and all of the microorganisms living in/on them (Meyer-Abich, 1943; Margulis and Fester,

1991). It is well established that the human microbiota comprises a wide array of microorganisms

including bacteria, archaea, fungi, and protozoa. The entirety of their corresponding genes are

referred by the term “microbiome” as reviewed by Lynch et al. (Lynch and Pedersen, 2016). Because

viruses are hosted in eukaryotic cells, bacteria or archaea, they are included under the umbrella of
the microbiome as well (Virgin, 2014). Metagenomic data and new bioinformatic tools help to

detect these hidden viral nucleotide sequences which may influence host phenotype (Angly et al.,

2005; Virgin and Todd, 2011). The largest microbiota of the human body is found in the

gastrointestinal tract (GIT) with about 1013–1014 microorganisms (Sender et al., 2016). As a

nutritional inflow source, the GIT represents a fertile ground for microbial colonization. However,

what types of microorganisms persist and in what quantity they do so, relies upon the methods by
which microorganisms extract energy and provide commensal benefit to the GIT. The challenge of

the host immune system is to both accept these commensal bacteria and defend against pathogens

(Round and Mazmanian, 2009; Kim and Claud, 2019). Not only do resident microbiota extract
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energy for their survival, but they can also support the GIT in its

function including pathogen defense (Freter, 1955; Abt and

Pamer, 2014), strengthening the intestinal barrier function

(Rakoff-Nahoum et al., 2004; Hayes et al., 2018) and

promoting the immune development (O’Mahony et al., 2006;

Round and Mazmanian, 2009). Additionally, the GIT microbiota
helps to digests nutrients and improves gut motility (Abrams and

Bishop, 1967; Dimidi et al., 2017) while supporting the synthesis

of essential fatty acids (Høverstad and Midtvedt, 1986), amino

acids (Jimenez et al., 2005), vitamins (Gustafsson et al., 1962) and

hormones (Yano et al., 2015; Martin et al., 2019).

Existing literature suggests that children who are vaginally
delivered at term without any instrumental assistance and are fed

with maternal breast milk have the best chance to develop a

healthy gastrointestinal microbiota which prevents dysbiosis

(Levin et al., 2016; Martin et al., 2016). Dysbiosis refers to a

phenomenon of microbiota “imbalance” or degeneracy in the

microorganism make-up, which is thought to be associated with
a wide range of metabolic/GIT diseases including obesity and

metabolic syndrome (Turnbaugh et al., 2009), type 1 diabetes

(Kostic et al., 2015), atopic conditions (Kalliomaki et al., 2001),

inflammatory bowel disease (IBD) (Gevers et al., 2014), and

necrotizing enterocolitis NEC (Fundora et al., 2020). As such,

further understanding of dysbiosis is the first step to not only

potentially prevent disease but also to offer hope for therapy.
This review summarizes the current evidence on the development

of microbial colonization with a focus on factors which have been

associated with dysbiosis including gestational age, mode of delivery,

nutrition and antibiotic therapy.

FIRST MICROBIAL COLONIZATION

The initiation of microbial colonization remains a controversial

topic in developmental biology. The theory of “sterile womb”

purports that the healthy fetus develops in a sterile environment

in utero (Th and Bettelheim, 1988) and that microbial

colonization starts after birth with the exception of intra-

uterine infections during pregnancy (Küstner, 1877; Tissier,
1900). This theory has been challenged when microbial

components have been detected in the placenta (Aagaard et al.,

2014; Collado et al., 2016) amniotic fluid (Collado et al., 2016),

umbilical cord blood (Jimenez et al., 2005), meconium (Jimenez

et al., 2008; Chu et al., 2017; Tapiainen et al., 2018), and fetal

membranes (Steel et al., 2005), even after uncomplicated
pregnancies with healthy term born newborns (Perez-Munoz

et al., 2017; Stinson et al., 2019; Patton and Neu, 2020). These

microbial particles have typically been detected by sensitive

polymerase chain reaction (PCR) methods. 16S ribosomal

RNA is derived from the prokaryotic ribosome and is used to

attribute detected RNA to respective bacterial strains (Woese and

Fox, 1977). In all these studies, PCR mean copy numbers were
low. Lauder et al. reported 5.72 × 102 gene copies for the

maternal side and 1.2 × 102 for the fetal side in samples which

were extracted from 0.1–0.5 g placental tissue (Lauder et al.,

2016). When Rackaityte et al. aimed to control for procedural

and environmental contamination, they found only 23.5

operational taxonomic units (OTUs) with ≥5 sequence read

counts per meconium sample. Additionally, they analyzed the

intestines of early terminated pregnancies (20 ± 2.2 weeks of

gestation) and detected bacterial structures on electron scans

(Rackaityte et al., 2020). Several sources of microbial fetal
encounters have been proposed including ascension from the

genitourinary tract (Zervomanolakis et al., 2007) or passage via

mucosal membranes such as the oral cavity or the GIT (Han

et al., 2004) of pregnant women (Baker et al., 2018). The analysis

of potential bacterial seeding in utero is heavily complicated by

intraamniotic infection. This infection occurs with an incidence
of 3.9% of all women giving birth (Woodd et al., 2019). It may

initially appear clinically silent but increases one’s risk of preterm

birth (Hillier et al., 1988). Joint diagnosis of histological

chorioamnionitis and bacterial growth in amnion cultures was

found to be as low as 27.7% (Queiros da Mota et al., 2013), that is

why detection of placental microbial particles could also
represent clinically inapparent infections.

Defenders of the sterile womb hypothesis attribute the

detected microbial particles to contamination (Olomu et al.,

2020), because there was no evidence of viability of the

detected bacterial structures (Rackaityte et al., 2020). Lim et al.

found neither microbial nor viral communities in their amnion

fluid samples from healthy term pregnancies (Lim et al., 2018;
Lim et al., 2019). Correspondingly, in healthy pregnancies, the

attempts to cultivate viable bacteria from placental specimen has

thus far failed (Kuperman et al., 2020). Additionally, recent

placental analyses of more than 500 placental tissue specimen

assessed both with 16S- and metagenomic analyses revealed that

besides pathogens (B streptococci), no placental microbiome has
been detectable (de Goffau et al., 2019).

An interesting theory, which may help to join the two

conflicting observations is that particles derived from bacteria,

fungi or viruses can be transported via the placenta to various

fetal sites and thereby contribute to the priming of the fetal

immune system (Wilcox and Jones, 2018). Microbial structures

might then occasionally be detected depending on the sensitivity
of the method.

It has been demonstrated that bacteria, as part of the maternal

microbiota can be absorbed by immune cells (Rescigno et al.,

2001). In theory, they could be transported via the blood stream

or the lymphatic system into the placenta (Funkhouser and

Bordenstein, 2013). Taking into account the immunological
challenge at the maternal-fetal interface of the placenta (Ander

et al., 2019), we suspect that there is also the possibility, that dead

bacterial components are expressed on placental dendritic cells

and may be taken over to the fetal side to prime the fetal immune

system as suspected for allergens (Szepfalusi et al., 2000).

However, the number of microbial agents which have been

described in placental tissue remains low. Tenericutes,
Firmicutes (Lactobacillus), Actinobacteria (Bifidobacterium,

Propionibacterium, Rhodococcus, Streptomyces), Bacteroidetes

(Bacteroides, Prevotella), Proteobacteria (E. coli, Neisseria,

Enterobacteria), and Fusobacteria have been found in the

placenta of healthy newborns at term (Aagaard et al., 2014;
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Parnell et al., 2017). Most taxa presented as “placental

microbiome” correspond to the taxa found in the maternal

oral microbiome (Fardini et al., 2010; Aagaard et al., 2014).

Furthermore, it has been suggested that oral infections such as

periodontitis are linked to complicated pregnancies and may

contribute to prematurity or neonatal sepsis as reviewed by Zi
et al. (2014).

With regard to umbilical cord blood of healthy term newborns

Actinobacteria (Bifidobacterium, Propionibacterium), Proteobacteria

(Escherichia), Firmicutes (Enterococcus, Staphylococcus,

Streptococcus), and Bacteroidetes (Bacteroides) have been detected

(Jimenez et al., 2005). Similarities between the microbiota of
meconium, placenta, and amnion fluid of healthy infants either

suggest a certain prenatal microbial antigen transfer or a common

source of contamination. However, Chu et al. describe different

bacteria on the newborn skin, mouth and nose depending on the

mode of delivery (Chu et al., 2017). Contrastingly, they found similar

bacteria in the newborn meconium with many samples harboring
highly abundant Escherichia and Klebsiella (abundance 14.3% and

6.4%, respectively), not detectable in any other body site, speculating

for a different microbial source prior to birth. It is tempting to assume

that immunological priming with microbial particles starts to shape

the fetal immune system prior to birth (Chu et al., 2017). Despite

numerous papers published on this field, the concerns of

contamination remain unsolved. In the newest study investigating
this issue, evidences were put forward for contamination as the origin

of bacteria found in human placenta samples (Gschwind et al., 2020).

INFLUENCE OF GESTATIONAL AGE

It has been well demonstrated that prematurity (birth before the

completion of 37 weeks of pregnancy) may be triggered by

intrauterine infections. Inflamed leaky or ruptured membranes
facilitate the ascension of bacteria from the genitourinary tract

(Hillier et al., 1995; Leitich et al., 2003). The gastrointestinal tract of

premature infants is also known to have leaky barrier properties

with a higher transepithelial and -mucosal permeability (Weaver

et al., 1984a; Weaver et al., 1984b), impaired motility (Berseth,

1996), less active digestive enzymes (Demers-Mathieu et al., 2018)
and lower absorption of nutrients (Neu and Koldovsky, 1996).

Compared to their term counterparts, the immune system of

premature infants displays fewer amounts of leukocytes, less

proinflammatory cytokines, and less antibacterial peptides (Strunk

et al., 2011; Melville and Moss, 2013).

Furthermore, preterm delivery is often linked to complicated

pregnancies with a higher rate of caesarian sections and the use
of prenatal antibiotics (Hill et al., 2017; Salvatore et al., 2019).

The less mature newborns are, the longer time they have to spend

in the neonatal intensive care unit (NICU) (Maier et al., 2018).

They receive parenteral nutrition and/or enteral nutrition via

nasogastric tubes (Viswanathan and Jadcherla, 2019).

Additionally, these infants often need respiratory support (Shi
et al., 2020). As a result of these well described, common

consequences of prematurity, preterm infants often have a

delayed development of their gastrointestinal bacterial microbiota,

a lower bacterial load (Chernikova et al., 2018), fewer commensals,

and obligate anaerobic bacteria and a higher number of pathogens

such as Klebsiella pneumoniae and Clostridium difficile and

facultative anaerobic bacteria (Dahl et al., 2018). The dominating

taxa consist of Firmicutes (Staphylococcus, Enterococcus),

Proteobacteria (Enterobacteriaceae, Escherichia, Klebsiella),
Actinobacteria, and Bacteroidetes (Bacteroides) (Patel et al., 2016;

Yuan et al., 2019). Their term counterparts are colonized with

predominantly Actinobacteria (Bifidobacterium) (Penders et al.,

2006) and Firmicutes (Staphylococcus, Streptococcus) (Palmer

et al., 2007).

These microbial changes in the preterm infant may be
associated with feeding intolerance (Ford et al., 2019; Salvatore

et al., 2019), NEC (Baranowski and Claud, 2019), late-onset

sepsis (LOS) (Stewart et al., 2017), and inferior long-term

neurological outcomes (Niemarkt et al., 2019). Even if

premature infants meet the «optimal microbial conditions»

including vaginal delivery, nutrition with breast milk and no
antibiotic therapy, the premature microbiome differs from the

microbiome of term neonates (Leitich et al., 2003; Penders et al.,

2006; Palmer et al., 2007). However, currently, there is no consensus

concerning the exact time point when the microbiota of preterm

and term infants align, with different studies reporting a time range

between 4 months and 4 years (Dahl et al., 2018; Fouhy et al., 2019).

A recent study of 5–11-year old children including 51 former
preterm children (≤ 32 weeks of gestational age) could still find

an inflammatory gut profile in the preterm group. The differences

were attributed to a reduced gut phage richness (Jayasinghe

et al., 2020).

INFLUENCE OF MODE OF DELIVERY

The mode of delivery influences the newborn gastrointestinal
microbiota. During vaginal delivery, the infant’s GIT is colonized

with vaginal (Dominguez-Bello et al., 2010) and intestinal

(Makino et al., 2011; Makino et al., 2013) bacteria from the

mother. Consequently, the infant’s gastrointestinal microbiota is

dominated by Actinobacteria (Bifidobacterium, Atobium)

(Dominguez-Bello et al., 2010; Reyman et al., 2019; Shao et al.,
2019; Yang et al., 2019), Firmicutes (Lactobacillus, Megamonas)

(Dominguez-Bello et al., 2010; Kuang et al., 2016), Bacteroidetes

(Prevotella, Bacteroides, Parabacteroides) (Dominguez-Bello

et al., 2010; Wampach et al., 2018), Fusobacteria (Sneathia)

(Dominguez-Bello et al., 2010), and Proteobacteria (Shigella,

Escherichia) (Kuang et al., 2016; Wampach et al., 2018; Shao

et al., 2019; Yang et al., 2019). Most of these bacteria produce
short chain fatty acids (SCFA), which lower the luminal pH and

thereby inhibit the colonization of pathogens (Nagpal and

Yamashiro, 2018). It is suggested that compared to children

delivered via caesarean section, children after vaginal delivery

display a higher diversity (Akagawa et al., 2019), fewer

Staphylococci (Wampach et al., 2018) and C. difficile in their
microbiota (Adlerberth and Wold, 2009).

In contrast, birth by caesarean (C-) section is theorized to

interrupt the microbial transmission from the mother to child

Senn et al. Primary Microbial Colonization
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that occurs during vaginal birth (Backhed et al., 2015; Hill et al.,

2017). Consequently, the GIT will first be colonized with bacteria

present on the maternal skin (Akagawa et al., 2019) or in the

direct neonatal environment (Dominguez-Bello et al., 2010). The

intestinal microbiota after C-section is characterized by delayed

bacterial colonization (Martin et al., 2016) and reduced number/
diversity (Azad et al., 2013), but an increased number of

opportunistic pathogens related to the hospital environment

(Toscano et al., 2017a; Shao et al., 2019). After C-section the

neonatal microbiome of the GIT is dominated by Firmicutes

(Enterococcus, Staphylococcus, Streptococcus, Clostridium,

Veillonella) (Azad et al., 2013; Martin et al., 2016; Kuang et al.,
2016; Shao et al., 2019), and Proteobacteria (Klebsiella,

Enterobacter, Haemophilus) (Shao et al., 2019). In relation to

vaginal delivery, there are fewer Bacteroides, Bifidobacteria and

Lactobacillus as well as SCFA (Nagpal and Yamashiro, 2018),

and there is a general imbalance of the gut microbiome (Hoang

et al., 2020). These findings correlate with a higher intraluminal
pH and lower inhibition of pathogens (Nagpal and Yamashiro,

2018). There is some debate whether or not contractions might

help to increase the microbial transfer to the baby (Levin et al.,

2016; Shao et al., 2019) and how heavily the data is biased by

antibiotic use as recommended prior to skin incision (Gholitabar

et al., 2011). Mothers after C-section often additionally display a

lower breastfeeding rate (Hobbs et al., 2016). In summary, C-
section might be a contributing factor in the development of

dysbiosis. However, the treatment of newborns with gauze swabs

full of vaginal microbiota «vaginal seeding» did not show any

benefit on long term outcomes but harbors the risk of pathogen

transfer such as herpes, group B streptococci, Chlamydia

trachomatis, and Neisseria gonorrhoeae (Cunnington et al.,
2016; Haahr et al., 2018).

INFLUENCE OF NUTRITION

At the beginning of the 20th century, people realized that

increasing alarming mortality rates of newborns and infants

were associated with reduced rates of breastfeeding (Wolf,

2003). In the modern era, it is well understood that maternal

breastfeeding indeed significantly reduces newborn and infant
mortality and morbidity and contributes to maternal health (Ip

et al., 2007; Zhao et al., 2020). However, the reasons underlying

this association are more complex than initial theories related to

breast milk providing nutrients and reducing pathogen transfer.

Consequently, the composition of breastmilk and its influence on

microbial composition is a growing area of research (Hennet and
Borsig, 2016), not only due to the billion-dollar market linked

to formula.

Important drivers for microbial seeding in the infant gut are

pre- and probiotics in human breast milk (Sanders et al., 2019).

Prebiotics are food components, which are not digested by

human enzymes, but can be metabolized by certain bacteria,

promote their growth and contribute to the health benefits of the
host (Gibson and Roberfroid, 1995; Gibson, 1998; Gibson et al.,

2004). Human milk oligosaccharides (HMO) are prebiotics and

the third most common component of breast milk after lactose

and lipids (Urashima et al., 2012). The first HMO has been

described in 1954 as “bifidus factor” (Gyorgy et al., 1954a;

Gyorgy et al., 1954b; Gauhe et al., 1954). These HMOs are not

digested by pancreatic enzymes, but reach the colon intact, where

they promote the growth of Bifidobacteria, Bacteroides and
Lactobacillus (Marcobal et al., 2010; Thongaram et al., 2017).

The digestion of HMO produces SCFA (such as acetate,

propionate and butyrate), which can be used as energy source

and lower the luminal pH, which inhibits the colonization of

pathogens (Yu et al., 2013; David et al., 2014). Interestingly,

the amount of specific fucosyl-oligosaccharides secreted into the
milk seems to depend on the genetic background of the mother

and whether it is preterm- or term breastmilk (Gabrielli et al.,

2011). In addition to lipids and carbohydrates, human breast

milk harbors proteins (immunoglobulins, enzymes) as well as

hormones, growth factors, nucleotides, leukocytes, cytokines,

lysozyme, and lactoferrin as reviewed by Hennet and Borsig
(2016). Breast-fed children have an intestinal microbiota mainly

dominated by Bifidobacteria and Lactobacilli (Cooke et al., 2005;

Backhed et al., 2015), Bacteroides (which can digest HMO) (Wang

et al., 2015) as well as Staphylococcus (Stewart et al., 2018). In

contrast, children drinking formula tend to have a higher bacterial

diversity and in addition to Bifidobacteriaceae, Clostridia,

Enterococcus, and Enterobacteriaceae are detected (Harmsen et al.,
2000; Li et al., 2014; Timmerman et al., 2017). However, studies are

inconsistent (Adlerberth andWold, 2009), possibly because they use

different analytical approaches and infant nutrition and

environmental influences are difficult to control in a large

infant cohort.

In addition to the benefits named above, nutrition based on
human milk is associated with a higher feeding tolerance

(Schanler et al., 1999), lower risk of NEC (Miller et al., 2018),

obesity (Ma et al., 2020), and atopic diseases (Lodge et al., 2015).

However, the studies analyzing newborn and infant nutrition

differ considerably concerning the duration and the amount of

human milk provided as well as whether children were

exclusively breastfed or human milk was provided with
the bottle.

Prebiotic supplements such as galacto- and fructo-

oligosaccharides added to infant formula shall mimic the effect

of natural HMOs (Lodge et al., 2015), but to date, have not been

demonstrated to lead to a complete approximation of the

newborn microbiota (Bakker-Zierikzee et al., 2005; Haarman
and Knol, 2005). In fact, intestinal microbiota of formula fed

infants had more potential pathogens (Benno et al., 1984;

Bezirtzoglou et al., 2011) as compared to breastfed children;

dominated by Firmicutes (Staphylococcus, Streptococcus,

Enterococcus, Lactobacillus, Clostridium), Bacteroidetes

(Bacteroides), Proteobacteria (Enterobacteria), and Actinobacteria

(Atopobium) (Fallani et al., 2010; Stewart et al., 2018). Probiotics are
substances that contain vital microorganisms, which confer health

benefits on their host (Food and Argiculture Organization of the

United Nations, 2002; Hill et al., 2014). These microorganisms may

change the microbial composition (Frese et al., 2017). They are

believed to improve the barrier function of the intestinal epithelia,
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modify the immune response and protect against pathogens due to

competition for nutrients and colonization with potential pathogens

(Servin, 2004; Athalye-Jape et al., 2018). It is hypothesized that the

supplementation of probiotics reduces the time to complete enteral

feeding (Samanta et al., 2009; Braga et al., 2011), the duration of

hospitalization (Romeo et al., 2011), and morbidity and mortality
(Barrington, 2011). Thebest evidence available in this regard involves

the combination of Bifidobacteria and Lactobacilli (Chang et al.,

2017). A recent Cochrane review on this topic found 24 trials

including 5,529 infants, all assessing probiotic treatment of

preterm infants <37 weeks gestational age or <2.500 g birth

weight. This meta-analysis found a significantly reduced
incidence of severe NEC (Bell stage II or more) relative risk (RR)

of 0.43 (95% confidence interval (CI) 0.33–0.56) and a reduced

mortality RR 0.65 (CI 0.52–0.81) (Hobbs et al., 2016). However,

the timing and composition of the probiotic treatment seems to be

very important, because both the combination of Lactobacillus

rhamnosus and Lactobacillus helveticus L (Freedman et al., 2018)
and the supplementation of Lactobacillus rhamnosus alone

were not sufficient to improve the outcome in children with

gastroenteritis (Schnadower et al., 2018). Experts therefore

suggest a personalized approach (Zmora et al., 2018).

While cultivated bacteria from breast milk samples have been

attributed to contamination (Dudgeon and Jewesbury, 1924;

Wright, 1947), living non-pathogenic bacteria below a density of
105 colony forming units/ml are now considered to be within

normal range (Weaver et al., 2019), and potentially beneficial to

newborn health (Toscano et al., 2017b). Several analyses have

detected living bacteria such as Firmicutes (Staphylococcus,

Streptococcus, Peptostreptococcus, Enterococcus, Clostridia,

Lactobacillus), Actinobacteria (Bifidobacterium, Corynebacterium),
Bacteroidetes (Bacteroides), and Proteobacteria (Escherichia,

Serratia, Pseudomonas) in human breast milk. With the

possibilities of large scale metagenomic analyses, it has now

become possible to track the potential transfer of mobile genetic

elements and antibiotic resistance genes via breast milk (Parnanen

et al., 2018). Additionally, viable fungi have been cultured from

breast milk samples recently at a density of ≥103/ml with the highest
rate of Malassezia, Candida, and Saccharomyces taxae (Boix-

Amoros et al., 2017). Vertical viral transmission from the mother

to her newborn is evident for cytomegalovirus (CMV) (Bardanzellu

et al., 2019), human immunodeficiency virus (HIV) (Van de Perre

et al., 2012), and human-T-lymphotrope virus (HTLV). However,

in general, breast-feeding has been associated with a lower risk of
viral infections (Arifeen et al., 2001; Bahl et al., 2005). This viral

reduction parallels with the finding, that prophages are also more

abundant in formula-fed infants (Liang et al., 2020). There is a

currently contentious debate in this regard to where microbial

particles found in the human breast milk derive from and why

microbial loads are reported to be divers (Biagi et al., 2017).

Potential sources include the adjacent skin and areola of the
breast and bacteria, fungi or viral particles located in the newborn

nasopharyngeal tract, deriving from their direct environment. Some

bacterial transfer can also be explained by reverse flow from the

larger milk ducts near the nipple to smaller collecting ducts and

ductules (Ramsay et al., 2004). However, Urbaniak et al. also found

bacterial particles in breast samples which were taken from non-

lactating women during an operation (Urbaniak et al., 2016). Some

studies have suggested the origin of the human breast milk

microbiota is the maternal GIT, because the transfer of obligate

anaerobes such as Bifidobacterium breve which has been detected in

breast milk samples is not possible via skin contact (Jost et al., 2014).
If this was the case, bacteria in the intestinal lumen of the maternal

GIT could be taken up by immune cells, transferred via the blood

and/or lymphatic system and then secreted into the breast milk.

Such a connection between the maternal GIT microbiota and breast

milk production could be the key to new treatment opportunities in

lactating mothers.
In 2019, Togo et al. reported the successful cultivation of

methanogenic archaea from breast milk samples (Togo et al.,

2019). The amount of DNA was low with 2 log 10 copies DNA/

ml, but they are still suggested to be important commensals due

to their H2 reducing properties (Hansen et al., 2011; Bang and

Schmitz, 2015). Another driving force for human microbial
diversity which has been nearly overlooked for a long time is

the human phageome (Manrique et al., 2016). This highly

dynamic system creates a high predation pressure, may be

introduced with microbes in breast milk and shapes the

human microbiome (Rodriguez-Valera et al., 2009). There is

growing evidence that the maternal intestinal microbiota is an

important driver of breast milk composition, suggesting that new
interventions to optimize infant health could already start prior

or during pregnancy.

After the introduction of solid foods, the differences between

breast milk and formula fed infants become smaller and the

microbiota starts to resemble the adult microbiota (Backhed

et al., 2015). Some authors suggest that not the introduction of
solid food but rather the cessation of breast milk leads to the

alignment with the adult microbiota (Backhed et al., 2015; Levin

et al., 2016). Given the fact that the human diet seem so

decisively to influence microbial properties, the microbiota is

potentially ripe for therapeutic intervention (Ku et al., 2020),

especially during the newborn period.

INFLUENCE OF ANTIBIOTICS

Unfortunately, globally the incidence of infections remains high

in the newborn period (Fanos et al., 2007), and several diseases

affecting newborns necessitate the administration of broad

spectrum antibiotics (Isaacs, 2000; Gordon and Jeffery, 2005;

Clark et al., 2006). Pre- as well as peri- and postnatal antibiotic

therapy negatively influences the neonatal microbiota (Gibson
et al., 2015; Tapiainen et al., 2019) and consequently the

development of the infant’s immune system (Zeissig and

Blumberg, 2014). Antibiotic therapy is associated with a lower

number of commensal bacteria with delayed colonization with

Bifidobacteria and Bacteroidetes (Coker et al., 2020; Eck et al.,

2020) and a higher amount of potential pathogens (Aloisio et al.,

2016). However, attempts to restore a healthy microbiota with
probiotic treatment after antibiotic use even led to prolonged

dysbiosis in healthy volunteers (Suez et al., 2018). In a cohort of
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infants aged 2–36 months, Yassour et al. observed that antibiotic

treatment significantly reduced the strain diversity inducing a

less stable microbiota. Moreover, bacteria increasingly acquired

antibiotic resistance genes (Yassour et al., 2016). As such, the use

of antibiotics increase the probability of fungal overgrowth

(Kligman, 1952). Moreover, antibiotics may impact on long-
term health outcomes such as modified nutrient absorption

(Krajmalnik-Brown et al., 2012), lower vitamin production

(LeBlanc et al., 2013), higher incidence of obesity (Dawson-

Hahn and Rhee, 2019) and atopic diseases (Baron et al., 2020).

The aim is to protect this delicate balance of bacterial and

probably fungal interactions which support the healthy GIT-
microbiota (Peleg et al., 2010). Thereby, ending antibiotic

therapy expeditiously and narrowing antibiotic therapy should

be encouraged for infants that do require antibiotics.

DEVELOPMENT OF THE MICROBIOTA IN

EARLY CHILDHOOD

Despite huge individual differences (Eckburg et al., 2005; Ley

et al., 2006; Turnbaugh et al., 2009) the development of the
microbiota still follows typical timely changes as shown in

Figure 1. Directly after birth, healthy term infants have a

primarily aerobic GIT, which promotes the appearance of

facultative anaerobe bacteria such as Firmicutes (Enterococcus,

Staphylococcus, Streptococcus) and Proteobacteria (Enterobacter,

Escherichia coli) (Palmer et al., 2007; Del Chierico et al., 2015).

These bacteria reduce the oxygen content in the intestine and

facilitate the occurrence of obligate anaerobic bacteria such as

Actinobacteria (Bifidobacterium), Bacteroidetes (Bacteroides),

and Firmicutes (Clostridium, Lactobacillus, Ruminococcus)

(Koenig et al., 2011; Del Chierico et al., 2015). After three

months of life, Actinobacteria (Bifidobacterium), Bacteroidetes
(Bacteroides), and Proteobacteria (Escherichia) dominate the

intestinal tract (Fallani et al., 2011; Hill et al., 2017). After 12

months of life, the infant’s GIT is dominated by Actinobacteria

(Bifidobacterium, Collinsella) and Firmicutes (Lactobacillus,

Megasphaera, Veillonella) (Penders et al., 2006). After 2–3

years of age, children display a higher diversity and lower
inter-individual differences (Yatsunenko et al., 2012). The

microbiota stabilizes after about 3 years and then resembles

the adult microbiota in terms of diversity and complexity with

high abundance of species from the firmicutes and bacteroidetes

phyla (Arumugam et al., 2011).

DISCUSSION AND CONCLUSION

This review demonstrates that there is still a large knowledge gap

in regard to the microbial colonization of newborns. Neither the

authors of the “sterile womb hypothesis” nor those defending

the “in-utero colonization hypothesis” (Perez-Munoz et al.,

2017) are able to completely explain the signaling mechanisms

at the materno-fetal interface. Because the fetal intestinal
immune system develops as early as 16 weeks of pregnancy

FIGURE 1 | Summary of different factors and timely changes of the infant microbiome.
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(Stras et al., 2019) and fetal genetic particles have been found in

the maternal blood (Lo et al., 1990; Lo et al., 1997), we assume

that microbial particles derived from the mother are transported

to the fetal side as well. This “microbial priming” (Ganal-

Vonarburg et al., 2017) may help to prepare the offspring for

microbial contact after birth. It could also be triggered via the
transfer of bacterial, viral, archaeal or fungal components

through the blood, the interstitium, or immune cells.

Materno-fetal protein-transport and antigen-presentation has

been previously described, for example via the placental Fc-

receptors (Malek et al., 1998; Wilcox and Jones, 2018). Although

exosomes become increasingly attentive (Czernek and Duchler,
2020), it is unclear, whether microbial particles might also be

transferred via exosomes in healthy pregnancies.

The microbial seeding during the first days of life makes the

newborn highly susceptible to microbial perturbations (Bokulich

et al., 2016). The most important factors affecting microbial

seeding are gestational age, mode of delivery, nutrition, and
antibiotic therapy (Azad et al., 2016; Levin et al., 2016; Martin

et al., 2016). Optimizing nutrition and medical treatment could

potentially improve newborn growth, prevent NEC and support

favorable long-term outcomes. However, the molecular

mechanisms remain unclear. Additionally, most have used

human feces as a surrogate to study the intestinal microbiota,

although it is unknown to which extent the bacteria found in the

feces represent the microbiota of the GIT and whether the

luminal (transient) bacteria correlate with mucosal (resident)

bacteria, which might differ depending on the gastrointestinal

region (Sundin et al., 2020).

In summary, we are convinced that a deeper understanding of
the development of the newborn and infant microbiota will help

to discover further potentially modifying factors to improve

long-term health and quality of life.
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