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Abstract: This study examines how accumulation of experience and knowledge by wind farm 

developers and turbine manufacturers contributed to productivity gains in China’s wind power 

industry during its rapid expansion phase between 2005 and 2012. A learning curve analysis is 

conducted on an original dataset of 312 Chinese wind farms under the Clean Development 

Mechanism. A key strength of the dataset is that it includes data on actual, wind-farm level 

power generation. The analysis, based on third-party verified data, reveals that the experience 

and knowledge accumulation did not result in improvements in generation performance, 

turbine size, or unit turbine costs of Chinese wind farms. Rather, generation performance was 

driven by capital investments (i.e., larger and more expensive wind farms performed better). 

Turbine cost reductions were achieved by intense price competition which hampered 

investments in technology improvement and quality assurance. The Chinese wind power case 
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demonstrates how market expansion, in the absence of carefully designed innovation policies 

that complement deployment policies, does not necessarily lead to technological learning. 

Fostering the technological capability of local industry can take a long time. When scale-up 

happens quickly, it is crucial to develop and refine local technological capability. 
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Abbreviations 

• CDM: Clean development mechanism 

• CER: Certified emission reduction 

• GHG: Greenhouse gas 

• GW: Gigawatt 

• kW: Kilowatt 

• kWh: Kilowatt-hour 

• MW: Megawatt 

• MWh: Megawatt-hour 

• O&M: Operation and maintenance 

• PDD: Project design document 

• R&D: Research and development 

• SOE: State-owned enterprise 

• UNFCCC: United Nations Framework Convention on Climate Change 
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1 Introduction 

Since Arrow (1962) conceptualized the notion of learning by doing, numerous empirical 

studies have shown that productivity of workers and firms often rises with accumulation of 

experience (e.g., Barrios and Strobl, 2004). The analysis linking experience accumulation and 

productivity gains (learning curve analysis) has recently been extended to low-carbon 

technology fields, primarily to assess learning in renewable energy technology fields in 

industrialized countries. For example, a number of studies examined learning in wind power 

technology for Europe (e.g., Söderholm and Sundqvist, 2007) and the United States (Nemet, 

2012). However, the learning curve literature has so far paid much less attention to low-carbon 

technologies in developing countries. 

The emergence of China’s wind power industry is one of the most impressive cases of 

technological catch-up. China’s wind power market expanded exponentially over the last 

decade and now represents more than a quarter of global wind power installations (GWEC, 

2014). The rapid increase in wind turbine installations was accompanied by the emergence of 

a successful local industry, which currently dominates China’s wind power market (Lewis, 

2013). However, despite the growth in wind power installation and manufacturing capacity, 

China has struggled to improve its wind power generation performance (Huenteler et al., 2018). 

This is largely due to grid connection delays and a widespread problem of wind power 

curtailment. Curtailment is when grid operators choose to “spill” wind generation, meaning it 

is not captured by the grid, but essentially wasted. Such curtailment is usually done in order to 

preserve grid stability, but may be done for a variety of other factors, both technical and 

political. Whatever the motivation, curtailment results in foregone revenue to wind generators, 

and has a large impact on the financial performance of wind farms. The curtailment problem 
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started in 2009, and remains a major problem (Lewis, 2016a). China experienced record levels 

of curtailment in 2016 accounting for 17% of the annual wind power generation (Reuters, 

2017). 

Previous learning curve analyses on the Chinese wind power industry were conducted using 

predictive measures of costs and generation performance of wind power. Using the bid prices 

offered under China’s Wind Resource Concession Program between 2003 and 2007, Qiu and 

Anadon (2012) found that learning through wind turbine installation and manufacturing as well 

adoption of new wind power technologies led to bid price reductions of 4.1% - 4.3% per 

doubling of installed capacity and new technology adoption. Tang and Popp (2016) analyzed 

ex ante estimations of costs and capacity factors1 of China’s wind farms registered under the 

Clean Development Mechanism (CDM) between 2002 and 2009 and found that wind turbine 

installation experience, especially the cooperating experience between a developer and its 

partner foreign turbine manufacturer, led to cost reductions and improvement in the predictive 

measure of generation performance. Lam et al. (2017) also analyzed China’s wind farms 

registered under the CDM between 2004 and 2012 to find that the learning rate on the predicted 

levelized cost of electricity was between 3.5% and 4.5% per doubling of installed capacity, 

which was much lower than those experienced in Denmark and Germany during similar stages 

of industry development. 

Given the current mismatch between capacity and generation in the Chinese wind power 

industry (Yang et al., 2012), questions remain about whether experience drives not only 

installations but also actual wind power generation in China. The main purpose of this study 

                                                 
1 A capacity factor measures the amount of power generation as a share of how much could be generated 

if the wind turbines operated at full capacity. 
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is to provide a quantitative analysis of how the experience and knowledge of wind farm 

developers and turbine manufacturers contributed to both capacity-related productivity (turbine 

size and unit turbine costs) and actual power generation of wind farms in China during the 

rapid market expansion phase between 2005 and 2012. This is an important period for the 

learning curve analysis because the industry accumulated a significant amount of experience 

in this phase, while wind power curtailment became a serious problem. This study uses an 

original dataset of 312 Chinese wind farms that were registered and issued carbon credits under 

the CDM. The wind farms in this dataset represent 16.5 gigawatts (GW) of installed wind 

turbine capacity or 21% of China’s total grid-connected turbine capacity in 2012. A key 

strength of the dataset is that it contains the actual amount of electricity generated from the 

CDM wind farms. Therefore, this study can analyze the relationship between capacity- and 

generation-based output measures and the experience and knowledge levels of developers and 

manufacturers, while controlling for capital stock, wind resources, wind support policies, and 

other factors that may influence the productivity measures. The capacity and generation data 

were third-party verified as part of the CDM approval process. The analysis demonstrates that 

the experience and knowledge accumulation during the rapid market expansion phase did not 

lead to productivity gains in the output measures. This indicates that even the unprecedented 

market growth did not result in technological learning. 

This study begins with explaining the context of technological learning in the Chinese wind 

power industry (section 2). Section 3 introduces the empirical strategy for data analysis, the 

results of which are summarized in section 4. The contributions, policy implications and 

limitations of this study are discussed in section 5, followed by conclusions in section 6. 

 



 7 

2 Technological learning in the Chinese wind power industry 

2.1 Expansion of China’s wind power market 

The Chinese government initiated wind power technology development efforts during the sixth 

Five-Year Plan period of 1981 to 1985 (Shi, 1986). Until the mid-1990s, the efforts were 

mostly confined to small domestic wind turbines and a few imported models from Denmark. 

The Chinese wind power market began expanding in 1994, when the Ministry of Electric 

Power issued the Provisions for Grid-Connected Wind Farm Management (MOEP, 1994). The 

provisions required grid operators to remunerate wind power with wind farm costs plus a 

reasonable profit. A series of support policies followed, including preferential loan schemes 

(e.g., the “Double Increase Program” in 1995, and additional loans for wind farm development 

in 1996), which led to the government successively increasing national wind power installation 

targets (e.g., the 10th Five-Year Plan in 2001) as well as industrial policy support schemes for 

wind turbine science, technology and local manufacturing (e.g., National High Tech Research 

and Development—R&D—Programs, or 863 Programs, in 1996 and 2001). As a result, the 

industry experienced its first wave of rapid expansion from 1994 to 2002, with annual growth 

rates exceeding 100% over several years, and annual installations mostly in the double-digit 

megawatt (MW) range (see Figure 1). 

The second wave of expansion started in the mid-2000s with a triad of significant policies 

targeting the wind power sector. First, the Chinese government started the Wind Resource 

Concession Program in 2003 (NDRC, 2003). This program was a key driver of the wind market 

expansion between 2003 and 2007, totaling 3,350 MW of new wind turbine installations 

through five rounds of competitive bidding (Lewis, 2013). Wind farms were selected on the 
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lowest price per kilowatt-hour (kWh) basis, resulting in some limited price discovery in what 

had long been a market highly distorted by subsidies (Qiu and Anadon, 2012). The concession 

program was also instrumental in fostering domestic manufacturing capacity as it mandated 

government-selected wind farms to domestically procure a minimum share of the equipment 

(Lewis, 2013). Second, the first Renewable Energy Law, which entered into force in 2006, set 

a legal framework for mandatory grid connection and full purchase of renewable energy 

projects, and authorized the establishment of feed-in tariffs (NPC, 2005). Third, China gained 

access to the CDM following its ratification of the Kyoto Protocol and its establishment of 

domestic CDM regulations in 2005 (NCCC, 2005). Under the CDM, GHG mitigation projects 

implemented in non-Annex I countries (e.g., China) can claim carbon credits (CERs: Certified 

Emission Reductions) for the amount of GHG emission reductions they achieved. The CERs 

can be sold on the market, which provides the projects with additional financial support. As 

much as 64 GW or 80% of China’s total installed turbine capacity had obtained CDM 

registration by 2012 (Chan and Huenteler, 2015). 

The three policies were complemented by another round of successively increasing targets in 

the 2007 Medium- and Long-Term Plan for Renewable Energy Development in China (NDRC, 

2007), the establishment of a unified nationwide wind power tariff system guaranteeing fixed 

returns on investment (NDRC, 2009), and the 2006 update of the 863 Program for supporting 

the further development of MW-size wind turbines (MOST, 2006). These policies, along with 

additional support measures, drove massive expansion in the Chinese wind power market from 

2004 onwards, with annual growth rates again exceeding 100% over several consecutive years. 

The capacity increase propelled China into the top spot in the global wind turbine installation 
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and manufacturing rankings. As of 2015, China was home to 34% of total global installed wind 

turbine capacity (GWEC, 2016). 

 

[Insert Figure 1 here] 

 

2.2 Catch-up by the Chinese wind power industry 

The growth of the Chinese wind power market was accompanied by the rise of domestic 

industry that gradually caught up in technological capabilities with early-mover countries such 

as Europe and the United States (Ru et al., 2012). One measure of technological sophistication 

in the wind turbine industry is the wind turbine size, measured in electric capacity (MW). 

Figure 2 shows the catch-up of Chinese turbine manufacturers as indicated by a selection of 

installed turbine prototypes indicating benchmarks of technological sophistication among 

leaders in the industry. 

 

[Insert Figure 2 here] 

 

The catch-up process is also reflected in the gradually increasing market shares of domestic 

turbine manufacturers (see Figure 3), and their cumulative market shares (see Table 1). In the 

developers’ market, Chinese companies are even more prominent. Dominating the mix are 

China’s “big-five” power companies, state-owned enterprises (SOEs) which have invested 

about 80% of the cumulative installed turbine capacity at the end of 2011 (Spratt et al., 2014). 

While private companies, including wholly foreign owned ones, are now increasingly engaged 
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in China’s wind power development, their market shares still remain minimal. In China, SOEs 

generally have better access to finance due to their “long and deep relations” with the state-

owned commercial banks (Spratt et al., 2014, p. 19). In addition, numerous foreign companies 

have reported facing difficulty in obtaining government approval for wind farm development 

(Lewis, 2013). This again means that the virtual non-existence of foreign developers is not 

necessarily a sign of superior domestic capabilities. The market shares do not directly reflect 

technological capabilities because Chinese manufacturers benefited from a variety of 

preferential treatment by both the government and state-owned developers (Lewis, 2013). 

 

[Insert Figure 3 here] 

[Insert Table 1 here] 

 

2.3 Productivity of wind farms in China 

This study analyzes the following three output measures to assess learning effects on the 

productivity of wind farms in China: (1) turbine size, (2) unit turbine costs, and (3) actual 

power generation. The first and second indicators are capacity-related productivity measures, 

while the third is generation performance. In the sample of 312 CDM wind farms in China, the 

average turbine size increased by 48% and the average unit turbine cost decreased by 8% 

between 2005 and 2011. However, the monthly average power generation per installed wind 

turbine (megawatt-hours or MWh/turbine) declined in 2007 then increased somewhat, but 

deteriorated again between 2011 and 2012 (see Figure 4). The generation performance decline 

in 2007 corresponds to the start of the massive expansion of China’s wind power market and 
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the influx of many new Chinese turbine manufacturers into the market, while the deterioration 

of generation performance starting in 2011 may be due to the wind power curtailment. The 

commonly used evidence of catch-up by China’s wind power industry (an increase in installed 

turbine capacity or turbine size) does not consider the productivity of wind power technologies 

when they are put into use. Therefore, questions remain about how the significant experience 

accumulated in the Chinese wind power industry contributed to productivity gains, especially 

in terms of actual generation performance. 

 

[Insert Figure 4 here] 

 

The most conventional learning curve model relates productivity gains to learning by doing. 

That is, knowledge accumulation through repetition of similar tasks increases workers’ 

productivity (Bahk and Gort, 1993). There are two types of experience that are important to a 

wind farm developer’s learning by doing: (1) installation experience and (2) operation and 

maintenance (O&M) experience (Nemet, 2012). First, a developer needs to make decisions on 

technology and site selection at the time of wind farm installation. Key to the technology 

selection are the overall cost, efficiency and reliability of wind turbines. It is also crucial to 

select a windy site because the amount of wind energy available increases with the cube of 

wind speed. Second, wind farms need to be operated to maximize the power output and 

minimize the O&M costs. To this end, it is essential to optimize turbine control and grid 

integration, minimize the share of time wind turbines are out of service for maintenance, and 

to schedule the maintenance during non-windy periods of the year. 
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Learning also takes place at the manufacturer’s side. The accumulation of experience by a 

manufacturer may contribute to turbine quality improvements in two distinct ways. First, a 

manufacturer may increase its productivity through repetition of manufacturing work, i.e., 

learning by doing. Thus, the turbine quality may be influenced by the cumulative 

manufacturing experience of the manufacturer at the time of wind farm installation. Second, a 

manufacturer may engage in activities aimed at new knowledge creation such as R&D. The 

accumulation of new knowledge may result in innovations and greater productivity, or learning 

by searching (Kouvaritakis et al., 2000). The stock of knowledge accumulated by the time of 

wind farm installation will then determine the quality of the turbine installed in the wind farm. 

Furthermore, technological learning is facilitated by the interaction between a developer and 

its partner manufacturer, i.e., a user and producer of innovation (Lundvall, 1988). This is 

because successful innovation requires attention to users’ needs (Laursen, 2011). Moreover, a 

stable user-producer relationship reduces transaction costs, leading to an accelerated pace of 

innovation and learning (Fagerberg, 1995). The wind farm installation involves close 

interaction between a developer and its partner manufacturer supplying technologies. Their 

joint experience in installation may thus have distinct contributions to productivity growth 

(Tang and Popp, 2016). 

Common across all of the different learning mechanisms is that the stock of knowledge is 

assumed to depreciate over time due to employee turnover, layoffs, and forgetting things over 

time. Hence, if the nature of experience is comparable, knowledge gained from recent 

experience is more valuable than that associated with earlier experience (Benkard, 2000). 

Note that there are several possible explanations for China’s stagnating power generation 

performance other than the inexperience of the firms operating in China, including delayed 
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interconnection, integration challenges, and first-mover resource advantages. China faces 

significant disparities between energy resources and load centers, which requires an extensive 

transmission infrastructure. Despite the government’s establishment of large scale “wind 

power bases” in order to allow for transmission planning to occur far in advance (Wen, 2012), 

wind farms have frequently faced delays in being connected to the grid. Installed wind power 

capacity that is not generating electricity due to delayed grid connection may therefore result 

in a decrease in generation performance (Yang et al., 2012).  

Along with transmission, the other major technical challenge plaguing wind power 

development in China is integration. Some of China’s best wind resources are concentrated in 

northern China, which is also one of the most coal-rich parts of the country. The major technical 

challenge related to integrating large amounts of wind power, particularly in Eastern Inner 

Mongolia, is balancing a grid based on wind and coal. With few gas power or hydropower 

plants, coal power plants are ramped up and down to keep the grid stable (e.g., for cycling, 

load-following, peaking generation, and ancillary services), significantly reducing their overall 

efficiency (Kahrl et al., 2011). Running coal plants that provide combined heat and power 

trumps wind farms; particularly in the wintertime when the heat is needed. As a result, China’s 

wind power installations have faced a widespread problem of wind power curtailment (Lewis, 

2016a).  

Another reason for the stagnating generation performance could be related to first-movers 

having occupied the best wind resource sites, while the followers need to use sites with lower 

wind speed. Any analysis of generation performance must therefore attempt to control for all 
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of these potential confounding factors. The next section explains the empirical strategy for a 

learning curve analysis of the Chinese wind power industry.  

 

3 Data and methods 

3.1 Estimation methodology  

The estimation begins by adopting a modified Cobb-Douglas production function that was 

applied in Nemet (2012) for a learning curve analysis of California’s wind power industry 

using power generation data: 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝐾𝐾𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑄𝑄𝑖𝑖)  (1) 

where Yit refers to the output level of wind farm i at time t. As discussed in section 2.3, this 

study uses (1) actual power generation as a generation-based output indicator, as well as (2) 

turbine size and (3) unit turbine costs as capacity-related output measures. The output is 

determined by the capital stock, Kit, wind resources, Wit, policies affecting wind farms, Pit, 

stock of knowledge derived from cumulative experience, Xit, and equipment quality, Qi. Labor 

input is dropped from the model because such data are not publicly available for the Chinese 

wind power industry. This is unlikely to be a significant omission given that labor costs of wind 

farms typically account for only about 10% of the total costs (Kirkegaard et al., 2009, p. 38; 

Neumann et al., 2002, p. 13). Note also that the skill levels of labor are captured by the 

experience variable, Xit (Nemet, 2012).  

The model takes into account various types of learning by developers and manufacturers. At 

the developer’s side, installation and O&M experience contributes to productivity 

enhancement. While the wind farm installation is a one-time decision, O&M requires 

periodical decisions during the lifetime of the wind farm. Thus, Xit is split into a developer’s 
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cumulative installation experience at the time of installation, Ii, and its cumulative O&M 

experience at time t, Oit. The output of wind farms is also influenced by a manufacturer’s 

cumulative experience in turbine manufacturing, Mi, and its stock of knowledge accumulated 

through R&D activities by the time of installation, Ri. Furthermore, the cumulative installation 

experience shared by a developer and its partner manufacturer by the time of installation, Ji, 

may influence the output level in a way that is distinct from the learning through unshared 

installation experience. In order to avoid double counting of experience, the amount of joint 

installation experience, Ji, is subtracted from a developer’s installation experience, Ii, and from 

a turbine maker’s manufacturing experience, Mi. 

The equipment quality, Qi, is measured by capital vintage as newer capital vintages embody 

greater technological progress (Barrios and Strobl, 2004). This essentially captures industry-

wide technological progress that is common to all wind farms. As China’s wind power industry 

has actively engaged in international technology transfer (Lewis, 2013), the industry has likely 

benefited from the technological progress both within and outside China. The model thus adds 

a variable measuring the technological progress in the global wind power industry.  

In the case of China, it may be important to distinguish SOEs with private ones. SOEs tend to 

have better resources and political connections, which may influence the performance of wind 

farms (Tang and Popp, 2016). Thus, dummies for state-owned manufacturers, SMAKE,i, and 

state-owned developers, SDEV,i, are added to the model.  

It is important to control for power market characteristics as they influence a utility’s power 

dispatch decisions and developers’ investment decisions. For example, a growing demand for 

electricity requires a large amount of power supply in general. Furthermore, a reliable 

integration of wind power requires back-up power sources with load-following capabilities. In 
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China, gas-fired power capacity is negligible

𝑖𝑖

2 and hydropower plants are mostly located in the 

south, distant from the large wind power bases in the northern area. This makes coal-fired 

power to serve as a back-up source for wind power integration (Yang et al., 2012). As discussed 

above, a utility may decide to curtail wind power generation. The model thus includes the 

annual electricity demand in the province where a wind farm i is located, Eit, the installed 

capacity of steam turbines for power generation in the province (mostly, coal-fired power 

generation), GSTEAM,it, the installed capacity of hydropower turbines in the province, GHYDRO,it, 

and, as a proxy measure of curtailment, the share of wind power in the total power generation 

capacity in the province, Cit.3 Note that curtailment is more likely in provinces with a high 

penetration rate (Li et al., 2014). In contrast, a moderate level of wind power penetration may 

encourage market competition and drive productivity improvements. These suggest an inverted 

U-shaped relationship between the output levels and wind power penetration rates. Therefore, 

a squared term of Cit is also added to the model. Based on the above, the final model is specified 

as follows. Log-transformation is applied to all the ratio variables because they have right-

skewed distributions. For variables with zero-value observations (e.g., the experience and 

knowledge stock variables), a very small number (0.0001) is added to the original observations 

because the log-transformation would otherwise yield negative infinity. The variable 

definitions are summarized in Table 2. 𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝐾𝐾𝑖𝑖𝑖𝑖,𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑖𝑖, 𝐼𝐼𝑖𝑖 ,𝑂𝑂𝑖𝑖𝑖𝑖 ,𝑀𝑀𝑖𝑖 ,𝑅𝑅𝑖𝑖 , 𝐽𝐽𝑖𝑖 ,𝑄𝑄𝑖𝑖 , 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖 , 𝑆𝑆𝐷𝐷𝑀𝑀𝐷𝐷,𝑖𝑖 ,𝐸𝐸𝑖𝑖𝑖𝑖 ,𝐺𝐺𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 ,𝐺𝐺𝐻𝐻𝐻𝐻𝐷𝐷𝐻𝐻𝐻𝐻,𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐶𝐶𝑖𝑖𝑖𝑖2)  (2) 

                                                 
2 Gas-fired power capacity accounted for only 2.7% of China’s total power generation capacity in 2009 

(Yang et al., 2012). 

3 Data on province-level curtailment rates are available, but not used in the analysis because of an 

endogeneity problem (e.g., the amount of wind power generation determines curtailment rates). 
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[Insert Table 2 here] 

 

3.2 Data and variables 

The compiled dataset includes the characteristics and power generation of 312 CDM wind 

farms that were installed in China between 2005 and 2011 and generated wind power between 

2006 and 2012. The sample includes CDM wind farms that submitted monitoring reports to 

the United Nations Framework Convention on Climate Change (UNFCCC), a UN body 

overseeing the CDM, by the end of 2012. This is because the analysis uses actual power 

generation as one of the output indicators, which can be determined only after the wind farms 

have been operational. The sample covers 21% of China’s total grid-connected turbine capacity 

in 2012, which essentially excludes CDM wind farms that have not submitted monitoring 

reports to the UNFCCC and non-CDM wind farms. 

The dataset is hand-coded from 258 project design documents (PDDs) and 962 monitoring 

reports, all of which are publicly available on the UNFCCC website (UNFCCC, 2016). While 

the information on wind farm characteristics can be obtained from the PDDs, the actual power 

generation data are only available in monitoring reports. Some wind farms use two or three 

wind turbine models, in which case the wind farms are split into multiple batches so that each 

batch represents one turbine model. This explains why the dataset contains 312 CDM wind 

farms (including split batches) based on the data collected from 258 PDDs. In this process, 

power generation and capital investment data are apportioned pro rata to each batch’s installed 

turbine capacity. The panel data are unbalanced because the wind farms started operation at 

different times, with an increasing number of wind farms starting in the latter part of the 
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analysis period. The data quality is considered high because the data are independently verified 

during the CDM project assessment processes (Tang and Popp, 2016).  

The CDM dataset is complemented by a proprietary dataset obtained from Huaxia Wind (2013), 

which covers all Chinese wind farms including non-CDM ones between 1989 and 2012. 

Although this full-sector dataset does not contain power generation data, it includes 

information on the name, location, turbine model, installed capacity, commissioning date and 

developer of all wind farms in China. Therefore, it enables the construction of variables 

measuring experience in installation and operation as well as turbine manufacturing in the 

entire Chinese wind power industry. Moreover, the full-sector dataset enables the use of the 

Heckman selection model to address the potential selection bias due to the moderate coverage 

of the CDM sample (Heckman, 1979). For implementing the Heckman selection model, it was 

necessary to merge the CDM and full-sector datasets. Because they do not share a common 

wind farm identifier, the wind farms in the CDM dataset had to be manually matched with 

those in the full-sector dataset. Following the procedures in Chan and Huenteler (2015), each 

CDM wind farm was checked for its name, location, turbine model, installed capacity and 

developer, and matched with a wind farm in the full-sector dataset. In terms of installed 

capacity, 97% of the CDM sample was successfully matched with the full-sector dataset. When 

integrating the CDM and full-sector datasets, the unmatched CDM wind farms caused 

duplicates because they were not deleted in the full-sector dataset. However, the error was 

considered small enough to justify the use of the integrated dataset for addressing the selection 

issue. The following sections explain each of the variables used in the analysis. 
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3.2.1 Output variables 

The actual power generation of a wind farm, YGEN,it, is measured by the monthly power 

generation data are averaged over a quarter (in MWh/month). The monthly power generation 

data are obtained from the monitoring reports of the CDM wind farms. The amount of wind 

power generation fluctuates within a year due to the strong seasonality in wind speed. In 

addition, most wind farms in the sample started operation in the middle of the year, making it 

necessary to adjust the power generation data for the start of wind farm operation. The monthly 

power generation data—as opposed to yearly data—are necessary to take these issues into 

account. A drawback of the monthly data is that they inflate the sample size without adding 

much variation in data values. To strike a balance, the monthly power generation is averaged 

over a quarter. 

The turbine size of a wind farm, YSIZE,i, is the rated capacity of the wind turbine model used in 

the wind farm (in kW). The unit turbine costs of a wind farm, YCAPEX,i, are measured by the 

amount of capital investment per MW of installed turbine capacity (in million 2005 RMB/MW). 

The turbine size and cost data are obtained from PDDs. 

3.2.2 Experience and knowledge stocks 

The variables of interest are those measuring experience and knowledge stocks. A developer’s 

cumulative experience in wind farm installation, Ii, is measured by the cumulative capacity of 

wind turbines installed in China by the developer, minus the cumulative capacity of wind 

turbines jointly installed by the developer and its partner manufacturer, prior to the installation 

of a given wind farm (in GW). As power generation data are not available for non-CDM wind 

farms, a developer’s operating experience, Oit, is measured by the product of the cumulative 

installed turbine capacity and the number of days passed since the wind farm installation (in 
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TW-days). A manufacturer’s cumulative experience in turbine manufacturing, Mi, is measured 

by the cumulative installed capacity of wind turbines supplied in China by the manufacturer, 

minus the cumulative capacity of wind turbines jointly installed by the manufacturer and its 

partner developer, prior to the installation (in GW). The joint cumulative experience in 

installation, Ji, is measured by the cumulative capacity of wind turbines jointly installed by a 

developer and its manufacturer prior to the wind farm installation (in GW). 

A manufacturer’s knowledge stock, Ri, is measured by the cumulative number of patents the 

manufacturer filed in wind power technology fields prior to the wind farm installation. The 

patent data are obtained from Derwent Innovations Index (Thomson Reuters, 2014). The patent 

applications are weighted by their family size4 to take into account the value of the patented 

inventions (Popp et al., 2011). The patent data include all patent applications filed by Chinese 

manufacturers. For international manufacturers operating in China, the data only include 

patents that were filed in China because only these can be expected to be the result of R&D 

activities for China. This restriction is applied because the analysis concerns learning by 

searching in the Chinese wind power market. There are limitations to the use of patents as a 

measure of knowledge stock; e.g., not all inventions are patented or patentable (Archibugi and 

Pianta, 1996). Despite their limitations, patents are used widely as a measure of innovation 

activities because they provide a wealth of information on the invention and the applicants, and 

can be disaggregated to specific technology fields (e.g., Popp et al., 2011). 

                                                 
4 The patent family size refers to the number of countries in which protection of the invention has been 

sought. As patenting is a costly and time-consuming process, the geographical coverage of a patent 

application is assumed to be associated with the value of the invention (OECD 2009, pp.139–140). 
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Experience and knowledge depreciate over time. This depreciation effect is modeled using the 

perpetual inventory method (Peri, 2005). For illustration, the calculation of Oit is shown below. 

The same procedure applies to Ii, Mi, Ri and Ji, except that the discounted knowledge stock for 

these variables is fixed over the wind farm lifetime as they concern one-time decisions at the 

installation.  𝑂𝑂𝑖𝑖𝑖𝑖 = (1 − 𝛿𝛿)𝑂𝑂𝑖𝑖𝑖𝑖−1 + 𝑒𝑒𝑖𝑖𝑖𝑖−1 (3) 

where Oit is the depreciated stock of previously acquired operating experience in quarter t, eit-

1 the amount of new operating experience gained in quarter t-1, and 𝛿𝛿 the rate of knowledge 

depreciation per quarter. The default knowledge depreciation rate is 2.6% per quarter or 10% 

per year, which is a value commonly used in the literature (e.g., Dechezlepretre et al., 2011).  

3.2.3 Wind resource 

The wind resource available at the wind farm site is an important determinant of wind power 

generation. However, only about a quarter of the CDM sample reports wind resource 

assessment in the PDDs. Alternatively, wind speed data are extracted from the publicly 

available 3TIER Global Wind Dataset (IRENA, 2014). This dataset contains the annual 

average wind speed at 80 meters above ground, simulated using over 10 years of hourly data 

(in m/s). The wind speed data are available on a 2-arc-minute (ca. 5 km) resolution grid, which 

is a sufficiently accurate measure of site-specific wind speed. The geographical coordinates of 

wind farms are obtained from the PDDs, and used to match each wind farm with the closest 

grid in the 3TIER dataset.  

Wind turbines typically have cutout speeds, above which they shut down in order to avoid 

damages to the equipment. Therefore, the direct use of wind speed is likely to result in 

overestimation of the wind resource available for power generation. One way to address this 
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issue is by converting the annual average wind speed into full load hours, i.e., the number of 

hours which a wind turbine would spend at full load if it always operated at that level. European 

Environment Agency (2009) offers a suitable methodology, which estimates full load hours 

based on power-velocity curves of wind turbine models and a Weibull distribution for taking 

into account the variation in wind speed over a year (for the application of this methodology, 

see also Prässler and Schaechtele, 2012).5  This approach assumes a 1.5 MW wind turbine 

model for evaluating Europe’s onshore wind energy potential. In comparison, the average size 

of wind turbines in this study’s database is 1.3 MW. The small difference in the turbine size 

causes slight overestimation of full load hours, but this small bias is considered acceptable. The 

full load hours are multiplied by the wind farm capacity to derive a measure of wind resource 

available at the wind farm site, i.e., the expected amount of monthly power generation of a 

wind farm given the annual average wind speed (in MWh/month), WSITE,i. 

A limitation of the 3TIER data is that they only provide annual average wind speeds. This 

makes it necessary to control for seasonal variation in wind speed. He and Kammen (2014) 

provide the monthly average wind capacity factors for each province in China, which are 

simulated using the hourly wind speed data obtained from 3TIER. In this study, these monthly 

capacity factors are averaged over a quarter to derive the expected amount of monthly power 

generation in a given province for each quarter (in MWh/month), WPRV,it. In the absence of site-

specific wind speed data measured over time, the combined use of WSITE,i and WPRV,it is the best 

available measure of the wind resource. 

                                                 
5 The estimation formula for onshore wind farms is as follows. Full load hours (hours per year) = Annual 

average wind speed at hub height (in meters per second) x 626.51 – 1,901. 
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3.2.4 Policy variables 

The model adds variables for policies particularly important for wind farms in China between 

2005 and 2012: power purchase tariff, local content requirements, and the CDM. Note that the 

list excludes policies that existed but did not substantially change over the observation period 

because they cannot have caused any change in the output levels during the period.  

Power tariffs, PTARIFF,i, are obtained from the actual bidding prices for the 2005-2008 period. 

In 2009, the Chinese government divided China’s provinces into one of four onshore wind 

resource categories and set different feed-in tariffs for each category (Hu et al., 2013). Tariff 

levels are usually fixed for the entire lifetime of a wind farm or reduced after a certain operation 

period (e.g., 30,000 full load hours). In the former case, the lifetime tariff levels are used. In 

the latter case, the tariff levels for the first operation period are used because the first operation 

period is sufficiently long to cover the entire period of investigation.6 The tariff information is 

obtained from the PDDs and converted into real values (in 2005 RMB/kWh).  

Local content requirements, PLCR,i, are expressed as the minimum share of wind farm 

equipment that needs to be procured within China (in %). The local content requirement rate 

was first 40% in 1996, then increased to 50% in 2003 and to 70% in 2004, and finally 

abandoned in 2009 (Gosens and Lu, 2013). The local content requirement rate at the time of 

wind farm installation is used in the analysis. While there were numerous other types of 

protectionist measures used in China during the time period examined, the local content 

requirements were most certainly the largest barrier to entry for foreign firms into the Chinese 

wind market since it required a significant localization of overseas supply chains (Lewis, 2013) 

                                                 
6 Onshore wind farms typically operate about 2,000 to 2,500 full load hours per year (Krohn et al., 2009, 

p. 65). 
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As a result, the local content requirement rate is used as a proxy for other protectionist measures 

that were in place including tariff and non-tariff barriers. 

The impact of the CDM is measured by the annual average secondary CER prices, PCER,t, (in 

2005 USD/tCO2e). Secondary CERs are carbon credits that have been issued by the UNFCCC 

and can be traded at exchanges. The secondary CER price information is obtained from the 

World Bank’s publications (Capoor and Ambrosi, 2009, 2007; Kossoy and Guigon, 2012).    

3.2.5 Other control variables 

Capital stock, Kit, is measured by the depreciated capital investment of a wind farm (in million 

2005 RMB). The capital investment data are obtained from the PDDs. As a default, it is 

assumed that the capital fully depreciates at a constant rate over a turbine lifetime of 20 years 

(Krohn et al., 2009). The industry-wide technological progress, Qi, is measured by the global 

average turbine size in the quarter before the wind farm installation (in kW). Dummies for 

state-owned turbine manufacturers, SMAKE,i, and state-owned developers, SDEV,i, are constructed 

by confirming the company ownership on the company websites. Data on the annual electricity 

demand (in TWh/year), Eit, the installed capacity of steam turbines for power generation (in 

MW), GSTEAM,it, the installed capacity of hydropower turbines (in MW), GHYDRO,it, and the share 

of wind power in the total power generation capacity (in %), Cit, in each province are collected 

from China Electric Power Yearbook 2006-2013 (e.g., China Electric Power Yearbook 2013). 

Table 3 provides descriptive statistics for the dataset (see Table A.1 for a correlation matrix).  

 

[Insert Table 3 here] 
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4 Results 

The analysis begins with model (1), which is a panel data analysis regressing power generation 

on variables measuring the capital stock, wind resource, policy, power market characteristics, 

industry-wide technological progress and firm ownership. Model (2) adds experience and 

knowledge stock variables to model (1). In order to address the selection issue, the Heckman’s 

two-step estimation procedure was used for the model estimation. In the first step, a selection 

equation was estimated with the full-sector dataset using all the regressors listed above except 

for the capital stock, wind resources, and power purchase tariffs (data were not available for 

these excluded variables). In the second stage, an outcome equation was estimated with the 

CDM sample, regressing power generation on all the aforementioned variables.7 The outcome 

equation was estimated with a random effect model as the use of wind-farm-fixed effects would 

have dropped most of the variables of interest, i.e., time-invariant experience and knowledge 

stock variables, Ii, Mi, Ri and Ji. As the residuals of the models were found unequal across wind 

farms, standard errors were clustered on wind farms to address heteroskedasticity. Furthermore, 

year- and province-fixed effects were added to control for any unobserved time-varying factors 

affecting all wind farms (e.g., changes in national and international policies not explicitly 

measured) and time-invariant heterogeneity across provinces (e.g., distance from load centers, 

grid infrastructure).  

Models (3) – (6) are cross-sectional analyses using the turbine size and unit turbine costs as 

dependent variables. Only the observations in the first quarter of wind farm operation were 

                                                 
7 For models (1) and (2), the estimated correlation between the errors in the selection and outcome 

equations was not significantly different from zero at the 0.05 significance level, and the hypothesis 

that the two equations were independent could not be rejected. This indicated that the selection bias was 

not a serious concern. 
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used because the turbine size and unit turbine costs do not vary over time. The estimation of 

these models also followed the Heckman’s two-step procedure.8 While the selection equation 

was estimated with the same procedure as explained above, the following adjustments were 

made to the outcome equation estimation due to the difference in the dataset structure: the 

ordinary least squares estimator was used with robust standard errors clustered on wind farms; 

the quarterly average wind resource (WPRV,it) and operating experience (Oit) were dropped as 

they were highly correlated with the site-specific wind resource (WSITE,i) and a developer’s 

installation experience (Ii), respectively9; year-fixed effects were dropped because they caused 

perfect multicollinearity with the secondary CER price (PCER,t) and industry-wide 

technological progress (Qi); the capital stock variable (Kit) was dropped in models (5) – (6) 

because the capital expenditure was used to calculate unit turbine costs. 

The estimation results are summarized in Table 4. The results of models (1) and (2) show that 

generation performance (YGEN,it) improves with greater capital stock (Kit) and wind resource 

(WSITE,i and WPRV,it). The addition of the experience and knowledge stock variables (Ii, Oit, Mi, 

Ri and Ji) slightly improves the overall model fit. However, none of the coefficient estimates 

of these variables is statistically significant. The other variables do not appear to influence the 

generation performance. This demonstrates that the wind power generation performance 

between 2006 and 2012 was mainly driven by the capital and wind resource inputs, but not by 

the experience and knowledge levels of wind farm developers and turbine manufacturers. 

                                                 
8 For models (3) and (4), there was evidence of selection bias at the 0.05 significance level, while this 

was not the case for models (5) and (6). 

9 The pairwise correlation between WPRV,it and WSITE,i was 0.844, and that between Oit and Ii 0.949. 
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Models (3) – (4) use the turbine size (YSIZE,i) as an output measure. As expected, greater capital 

stock (Kit) and higher secondary CER prices (PCER,t) are associated with larger turbine size. 

Somewhat surprisingly, there is strong evidence that smaller turbines tend to be installed at 

better wind resource sites (WSITE,i). This is most likely because better wind resource sites have 

been taken by first-movers with early-generation wind turbines. There is also moderate 

evidence that state-owned manufacturers (SMAKE,i) on average supplied smaller turbines. The 

inclusion of the experience and knowledge variables improves the overall model fit. However, 

the results show either statistically insignificant (Ii, Mi and Ji) or even negative (Ri) learning 

effect on the turbine size. 

Models (5) – (6) are cross-sectional analyses on unit turbine costs (YCAPEX,i). The results show 

that unit turbine cost reductions are expected in provinces with higher shares of wind power in 

their total power generation capacity (Cit), perhaps due to stronger market competition. Local 

content requirements also contributed to unit turbine cost reductions through localization of 

wind turbine supply chains. The positive correlation between unit turbine costs and power 

purchase tariffs (PTARIFF,i) demonstrates that feed-in tariffs, a cost-recovery pricing policy, 

encouraged investments in wind farms with smaller profit margins. While the experience and 

knowledge stock variables slightly improve the overall model fit, the results again show either 

statistically insignificant (Mi and Ri) or negative (Ii and Ji) learning on unit turbine costs. 

A robustness test is performed applying alternative knowledge depreciation rates of 0% and 

5.4% per quarter, which are equivalent to 0% and 20% per year (±100% of the default rate as 

in Hascic and Johnstone 2011). As shown in Table A.2, the estimation results are very similar 

to the main results applying the default knowledge depreciation rate. The only material change 

is that, in models (9) and (10) analyzing the turbine size, a developer’s installation experience 
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alone (Ii) became statistically significant at the 0.10 significance level when applying the higher 

knowledge depreciation rate of 5.4% per quarter. Besides this marginal support for learning by 

doing on the turbine size, the results are not sensitive to the choice of a knowledge depreciation 

rate because most of the experience and knowledge stock variables did not matter much for the 

three output measures. 

Another robustness test is conducted on the capital depreciation rate for the models analyzing 

generation performance. This robustness test is not applicable to the models on the turbine size 

and unit turbine costs as they are cross-sectional analyses using only the first-quarter 

observations. This sensitivity analysis is important because the more the capital is assumed to 

depreciate over the turbine lifetime, the more the productivity will be positively attributed to 

the experience and knowledge stocks. Although the default turbine lifetime of 20 years is a 

common assumption used in the financial analysis of wind farms, some studies have also used 

a turbine lifetime of 15 years (Hughes, 2012) and 25 years (Staffell and Green, 2014). Table 

A.3 summarizes the estimation results assuming full capital depreciation over 15 and 25 years. 

The results are still very similar to the main results. In particular, the results assuming a shorter 

turbine lifetime strengthen the finding of limited learning on generation performance. 

 

5 Discussion 

5.1 The findings and contributions to the literature 

This study found limited evidence of learning on actual wind power generation, turbine size 

and unit turbine costs during the rapid expansion phase of China’s wind power industry 

between 2005 and 2012. A developer’s installation experience, a turbine maker’s 

manufacturing experience and knowledge stock, and joint installation experience of a 
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developer and its partner manufacturer did not lead to improvements in the three output 

measures.  

China has been successful in expanding wind power capacity, but wind power generation has 

not increased as much due to various reasons including inadequate grid infrastructure (Lu et 

al., 2016), a lack of financial incentives for transmission and back-up generation providers to 

integrate wind power (Yang et al., 2012), and inferior wind turbine quality (Lu et al., 2016). 

“[L]arge scale” and “high speed” were the main focus during the rapid expansion phase of 

China’s wind power development, and the industry began to pay greater attention to quality 

control only around 2011 as challenges became more apparent (Li et al., 2012, p. 54). 

Furthermore, the increasing number of domestic turbine manufacturers led to intense or even 

“unreasonable” price competition (Li et al., 2014, p. 23). Consequently, many foreign 

manufacturers pulled out of the Chinese market as their more expensive products lost demand. 

This brought wind power technology prices down to such low levels that manufacturers could 

not invest sufficiently in technology improvement and quality assurance (Li et al., 2012). It is 

hence reasonable that differences in generation performance and turbine size are explained by 

differences in capital invested per wind farm rather than the experience and knowledge stock 

of developers and manufacturers. Given the intense price competition, it is also reasonable that 

the reductions in unit turbine costs were strongly correlated with market competition measured 

by the share of wind power in the provincial generation capacity, but not with the experience 

and knowledge stock variables. 

These findings are important empirical contributions to the learning curve literature on China’s 

wind power industry, which has otherwise generally supported significant technological 

learning in the industry (Qiu and Anadon, 2012; Tang and Popp, 2016).  
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A key difference between this study and the others is that this study used actual power 

generation as one of the indicators of technological learning. Common indicators used in the 

literature are turbine costs or prices, and predicted generation performance. In the learning 

curve literature on low-carbon technologies in the developing world, and in the smaller subset 

focusing on China’s wind power sector, this study is the first to use actual power generation 

as an output measure. This distinction is important because technologies often perform 

differently from the design specifications when they are put into use (e.g., Lam et al., 2016).  

5.2 Limitations and future work 

China’s wind power industry between 2005 and 2012 is a case of technological learning in a 

rapidly growing, capital-intensive renewable energy industry with largely localized supply 

chains. The capital-intensive nature of the wind power industry may partly explain the limited 

evidence of learning by doing because learning in such industries mainly results from the fine-

tuning of production techniques than from workers becoming more efficient at tasks they 

repeatedly perform (Benkard, 2000). Furthermore, international knowledge spillovers may 

play a more prominent role in industries with more global supply chains. Future research 

should thus consider comparing capital-intensive industries with labor-intensive ones, and 

industries with local and global supply chains.  

 

6 Conclusions and policy implications 

This study examined how accumulation of experience and knowledge by wind farm developers 

and turbine manufacturers contributed to productivity gains in China’s wind power industry 

during its rapid expansion phase between 2005 and 2012. The learning mechanisms examined 
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in this study were learning by doing through a developer’s installation experience, a turbine 

maker’s manufacturing experience, and joint installation experience of a developer and its 

partner manufacturer, as well as learning by searching through a turbine manufacturer’s R&D 

activities. The analysis of 312 CDM wind farms in China found that none of these learning 

mechanisms resulted in improvements in actual power generation, turbine size and unit turbine 

costs. The improvements in generation performance and turbine size instead were explained 

by differences in capital invested per wind farm, suggesting that larger and more expensive 

wind farms performed better. It is also found that reductions in unit turbine cost were achieved 

by intense price competition, pursued at the expense of technology improvement and quality 

assurance, rather than being driven by learning.  

Most experts agree that while local content requirements were instrumental in supporting the 

initial development of China’s turbine manufacturing industry (Kuntze and Moerenhout, 2013), 

they did little to transfer foreign technology to China, or to foster knowledge transfer between 

foreign and Chinese wind power firms (Lewis, 2013). It is then not surprising that this study 

found the policy did little to improve generation performance and only slightly contributed to 

the turbine size increase. It was also found that China’s state-owned manufacturers supplied 

smaller turbines than other manufacturers including foreign ones. This points to a deficiency 

in Chinese turbine manufacturers being able to supply quality products, at least between 2005 

and 2012. 

The finding that better wind resource sites were occupied by smaller turbines points to the 

opportunity for improving generation performance through repowering, i.e., replacing old wind 

turbines with modern, more productive ones. Repowering of wind farms is common in Europe 
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and the US, but only recently started in emerging wind power markets including China (IEA, 

2013). 

The lack of learning through experience and knowledge accumulation during the rapid 

expansion phase of China’s wind power industry suggests a trade-off between the pace of the 

build-up of domestic industry and productivity gains. As a result, as countries pursue low-

carbon development paths, they should be cognizant that while scale-up can happen quickly, 

fostering the technological capability of local industry can take a long time. It is hence crucial 

to complement deployment policies with carefully designed innovation policies for developing 

and refining local technological capability. 

 

Acknowledgment 

This work was partly supported by JSPS KAKENHI [grant number 15K16163] and the 

National Science Foundation [award number 1262452]. The authors would like to thank 

Michael Eschmann and Dario Stocker for supporting the data collection work. The feedback 

from the editor and two anonymous reviewers, Hu Gao, Nathan Hultman, William Lim, 

Sebastian Meyer, Axel Michaelowa, Katharina Michaelowa, Akihisa Mori, Jens Olsen, Kaare 

Sandholt, Kenji Takeuchi, David Popp and Charles Weiss is gratefully appreciated. The 

authors are solely responsible for any errors and omissions in this article. 

 

 



 33 

References 

Archibugi, D., Pianta, M., 1996. Measuring technological change through patents and 

innovation surveys. Technovation. https://doi.org/10.1016/0166-4972(96)00031-4 

Arrow, K.J., 1962. The economic implications of learning by doing. Rev. Econ. Stud. 29, 155–

173. 

Bahk, B.-H., Gort, M., 1993. Decomposing learning by doing in new plants. J. Polit. Econ. 

https://doi.org/10.1086/261888 

Barrios, S., Strobl, E., 2004. Learning by doing and spillovers: Evidence from firm-level panel 

data. Rev. Ind. Organ. https://doi.org/10.1007/s11151-004-3536-y 

Benkard, C.L., 2000. Learning and forgetting: The dynamics of aircraft production. Am. Econ. 

Rev. 90, 1034–1054. https://doi.org/10.1257/aer.90.4.1034 

Capoor, K., Ambrosi, P., 2009. State and trends of the carbon market 2009. World Bank, 

Washington, D.C. 

Capoor, K., Ambrosi, P., 2007. State and trends of the carbon market 2007. World Bank, 

Washington, D.C. 

Chan, G., Huenteler, J., 2015. Financing wind energy deployment in China through the Clean 

Development Mechanism: Additionality and incentives for technological change, in: 

Chan, G. (Ed.), Essays on Energy Technology Innovation Policy. Harvard University. 

China Electric Power Yearbook, 2013. China Electric Power Yearbook. China Electric Power 

Press, Beijing. 

Chinese Office of the National Coordination Committee on Climate Change (NCCC), 2005. 

Measures for operation and management of Clean Development Mechanism projects in 

China. Beijing. 

Dechezlepretre, A., Glachant, M., Hascic, I., Johnstone, N., Meniere, Y., 2011. Invention and 

transfer of climate change-mitigation technologies: A global analysis. Rev. Environ. Econ. 

Policy 5, 109–130. https://doi.org/Doi 10.1093/Reep/Req023 

European Environment Agency, 2009. Europe’s onshore and offshore wind energy potential: 

An assessment of environmental and economic constraints, EEA Technical report. 

Copehnhagen. https://doi.org/10.2800/11373 

Fagerberg, J., 1995. User-producer interaction, learning and comparative advantage. 

Cambridge J. Econ. 19, 243–256. 

Global Wind Energy Council (GWEC), 2016. Global wind report: Annual market update 2015. 

Brussels. 



 34 

Global Wind Energy Council (GWEC), 2014. Global wind report: Annual market update 2013, 

GWEC. Global Wind Energy Council, Brussels. 

Gosens, J., Lu, Y., 2013. From lagging to leading? Technological innovation systems in 

emerging economies and the case of Chinese wind power. Energy Policy 60, 234–250. 

https://doi.org/http://dx.doi.org/10.1016/j.enpol.2013.05.027 

Hascic, I., Johnstone, N., 2011. CDM and international technology transfer: empirical evidence 

on wind power. Clim. Policy 11, 1303–1314. https://doi.org/Doi 

10.1080/14693062.2011.579311 

He, G., Kammen, D.M., 2014. Where, when and how much wind is available? A provincial-

scale wind resource assessment for China. Energy Policy 74, 116–122. 

https://doi.org/10.1016/j.enpol.2014.07.003 

Heckman, J.J., 1979. Sample selection bias as a specification error. Econometrica 47, 153. 

https://doi.org/10.2307/1912352 

Hu, Z., Wang, J., Byrne, J., Kurdgelashvili, L., 2013. Review of wind power tariff policies in 

China. Energy Policy 53, 41–50. https://doi.org/10.1016/j.enpol.2012.09.057 

Huaxia Wind, 2013. Zhongguo feng dian shichang ji yi jian zai jian fend dian chang xiangmu 

yanjiu baogao [Report on market and existing projects of wind power in China]. Beijing. 

Huenteler, J., Tang, T., Chan, G., Anadon, L.D., 2018. Why is China’s wind power generation 

not living up to its potential? Environ. Res. Lett. 13, 1–10. 

https://doi.org/https://doi.org/10.1088/1748-9326/aaadeb 

Hughes, G., 2012. The performance of wind farms in the United Kingdom and Denmark. 

London. 

International Energy Agency (IEA), 2013. Technology roadmap: Wind energy. Paris. 

International Renewable Energy Agency (IRENA), 2014. The global atlas for renewable 

energy [WWW Document]. URL http://globalatlas.irena.org/ (accessed 3.6.14). 

Kahrl, F., Williams, J., Jianhua, D., Junfeng, H., 2011. Challenges to China’s transition to a 

low carbon electricity system. Energy Policy 39, 4032–4041. 

https://doi.org/10.1016/j.enpol.2011.01.031 

Kirkegaard, J.F., Hanemann, T., Weischer, L., 2009. It should be a breeze: harnessing the 

potential of open trade and investment flows in the wind energy industry, WRI working 

paper series 09-14. World Resources Institute, Washington, D.C. 

Kossoy, A., Guigon, P., 2012. State and trends of the carbon market 2012. World Bank, 

Washington, D.C. 



 35 

Kouvaritakis, N., Soria, A., Isoard, S., 2000. Modelling energy technology dynamics: 

Methodology for adaptive expectations models with learning by doing and learning by 

searching. Int. J. Glob. Energy Issues 14, 104–115. 

https://doi.org/10.1504/IJGEI.2000.004384 

Krohn, S., Morthorst, P.-E., Awerbuch, S., 2009. The economics of wind energy. European 

Wind Energy Association, Brussels. 

Kuntze, J.-C., Moerenhout, T., 2013. Local content requirements and the renewable energy 

industry: A good match? International Centre for Trade and Sustainable Development, 

Geneva. 

Lam, L.T., Branstetter, L., Azevedo, I.M.L., 2017. China’s wind industry: Leading in 

deployment, lagging in innovation. Energy Policy 106, 588–599. 

https://doi.org/10.1016/j.enpol.2017.03.023 

Lam, L.T., Branstetter, L., Azevedo, I.M.L., 2016. China’s wind electricity and cost of carbon 

mitigation are more expensive than anticipated. Environ. Res. Lett. 11, 1–11. 

https://doi.org/10.1088/1748-9326/11/8/084015 

Laursen, K., 2011. User-producer interaction as a driver of innovation: Costs and advantages 

in an open innovation model. Sci. Public Policy 38, 713–723. 

https://doi.org/10.3152/030234211X13070021633242 

Lewis, J.I., 2016a. Wind energy in China: Getting more from wind farms. Nat. Energy 1, 1–2. 

Lewis, J.I., 2016b. The development of China’s wind power technology sector: Characterizing 

national policy support, technology acquisition and technological learning, in: Zhou, Y., 

Lazonick, B., Sun, Y. (Eds.), China as an Innovation Nation. Oxford University Press, 

Oxford, pp. 283–305. 

Lewis, J.I., 2014. The rise of renewable energy protectionism: Emerging trade conflicts and 

implications for low carbon development. Glob. Environ. Polit. 14, 10–35. 

Lewis, J.I., 2013. Green innovation in China: China’s wind power industry and the global 

transition to a low-carbon economy, Contemporary Asia in the World. Columbia 

University Press, New York. 

Li, J., Cai, F., Qiao, L., Wang, J., Gao, H., Tang, W., Peng, P., Geng, D., Li, X., Li, Q., 2014. 

2014 China wind power review and outlook. Chinese Renewable Energy Industries 

Association / Chinese Wind Energy Association / Global Wind Energy Council, Beijing. 

Li, J., Cai, F., Qiao, L., Xie, H., Gao, H., Xiaosheng, Y., Tang, W., Wang, W., Li, X., Li, A., 

Li, S., 2012. 2012 China wind energy outlook. Chinese Renewable Energy Industry 



 36 

Association / Greenpeace / Global Wind Energy Council / Chinese Wind Energy 

Association, Beijing. 

Lu, X., McElroy, M.B., Peng, W., Liu, S., Nielsen, C.P., Wang, H., 2016. Challenges faced by 

China compared with the US in developing wind power. Nat. Energy 1, 16061. 

Lundvall, B.-Å., 1988. Innovation as an interactive process: From user-producer interaction to 

the national system of innovation, in: Dosi, G., Freeman, C., Nelson, R., Soete, L. (Eds.), 

Technical Change and Economic Theory. Pinter Publishers, pp. 349–369. 

Ministry of Electric Power (MOEP), 1994. Feng li fadian chang bing wang yunxing guanli 

guiding [Provisions for grid-connected wind farm management], no. 461. Beijing. 

Ministry of Science and Technology (MOST), 2006. Guojia gao jishu yanjiu fazhan jihua (863 

jihua) [National high tech R&D program (863 program)] - Eleventh Five-Year Plan, no. 

163. Beijing. 

National Development and Reform Commission (NDRC), 2009. Guanyu wanshan fengli 

fadian shangwang dian jia zhengce de tongshi [Notice on improving grid-connected wind 

power tariff policy], no. 1906. Beijing. 

National Development and Reform Commission (NDRC), 2007. Ke zai sheng nengyuan zhong 

changqi fazhan hua [Medium- and long-term plan for renewable energy fevelopment in 

China]. Beijing. 

National Development and Reform Commission (NDRC), 2003. Feng dian te xu quan xiangmu 

qian qi gongzuo guanli banfa [Notice on the wind power concession project management 

approach], no. 1403. Beijing. 

National People’s Congress (NPC), 2005. The renewable energy law of the People’s Republic 

of China. Beijing. 

Nemet, G.F., 2012. Subsidies for new technologies and knowledge spillovers from learning by 

doing. J. Policy Anal. Manag. 31, 601–622. https://doi.org/10.1002/pam.21643 

Neumann, T., Ender, C., Molly, J.-P., 2002. Studie zur aktuellen Kostensituation 2002 der 

Windenergienutzung in Deutschland [Study on the actual cost situations of wind energy 

use in Germany in 2002]. Wilhelmshaven. 

Organisation for Economic Co-operation and Development (OECD), 2009. OECD patent 

statistics manual, Statistics. Paris. 

Peri, G., 2005. Determinants of knowledge flows and their effect on innovation. Rev. Econ. 

Stat. https://doi.org/10.1162/0034653053970258 

Popp, D., Hascic, I., Medhi, N., 2011. Technology and the diffusion of renewable energy. 

Energy Econ. 33, 648–662. https://doi.org/10.1016/j.eneco.2010.08.007 



 37 

Prässler, T., Schaechtele, J., 2012. Comparison of the financial attractiveness among 

prospective offshore wind parks in selected European countries. Energy Policy 45, 86–

101. https://doi.org/10.1016/j.enpol.2012.01.062 

Qiu, Y., Anadon, L.D., 2012. The price of wind power in China during its expansion: 

Technology adoption, learning-by-doing, economies of scale, and manufacturing 

localization. Energy Econ. 34, 772–785. https://doi.org/10.1016/j.eneco.2011.06.008 

Reuters, 2017. China renewable power waste worsens in 2016—Greenpeace [WWW 

Document]. URL www.reuters.com/article/china-renewables-waste/china-renewable-

power-waste-worsens-in-2016-greenpeace-idUSL3N1HQ1KE (accessed 11.2.17). 

Ru, P., Zhi, Q., Zhang, F., Zhong, X., Li, J., Su, J., 2012. Behind the development of 

technology: The transition of innovation modes in China’s wind turbine manufacturing 

industry. Energy Policy 43, 58–69. 

Shi, P., 1986. Chinese wind turbine development, in: Knudsen, H.M. (Ed.), Danish Wind 

Energy Association Conference Proceedings. Copenhagen. 

Söderholm, P., Sundqvist, T., 2007. Empirical challenges in the use of learning curves for 

assessing the economic prospects of renewable energy technologies. Renew. Energy 32, 

2559–2578. https://doi.org/10.1016/j.renene.2006.12.007 

Spratt, S., Dong, W., Krishna, C., Sagar, A., Ye, Q., 2014. What drives wind and solar energy 

investment in India and China. Institute of Development Studies, Brighton. 

Staffell, I., Green, R., 2014. How does wind farm performance decline with age? Renew. 

Energy 66, 775–786. 

Tang, T., Popp, D., 2016. The learning process and technological change in wind power: 

Evidence from China’s CDM wind projects. J. Policy Anal. Manag. 35, 195–222. 

https://doi.org/10.1002/pam.21879 

Thomson Reuters, 2014. Derwent Innovations Index [WWW Document]. URL http://ip-

science.thomsonreuters.com/wok/products_tools/multidisciplinary/dii/ (accessed 2.4.14). 

United Nations Framework Convention on Climate Change (UNFCCC), 2016. Clean 

development mechanism [WWW Document]. URL http://cdm.unfccc.int (accessed 

5.28.16). 

Wen, J., 2012. PM Wen comments on China’s wind power industry with the largest installed 

capacity in the world [WWW Document]. URL 

www.sgcc.com.cn/ywlm/mediacenter/corporatenews/08/280642.shtml (accessed 5.6.15). 



 38 

Yang, M., Patiño-Echeverri, D., Yang, F., 2012. Wind power generation in China: 

Understanding the mismatch between capacity and generation. Renew. Energy 41, 145–

151. https://doi.org/10.1016/j.renene.2011.10.013 

 



 39 

 

Figure 1 Expansion of the Chinese wind power market, 1995-2012 

Source: Huaxia Wind (2013) 
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Figure 2 Size of wind turbines developed by international and Chinese manufacturers, 1994-

2014 

Source: Lewis (2016b) 
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Figure 3 Market share breakdown of China’s annual wind turbine installations, 2004-2012 

Source: Lewis (2014, p.26)
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(a) 

 
 

(b) 

 
(c) 

 

  

Figure 4 (a) The average turbine size, (b) unit turbine costs, and (c) monthly power generation per turbine of the CDM wind farms in the sample 

Note: The means and 95% confidence intervals are shown. The year of installation is shown for the turbine size and cost figures, while the year of operation is used for the generation figure.
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Table 1 Cumulative market shares of turbine manufacturers and wind farm developers in the 

Chinese wind power market, 1994-2012  

 Turbine manufacturers Wind farm developers 

1 Goldwind (CHN) 21.4% China Guodian Corporation (CHN) 22.5% 
2 Sinovel (CHN) 17.1% Datang Group (CHN) 11.9% 
3 United Power (CHN) 11.1% Huaneng (CHN) 11.8% 
4 Dongfang Turbine (CHN) 11.0% Huadian (CHN) 6.8% 

5 
Vestas (DNK) 5.4% China Guangdong Nuclear Wind 

Power Corporation (CHN) 
5.5% 

6 Gamesa (ESP) 4.6% Guohua (CHN) 5.5% 
7 Shanghai Electric Group (CHN) 3.8% China Power Investment (CHN) 3.8% 
8 Mingyang (CHN) 3.0% China Resources (CHN) 3.4% 
9 XEMC Wind Power (CHN)) 2.9% Jingneng (CHN) 2.5% 
10 GE Wind (USA) 2.7% China Suntien Green Energy (CHN) 2.1% 
 Others 16.9% Others 24.2% 

Source: Huaxia Wind (2013) 
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Table 2 Variable definitions 

Symbol Description 

t Calendar time in quarter 
i Wind farm identifier 
Yit Output level of wind farm i in quarter t 
Kit Capital stock of wind farm i in quarter t 
Wit Wind resource available for wind farm i in quarter t 
Pit Value of policy variables for wind farm i in quarter t 
Ii Cumulative installation experience of the developer of wind farm i at the time of 

installation (excluding joint installation experience with its partner manufacturer) 
Oit Cumulative operating experience of the developer of wind farm i in quarter t 
Mi Cumulative manufacturing experience of the manufacturer supplying turbines to wind 

farm i at the time of installation (excluding joint installation experience with its partner 
developer) 

Ri Knowledge stock of the manufacturer supplying turbines to wind farm i at the time of 
installation 

Ji Cumulative joint installation experience of the developer and its partner manufacturer of 
wind farm i at the time of installation 

Qi Global average wind turbine size in the quarter before the time of installation of wind 
farm i 

SMAKE,i State-owned manufacturer dummy for wind farm i 
SDEV,i State-owned developer dummy for wind farm i 
Eit Annual electricity demand in the province where wind farm i is located in quarter t 
GSTEAM,it Cumulative installed capacity of steam turbines for power generation in the province 

where wind farm i is located in quarter t 
GHYDRO,it Cumulative installed capacity of hydropower generation in the province where wind 

farm i is located in quarter t 
Cit Share of wind power in the total power generation capacity in the province where wind 

farm i is located in quarter t 
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Table 3 Descriptive statistics for the dataset 

Note: Missing observations are listwise deleted. A knowledge depreciation rate of 2.6% per quarter (10% per annum) is assumed. The capital 

stock of wind farms is assumed to fully depreciate over 20 years. The descriptive statistics are shown in a panel setup (wind farm by quarter). 

For the cross-sectional analysis, only the observations in the first quarter are used. 

 

Variable Unit Obs Mean 
Std. 

dev. 
Min Max 

YGEN,it 
Monthly average power generation of wind 
farm i in quarter t 

MWh/month 3,372 7,914 6,342 76 78,060 

YSIZE,i Wind turbine size of wind farm i kW 3,372 1,268 385 600 3,000 

YCAPEX,i 
Capital investment per megawatt of wind 
farm i 

Million 2005 
RMB/MW 

3,372 8.0 1.1 5.5 13.1 

Kit Capital stock of wind farm i in quarter t 
Million 2005 

RMB 
3,372 342 258 5 3,154 

WSITE,i 
Expected monthly power generation given the 
annual average wind speed at wind farm site i 

MWh/month 3,372 10,452 8,030 155 81,800 

WPRV,it 

Expected monthly power generation in 
quarter t given the quarterly average wind 
speed in the province where wind farm i is 
located 

MWh/month 3,372 6,696 6,019 60 63,218 

PTARIFF,i 
Power purchase tariff applicable to wind farm 
i 

2005 
RMB/kWh 

3,372 0.47 0.08 0.18 0.75 

PLCR,i 
Local content requirement applicable to wind 
farm i 

% 3,372 59.1 25.0 0.0 70.0 

PCER,t 
Annual average secondary CER price in 
quarter t 

2005 
USD/tCO2e 

3,372 11.8 5.7 2.6 22.7 

Ii 

Cumulative installation experience of the 
developer of wind farm i at the time of wind 
farm installation 

GW 3,372 0.3 0.6 0.0 4.8 

Oit 
Cumulative operating experience of the 
developer of wind farm i in quarter t 

TW-days 3,372 1.2 1.3 0.0 6.3 

Mi 

Cumulative manufacturing experience of the 
manufacturer of wind farm i at the time of 
wind farm installation 

GW 3,372 1.1 1.6 0.0 9.9 

Ri 
Knowledge stock of the manufacturer of wind 
farm i at the time of wind farm installation 

No. of patent 
applications 

3,372 240 464 0 2,527 

Ji 

Cumulative joint installation experience of 
the developer and its partner manufacturer of 
wind farm i at the time of wind farm 
installation 

MW 3,372 0.1 0.2 0.0 1.6 

Qi 
Global average wind turbine size in the 
quarter before the installation of wind farm i 

kW 3,372 1,478 104 1,209 1,655 

SMAKE,i 
State-owned manufacturer dummy for wind 
farm i 

- 3,372 0.61 0.49 0 1 

SDEV,i 
State-owned developer dummy for wind farm 
i 

- 3,372 0.98 0.15 0 1 

Eit 
Annual electricity demand in the province 
where wind farm i is located in quarter t 

TWh/year 3,372 183 108 13 462 

GSTEAM,it 

Cumulative installed capacity of steam 
turbines for power generation in the province 
where wind farm i is located in quarter t 

MW 3,372 38,252 19,606 2,970 69,820 

GHYDRO,it 

Cumulative installed capacity of hydropower 
generation in the province where wind farm i 
is located in quarter t 

MW 3,372 2,799 3,957 136 33,060 

Cit 

Share of wind power in the total power 
generation capacity in the province where 
wind farm i is located in quarter t 

% 3,372 13.2 7.8 0.1 23.8 
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Table 4 Model estimation results 

    (1) (2) (3) (4) (5) (6) 

Dependent variable ln (Generation) ln (Generation) ln (Turbine size) ln (Turbine size) ln (CAPEX per MW) ln (CAPEX per MW) 

Capital stock             

Kit ln (Capital stock) 0.258  *** 0.257  *** 0.201  *** 0.195  ***     

 (0.082)  (0.081)  (0.076)  (0.071)      

Wind resource             

WSITE,i ln (Expected generation given the annual 
average wind speed at the wind farm site) 

0.177  ** 0.176  ** -0.165  ** -0.152  ** 0.004   0.005   

 (0.074)  (0.073)  (0.070)  (0.065)  (0.011)  (0.009)  

WPRV,it ln (Expected generation given the quarterly 
average wind speed in the province) 

0.561  *** 0.561  ***         

 (0.045)  (0.045)          

Policy  
            

PTARIFF,i ln (Power purchase tariff) -0.146   -0.150   0.003   -0.013   0.212  *** 0.212  *** 

 (0.154)  (0.153)  (0.173)  (0.155)  (0.044)  (0.048)  

PLCR,i ln (Local content requirements) -0.0005   -0.0005   0.004   0.009  * -0.007  *** -0.004  * 

 (0.003)  (0.003)  (0.005)  (0.005)  (0.002)  (0.002)  

PCER,t ln (Secondary CER price) 0.028   0.028   0.237  * 0.276  ** -0.193   -0.156   

 (0.038)  (0.040)  (0.128)  (0.120)  (0.142)  (0.136)  

Learning by developer             

Ii ln (Installation experience alone)   0.004     0.010     0.012  ** 

 
  (0.008)    (0.006)    (0.006)  

Oit ln (Operating experience)   0.0001           

 
  (0.0266)          

Learning by manufacturer             

Mi ln (Manufacturing experience alone)   -0.0002     0.015     -0.016   

 
  (0.0086)     (0.010)    (0.010)  

Ri ln (Knowledge stock)   0.002     -0.012  ***   0.001   

 
  (0.004)    (0.004)    (0.003)  

Joint learning by developer and manufacturer             

Ji ln (Joint installation experience)   -0.003     -0.002     0.009  *** 

 
  (0.005)    (0.005)    (0.003)  
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Table 4 (continued) Model estimation results 

 (1) (2) (3) (4) (5) (6) 
Dependent variable ln (Generation) ln (Generation) ln (Turbine size) ln (Turbine size) ln (CAPEX per MW) ln (CAPEX per MW) 

Power market characteristics             

Cit ln (Share of wind power in the total power 
generation capacity in the province) 

0.197   0.197   -0.014   -0.002   -0.073  *** -0.073  *** 

 (0.128)  (0.126)  (0.079)  (0.073)  (0.027)  (0.026)  

Cit
2 ln2 (Share of wind power in the total power 

generation capacity in the province) 
-0.039   -0.039   0.013   0.015   -0.004   -0.004   

 (0.030)  (0.030)  (0.013)  (0.012)  (0.004)  (0.004)  

Eit ln (Electricity demand in the province) 0.067   0.061   -0.282   0.027   0.158   0.249   

 (0.475)  (0.472)  (0.377)  (0.367)  (0.255)  (0.253)  

GSTEAM,it ln (Installed capacity of steam turbines for 
power generation in the province) 

0.072   0.074   -0.036   -0.096   -0.027   -0.061   

 (0.318)  (0.317)  (0.241)  (0.255)  (0.104)  (0.106)  

GHYDRO,it ln (Installed capacity of hydropower 
turbines in the province) 

-0.123   -0.122   0.004   0.030   0.014   0.020   

 (0.184)  (0.183)  (0.069)  (0.077)  (0.042)  (0.045)  

Industry-wide technological progress             

Qi ln (Global average wind turbine size) 0.078   -0.011   1.809  * 1.237   0.671   0.390   

 (0.441)  (0.514)  (1.038)  (1.098)  (0.740)  (0.865)  

Firm ownership             

SMAKE,i State-owned manufacturer -0.035   -0.013   -0.007   -0.118  ** -0.021   -0.008   

 (0.042)  (0.059)  (0.045)  (0.058)  (0.025)  (0.037)  

SDEV,i State-owned developer -0.106   -0.131   -0.009   -0.063   0.069   0.007   

 (0.116)  (0.130)  (0.109)  (0.117)  (0.168)  (0.167)  

 Constant 0.641   1.307   -5.901   -2.816   -2.582   -0.674   

  (3.946)   (4.483)   (6.945)   (7.130)   (4.431)   (5.254)   

Log psuedolikelihood -1,098.2 -1,072.5 -620.5 -585.8 -366.3 -343.9 

Quarterly knowledge depreciation rate 2.6% 2.6% 2.6% 2.6% 2.6% 2.6% 

Capital depreciation period 20 years 20 years N/A N/A N/A N/A 

Province-fixed effects Yes Yes Yes Yes Yes Yes 

Year-fixed effects Yes Yes No No No No 

Random effects Yes Yes No No No No 

Analysis period 2006-2012 2006-2012 2005-2011 2005-2011 2005-2011 2005-2011 

No. of wind farms 312 312 312 312 312 312 

No. of observations 3,372 3,372 312 312 312 312 

Note: * p<0.10, ** p<0.05, and *** p<0.01 (two-tailed). Robust standard errors clustered on wind farms are reported in parentheses. All the models are estimated with the Heckman’s two-step procedure (selection model results are not reported).
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Appendices 

 

Table A.1 Correlation matrix for the regressors used in the analysis 

    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 
(1) Kit 1.00                  

(2) WSITE,i 0.83 1.00                 

(3) WPRV,it 0.79 0.81 1.00                

(4) PTARIFF,i -0.23 -0.35 -0.30 1.00               

(5) PLCR,i -0.14 -0.06 -0.09 0.20 1.00              

(6) PCER,t -0.02 -0.04 -0.09 0.13 0.22 1.00             

(7) Ii 0.15 0.08 0.09 -0.18 -0.46 -0.23 1.00            

(8) Oit 0.09 0.09 0.08 -0.05 -0.10 -0.55 0.57 1.00           

(9) Mi 0.16 0.11 0.14 -0.29 -0.53 -0.23 0.23 0.03 1.00          

(10) Ri -0.04 0.00 -0.04 0.12 0.02 0.03 -0.07 -0.01 -0.14 1.00         

(11) Ji 0.16 0.10 0.12 -0.19 -0.47 -0.19 0.43 0.31 0.47 -0.10 1.00        

(12) Qi 0.16 0.08 0.14 -0.44 -0.49 -0.36 0.49 0.17 0.56 -0.08 0.45 1.00       

(13) SMAKE,i 0.12 0.13 0.15 -0.32 -0.09 -0.12 0.14 0.07 0.36 -0.62 0.26 0.36 1.00      

(14) SDEV,i 0.06 0.08 0.05 0.06 0.12 0.03 0.09 0.13 -0.04 0.07 0.06 -0.13 -0.03 1.00     

(15) Eit 0.08 0.08 0.15 0.02 -0.09 -0.23 0.08 0.12 0.04 0.18 0.05 0.21 0.04 0.01 1.00    

(16) GSTEAM,it 0.10 0.18 0.22 -0.21 -0.10 -0.20 0.16 0.21 0.05 0.11 0.14 0.23 0.08 -0.03 0.71 1.00   

(17) GHYDRO,it -0.01 -0.01 -0.04 0.10 -0.06 -0.07 0.10 0.07 0.02 0.08 -0.06 0.04 -0.05 0.03 0.11 -0.21 1.00  

(18) Cit 0.07 0.20 0.18 -0.48 -0.17 -0.35 0.16 0.27 0.26 -0.14 0.24 0.25 0.17 -0.04 -0.21 0.25 -0.40 1.00 

Note: Missing observations are listwise deleted. A knowledge depreciation rate of 2.6% per quarter (10% per annum) is assumed. The capital stock of wind farms is assumed to fully depreciate over 20 years. 
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Table A.2 Robustness test on the knowledge depreciation rate 

    (7) (8) (9) (10) (11) (12) 

Dependent variable ln (Generation) ln (Generation) ln (Turbine size) ln (Turbine size) ln (CAPEX per MW) ln (CAPEX per MW) 

Capital stock         
 

   

Kit ln (Capital stock) 0.257  *** 0.258  *** 0.193  *** 0.196  ***     

 (0.081)  (0.081)  (0.071)  (0.071)      

Wind resource             

WSITE,i ln (Expected generation given the annual 
average wind speed at the wind farm site) 

0.177  ** 0.176  ** -0.151  ** -0.154  ** 0.005   0.005   

 (0.073)  (0.073)  (0.065)  (0.065)  (0.009)  (0.009)  

WPRV,it ln (Expected generation given the quarterly 
average wind speed in the province) 

0.561  *** 0.561  ***         

 (0.045)  (0.045)          

Policy  
            

PTARIFF,i ln (Power purchase tariff) -0.149   -0.150   -0.012   -0.013   0.213  *** 0.211  *** 

 (0.153)  (0.153)  (0.154)  (0.155)  (0.048)  (0.048)  

PLCR,i ln (Local content requirements) -0.001   -0.001   0.009  * 0.009  * -0.004  * -0.004  * 

 (0.003)  (0.003)  (0.005)  (0.005)  (0.002)  (0.002)  

PCER,t ln (Secondary CER price) 0.028   0.028   0.277  ** 0.274  ** -0.154   -0.158   

 (0.040)  (0.039)  (0.120)  (0.121)  (0.135)  (0.138)  

Learning by developer             

Ii ln (Installation experience alone) 0.004   0.004   0.009   0.010  * 0.013  ** 0.011  ** 

 (0.008)  (0.008)  (0.006)  (0.006)  (0.006)  (0.005)  

Oit ln (Operating experience) 0.001   -0.001           

 (0.027)  (0.026)          

Learning by manufacturer             

Mi ln (Manufacturing experience alone) -0.0001   -0.0002   0.014   0.016   -0.015   -0.016   

 (0.0085)  (0.0086)  (0.010)  (0.010)  (0.010)  (0.011)  

Ri ln (Knowledge stock) 0.002   0.002   -0.012  *** -0.012  *** 0.001   0.001   

 (0.004)  (0.004)  (0.004)  (0.004)  (0.003)  (0.003)  

Joint learning by developer and manufacturer             

Ji ln (Joint installation experience) -0.003   -0.003   -0.002   -0.002   0.009  *** 0.009  *** 

 (0.005)  (0.005)  (0.005)  (0.005)  (0.003)  (0.003)  
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Table A.2 (continued) Robustness test on the knowledge depreciation rate 

 (7) (8) (9) (10) (11) (12) 
Dependent variable ln (Generation) ln (Generation) ln (Turbine size) ln (Turbine size) ln (CAPEX per MW) ln (CAPEX per MW) 
Power market characteristics             

Cit ln (Share of wind power in the total power 
generation capacity in the province) 

0.197   0.197   -0.003   -0.001   -0.074  *** -0.072  *** 

 (0.126)  (0.126)  (0.073)  (0.073)  (0.026)  (0.026)  

Cit
2 ln2 (Share of wind power in the total power 

generation capacity in the province) 
-0.039   -0.039   0.015   0.015   -0.004   -0.004   

 (0.030)  (0.030)  (0.012)  (0.012)  (0.004)  (0.004)  

Eit ln (Electricity demand in the province) 0.062   0.060   0.024   0.029   0.249   0.247   

 (0.472)  (0.472)  (0.366)  (0.367)  (0.253)  (0.250)  

GSTEAM,it ln (Installed capacity of steam turbines for 
power generation in the province) 

0.074   0.074   -0.099   -0.092   -0.062   -0.060   

 (0.317)  (0.317)  (0.255)  (0.254)  (0.107)  (0.106)  

GHYDRO,it ln (Installed capacity of hydropower turbines 
in the province) 

-0.122   -0.122   0.031   0.028   0.020   0.020   

 (0.183)  (0.183)  (0.076)  (0.077)  (0.044)  (0.045)  

Industry-wide technological progress             

Qi ln (Global average wind turbine size) -0.007   -0.016   1.290   1.178   0.400   0.389   

 (0.511)  (0.516)  (1.091)  (1.107)  (0.863)  (0.860)  

Firm ownership             

SMAKE,i State-owned manufacturer -0.013   -0.014   -0.117  ** -0.120  ** -0.008   -0.007   

 (0.060)  (0.059)  (0.058)  (0.058)  (0.037)  (0.037)  

SDEV,i State-owned developer -0.133   -0.129   -0.060   -0.068   0.000   0.015   

 (0.130)  (0.130)  (0.118)  (0.117)  (0.169)  (0.166)  

 Constant 1.271   1.346   -3.197   -2.381   -0.737   -0.665   

  (4.469)   (4.494)   (7.078)   (7.190)   (5.236)   (5.232)   

Log psuedolikelihood -1,071.0 -1,075.3 -584.7 -587.5 -342.9 -345.2 

Quarterly knowledge depreciation rate 0.0% 5.4% 0.0% 5.4% 0.0% 5.4% 

Capital depreciation period 20 years 20 years N/A N/A N/A N/A 

Province-fixed effects Yes Yes Yes Yes Yes Yes 

Year-fixed effects Yes Yes No No No No 

Random effects Yes Yes No No No No 

Analysis period 2006-2012 2006-2012 2005-2011 2005-2011 2005-2011 2005-2011 

No. of wind farms 312 312 312 312 312 312 

No. of observations 3,372 3,372 312 312 312 312 
Note: * p<0.10, ** p<0.05, and *** p<0.01 (two-tailed). Robust standard errors clustered on wind farms are reported in parentheses. All the models are estimated with the Heckman’s two-step procedure (selection model results are not reported). 
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Table A.3 Robustness test on the capital depreciation rate 

    (13) (14) 

Dependent variable ln (Generation) ln (Generation) 

Capital stock     

Kit ln (Capital stock) 0.250  *** 0.260  *** 

 
(0.081)  (0.081)  

Wind resource     

WSITE,i ln (Expected generation given the annual average wind 
speed at the wind farm site) 

0.183  ** 0.174  ** 

 (0.073)  (0.073)  

WPRV,it ln (Expected generation given the quarterly average wind 
speed in the province) 

0.561  *** 0.561  *** 

 (0.045)  (0.045)  

Policy  
    

PTARIFF,i ln (Power purchase tariff) -0.145   -0.151   

 (0.153)  (0.153)  
PLCR,i ln (Local content requirements) -0.0004  

 
-0.001  

 

 (0.0034)  (0.003)  
PCER,t ln (Secondary CER price) 0.025   0.030   

 (0.040)  (0.040)  
Learning by developer     

Ii ln (Installation experience alone) 0.003  
 

0.004  
 

 (0.008)  (0.008)  

Oit ln (Operating experience) 0.001  
 

-0.001  
 

 (0.027)  (0.027)  

Learning by manufacturer 

 

 

 

 
Mi ln (Manufacturing experience alone) -0.0003  

 
-0.0001  

 

 (0.0086)  (0.0086)  

Ri ln (Knowledge stock) 0.002  
 

0.002  
 

 (0.004)  (0.004)  

Joint learning by developer and manufacturer 

 

 

 

 
Ji ln (Joint installation experience) -0.003   -0.003   

 (0.005)  (0.005)  

Power market characteristics     

Cit ln (Share of wind power in the total power generation 
capacity in the province) 

0.197  
 

0.197  
 

 (0.127)  (0.126)  
Cit

2 ln2 (Share of wind power in the total power generation 
capacity in the province) 

-0.039  
 

-0.039  
 

 (0.030)  (0.030)  
Eit ln (Electricity demand in the province) 0.059  

 
0.061  

 

 (0.473)  (0.472)  

GSTEAM,it ln (Installed capacity of steam turbines for power 
generation in the province) 

0.080   0.072   

 (0.318)  (0.317)  

GHYDRO,it ln (Installed capacity of hydropower turbines in the 
province) 

-0.124  
 

-0.121  
 

 (0.183)  (0.183)  

 



 52 

Table A.3 (continued) Robustness test on the capital depreciation rate 

 (13) (14) 

Dependent variable ln (Generation) ln (Generation) 

Industry-wide technological progress     

Qi ln (Global average wind turbine size) -0.101   0.040   

 (0.521)  (0.511)  

Firm ownership     

SMAKE,i State-owned manufacturer -0.013   -0.014   

 (0.059)  (0.059)  

SDEV,i State-owned developer -0.131   -0.131   

 (0.130)  (0.130)  

 Constant 1.956   0.931   

  (4.534)   (4.463)   

Log psuedolikelihood -1,073.5 -1,072.2 

Quarterly knowledge depreciation rate 2.6% 2.6% 

Capital depreciation period 15 years 25 years 

Province-fixed effects Yes Yes 

Year-fixed effects Yes Yes 

Random effects Yes Yes 

Analysis period 2006-2012 2006-2012 

No. of wind farms 312 312 

No. of observations 3,372 3,372 

Note: * p<0.10, ** p<0.05, and *** p<0.01 (two-tailed). Robust standard errors clustered on wind farms are reported in parentheses. Both models are estimated 

with the Heckman’s two-step procedure (selection model results are not reported).
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