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Abstract: Background: Metallic implants show dose-modulating effects in radiotherapy and

complicate its computed tomography (CT)-based planning. Dose deviations might not only affect the

surrounding tissues due to backscattering and inadvertent dose increase but might also compromise

the therapeutic effect to the target lesion due to beam attenuation. Later on, follow-up imaging

is often obscured by metallic artefacts. Purposes: This study investigates the dosimetric impact of

titanium and radiolucent carbon fiber/polyether ether ketone (CF/PEEK) implants during adjuvant

radiation therapy in long bones. (1) Does the use of CF/PEEK implants allow for a more homogenous

application of radiation? (2) Is the dose delivery to the target volume more efficient when using

CF/PEEK implants? (3) Do CF/PEEK implants facilitate CT-based radiation therapy planning?

Materials and methods: After CT-based planning, bone models of six ovine femora were irradiated

within a water phantom in two immersion depths to simulate different soft-tissue envelopes. Plates

and intramedullary nails of both titanium and CF/PEEK were investigated. Radiation dosage and

distribution patterns were mapped using dosimetry films. Results: First, the planned implant-related

beam attenuation was lower for the CF/PEEK plate (1% vs. 5%) and the CF/PEEK nail (2% vs. 9%)

than for corresponding titanium implants. Secondly, the effective decrease of radiation dosage behind

the implants was noticeably smaller when using CF/PEEK implants. The radiation dose was not

significantly affected by the amount of surrounding soft tissues. A significant imaging artefact

reduction was seen in all CF/PEEK models. Conclusion: CF/PEEK implants lead to a more reliable

and more effective delivery of radiation dose to an osseous target volume. With regard to radiation

therapy, the use of CF/PEEK implants appears to be particularly beneficial for intramedullary nails.

Keywords: bone metastasis; orthopedic oncology; carbon fiber polyether ether ketone; radiation

therapy; imaging artefact; dose deviation

1. Introduction

In orthopedic oncology, a surgical stabilization of the affected bone is often required after thorough

assessment of the clinical context and prognostic factors [1]. The individual fracture risk of long bones

metastases can be calculated using the Mirels’ score [2]. Radiation therapy is an important oncological

adjunct in the management of these patients, especially when encountering multiple or osteolytic

lesions. However, metallic implants show a dose-modulating effect in radiotherapy and complicate

its CT-based planning [3,4]. During radiation therapy, intra or extramedullary implants might not
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only affect the surrounding tissue due to backscattering and inadvertent dose increase but might also

compromise the therapeutic effect to the target lesion due to beam attenuation. Later on, follow-up

imaging and the diagnosis of local recurrences is often obscured by metallic artefacts [5]. This is why

radiolucent implant materials, in particular, for the use in orthopedic tumor patients, are increasingly

being recognized [6,7]. While carbon fiber/polyether ether ketone (CF/PEEK) implants have already

been examined biomechanically, data on their radiophysical properties are scarce [8–11].

The only study analyzing the beam attenuation conditioned by CF/PEEK implants in a solid water

phantom was published by Nevelsky et al. [3]. CF/PEEK pedicle screws featured no backscatter effect

and a minimal dose attenuation when compared to titanium pedicle screws. The maximum dose of

backscattering to adjacent tissues was 10% in titanium screws, whereas CF/PEEK screws did not show

a backscattering effect at all. Additionally, the radiation beam was attenuated by 30% when using

titanium screws, whereas CF/PEEK screws showed only minimal dose alteration with a calculated

attenuation of 5%. Nevertheless, the amount of dose modulation within the bone and the implant-bone

interface has not yet been quantified.

This experimental study therefore aims to investigate the potential benefits of CF/PEEK implants

during planning and administration of adjuvant radiation therapy to the extremities and to quantify the

disturbing influence of orthopedic implants on radiation dosage and distribution patterns. (1) Does the

use of CF/PEEK implants allow for a more homogenous and therefore more predictable application of

radiation? (2) Is the dose delivery to the target volume more efficient when using CF/PEEK implants? (3)

Do CF/PEEK implants facilitate CT-based radiation therapy planning? For this purpose, we deployed

an ovine bone model within a water phantom and compared different implant designs and materials.

2. Material and Methods

2.1. Experimental Setup

Since water strongly resembles the radiodensity of the soft tissues, we used a water phantom for

the examination of radiation variances around different titanium and carbon/PEEK implants at the

extremities. We decided to use ovine femora with respect to the well transferable implant dimensions

of human osteosynthesis implants. Thereby, we could assure that common types of fixation as used

in clinical practice were simulated. We implanted intramedullary nails (CarboFix Piccolo Proximal

Humerus Nail 150 mm × 8 mm, DePuy Synthes Expert Proximal Humeral Nail 150 mm × 7 mm) in

one pair of bones, and plates (CarboFix Piccolo One Third Tubular 98 mm/9 holes, DePuy Synthes

3.5 mm Locking Compression Plate 111 mm/8 holes) in a second pair of bones. We chose implants

with the same length of the screw-free interval after screw fixation using three screws on either plate

side for the simulation of an equally large tumorous lesion. We exclusively used titanium screws for

implant fixation in every bone. A third pair of bones was used for implant-free reference measurements.

The bone preparation is illustrated in Figure 1.
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Figure 1. Bone preparation with plates (a: CF/PEEK, b: titanium) and intramedullary nails (c: CF/PEEK,

d: titanium) in situ.

The radiation dosage was mapped with dosimetry films (Gafchromic EBT 2, Ashland Inc.,

Covington, KY, USA) parallel to the plates and orthogonal to the intramedullary nails. Holes with

appropriate diameters were punched into dosimetry films to fit around the screws or the intramedullary

nails, respectively. In the plate models, one film was placed between the plate and the bone. A second

film was placed within the bone and parallel to the plate after sawing out a box with a thickness of

10 mm. For the reference bone of the nail model, a supplementary suture fixation was necessary to

hold both ends of the bone together. For this reason, the dosimetry film was pierced laterally. The

preparation and the respective orientation of the dosimetry films is shown in Figure 2 for all types

of implants.
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Figure 2. Position of dosimetry films in the plate model (a) and the intramedullary nail model (b).

Dosimetry film with punch holes for the plate model (c). Reference bone of the nail model (d).

The bones were placed within a cubic water basin. For the intramedullary nail setup, the radiation

beam was oriented parallel to the dosimetry film and centered on the bone (Figure 3). The radiation

beam was centered on the bone and between the two most central screws in the plate model. Each

model was deployed with immersion depths of 5 and 10 cm for simulation of the upper and lower

extremities, respectively.
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Figure 3. Specimen orientation within the water basin in the intramedullary nail model (a) and the

plate model (b). Full setup within the linear accelerator (c).

2.2. Measurements

For each bone and setup, a computed tomography (CT) scan of the water phantom including

the bone was obtained (SOMATOM Definition AS Open scanner, Siemens AG, Munich, Germany) at

120 kV. A 6 MV radiation beam with 20 × 20 cm2 field size, 90◦ gantry rotation, 85 cm source-surface

distance and 250 monitor units was set up and calculated in Eclipse v13.7 (Varian Medical System,

Palo Alto, CA, USA) with the Acuros dose calculation algorithm, calculating dose to medium. The

calculated dose distribution can be seen in Figure 4 for all bones and implants at 5 cm immersion depth.

The same beam was delivered to the water phantom for each implant and setup while the dose was

measured with films. Native measurements in front of the implants were not accomplished due to

technically limited feasibility and reproducibility in terms of film positioning. However, this part of

the beam is checked on a daily basis in the department of Radiation Oncology and is accurate within

2%. The exposed films were converted to doses using a set of pre-irradiated calibration stripes, the

Epson Expression 10000XL A3 flatbed film scanner (Seiko Epson Corporation, Suwa, Japan) and the

FilmQA Pro 2016 software (Ashland Inc., Covington, KY, USA). These measured dose distributions and

planned dose distributions from Eclipse were exported to Matlab R2014a (The MathWorks Inc., Boston,
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MA, USA) for evaluation. Each dose distribution was normalized by the peripheral dose outside the

bone. Profiles and areas of interest were extracted from all planned and calculated dose distributions

and compared.

 

 

−

−

Figure 4. CT images and calculated dose distributions for all bones and implants at 5 cm immersion

depth. Densities from −400 to 800 HU are shown in grey scale; isodose levels of a 6 MV, 20 × 20 cm2

field are shown in color.

3. Results

Three pairs of ovine femora were irradiated within a water phantom at two immersion depths.

The planned and measured dose distributions of the plate and nail models at 5 cm immersion depth

are shown in Figures 5 and 6. Values extracted from the area of interest are listed in Figure S1 in

supplementary materials. Both the planned average beam attenuation by the implants (i.e., 1% vs. 5%

within the bone in the plate model, 2% vs. 9% in the nail model) and the effective decrease of the mean

radiation dosage behind the implants (i.e., 2% vs. 3% within the bone in the plate model, −1% vs. 7%

in the nail model) were noticeably weaker when using CF/PEEK implants (Figure S1 in supplementary

materials). This effect, however, was even greater at the implant–bone interface and diminished in the

bone core (Figure 5).

Particularly in the nail model, the measured radiation dose was in better accordance with the

radiation planning using CF/PEEK implants when compared to titanium implants (Figure S1 in

supplementary materials, Figure 6). CF/PEEK implants featured various dose increases right behind

the implant in all models. The mean dose range associated with CF/PEEK implants was less in

the nail model and equal or slightly greater in the plate model than those associated with titanium

implants. The radiation dose was not significantly affected by the simulated surrounding soft tissues,

as different immersion depths did not reveal a meaningful dose difference in any experimental model.

A significant imaging artefact reduction with improved planning feasibility was seen in all CF/PEEK

models (Figures 4 and 6).

The planned dose distributions are smoother than the measured ones, as the planned dose

distributions are results of a dose calculation on a 3D dose grid with a 1.5 mm resolution, whereas

the film measurements (more specifically, the scans of the films) have submillimeter resolution. This

results in a smooth calculated dose distribution, but less smooth measured dose distribution, which is

more susceptible to measurement and scanning noise.
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Figure 5. Dose plotting of the plate model at 5 cm immersion depth. The area of interest and profiles

are depicted on the planned and measured dose distributions as black boxes and colored lines. Note

the distinct dose attenuation at the implant–bone interface with titanium implants (titan frontal) when

compared to CF/PEEK implants (carbon frontal). The dose range assimilates in the bone center but

remains smaller in the CF/PEEK model (titan central vs. carbon central).
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Figure 6. Dose plotting of the nail model at 5 cm immersion depth. The area of interest and profiles are

depicted on the planned and measured dose distributions as black boxes and colored lines. Note the

clear dose attenuation behind the titanium nail (titan) when compared to the CF/PEEK nail (carbon).

4. Discussion

To the best of our knowledge, this is the first study investigating on the dose-modulating effect

of CF/PEEK and titanium implants in long bones in a comparative manner. By means of a cadaveric

experimental setup, we found a smaller beam attenuation by CF/PEEK implants, especially when

comparing intramedullary nails. This results in a more reliable and more efficient radiation of an

osseous target volume. In addition, the dose application was more homogenous with CF/PEEK

implants which allows for better radiation planning. In terms of artefact reduction, we endorse the

findings observed by Ringel et al. in pedicle screws [5]. The improved image quality might even be the

main advantage of CF/PEEK implants in tumor patients, which allows for more accurate diagnostics

and facilitates radiation treatment planning.

The most important limitation of this study is a missing baseline measurement in front of the

specimens in order to reference the effective dose changes due to the implant and the backscattering by

the bone itself. This would have permitted a more precise comparison of the beam attenuating effect of

either material as well as a quantification of bone-induced backscattering. However, the fixation of the

dosimetry film in front of the specimen and exactly perpendicular to the main beam in a standardized

manner was technically difficult and only poorly reproducible. For this reason, the authors decided to

refrain from this additional measurement.

The backscattering effect seen with CF/PEEK implants in our series needs to be clearly distinguished

to the findings raised by Nevelsky et al. [3]. In their solid water phantom model with Monte Carlo

simulations, the maximum overdose due to backscattering was effectively calculated zero for CF/PEEK
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pedicle screws (both with and without titanium coating). Physically, particles are backscattered at

transitions from less dense to denser materials (i.e., from CF/PEEK to bone or from soft tissue to

titanium) which leads to a dose increase. However, and most notably, Nevelsky et al. did not analyze

the transition from CF/PEEK to bone in their setup but merely investigated the dose change which

corresponds to the soft tissue–implant interface in front of the implant. On the contrary, our setup

mapped radiation dosage behind the implant and just in front of bone with its higher radiodensity

than CF/PEEK. This is why we registered a dose increase mainly in the CF/PEEK specimens. With

titanium, the opposite is true with a transition from denser to less dense materials at the implant–bone

interface, resulting in a relative dose decrease without backscattering behind the implant.

Comparing the regions of interests for the plate model, a discrepancy of 4–6% between the

measured and planned dose at the implant-bone interface was found for CF/PEEK. In our study, this

effect is best explained by either imprecision of the film dosimetry or the inaccuracy of the planning

system. However, film dosimetry has been well explored and established for mapping radiation dosage

with appropriate spatial resolution and should have an imprecision of less than 4%. [12–14]. Moreover,

the films have been normalized by peripheral reference measurements, which further reduces the

risk of false measurements. Ultimately, an inaccuracy of the planning tool with poor modelling of

backscattering is the most probable source of this phenomenon.

Whether or not the presence of titanium screws in the plate model diminishes the beneficial effect

of CF/PEEK implants is uncertain. In this regard, it should be borne in mind that the dose-modulating

effect of titanium screws within a CF/PEEK plate and distant to the target lesion is still to be determined,

and CF/PEEK screws are not readily available on the market. Even though novel radiation algorithms,

such as the Acuros or Monte Carlo algorithms deployed in the VMAT (volumetric modulated arc

therapy) technique, allow for more homogeneous dose distributions in the presence of metallic artefacts,

Ringel et al. could verify beneficial effects of CF/PEEK implants in spinal lesions, in which the VMAT

technique is preeminently deployed [5,15]. Therefore, the impact of the implant material on image

quality and radiation planning must not be neglected.

Another attempt to explain the greater beam attenuation in the nail model, of course, is the

thickness of the implant. The larger the implant diameter to be passed by the radiation beam, the

greater the effect of different implant materials. Put in a clinical context, this indicates that patients

who undergo an intramedullary stabilization of their radiosensitive metastasis particularly, might

benefit from CF/PEEK implants.

From a clinical point of view, plate fixation of metastatic lesions is often supplemented with

curettage of the lesion and filling of the defect with acrylic cement [1]. This experimental study,

however, did not consider stabilization measures by means of supplementary materials. Nevertheless,

bone cement does not cause relevant artefacts and can therefore presumably continue to be used

without any concerns in this context.

The clinical significance of these findings cannot, naturally, be demonstrated by our experimental

study and should be verified by clinical studies.

This study did solely investigate implants available for the extremities. However, radiation therapy

plays no minor role in the treatment of metastases of the spinopelvic region. Future studies therefore

should aim at quantifying in situ the dosimetric impact of implants deployed in the axial skeleton.

5. Conclusions

In this experimental cadaver study, CF/PEEK implants showed a lesser beam attenuation than

equivalent titanium implants. This leads to a more reliable and more effective delivery of radiation

dose to an osseous target volume. A considerable reduction of imaging artefacts facilitates radiation

planning with CF/PEEK implants. Whether or not these findings are clinically meaningful remains

to be investigated. From a radiophysical point of view, the use of CF/PEEK implants is particularly

beneficial when intramedullary nails are applied.
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