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Contextual interference in children with
brain lesions: protocol of a pilot study
investigating blocked vs. random practice
order of an upper limb robotic exergame
Judith V. Graser1,2,3* , Caroline H. G. Bastiaenen3, Urs Keller1,2 and Hubertus J. A. van Hedel1,2

Abstract

Background: If adults practice several motor tasks together, random practice leads to better transfer and retention
compared to blocked practice. Knowledge about this contextual interference (CI) effect could be valuable to
improve neurorehabilitation of children. We present the protocol of a randomised controlled pilot study
investigating the feasibility of blocked practice vs. random practice of robot-assisted upper limb reaching in
children with brain lesions undergoing neurorehabilitation.

Methods: Children with affected upper limb function due to congenital or acquired brain lesions undergoing
neurorehabilitation will be recruited for a randomised controlled pilot study with a 3-week procedure. In the
control week (1), two assessment blocks (robot-assisted reaching tasks, Melbourne assessment 2, subscale
fluency), 2 days apart, take place. In the practice week (2), participants are randomly allocated to blocked
practice or random practice and perform 480 reaching and backward movements in the horizontal and vertical
plane using exergaming with an exoskeleton robot per day during three consecutive days. Assessments are
performed before, directly after and 1 day after the practice sessions. In the follow-up week (3), participants
perform the assessments 1 week after the final practice session. The primary outcome is the immediate transfer
of the Melbourne Assessment 2, subscale fluency. Secondary outcomes are the immediate retention, 1-day and
1-week delayed transfer and retention and acquisition during the practice sessions. We will evaluate the feasibility of
the inclusion criteria, the recruitment rate, the scheduling procedure, the randomisation procedure, the procedure for
the participants, the handling of the robot, the handling of the amount of data, the choice of the outcome measures
and the influence of other therapies. Furthermore, we will perform a power calculation using the data to estimate the
sample size for the main trial.
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Discussion: The protocol of the pilot study is a first step towards a future main randomised controlled trial. This low
risk pilot study might induce some benefits for the participants. However, we need to place its results into perspective,
especially concerning the generalisability, as it remains questionable whether improving reaching constrained within a
robotic device will ameliorate daily life reaching tasks.

Trial registration: ClinicalTrials.gov Identifier: NCT02443857
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Background
The population of children undergoing neurorehabilita-

tion is as heterogeneous as the causes for brain dysfunc-

tion. Differentiating between congenital and acquired

brain lesions is common. Children with congenital brain

lesions are diagnosed most frequently with cerebral

palsy. The prevalence of cerebral palsy seems to decrease

in Europe (from 1.90 to 1.77 per 1000 live births be-

tween 1980 and 2003); it is still the most common cause

for severe motor impairments in children [1]. Acquired

brain injuries in children are less common. In Norway,

for example, the incidence for moderate traumatic brain

injury amounts to 0.024 per 1000 children and for severe

traumatic brain injury 0.025 per 1000 children [2]. For

stroke, the worldwide incidence ranges between 0.013

and 0.13 per 1000 children [3]. Both, congenital and ac-

quired brain lesions interfere with the normal develop-

ment of the brain, which causes impairments in sensory-

motor and cognitive functions and limitations in activ-

ities that may significantly impact quality of life [4].

Hence, these children should be referred to paediatric

neurorehabilitation.

Nowadays, most neuro-rehabilitation programmes, in-

cluding those for paediatric neurorehabilitation, are

based on motor learning principles [5–7]. The general

goal of motor learning is to attain relatively permanent

changes in movement skills by practice and experience

[8]. It has been suggested that the performance during

practice (i.e. acquisition), retention (i.e. the preservation

of the learned skill for a certain period) and transfer (i.e.

when transferring the learned skill to another task)

needs to be distinguished [9]. While retention is sustain-

ability of performance after a practice phase, transfer re-

flects the effect of the practice on other, yet untrained,

tasks [9]. Transfer is especially important since it allows

generalising improved motor functions or capacities to

daily life performance.

If several tasks have to be learned and are practiced

within the same therapy session, they can interfere with

each other, which could affect the outcome. In this so-

called contextual interference effect [10], the practice

order is an important factor that determines the strength

of this effect. If one task is practiced several times before

switching to the next task (i.e. practicing in a blocked

order), contextual interference is low [10]. If different

tasks are practiced in a random order, interference is

high [10]. Contextual interference has mainly been in-

vestigated in healthy adults where it was shown that high

contextual interference leads to worse performance in

acquisition but better performance in retention and

transfer, while low contextual interference leads to con-

trary results [11, 12]. Two main hypotheses explaining

these findings have been discussed in the literature. On

the one hand, the elaborative-processing hypothesis

states that compared to blocked practice, the learning

process during random practice is based on a more-

profound elaboration of the tasks due to the compari-

sons between and within the trials [13]. This could lead

to a more comprehensive memory trace, which is easier

to retrieve [14]. The forgetting-reconstruction hypoth-

esis, on the other hand, is based on a strengthened

memory consolidation occurring during random practice

[15]. The underlying explanation is that during random

order practice, the learner switches between different

tasks all the time and forgets the established action plan

of the prior task when a subsequent new task is per-

formed [14]. It seems comprehensible that (a) a deeper

elaborated and more robust memory representation

could result in better retention and transfer and (b) ac-

quiring a motor skill under blocked practice might be

easier because of less disturbance, leading to a better

momentary performance at acquisition compared to ran-

dom practice.

It has been stated that the contextual interference

effect is larger when the tasks involve different motor

programmes [11, 16]. A motor programme can be

understood as a memory for a movement class rather

than for an action or a movement solely [17, 18]. Ac-

tions that have the same invariant aspects in common

(e.g. spatial and topographical characteristics of the ac-

tion [19], relative force and timing and sequences in-

volved in the action [11]) are controlled by the same

motor programme [11, 16]. Therefore, applying varia-

tions of the invariant features would increase the

contextual interference effect. However, as contextual

interference has mainly been investigated in healthy

adults, evidence is lacking for children with congenital

or acquired brain lesions [20].
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Adhering to the recommendation of providing inten-

sive and repetitive training to restore motor function in

neurorehabilitation [21] is challenging, especially when

working with children. To keep them engaged during

highly repetitive therapy sessions, practice has to be vari-

able. To induce variability, several tasks or variations of

a task are practiced usually within one therapy session.

Since we aim to provide efficient therapies to obtain op-

timal outcomes, we consider it relevant to improve our

understanding of the influence of contextual interference

on the therapeutic outcome of paediatric neurorehabil-

itative interventions.

In recent years, rehabilitation technologies have been

applied increasingly also in paediatric neurorehabilitation

[22]. Main advantages are the standardisation of training

protocols and assessments, high number of repetitions,

and above all, additional motivation due to exergames

[22]. While the definition of ‘exergame’ is debated, in this

study, we use the common definition ‘videogames that re-

quire physical activity in order to play’ p. 10 [23]. To our

knowledge, two studies used new technologies to investi-

gate the influence of the practice order. The first study in-

vestigated motor learning in children with developmental

coordination disorder and typically developing children.

The children practiced with the Nintendo® Wii Fit video

game during 10 20-min sessions in a variable group (a

self-selected choice out of 10 games) and a repetitive

group (the same game throughout the whole session) [24].

In the second study, children with cerebral palsy and typ-

ically developing children practiced a computer-maze in

random order (30 trials, 5 different mazes in random

order) and in constant order (30 trials of 1 maze) [25].

While both practice groups improved their game perform-

ance similarly in the first study [24], the random order

group showed a reduction in movement time needed to

complete the maze tasks in retention and transfer in the

second study [25]. However, as both studies did not in-

clude a true blocked group, we designed a study protocol

to investigate blocked vs. random order. As there is not

much knowledge in the field of contextual interference

with robotic exergames in paediatric neurorehabilitation,

we planned a pilot study to evaluate the feasibility of a fu-

ture main study. The objective of this paper was to present

the protocol of this pilot study evaluating the feasibility of

a randomised controlled, single-blinded study about con-

textual interference in robot-assisted upper limb training

in children with congenital or acquired brain lesion and

affected upper limb function. To assess the feasibility, we

aimed to address the following questions:

1. Are the chosen inclusion criteria specific enough to

result in a sample of participants, which is suitable

for this pilot study?

2. Is the recruitment rate feasible?

3. Is the scheduling procedure feasible?

4. Is the randomisation procedure feasible?

5. Is the whole procedure feasible for the participants?

6. Is the handling of the robot feasible?

7. Is the handling of the large amount of data feasible?

8. Are the outcome measures responsive and sensitive

enough within this setting?

9. Is there a confounding influence of parallel

therapies within the rehabilitation setting?

10. Is it feasible to conduct the main trial with respect

to the needed sample size calculated from the data

obtained for the primary motor learning outcome?

Methods
Design

This pilot study protocol describes a randomised con-

trolled single-blinded two-arm intervention study com-

paring several outcome time points between two groups

of children with neuro-motor upper limb impairment

who will practice two variations of reaching movement

tasks with robot-assisted exergames (one group in

blocked, the other in random order) with a predefined

primary outcome and a follow-up period of 1 week. We

will include a follow-up period of 1 week to match the

rather short intervention period; 1 week will also be feas-

ible to plan within a rehabilitation stay.

Setting

The study will take place at the Swiss Children’s Rehab

of the University Children’s Hospital Zurich in Affoltern

am Albis, Switzerland. All measurements and practice

sessions will be performed during a multidisciplinary in-

patient rehabilitation stay.

Ethical considerations and reporting

This study has been approved as part of the ChARMin

project (sub-project 5: Motor learning) by the Ethics

Committee of the Canton Zurich (BASEC-Nr. PB_2016-

02450) and the Swiss Agency for Therapeutic Products

(Swissmedic reference number: 2015-MD-0009).

According to the Ethics Committee’s guidelines, all

the participants will give their verbal consent, children

of 15 years and older and all the legal representatives

will provide informed written consent.

This study protocol was established according to the

guide on reporting protocols of pilot and feasibility trials

[26], the Consolidated Standards of Reporting Trials

(CONSORT) statement extension for randomised pilot

and feasibility trials [27] and the Standard Protocol

Items: Recommendations for Interventional Trials (SPIR

IT) [28]. See Additional file 1 for the SPIRIT checklist

and Fig. 1 for the SPIRIT Figure.
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Participants

The majority of children admitted to our rehabilitation

centre has a congenital brain lesion (cerebral palsy) but

we treat also children with acquired brain lesions (after

stroke or traumatic brain injury), spinal cord injury, gen-

etic syndromes, etc. The reasons for admitting a patient

vary. Most children with cerebral palsy come to the centre

for a shorter period (4 to 6 weeks) of intensive therapy or

after orthopaedic surgery, particularly of the lower limbs,

with consecutive rehabilitation. Patients who experienced

an acquired brain lesion, such as a stroke or traumatic in-

jury, are admitted as soon as they are stable and can leave

the intensive care unit. Depending on the recovery, some

of these patients might also be re-admitted for rehabilita-

tion at a later stage. Currently, the average length of stay

is around 40 days but varies from a couple of weeks to

more than a year (for children with acquired brain le-

sions). According to their rehabilitation goals, the children

undergo physiotherapy, occupational therapy, sports ther-

apy, speech and language therapy, neuropsychology, hip-

potherapy, and robot-assisted therapy. For this pilot study,

we will recruit a sample representing patients with con-

genital or acquired brain lesions, reflecting the majority of

our inpatient population.

Inclusion and exclusion criteria

Included will be children with either congenital or ac-

quired brain lesions. Those with an acquired brain lesion

should be in the subacute, i.e. more than 3 months, or

chronic stage. Further inclusion criteria will be uni- or

bilaterally affected upper limb function with spasticity,

dyskinesia or mixed conditions. Additional inclusion cri-

teria will be age 5 to 18 years, the ability to sit upright

for approximately 60 min without lateral trunk support

and a Manual Ability Classification System (MACS) level

between I and IV (MACS level I: handles objects easily

and successfully; level II: handles most objects but with

somewhat reduced quality and/or speed of achievement;

level III: handles objects with difficulty, needs help to

prepare and/or modify activities; level IV: handles a lim-

ited selection of easily managed objects in adapted situa-

tions [29]).

Moreover, the children will need to be able to under-

stand and follow test instructions, be compliant for the

whole study procedure, can communicate pain or dis-

comfort and see a computer screen at approximately 1

m in front of him/her. Excluded will be children with

upper limb surgery or Botox injections during the past 6

months, and upper limb skin lesions.

We decided not to include outpatients since we

learned from prior experiences that it is difficult for par-

ents to organise their children’s attendance for partici-

pating in such an extensive study procedure.

Target sample size

Since the recruitment rate will be one of our feasibility

criteria, we will recruit for 1 year and calculate the re-

cruitment rate, taking into account the number of eli-

gible and recruited participants, and complete datasets.

Yet, the CONSORT 2010 statement extension to rando-

mised pilot and feasibility trials recommends to give

some rationale for the target sample size [27]. Based on

our center’s numbers from past years and taking into ac-

count the inclusion criteria, we anticipate to recruit 20

participants (10 per group).

Recruitment

We will inform the children who are admitted to our

centre matching the inclusion criteria and their parents/

legal representatives about the study. If they provide

their written informed consent, the children will be in-

cluded and the appointments scheduled.

Group allocation

Participants will be allocated to a blocked or random

practice group using randomisation by minimisation.

Fig. 1 Standard Protocol Items Recommendation for Interventional Trials (SPIRIT) figure. Actions and appointments throughout the whole study.
*The test of nonverbal intelligence is conducted before the first practice session (outcome needed for randomisation by minimisation).
**Allocation is done when all the parameters for minimisation are obtained; at latest on the day before the first practice session
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This method enables balancing several prognostic factors

in small samples [30]. We will impute parameters that po-

tentially influence motor learning. To reduce the risk of

selection bias, these factors should be balanced between

the groups, even in the case of uneven distribution.

We will use the following minimisation parameters: age

(preschool age: 5–6 years, primary school age: 7–12 years,

secondary school age and older: 13–18 years); gender (fe-

male, male); diagnose (congenital, acquired); manual ability

(MACS level I, II, III or IV); and cognitive ability according

to the Test of Nonverbal Intelligence–Fourth edition

(TONI-4), which evaluates abstract reasoning and problem

solving (Index Score < 70: very poor, 70–79: poor, 80–89:

below average, 90–110: average, 111–120: above average,

121–130: superior and > 130: very superior) [31]. The mini-

misation parameters are equally weighted. A study nurse

will receive the minimisation parameters of each new par-

ticipant by one of two researchers involved in recruitment.

She will enter the parameters in a custom-written Matlab

programme, which will allocate the participant to either the

blocked or random order group. The study nurse will be

unaware of this definition and the purpose of the study.

The study nurse will enter the allocation in a file, which will

allow the researcher to schedule the appointments and per-

form the practice and measurement sessions. The study

nurse will not be involved otherwise in this trial. In case the

study nurse is unavailable, we will assign another independ-

ent person who will perform this procedure.

Equipment, intervention, outcome measures and study

procedure

Robot

We selected the ChARMin (Children’s Arm Rehabilitation

Mechatronic Interface) device that was developed in a col-

laboration between the Sensory-Motor Systems Lab (Fed-

eral Institute of Technology Zurich, Switzerland) and the

Swiss Children's Rehab [32]. ChARMin (Fig. 2) is an actu-

ated exoskeleton robot, which can actively support joint

movements of the shoulder, elbow, forearm and wrist for

the left or the right arm. To support the patient’s move-

ments, the motors compensate the weight and friction of

the robot arm and can provide guidance force. Therapists

can adjust the guidance from a non-supporting mode,

where the robot transparently follows the patient’s move-

ment, to a fully supported mode. This allows adapting the

physical support of ChARMin to each patient during ther-

apies. However, for the planned pilot study, participants

will not receive physical guidance or support of the device;

the motors will only compensate for the weight and fric-

tion of the robot.

ChARMin includes a small and large distal module to fit

the anthropometrics from about 5-year-old children to ado-

lescents. Interfaced with different exergames, it provides

and facilitates playful training of arm and hand functions,

especially for children with more severe upper limb impair-

ments. During the execution of the exergames, different

sensors and game parameters are recorded and processed

to extract the assessment measures (e.g. number of velocity

peaks, precision on the target or reaction time).

Intervention

We selected an exergame for the pilot study that is based

on the Quality of Movement assessment provided by

ChARMin [33]. The participants will need to perform goal-

directed reaching movements. The participants will have to

steer an avatar, which represents the position of the partici-

pant’s hand, on the screen by moving the upper extremity

with the attached exoskeleton towards one of eight targets

appearing in random order radially around the centre. The

children will be instructed to reach the targets by the most

direct path and as fast as possible. The avatar will need to

remain on the target for 2 s. After that, the target will dis-

appear. Then, the centre object will reappear, and the avatar

will have to be moved back to the centre object to remain

there for another 2 s before the next target will appear. If

the participant will not reach the target within 10 s, it will

disappear, and the centre object will reappear.

Since interference levels must be appropriate to pro-

duce a contrast between random and blocked schedules

[34], we developed two versions of the exergame; one

can be played in the transversal plane, the other in the

frontal plane (i.e. the two versions of the exergames have

different spatial characteristics, which should require dif-

ferent motor programmes) [11].

Choosing different varying characteristics would be an

option, and has already been evaluated [35]. Including

variations based on different motor programmes has

been suggested to create a more difficult learning situ-

ation [11]. As we did not want to increase the learning

difficulty too much for the participants, we decided to

Fig. 2 The ChARMin robot. The ChARMin exoskeleton: a young boy
practicing with ChARMin’s small distal module
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vary the tasks only in one parameter. In the transversal

plane version, the exergame will be displayed as a hori-

zontal plane on the screen. The participant will move in-

side a haptic wall, i.e. the movement will be restricted

mechanically to a horizontal plane, which will be located

10 cm below the shoulder joint for the small and the

large distal module (Fig. 3(A1 and A2)). Mainly horizon-

tal shoulder adduction and abduction, and elbow flexion

and extension will be required to play the horizontal ver-

sion of the exergame. In the frontal plane version, the

exergame will be displayed vertically on the screen.

Here, the participant will move inside a haptic wall lo-

cated 30 cm in front of the shoulder joint for the small

distal module and 35 cm in front of the shoulder joint

for the large distal module (Fig. 3(B1 and B2)). Shoulder

flexion and extension, (horizontal) abduction and adduc-

tion, shoulder internal- and external rotation and some

elbow flexion and extension will be required to play the

vertical version of the exergame.

To motivate the participants to perform a large number

of repetitions actively, we developed different avatar-

target-exergame-scenarios (Fig. 4). Prior to the exergame,

the participant will select his/her own avatar to improve

compliance. For the transversal plane exergame version,

the avatar will either be a unicorn who will be eating cup-

cakes (targets) or a snail eating apples. For the frontal

plane exergame, the avatar will be an UFO landing on

planets or a submarine collecting fish. As previously men-

tioned, we will instruct the participants to ‘move the uni-

corn/snail/UFO/submarine to the cupcake/apple/planet/

fish as direct and fast as possible’.

Reaching a target will be rewarded with a score dis-

played in the middle of the screen. The score will be cal-

culated using the time remaining to reach the target (0

to 10 s), and the distance to path ratio (1 = direct move-

ment to the target):

Score ¼ time remainingþ 11 −
path

distance

� �

Therefore, the maximum score for each target will be

20. A randomly chosen target out of the eight targets

Fig. 3 Restrictions of movement inside a haptic wall on the horizontal (A) and the vertical plane (B). The movement area during the horizontal
plane exergame with the small distal module (A1) and the large distal module (A2). The haptic wall is located 10 cm below the shoulder joint.
The movement area on the vertical plane is located 30 cm in front of the shoulder joint for the small distal module (B1) and 35 cm in front of
the shoulder joint for the large distal module (B2)
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per trial will be a golden target with a value worth five

times as much to increase the participant’s motivation.

The current score of the ongoing trial will be displayed

in the left upper corner of the screen. The total score

will be displayed after each trial and will not exceed 240

points.

The blocked group will play 15 trials of one version

(i.e. in either the horizontal or vertical plane) followed

by 15 trials of the other version. The order of the two

blocks will be randomised and the same for all the prac-

tice sessions for the same participant. The random group

will play the 30 trials of the two versions in a pseudo-

random order. The only restriction will be that the same

version cannot be repeated more than twice in a row.

To generate observable changes due to motor learning,

a large number of repetitions (i.e. hundreds of daily rep-

etitions for upper extremity movements) will be required

[36, 37]. Results from a recent study proposed changes

in performance scores during three sessions, each lasting

20–25 min of robot-assisted arm training, and showed

that movements were repeated more than 3000 times

[38]. Yet, it is challenging to define the number of repe-

titions sufficient to induce motor learning, while main-

taining an acceptable length of sessions to keep the

burden for the participants at a minimum and their mo-

tivation at a maximal level. In our study, participants will

perform 16 reaching movements within one trial of exer-

games. Over the three sessions (30 trials per session),

this would lead to 1440 repetitions of the reaching

movement. We consider that this number will induce

change due to motor learning. On the other hand, we

expect a maximum session duration of 120 min, which

seems acceptable.

When switching between the two exergame versions,

the therapist will not need to adjust the hardware settings,

but she will need to choose the appropriate version of the

exergame on the interface. In order to have the same con-

ditions for all participants, we will renounce using the sup-

port modalities of the robot. While children with

unilaterally affected upper limb function will practice and

perform all the assessments with their more affected side,

children with bilaterally affected upper limb function will

use the arm which they subjectively use more in daily life.

Outcome measures

Outcomes of the main study

Primary outcome: immediate transfer of the practiced

skill We chose the Melbourne Assessment 2 subscale

fluency (MA2fluency) as the primary outcome measure

for the immediate transfer. The MA2 consists of the four

subscales movement range, accuracy, dexterity and

Fig. 4 ChARMin exergames. Upper row: transversal version of the ChARMin exergames (A1: avatar unicorn, target cupcake; A2: avatar snail, target
apple). Lower row: frontal version of the ChARMin exergames (B1: avatar UFO, target planet; B2: avatar submarine, target fish, in this picture the
gold target is displayed)
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fluency [39] and is an adequate measurement for re-

search and clinical use in children with cerebral palsy

[40]. The intraclass correlation coefficient of the test-

retest reliability of the MA2fluency is 0.96 (95% confi-

dence interval 0.90–0.99), the minimal detectable change

is 2 points and the minimal clinically important difference

is at least 3 points [40]. Concerning the concurrent valid-

ity, Pearson’s correlation coefficients between the

MA2fluency and other tests amounted to 0.67 (Bruininks-

Oseretsky Test of Motor Proficiency, Second Edition, sub-

test 3, manual dexterity), 0.76 (Box and Blocks Test) and

0.40 (Paediatric Motor Activity Log–Revised, quality of

movement) [40]. The responsiveness of the MA2fluency is

high, which is indicated by significant change scores and a

high standardised response mean value of 1.84 [40].

From a clinical point of view and in line with literature

(e.g. [9]), we consider the transfer to be an important aspect

of learning. We hypothesise that MA2fluency will improve

when practicing the reaching movements. During the exer-

games, the participant will be instructed to reach the target

by the most direct path, i.e. as fast as possible. This is in line

with the MA2fluency scoring criteria, which include jerkiness,

tremor and/or reduced speed of movement [41].

Since we considered the MA2fluency to be more sensi-

tive to change instantly after the practice sessions due to

the relatively short practice period and to avoid a poten-

tial loss to follow-up at later time points, we chose the

immediate transfer as the time point of interest for the

primary outcome.

One of three trained occupational therapists will score

the MA2fluency by analysing the video. The rater will be

blinded for the participant’s group allocation, the time

point of assessment and the randomisation code. The sum

scores will be calculated and used for further analysis.

Secondary outcomes Delayed transfers: The delayed

transfers (1 day and 1 week after the last practice ses-

sion) will be determined by the sum score of the

MA2fluency at these time points.

Immediate and delayed retentions: To evaluate whether

the participants can retain what they have learned, the so-

called exergame test will be performed. It consists of one

block of three trials of the horizontal version of the exer-

game and one block of three trials of the vertical version

of the exergame. Although the order of the versions will

be randomised between the participants, it will remain the

same within each participant throughout the study.

With these exergame tests, we anticipated measuring

the construct ‘movement fluency’. There is no generally

accepted way of quantifying fluency. Several studies have

used the absolute number of velocity peaks of a single

movement [42, 43]. Yet, as we also wanted to take into

account the length of the movement path, we will

calculate the parameter ‘number of peaks’, which is the

number of velocity peaks (i.e. when the difference be-

tween a local speed minimum and a local speed max-

imum exceeds a value of 2.5% of the measured maximal

speed) normalised to the covered distance of the move-

ment path (nPnorm). We will calculate nPnorm for each

movement (i.e. one value from the centre to the target

and one for the return to the centre starting point) that

will lead to 16 data points per trial. The parameter

nPnorm has shown reliable results during the Quality of

Movement assessment [33], on which the exergames are

based. In a comparable group of 23 participants, the par-

ameter nPnorm showed no systematic error between two

measurements within 3 to 7 days, an intraclass correl-

ation coefficient of 0.94, a percentage standard error of

measurement (divided by the grand mean) of 6.4% and a

percentage smallest real difference (divided by the grand

mean) of 17.7% (unpublished data).

Acquisition: To observe motor learning during the prac-

tice sessions, nPnorm will be the parameter of interest

too. It will also be recorded 16 times per trial, which will

lead to 480 data points per practice session.

Feasibility outcomes

In line with recommendations on reporting protocols of

pilot and feasibility trials [26], we will apply the follow-

ing ten specific feasibility criteria:

1. Are the chosen inclusion criteria specific enough to

result in a sample of participants, which is suitable

for this pilot study (e.g. are they able to play the

exergame)?

2. Is the recruitment rate feasible? Since the main

randomised controlled trial would require a large

number of participants, it is relevant to know the

number of participants that will be recruited during

a certain period.

The number of children enquired for the study,

number of participants recruited, number of

complete datasets within 1 year will be recorded

and used to calculate recruitment rates.

3. Is the scheduling procedure feasible? The

appointments will be planned for 3 weeks for each

participant. The person conducting the exergame

tests and the MA2fluency always will need to be the

same. The same will apply for the person

instructing the child during the practice sessions.

Absences of personnel (e.g. due to illness, holidays

or part-time employment) and the children (e.g.

due to illness or short-term planned medical

appointments), as well as the availability of the

robot and material for the MA2fluency (i.e. whether

they are not used for therapy at the time points of
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the measurements), will need to be considered.

Information about whether it is possible to schedule

rooms, persons involved and the robot and table for

performing assessments will be noted.

4. Is the randomisation procedure feasible?

Experiences of the persons involved will be

collected and evaluated to answer this question.

5. Is the whole procedure feasible for the participants?

The rather time-consuming procedure and the high

number of repetitions might be difficult for at least

some of the participants because of fatigue or lack

of motivation to play the exergames so many times.

Both reasons influence motor learning negatively.

Therefore, it is important to determine whether the

participants included in this study are able to com-

ply the whole study procedure. Information about

aborted or shortened sessions or other incidents

and their reasons (e.g. pain or discomfort, fatigue)

will be taken from the lab journal.

6. Is the handling of the robot feasible? The ChARMin

robot has been in use in the clinical and research

area since 2015. Since it is a newly developed tool,

it is important to evaluate its handling. Any

technical issues will be noted and then retrieved

from the lab journal.

7. Is the handling of the large amount of data feasible?

Information from the assessors and the analyst on

the primary outcome will be used.

8. Are the outcome measures responsive and sensitive

enough within this setting? Responsiveness analysis

of the assessment data will be performed.

9. Is there a confounding influence of parallel

therapies within the rehabilitation setting? As the

study will be conducted during the inpatient

rehabilitation stay, it is important to estimate

whether parallel-applied therapies could confound

the results. Since an additional control group

following usual care would require a larger sample,

we chose a design in which each participant acts as

its own control and, therefore, we included control

measurements during the first week of the study

procedure.

The changes in the outcomes between week 1

(control week) and week 2 (practice week) will be

compared. The kind and number of additional

therapies taking place during the different study

periods will be recorded to increase the quality of

reporting [44].

10. Is it feasible to conduct the main trial with respect

to the needed sample size calculated from the data

obtained for the primary motor learning outcome?

With the data of the primary outcome measure, we

will calculate the required sample size for the main

trial.

Study procedures

The study procedure is shown in Fig. 1 (SPIRIT Figure)

and Fig. 5.

Week 1

During the first appointment, the setup of the robot and

the adjustments according to the child’s anthropometrics

will be performed. This takes approximately 15 min. Each

participant will then become familiarised with the two ver-

sions of the exergame. First, the transversal version ‘Uni-

corn’ will be played with manual guidance and verbal

support from the therapist. Then, the transversal version

‘Snail’ will be played with only verbal guidance of the ther-

apist. The same procedure will be followed for the exer-

game that is played in the frontal plane (i.e. ‘Submarine’ will

be played with manual guidance and verbal support

followed by ‘UFO’, which will be played with only verbal

support). Subsequently, an assessment block consisting of

the MA2fluency [45] and an exergame test will be performed.

During week 1, also all the parameters for randomisa-

tion by minimisation will be obtained from the partici-

pant’s medical history (e.g. age, gender, diagnosis), from

the attending occupational therapist (MACS level), and

trained neuropsychologist (TONI-4). Participants will be

characterised by age, gender, weight, height, diagnosis (in-

cluding information about the affected side and specific

features such as spasticity, dyskinesia or mixed condition)

and the MACS level. After obtaining the minimisation pa-

rameters, participants will be allocated to their group.

Week 2

On each of three consecutive days, all participants will

practice 30 trials (15 trials of the horizontal and 15 of

the vertical version of the exergame) in either a blocked

or random order (according to their group allocation).

Right before the first and after the last practice session,

an assessment block will take place to assess the acquisi-

tion and immediate transfer and retention. One day after

the last practice session, the assessment block will be re-

peated (1 day delayed transfer and retention).

Week 3

One week after the last training session, the assessment block

will be repeated (1 week delayed transfer and retention).

The first session will include robot set-up and familiar-

isation and will be scheduled for approximately 75 min.

Assessment blocks will take approximately 35 min and

practice sessions 60 to 90 min. As the duration of an

exergame trial depends on the child’s performance, it

will vary largely and will affect the overall duration of

the practice session. Once the robot settings have been

adjusted to the participants’ anthropometrics, no add-

itional set up time will be required. We defined an upper

time limit of 120 min per session, which could be
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reached during practice sessions 1 and 3 that will also

include a previous or subsequent assessment block. Ses-

sions will be aborted after 120 min.

Standardisation and blinding

All the appointments will be scheduled during the same

half of the day throughout the 3 weeks to reduce the in-

fluence of daytime on the outcome (e.g. fatigue increas-

ing throughout the day, the severity of spasticity

changing over the day, etc.). A trained physiotherapist or

human movement scientist will conduct the practice

sessions and the assessments following standardised

instructions. The same person will conduct at least all

assessment blocks with a participant and, whenever

possible, also the practice sessions. In each session,

an assistant will note irregularities and support the

therapist.

While the assessor of the primary outcome (video analysis

of the MA2fluency) will be blinded to the participants’ alloca-

tion and the time-point of the assessment, the participants

will be blinded to the detailed aims of the study. Both will be

informed that the intervention will investigate motor learn-

ing with new exergames but not about our interest in investi-

gating the effects of different practice orders.

Data analysis

We will present the numbers of the recruitment and

measurement procedure in the CONSORT extension to

randomised pilot and feasibility trials flow diagram (Fig. 6).

We will report the participant characteristics and the base-

line descriptives for each participant.

ChARMin data will be processed by a custom-made

Matlab algorithm (The MathWorks Inc.). Statistical ana-

lysis will be performed with IBM SPSS Statistics 24.

In case of incomplete datasets, loss to follow-up or if a

participant would be treated in the other treatment group

than the one he or she was allocated to, we plan an

intention-to-treat analysis. In case of missing data (e.g. a

participant is not able to attend a session), we plan to per-

form a multiple imputation by chained equation.

Analysis of feasibility

The ten areas (see outcome measures section) will be

evaluated with the information obtained during the

study. Only questions 8, 9 and 10 will require statistical

analyses to be answered:

8) Responsiveness analysis of the outcome measures

for this specific intervention: the data (MA2fluency
and exergame test data) of the measurement time

point immediately before the first and right after

the last practice session will be compared. For

internal responsiveness, the standardised response

mean will be calculated. For the external

Fig. 5 Study procedure. The study duration for each participant is 3
weeks. Week 1 contains the familiarisation of the two versions of the
exergame, two assessment blocks (Melbourne Assessment 2 and
exergame tests) and the Test of Nonverbal Intelligence, Fourth
edition (TONI-4). The TONI-4 will be planned before the first practice
session day (i.e. on appointment 2 or 3). Week 2 contains three
practice sessions with an assessment block proceeding the first
practice session and another assessment block after the last practice
session to evaluate immediate transfer and retention. One day after
the last practice session, the assessment block is repeated to assess
the delayed one-day transfer and retention). During week 3, the last
assessment block is scheduled one week after the last practice
session to assess the delayed 1-week transfer and retention. TONI-4
Test of Nonverbal Intelligence, Fourth edition
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responsiveness, a Pearson correlation coefficient will

be calculated between the change-scores (i.e. be-

tween the two measurement time points) of the

MA2fluency and the ChARMin parameter nPnorm.

9) Effect due to the parallel therapies within the

rehabilitation setting: We will include data of all

participants to test for a significant change in

exergame and MA2fluency scores between day 1

and day 3 in week 1 (i.e. without specific

intervention, see Fig. 4) using a paired T test or

Wilcoxon signed-rank test if a non-parametric ana-

lysis will be required. Assuming that the partici-

pants will have similar therapy schedules during

week 1 and 2, and no change is measured during

week 1, a change during week 2 could be attributed

to the robotic training. However, if outcomes will

improve significantly in week 1, changes observed

during week 2 will need to be interpreted with

Fig. 6 The Consolidated Standards of Reporting Trials (CONSORT) extension to randomised pilot and feasibility trials flow diagram [27]
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caution, as they cannot be attributed to the study’s

intervention alone.

10) The sample size estimation for the main trial will be

calculated according to the formula

n ¼
ðZαþZβÞ

2�2σ2

ðμ1 − μ2Þ
2 [46].

Where n= sample size, Zα= standard normal z value

for a significance level α = 0.05, which is 1.96, Zβ =

standard normal z value for the power of 80%, which is

0.84. The pooled standard deviation of the pre-and post-

intervention differences (both groups) is indicated by σ,

μ1 is the mean pre-post-intervention difference of the

intervention group 1, μ2 is the mean pre-post-

intervention difference of the intervention group 2.

Analysis of motor learning outcomes of the main trial

As recommended by the CONSORT extension to pilot

and feasibility studies, we will report 95% confidence

interval estimates of the motor learning outcomes [27], as

the study will be most likely underpowered. Hypothesis

testing will only be conducted if the recruited sample size

is large enough to warrant sufficient statistical power.

Primary outcome

Immediate transfer The relative difference ðMA24 − MA23
MA23

Þ

of the MA2fluency sum score between the time point

right before the first practice session (MA23) and the

time point immediately after the last practice session

(MA24) will be compared between the groups. A T test

(or Mann-Whitney U test, if data are not normally dis-

tributed) will be performed.

Secondary outcomes

For all secondary outcomes, a multifactorial repeated

measures analysis of variance (ANOVA) with ‘practice

group’ and ‘time point’ as factors will be conducted over

all the time points. A post-hoc analysis (Bonferroni cor-

rection for multiple comparisons) will be used to test for

significant changes between the appropriate time points.

Delayed transfers The MA2fluency sum scores will be

compared between the time point right before the first

practice session, 1 day after the last session (1-day-de-

layed transfer), and 1 week after the last session (1-

week-delayed transfer).

Immediate retention, delayed retentions, acquisition

For the several retention time points and the acquisition, the

parameter nPnorm (obtained during the exergame tests and

the practice sessions, respectively) will be evaluated. Compar-

isons will be made between the data obtained during the

exergame tests right before the first practice session with the

data from immediately after the last practice session

(immediate retention), 1 day after the last practice session

(1-day retention), and 1 week after the last practice session

(1-week retention). For the acquisition, all the data points

obtained during the practice trials will be compared.

Assumptions

Generally, statistical testing is only performed in case of

sufficient statistical power. For a T test, the normal distri-

bution of the data will be required, which will be tested

with a Shapiro-Wilk test. For an ANOVA, the homosce-

dasticity of values of the groups and normal distribution

of the population of the residues will be tested with the

Levene test and the Shapiro-Wilk test, respectively.

Discussion
We aimed to present the study protocol of a randomised

controlled single-blinded pilot trial to explore the feasi-

bility of testing the contextual interference effect while

practicing robot-assisted upper limb tasks with exer-

games in a representative sample of children with con-

genital or acquired brain lesions.

Putting the pilot study in the wider context

It is common that different motor tasks are practiced

within the same therapy session in paediatric neurorehabil-

itation. Human movement is variable (e.g. [19]) and vari-

ability generally seems to be beneficial for learning of new

motor skills [47]. Despite this, high-level evidence about the

contextual interference effect in children in general and

particularly in children with brain lesions is missing [20]. If

children with congenital or acquired brain lesions would re-

spond similarly as healthy adults to the contextual interfer-

ence effect, random practice would be more beneficial

compared to blocked practice at retention and transfer. On

the long-term, this knowledge could contribute to the opti-

misation of treatment protocols leading to improved clin-

ical outcomes in children undergoing neurorehabilitation.

All rehabilitation goals are individual, yet participation

[48] and independence in daily life are often mentioned

as the most important aims for the rehabilitation of chil-

dren [49]. The importance of generalisability of motor

improvements (i.e. the result of motor learning) and the

retention thereof in the daily life of the child is probably

not a matter of dispute. Yet, there is a gap between the

somewhat constrained reaching movement during an

exergame with a robot that is limited to specific move-

ment directions and a goal-directed reaching movement

in daily life. Or, in the language of the International

Classification of Functioning, Disability and Health [50],

practicing ‘body functions’ or ‘capacity’ in a robot might

not directly influence ‘performance’ in a daily life envir-

onment. While in the robotic condition, the starting

position is relatively fixed and the number of movement

directions is prescribed and somewhat constrained,
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reaching in daily life has not such limitations, which

leads to many more movement opportunities [51], in-

cluding numerous movement directions requiring move-

ment control over multiple joints. Furthermore, the use

of upper extremities in daily life is mostly a bimanual

matter in persons without neurological deficits [52, 53].

While there will much more questions coming up along

the way, a randomised controlled trial, as we described it

in this protocol, might answer the first question. As

there is not enough knowledge available to start with

such a study, the conduct of a pilot study is inevitable.

Concludingly, this protocol of the planned pilot study is

the first step of a series of successive questions and,

hopefully, answers, which ultimately leads to an opti-

mised transfer of motor learning improvement into

everyday life performance.

Potential risks and benefits for the participants

It has been stated that scientists need to develop sensi-

tivity for the risks and benefits of the participants when

volunteering for a trial [54]. Currently, we do not know

whether the blocked or random practice order would be

more beneficial. Nevertheless, we assume that the prac-

tice schedule described in this study protocol could lead

to an improvement in motor functions. Despite that par-

ticipants will practice only three sessions, according to

literature, the resulting 1440 repetitions should induce

motor learning as 500 repetitions led to motor learning

effects in adults after stroke [37]. Therefore, for all the

children participating in this study, a direct benefit can

be expected. Especially for such a vulnerable population

as children with neurological impairments, the risks of

participating in a study should be minimal or, if greater,

should be outweighed by the anticipated benefit [55].

Our study provides a safe setting, and we expect no se-

vere adverse events. Potential risks might be fatigue,

muscle soreness, a more challenging rehabilitation

schedule due to a higher number of sessions than usual

and skin irritations due to pressure and friction of the

cuffs. The risk-benefit trade-off of this pilot study seems

balanced and therewith justifiable.

Conclusion

After the execution of this pilot study, we will be able to

decide upon the questions whether the main randomised

controlled trial could be feasible and, if yes, how it

should be performed.
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