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Large volcanic eruptions have been shown to affect temperature patterns to
varying degrees on continental, hemispheric or global scales. However, few studies
have systematically explored the influence of volcanic eruptions on temperatures
at a local, Irish level. The focus of this paper is to determine the impacts of five
high-magnitude low-latitude volcanic eruptions and one such Icelandic event on
Irish climate over the past �200 years. Daily temperature data from the Armagh
Observatory, Co. Armagh, Northern Ireland was used to assess the influence of
volcanic eruptions on seasonal and yearly values through time. The paper
explores volcanically-induced temperature trends by filtering out the influence of
the North Atlantic Oscillation (NAO) and solar variability, and goes on to
employ a variation of Superposed Epoch Analysis to identify which seasons and
years are most significantly affected by large volcanic eruptions. Armagh
temperatures proved particularly responsive in the spring, with a significant
decrease in values in the four years following an eruption. Winter temperatures
also exhibited a volcanic influence, with a small initial increase in the year of and
year following an eruption, and a significant decrease in residual temperature in
years two and three after the event.
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Introduction

Global warming and the influence of anthropogenic changes to the environment are

dominant themes in climate research today. However, the changes brought about by

these processes have the potential to be abruptly altered by the impact of high-

magnitude volcanic eruptions, particularly those at the lower latitudes. The injection

of volcanic matter into the atmosphere has the ability to influence temperatures on a

global scale. Volcanic events of varying intensity have the potential to lower global

values by between 0.2oC and 0.5oC for one to three years after the eruption (Self

et al. 1981). Such seemingly slight alterations in global temperatures can nonetheless

have a prominent influence on regional weather, agriculture and society.

There is a tendency in the study of volcano-climate interactions to focus on

widespread changes, with research by, amongst others, Pollack et al. (1993), Robock

and Liu (1994), Robock (2000), Zielinski (2000) and de Silva (2005), examining

continental, hemispheric or global changes in the wake of volcanic events. Pı́sek and

Brázdil (2006) point out that there needs to be more attention paid to the climatic

effects of eruptions on a local level. At this scale volcanic signals have the potential to
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manifest in a different manner than they do on a hemispheric or global scale due to

the influence of local topographic and circulation patterns.

Studies of volcanic impacts on Irish climate are rare. Carbon isotopes in tree

rings were used to assess causes for growth anomalies following the eruptions of Laki
(Iceland, 1783) and Tambora (Indonesia, 1815) (Ogle et al. 2005). Ireland was also

included in a review of first-hand accounts of hardships suffered following the 1815

Tambora eruption (Oppenheimer 2003). In addition, Wilson (1998) included large-

scale volcanic eruptions in an assessment of influences on annual temperatures from

the Armagh Observatory, Northern Ireland, between 1818 and 1858, and found that

high-magnitude volcanic eruptions led to reduced Irish temperatures in the year

following the eruption. This is the first study to systematically explore and identify

the impacts of multiple volcanic eruptions on the Irish temperature record over the
last 200 years.

In this study, daily temperature data from the Armagh Observatory were used to

examine the impact for Ireland of five high-magnitude low-latitude eruptions and

one Icelandic event. The large low-latitude eruptions included in this analysis are

known to have had an influence on global climate (Briffa et al. 1998). The Icelandic

eruption is included due to the fact that it was the highest magnitude volcanic

eruption in relatively close proximity to Ireland during the timeframe provided by the

data.

Volcanic impacts on temperature

Low-latitude high-magnitude volcanic eruptions that penetrate the stratosphere can

have a notable impact on global climate due to the ease with which the volcanic

particles can circulate in the atmosphere (Robock and Free 1995), whereas ejecta

from eruptions that occur at higher latitudes will remain concentrated in the

hemisphere within which they were injected (Oman et al. 2005). The gases produced
by eruptions affect the earth’s climate through a set of complex interactions. These

gases are dominated by water vapour and carbon dioxide (�80% and 10%

respectively), with the remaining 10% composed of between five and eight other

gases and aerosols depending on the parent material, the most common of which

tends to be sulphur dioxide (SO2). Aerosols have a more notable, long-term influence

on climate than ash, as the larger material falls out of the stratosphere relatively

quickly following volcanic eruptions. This results in their influence on local climate

being short-lived, while a more widespread effect is nonexistent. Robock and Mass
(1982), after the 1980 Mount St. Helens eruption in Washington, showed that this

temporary atmospheric loading significantly reduced the amplitude of the diurnal

cycle of surface air temperature in the region of the ash cloud. However, these effects

disappear as soon as the large particles of ash settle on the ground (Robock 2000).

This removal is the result of the gravitational fall of the particles, or their washout by

precipitation. The SO2 emissions from this particular eruption were too small to

produce any far-reaching climatic effects (Rampino et al. 1988).

Only larger Plinian-style pyroclastic eruptions such as Mount Pinatubo in 1991
penetrate the tropopause and the stratosphere. This facilitates the distribution of

particles in a drier layer of the atmosphere and reduces the likelihood of the

emissions being rained out (de Silva 2005). The aerosols produced have an

atmospheric residence time of one to three years, depending on the latitude and
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altitude of the initial injection (Robock 2000). Because the increased concentration

of volcanic aerosols remains in the stratosphere, they act to reduce temperatures in

the layers below, that is, the troposphere and the earth’s surface. Aerosols limit

sunlight reaching these levels and essentially increase the albedo effect in the
atmosphere (Pollack et al. 1976). In addition, volcanic aerosols cause destruction of

ozone as a result of heterogeneous reactions with anthropogenic chlorine species

(Kirchner et al. 1999). This results in less UV absorption in the stratosphere, which in

turn modifies the aerosol heating effect (Rosenfield et al. 1997). Simulations of

temperature changes within the troposphere associated with the El Chichón eruption

in 1982 (Pollack et al. 1991) show that the solar perturbation is likely to see the

cooling aspect becoming dominant in the months and years following an eruption.

Data and methods

The data analysed was obtained from Armagh Observatory, Co. Armagh (54821?N;

6838?W), which lies approximately 1 km northeast of Armagh city centre. It is
situated 64 m above mean sea level in an estate of natural woodland and parkland.

The observatory is largely surrounded by countryside similar to that which has

existed since its foundation in 1790 (Butler et al. 2005). The surrounding rural

environment has ensured that the observatory suffers from little or no urban micro-

climatic effects (Coughlin and Butler 1998). In addition, at a wind exposed site,

urban climatic effects are likely to be minimised (Butler et al. 2005). All temperature

data was acquired from Butler et al.’s (2005) mean daily temperatures from Armagh

Observatory for the years 1796�2007.

Selection of eruptions

Large volcanic eruptions from higher latitudes, such as Ksudach on the Kamchatka
Peninsula in Russia in 1907, were not included in the analysis as climatic impacts

outside of their immediate regions are not well defined (Oman et al. 2005). Low-

latitude eruptions that occurred after the establishment of the Armagh weather

records, that is January 1796, were the main focus for this study, while high-

magnitude Icelandic events were also considered. The choice of eruptions for analysis

was narrowed further when only those with a Volcanic Explosivity Index (VEI) value

of at least 5 (after Newhall and Self 1982) were chosen. VEI provides a relative

measure of the explosiveness of volcanic eruptions. The scale ranges from 0 for non-
explosive eruptions (less than 104 m3 of tephra ejected with an eruption column

height of less than 100 m) to 8 for mega-colossal (explosive eruptions that eject 1012

m3 of tephra and have a cloud height of over 25 km).

The number of VEI ] 5 eruptions selected was reduced by the requirement of the

wider impact upon Northern Hemisphere climate being acknowledged in the

literature. For example, the VEI 5 eruption of Mount Agung in Bali in 1963 had a

very small volume of ejecta. Four fifths of this was spread throughout the Southern

Hemisphere which in turn failed to produce an effect in the Northern Hemisphere
(Rampino et al. 1988). Similarly, the 1902 VEI 6 eruption of Santa Maria in

Guatemala was discounted as Briffa et al. (1998) pointed out that the event was not

influential in their analysis of Northern Hemisphere temperature change, while

Hammer et al. (1980) came to the same conclusion based on ice-core records. Mass
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and Portman (1989) suggest that this lack of influence could be due to the impact of

El Niño Southern Oscillation (ENSO) on regional wind patterns at that time. The

selection of the Icelandic eruptions was based on similar criteria to those of a low-

latitude origin. Here, eruptions since 1796 with a VEI ] 5 were selected. Only one
such eruption, Askja in 1875, occurred in Iceland during this time. All information

regarding VEI values was acquired from the Smithsonian Institution’s Global

Volcanism Program (Siebert and Simkin 2002). The locations of the relevant

volcanoes can be seen in Figure 1.

Data analysis

Natural variability in climate is caused by changes in solar output, volcanic activity,
and internal interactions between the various components of the climate system, that

is, the atmosphere, ocean, cryosphere and biosphere (Slonosky et al. 2001).

Particularly cold conditions have been linked to variations in solar output in the

form of decreased sunspot activity, which limits the amount of solar radiation

reaching the earth (Lean et al. 1995), while the North Atlantic Oscillation (NAO) is

regarded as one of the primary influences upon climatological variability in Western

and Northwestern Europe (Hurrell 1995). Consequently, this paper employs linear

regression analysis to individually assess the influence of each of these three forcing
factors upon the Armagh Observatory temperature series. This analysis was carried

out based on non-overlapping five-year means in an effort to reduce the effect of

delayed spatial responses and slight dating uncertainties in terms of volcanic

eruptions (Briffa et al. 1998). Table 1 reports the standardised and unstandardised

beta values for regressions run between seasonal temperatures and NAO, sunspot

and Dust Veil Index (DVI) values. It also highlights the adjusted R2 values achieved

from these multiple regressions, as well as the change in the R2 value that occurs

when the influence of the DVI is added to the combined influence of NAO and
sunspots (Mass and Portman 1989). The influence of NAO was assessed using

Luterbacher et al.’s (2002) reconstructed monthly values, while the mean monthly

sunspot data employed, the International Sunspot Number, was compiled by the

Solar Influences Data Analysis Centre (2011). Finally, Lamb’s (1970) DVI, perhaps

the best indicator of global volcanic activity (Robock 1983, Lough and Fritts 1987)

was used to gauge the impact volcanic eruptions have had on the Armagh

Observatory temperature series.

Monthly residual temperature series were created whereby the influences of NAO
and sunspots were factored out, leaving residuals that were more closely associated

with variations attributed to volcanic eruptions. An adapted version of Superposed

Epoch Analysis (SEA) was used to analyse the residual temperatures in an effort to

identify a volcanic signal. SEA resolves signal to noise problems associated with

volcanic events where the climatological response may be masked or accentuated by

noise from other variables (Bradley 1988, Donarummo et al. 2002, Adams et al.

2003). However, because the number of volcanic eruptions under examination here is

relatively small, it was necessary to adapt the normally large-scale approach of SEA
to accommodate the reduced N value. The process involves sorting data into

categories dependent on a key-date for synchronisation and then comparing the

means of those categories (Adams et al. 2003). In each case, the key-date was the year

within which the eruption occurred. For example, in the case of the eruption of
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Figure 1. Names, locations, eruption dates and Volcanic Explosivity Index (VEI) values of six chosen volcanic eruptions.
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Table 1. Beta and adjusted R2 values from multiple regression involving mean seasonal temperature data from Armagh Observatory and NAO, sunspot

and DVI values in 5-year non-overlapping means.

Winter Spring Summer Autumn

Seasonal temperature (5-yr groupings) b b Std b b Std b b Std b b Std

Seasonal NAO 0.637** 0.438** 0.150 0.128 �0.047 �0.037 �0.178 �0.101

Seasonal sunspot 0.006 0.313 0.008* 0.419* 0.006 0.285 0.010** 0.513**

DVI �0.003** �0.515** �0.003* �0.443* �0.001 �0.162 �0.002 �0.341

R2 0.419** 0.295** 0.024 0.284*

R2 change following inclusion of DVI 0.242** 0.179* 0.000 0.098

* Correlation significant at the 95th percentile
** Correlation significant at the 99th percentile
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Tambora in April 1815, the key spring, summer and autumn dates were those from

1815, while the winter key date was December�February 1815�1816. For each of the

six key dates (from each eruption selected), an 11�year window centred on the key

date (year 0) was extracted from the mean seasonal residual indices and centred into
the adapted SEA matrix. This provides a reasonable interval for resolving a response

to volcanic forcing (�5 years). Three-year composites were employed whereby

independent samples T-tests were used to determine statistical significance. Given the

potential seasonal lags in response to volcanic forcing, SEA will provide its strongest

results when performed in such multi-year composites (Adams et al. 2003). Each

possible combination of consecutive three-year groups (from TY-5 to TY�5),

moving in one year steps, were re-sampled in block form against the remainder of the

matrix. Table 2 contains the significantly positive/negative results achieved during
these tests, while also showing the positive/negative results when the same

independent samples T-tests were applied to the recorded mean seasonal temperature

values in Armagh Observatory.

Seasonal yearly volcano-induced change

Briffa et al. (1998) put forward the theory that the most intense period of cooling

following volcanic eruptions occurs in the first summer after the event. In an effort to

examine this in terms of the data from Armagh Observatory, the residual and

recorded seasonal temperature for the year of events (TY) to the fourth year after

the events (TY�4) was expressed as an anomaly from the 10-year mean of the

corresponding seasons prior to the eruptions. The use of a 10-year mean has the
advantage of being sufficiently long to remove much of the inter-annual variation,

while also being short enough to reflect long-term climate trends (Mass and Portman

1989). A similar theory of predicted change in post-eruption temperatures was

proposed by Robock and Mao (1992), who postulated that an increase in

concentrations of particulate matter and aerosols in the atmosphere acts to increase

temperatures in the winter period following eruptions. Again, deviations from the 10-

year mean of the corresponding seasons prior to the eruptions were calculated to

highlight when/if any increase in winter temperatures can be expected. To ensure
complete seasonal coverage, the same method of analysis was applied to mean spring

and autumn residual and recorded temperatures from Armagh Observatory, as well

as mean yearly values. The mean changes over the six selected eruptions, in addition

to the standard deviation for each year, are presented in Figure 2.

Results

The standardised and unstandardised beta values in Table 1 show the strengths of the

relationships between each of the three forcing factors (NAO, sunspots and DVI)

and the temperature values from Armagh Observatory in terms of five-year non-

overlapping means. As would be expected, the strongest relationship between NAO

and temperatures occurs in winter, with significantly positive beta values. However,
these values are overshadowed by the negative results returned when the influence of

Lamb’s (1970) Dust Veil Index is assessed. A standardised beta value of �0.515 is

achieved with winter temperatures, while spring temperatures in Armagh Observa-

tory return a standardised beta value of �0.443. The number of sunspots during
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Table 2. Adapted 3-year Superposed Epoch Analysis. Years with negative 3-year composites at the 95% and 99% confidence level are marked by N* and

N** respectively. Resid.: Residual temperature; Rec.: Recorded temperature.

�5 to �3 �4 to �2 �3 to �1 �2 to 0 �1 to 1 0 to 2 1 to 3 2 to 4 3 to 5

Resid. Rec. Resid. Rec. Resid. Rec. Resid. Rec. Resid. Rec. Resid. Rec. Resid. Rec. Resid. Rec. Resid. Rec.

Winter N* N*

Spring N** N** N** N**

Summer

Autumn

Year N* N* N*

* Correlation significant at the 95th percentile
** Correlation significant at the 99th percentile
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spring has an almost equal, but opposite, influence on temperature (b Std: 0.416).

None of the three forcing factors examined returned a significant beta value during

the summer months, while the DVI was, again, the most influential factor in autumn

with a standardised beta value of 0.513. The adjusted R2 values in Table 1 show that,

when combined, the influence of NAO, sunspots and DVI on temperatures in

Armagh Observatory is at its strongest in winter (R2: 0.419), followed by spring and

autumn. These forcing factors have no significant impact on summer temperature,

either individually or when combined. The strong standardised beta relationship

between winter temperatures and DVI is emphasised again by the increase that

occurs in the R2 value (�0.242) when DVI is added to a multiple regression

involving NAO and sunspots. Again, spring values are also increased, but to a lesser

extent, while autumn R2 values increased only marginally when the influence of DVI

is included.

The results in Table 2 indicate that the season within which the residual

temperatures in Armagh Observatory is most significantly negatively affected

following volcanic eruptions is spring. Here, the three-year intervals between

Figure 2. Seasonal and yearly residual and recorded temperature deviations from the 10-year

mean prior to eruptions in the year of events (TY) and the four years following (TY�x)

events.
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TY�1 to TY�3 and TY�2 to TY�4 contain negative correlations significant at

the 99th percentile signifying that temperatures can be expected to fall during spring

in the year after a high-magnitude volcanic eruption, and remain significantly lower

than normal until the fourth year after such an event. The same is true for the
recorded temperatures in Armagh Observatory, the series within which the influence

of NAO and sunspots has not been reduced. Residual winter temperatures are

negatively affected, with a significance at the 95th percentile, in the three-year interval

of TY�2 to TY�4, while residual yearly mean temperatures see a similar scale

reduction in values during the time period of TY�1 to TY�3. The same trend is

identified in the recorded mean yearly temperature values, and continues into the

TY�2 to TY�4 interval.

Figure 2 shows the mean changes that occurred in seasonal and yearly residual
and recorded temperatures in the year of, and four years following, the six high-

magnitude volcanic eruptions. As with the SEA, it is immediately apparent that

spring values are negatively affected more than any other season in the years

following the selected eruptions. The mean changes in the four years after events are

consistently below the mean value for 10 years prior to eruptions, with the standard

deviations for TY�1, TY�2 and TY�4 indicating that the spread of individual

values is focused below the mean. In each of these years, the mean reduction in

residual spring temperatures is at least 0.98C. The slight increase in mean residual
winter temperatures in the year of and year after eruptions is followed by

progressively colder conditions over the following two years, with reductions of,

on average, 0.88C and 1.18C. Winter in TY�2 is the only season in the analysis

where the residual and recorded temperatures clearly move in opposite directions.

This emphasises the strong influences the NAO and volcanic eruptions can have on

values as, when looked at separately, there is a markedly different reaction. The

response of summer temperatures, both residual and recorded, shows that they

remain just below the mean in each of the five years examined. However, the
standard deviations indicate that the spread of individual results during the summer

months can be quite broad, with no notable trends of individual results being

concentrated above or below the 10-year mean. Similarly, the standard deviations for

the residual and recorded autumn temperature values show that although there is a

tendency for mean values to be somewhat below average in all but TY�3, the

individual results were divided between positive and negative responses. Finally, the

mean yearly temperature records show that TY�1 to TY�4 are, on average,

negatively affected, yet it is only in the second year after eruptions that the standard
deviations remain concentrated below the mean for both recorded and residual

temperatures.

Discussion

Briffa et al.’s (1998) theory of intense cooling in the first summer following volcanic

eruptions is not supported by the evidence provided by the temperature series in

Armagh Observatory. Both the residual and recorded temperature series show only a
slight mean decrease in TY�1 (Figure 2). With neither the regression analysis in

Table 1 nor the Superposed Epoch Analysis in Table 2 producing significant

correlations for summer months, it is clear that, on average, any volcano-induced

changes experienced in Armagh at this time of year are minimal. Instead, the most
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notable and sustained decrease in temperatures following eruptions occurs in the

spring months. The temperatures in Armagh tended to rise in the year of an event,

suggesting that the eruptions, all of which occurred within the first four months of

the year, did not have sufficient time to bring about a reduction in values in TY (the

sole decrease in residual temperatures came during the spring immediately after the

January 1835 Cosigüina eruption). Both the strongly negative standardised beta

value of the regression analysis in Table 1, and the consecutive significantly negative
results in the adapted composite Superposed Epoch Analysis in Table 2, indicate

that spring temperatures will be persistently reduced in the wake of high-magnitude

volcanic eruptions. This spring cooling, according to Stenchikov et al. (2002), is as a

result of substantial changes in ozone levels following strong explosive volcanic

eruptions. Ozone absorbs solar UV radiation, and radiates and absorbs thermal IR

radiation. Volcanically-induced depletions in ozone levels cause cooling in higher

latitudes in spring because of a decrease in UV absorption. The net contribution

from the IR effect is smaller and as a result the most notable period of cooling tends

to occur in spring (Stenchikov et al. 2002). The standard deviations for residual

spring temperatures in TY�1 indicate that, individually, the eruptions examined

were dominated by particularly lower than normal temperatures (Figure 2). This

dominance continues in the residual temperatures in TY�2, where the recorded

values in Armagh follow the same pattern.

The mean changes in recorded winter temperatures indicate a slight decrease in

values in winter in the year of a high-magnitude eruption. However, the filtering of
NAO and sunspot influence from the dataset shows a mean increase in residual

temperatures in TY, as was hypothesised by Robock and Mao (1992). Four of the six

eruptions examined coincided with warmer than normal temperatures in the first

winter after the events. This, according to Shindell et al. (2004) is the result of a

dynamic response to the presence of volcanic aerosols in the atmosphere. The

aerosols heat the sunlit portions of the stratosphere, enhancing the pole-to-equator

temperature gradient through the thermal wind relationship (Robock 2003). The

newly strengthened low-level stratospheric westerlies pass down to the troposphere

via interactions with planetary waves to enhance surface-level westerlies, in turn

acting to increase temperatures to above the norm (Shindell et al. 2004). This

increase in values persists in TY�1, and is replaced by notably lower residual

temperatures in the following two years (Figure 2), an occurrence that also leads to a

significant negative change being highlighted in the TY�2 to TY�4 adapted

Superposed Epoch Analysis for winter (Table 2). As the concentration of volcanic

aerosols in the stratosphere dissipates in the years following events, so too does the

enhanced pole-to-equator temperature gradient, the enhanced westerly winds and, in

turn, the increased winter temperatures. At this point, the interaction between
volcanic aerosols and ozone that dominates spring temperature values begins to

become prevalent in the winter records (Stenchikov et al. 2002).

The standard deviations of the recorded and residual autumn temperatures show

a quite varied response at this time of year in terms of individual volcanic eruptions

(Figure 2). Only TY�3 indicates any consistency in trends, where five of the six

residual values and four recorded mean temperatures were above the 10-year mean.

However, this trend may not be volcanically induced as the increase in values comes

in the same year that the warming influence on winter temperatures has been notably

reversed, and the colder spring values have waned. Similar to the summer
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temperatures in Armagh, little volcano-induced change seems to manifest in the

autumn data.
The process of filtering the influence of the NAO and sunspots from the Armagh

Observatory temperature series proved successful. Table 1 indicates the stark

contrast between NAO and volcanic eruptions in terms of mean winter temperatures,

where similar but opposite reactions were recorded. A similar trend occurred in

spring, but the influence of the DVI was much stronger at this time of year. For the

most part, the residual and recorded temperatures followed the same patterns

(Figure 2). However, the disparity in TY�2 winter values underlines the success of

the filtering process by presenting the marked difference that would have occurred

had one or the other forcing factors not been present. The significant negative impact

in TY�2 to TY�4 shown in the adapted Superposed Epoch Analysis for recorded

temperatures did not register when the NAO and sunspots had been filtered out.

Although the recorded values displayed a pattern that appeared significant, the

removal of the ‘false’ signal with this small of a sample size proved important.

Conclusion

The timing of the impacts of volcanic eruptions on the Armagh temperature series

suggests that the dynamic influence of the aerosols in the atmosphere has the most

notable impact on Irish temperatures. The aerosols’ manipulation of planetary waves

and ozone levels manifests most notably in spring temperatures. Consecutive mean

reductions in residual spring temperatures of 0.98C, 1.18C and 0.58C between TY�1

and TY�3 compare favourably with values that come between 0.28C and 0.58C
(Self et al. 1981). Meanwhile the hypothesised initial increase in winter values is also

a feature of the dataset, but this is quickly replaced by a dominant cooling trend in

the remainder of the winters examined. In contrast, the purely radiative impacts of

volcanic aerosols that dominate at lower latitudes during summer months fail to

bring about any notable changes at this time of year in Armagh. The concentration

of particulate matter in the stratosphere over Ireland is not enough to trigger a

significant increase in atmospheric albedo, yet the impact upon ozone levels and

planetary waves is sufficiently strong to transfer to Armagh Observatory’s

temperature dataset.
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