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Abstract

The feasibility of multistatic SAR mission concepts largely relies on the ability to achieve the matching of the carrier phase
of the different elements of the constellations to a few degrees. This paper analyses the accuracy of phase synchronization
schemes based on precise orbit determination (POD) and GNSS raw data, in which the GNSS receiver and the radar
payload share the same oscillator. Performance expressions are contrasted with results from the simulations. The results
suggest the proposed approach is capable of delivering reliable estimates of carrier frequency and phase errors in the
absence of strong baseline velocity deviations.

1 Introduction

In bistatic and multistatic space radar systems the transmit-
ter and the receiver are spatially separated, which is typi-
cally associated with reduced development costs, risks, and
enhanced performance. In particular, multistatic constel-
lations allow for lower revisit times and better reconfig-
urability and scalability. A high revisit time is necessary
for applications such as traffic monitoring, risk and disas-
ter management, and security, and such distributed systems
could offer a better solution for those applications [1].
In these systems, however, different oscillators are used
for modulation and demodulation, and the low-frequency
phase errors of the oscillator are not canceled as in mono-
static systems [2]. This residual phase may cause defo-
cusing, position errors, and phase errors in the computed
images [2], which may compromise the use of the systems
for interferometric and tomographic applications.
The generation of high-resolution digital elevation models
(DEM) requires the knowledge of relative phases within
a few degrees to avoid low-frequency modulation of the
DEM in azimuth [3]. In the TanDEM-X mission, synchro-
nization with this level of accuracy was achieved by ex-
changing radar pulses between the satellites through a di-
rect microwave link [4]. The direct link involved dedicated
transmit and receive hardware and a total of six dedicated
antennas covering the full solid angle [5].
Besides the need for additional hardware, the incorpora-
tion of such direct links may be problematic due to differ-
ences in the development schedules of different elements
of the constellation, as is the case of companion SAR mis-
sions [6]. An alternative solution that does not involves this
exchange of pulse could significantly simplify the develop-
ment of multistatic constellations.
In [7] a full system architecture (MirrorSAR) is envis-
aged to avoid the demodulation of the radar signals us-
ing a different oscillator. The approach consists of hav-
ing the receivers act like transponders, i.e., re-routing the

radar echoes to another element of the constellation (e.g.,
the transmitter) having access to the oscillator used in
the modulation. Although a MirrorSAR architecture re-
quires a direct link between the satellites, not necessarily
in the microwaves range, it still keeps the potential for rel-
evant spacecraft simplification by an appropriate design of
baselines and the possible removal of complete hardware
blocks for demodulation, data storage, downlink, or digital
control in the receivers.
Another possibility to could be the estimation of the syn-
chronization phase based on the evaluation of the received
data (e.g., autosync). Although demonstrated in space-
borne environments [8], [9], it provides estimates with
varying quality as a function of the backscattering of the
scene, which can only be arguably acceptable as a baseline
solution for interferometric SAR missions.
The need to accurately estimated the phase drift of the os-
cillator is also very important for navigation using a global
navigation satellite system (GNSS). This drift affects di-
rectly the pseudorange measurements between the GNSS
satellite and the GNSS receiver and must be estimated
along with the position and velocity in a filter. Exploit-
ing the ability of orbit determination algorithms to provide
information on the relative phase drifts between the oscil-
lators of any two elements of a multistatic constellation
sounds like a feasible way of approaching the problem.
The capability of high accuracy relative position and tim-
ing using GNSS was demonstrated in previous satellite
missions. GRACE mission achieved an accuracy of 1 mm
compared to a K-Band Ranging System [10]. TanDEM-X
achieved an accuracy of the order of 1-2 mm through a-
posteriori calibration of the calculated baseline using the
processed radar data [11]. Both missions used geodetic
grade GPS receivers, capable of receiving two frequen-
cies for correcting the effects of the ionosphere. PRISMA
mission demonstrated the capability of achieving sub-
decimeter relative positioning precision using a low-cost
single-frequency GPS receiver [12].
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The proposed solution consists of using a common oscil-
lator for the radar payload and the GNSS receiver, so we
can use GNSS data and results from the precise orbit de-
termination to infer the phase noise component in the radar
signal. This solution is detailed in the second section. The
third section presents a brief error analysis of the proposed
solution. A simulation created for evaluating numerically
the proposed solution and its results are shown in the fourth
section.

2 Proposed solution

Figure 1 shows the block diagram of the GNSS-based so-
lution for the considered problem. The same Ultra Stable
Oscillator (USO) is used for generating the radar signal and
the reference signal in the GNSS receiver. The natural fre-
quency of the master oscillator is up-converted accordingly
for both radar and GNSS receivers.
In the following equations in this section, we denote the
upper index ()(i) as relating to the GNSS satellite i, the
lower indexes ()u and ()v as relating to the receivers in
the satellites u and v, and the lower index followed by a
comma, as in ()u,k, as related to the navigation carrier fre-
quency k. Furthermore, we denote the difference between
quantities as ()uv = ()v − ()u.
Under the assumption of linearity, the phases of the radar
reference signal ψu,0 and of the GNSS receiver ψu,k are
related as follows

ψu,0 =
f0
fk
· ψu,k(t) =

λk
λ0
· ψu,k(t) , (1)

where f0 is the carrier frequency of the radar, fk is the car-
rier frequency of the navigation signal k, λ0 is the carrier
wavelength of the radar, and λk is the wavelength of the
navigation signal k. Eq. (1) suggests that any phase drift
in the output of the master oscillator will be replicated in
all reference signals derived from it, scaled by the respec-
tive up-scaling or down-scaling factors. This assumption
remains valid as long as the bandwidth of the reference
signals is much smaller than the distance between the har-
monics generated in the up-conversion [13].
Let us assume each radar unit u and v incorporates its
own GNSS receiver triggered by the radar oscillator as de-
scribed in Fig. 1. A biased measurement of the distance
between the GNSS receiver and the GNSS satellite can
be derived from the code delay P (i)

u or the carrier phase
measurement L(i)

u . The former measurement, based on the
detection of the peak, is unambiguous but associated with
lesser accuracy. The latter one, based on the measurement
of the phase of the peak, is ambiguous but more accurate.
Assuming that we can estimate the ambiguity term, a pseu-
dorange can be calculated from the carrier phase measure-
ment as follows

P
(i)
Lu,k = L

(i)
u,k + λk · Ã(i)

u,k , (2)

where the term λk · Ã(i)
u corresponds to an estimate of the

true ambiguity λk ·A(i)
u . For the remainder of this paper, we

consider the pseudorange shall be obtained from the carrier

phase measurement as shown in Eq. (2) since it provides
a much higher accuracy assuming that the ambiguity term
can be accurately determined.
Assuming that the spacecrafts are close enough so that the
ionospheric delay is the same for them, and thus cancel
out when taking the difference between the pseudorange
measurements, the relationship between the differences of
the pseudoranges P (i)

Luv,k and the clock biases expressed in
time δtuv is given by [14]

P
(i)
Luv,k = ρ(i)uv + c · δtuv + ε , (3)

where ρ(i)uv is the difference between the distances from re-
ceivers v and u to the i-th navigation satellite, respectively,
c is the velocity of propagation of the navigation signals,
and ε is the measurement error, which includes systematic
and noise-like contributions as, for example, thermal noise
in the receivers and the ambiguity estimation errors. Iso-
lating the clock bias term we can identify the relationship
between the navigation data and the clock synchronisation
solution as follows

c · δtuv =
λ0
2π
· ψuv,0 = P

(i)
Luv,k − ρ

(i)
uv − ε , (4)

An estimator of the clock synchronization solution using
a weighted average over all navigation satellites in sight
(i.e., N ) and all the n(i)λ received GNSS frequencies can be
straightforwardly derived as

ψ̃uv,0 =
2π

λ0
·
N∑
i=1

n
(i)
λ∑

k=1

αi ·
P

(i)
Luv,k − ρ̃

(i)
uv

n
(i)
λ

, (5)

where ρ̃(i)uv is the estimated value of ρ(i)uv as provided by
POD (e.g., through direct estimation or interpolation), and
αi are the weights for the signal from each navigation satel-
lite according to its quality (e.g., signal-to-noise ratio). Eq.
(5) provides an unbiased estimation under the assumption
that ε is a zero-mean process, and no relevant biases are in-
troduced in the baseline determination process. As hinted
earlier, the term in the summation contains systematic er-
ror components that may bias the resulting estimates if not
properly removed.
Assuming the measurements are statistically independent
Gaussian processes, the value of αi which minimizes the
variance of the estimator is given by

αi =
σ−2
i∑N

k=1 σ
−2
k

. (6)

where the σi correspond to the standard deviation of the
measurement related to GNSS satellite i (e.g., of the resid-
uals of the POD). Sensible assumptions for the derivation
of the estimator performance are i) the measurements were
calibrated, eliminating major systematic components and
ii) the measurement is dominated by thermal noise in the
receiver. Under these circumstances, the σi can be ex-
pressed as a function of the carrier-to-noise ratio (c/n0)i
as follows

σi ≈

√
BL−CA

(c/n0)i
, (7)
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Figure 1 Proposed hardware configuration for radar phase synchronization based on GNSS, also used as basis for the
analysis. In this figure, τ (i)· are the delays from GNSS satellite to the SAR satellites. The terms A(i)

() accounts for the
ambiguity of the carrier phase measurements.

where BL−CA is the so-called tracking bandwidth of the
GNSS receiver for a Phase Lock Loop discriminator [15].
Substituting (7) into (6) we get

αi ≈
(c/n0)i∑N
k=1 (c/n0)k

, (8)

where the (c/n0) values provided by the GNSS receiver
can be used.
Note that the phase noise affecting the radar measurements
is the phase differences between the transmitter and re-
ceiver oscillators evaluated at times delayed by τ the two-
way travel time of the radar signals. This lag, in the order
of milliseconds, is well beyond the inverse of the band-
width of the oscillators phase noise, which allows us to
approximate

ψv(t− τ)− ψu(t) ≈ ψv(t)− ψu(t) . (9)

Assuming Eq. (9) is valid, the solution of the oscillator
phase noise provided by the navigation solution can be ef-
fectively used for the calibration of the phase reference of
the radar data.

3 Error analysis

The previous section provides a simplified model for the
estimation of the oscillator synchronization phase based

on the exploitation of GNSS data. As already hinted, a
more realistic approach needs to incorporate several sys-
tematic components that contribute to the error in the pseu-
doranges. A more accurate description of the difference
between the carrier phase measurements of receivers u and
v is given by [14]

L
(i)
uv,k(t) =ρ(i)uv(t) + c · δtuv(t)−

(
λk
λ1

)2

· I(i)uv (t)−

λk ·A(i)
uv,k +M

(i)
uv,k(t) + ε

(i)
uv,k(t) , (10)

in which A
(i)
uv is the difference between the ambiguities,

M
(i)
uv (t) describes other systematic error components in-

cluding multipath, cross-talk, tracking channel bias and
phase wind-up, and ε(i)uv(t) is a thermal noise process. Eq.
(10) is valid under the assumption that the measurement
times between the two satellites are sampled at approxi-
mately the same epoch and the positioning and timing er-
rors due to temporal misalignment are negligible compared
to the other error sources. A similar condition is required
for precise baseline determination.
A further elaboration of the system model suggests that
the incorporation of independent phase noise realizations
occurring in the up-conversion stages of the radar and nav-
igation receiver electronics, which may be in principle dif-
ferent for each navigation frequency. Under these circum-

1161



stances, we can relate the phase differences at radar and
navigation carriers between the two satellites as follows

ψuv,0(t) =
λk
λ0
· [ψuv,k(t) + ∆ψuv,k(t)] , (11)

where ∆ψuv,k denotes the additional phase noise intro-
duced in the up-conversion stages for the radar and navi-
gation carriers at the level of the latter.
The error in the estimation of the differential phase at the
radar carrier can be derived after combining (5), (10), (2),
and (11) as follows

δψuv,0(t) =
N∑
i=1

n
(i)
λ∑

k=1

2π · αi
λ0 · n(i)λ

·

{
λk
2π
·∆ψuv,k(t) + ε

(i)
uv,k(t)

+
[
ρ(i)uv(t)− ρ̃(i)uv(t)

]
+ λk ·

(
A

(i)
uv,k − Ã

(i)
uv,k

)
+

[
M

(i)
uv,k(t)−

(
λk
λ1

)2

·
(
I(i)uv (t)− Ĩ(i)uv (t)

)]}
.

(12)

Each term of the previous expression within curly brack-
ets describes an error component of the POD-based esti-
mation of the radar synchronization phase, averaged over
all tracked GNSS signals and scaled by the corresponding
radar wavelength. These components are summarized in
the bullets below:

• Up-conversion error for both the radar and navigation
carriers;

• Receiver noise;

• Baseline determination error arising from POD;

• Ambiguity resolution error, which is expected to re-
main constant over a continuous tracking period for
each GNSS satellite;

• A mismodeling term including error in the estima-
tion of ionospheric delay difference between satel-
lites, multipath, phase bias on the receiver tracking
channel, phase wind up and other systematic errors.

Since the error components are proportional to the inverse
of the radar wavelength, the estimation error is expected to
increase for higher radar frequencies.

4 System example

Figure 2 shows the data flow and the major components
of the simulation used for testing the concept explained in
the previous sections. A bistatic SAR system composed
of a transmitter and receiver flying in close formation and
possessing the suggested hardware configuration has been
considered. The navigation antennas of the radar satellites
have direct visibility with 9 GPS satellites. The orbits of
all satellites are propagated using the open-source software
GMAT distributed by NASA. The software allows for nu-
merical integration of the orbit using an accurate gravita-
tional model and including drag and third bodies attrac-
tion. The errors in the position and velocity of the radar

satellites coming from the precise orbit determination have
been simulated by introducing an absolute bias in the ini-
tial state of the satellites and propagating the orbit. Two
cases were simulated: One in which only error in the po-
sition vector is introduced, and another in which errors in
the position and velocity vector are introduced.
After propagating the orbits, the ranges between the radar
satellites and the GNSS satellites in view at a minimum el-
evation of 10 degrees are calculated. The navigation raw
data are simulated by adding the following error compo-
nents to the expected code signal: ionospheric delay, ini-
tial clock bias, thermal noise, and clock drift. The phase
drift realization corresponds to a real measurement taken
through the synchronization link of TanDEM-X operated
at a frequency of 3 kHz.
The simulations assume a single frequency GNSS receiver.
The noise figure used in the simulations is in line with
the Phoenix GNSS receiver from GSOC/DLR [16]. The
error figures are in the sub-decimeter level, in line with
the results from PRISMA mission, which used a single-
frequency GNSS receiver.
The phase difference between the clocks is estimated using
equation (5). In case the receiver was capable of receiving
two frequencies, the final results would improve by a fac-
tor of

√
2 due to the availability of a second independent

measurement, in addition to the improved accuracy due to
a more accurate orbit determination.
Table 1 shows the simulation parameters and baseline er-
rors concerning the specific cases shown in the next sec-
tion. The baseline errors are expressed in Hill’s frame.

Table 1 Simulation parameters

Parameter Value
GNSS data sampling rate 1 MHz
GNSS signal frequency 1575.42 MHz

Radar payload frequency 9656 MHz
Pseudorange standard deviation 0.0005 m

GNSS position bias 2 m
Ionospheric range error 10 m

Radial baseline error 8.248 mm
Along-track baseline error 1.177 mm
Across-track baseline error 0.767 mm

Radial baseline velocity error 0.0057 mm/s
Along-track baseline velocity error -0.0077 mm/s
Across-track baseline velocity error -0.0027 mm/s

The noise figure from the carrier phase measurements is
used. The implicit assumption is that the integer ambiguity
factor is known from the precise orbit determination pro-
cess. The noise figures of the code delay measurements are
much higher and are expected to worsen between one and
two orders of magnitude the accuracy of the estimates.
Below the results of the phase estimation for two cases:
one in which the baseline velocity error is zero and the
other where there is some considerable baseline velocity
error. For both cases, the baseline errors are the ones re-
ported in table 1.
Figure 3 shows the results of the simulation for the case
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Figure 2 Simulation framework used to test the proposed POD-based phase synchronization.

Figure 3 Simulated phase drift data and estimation re-
sults from multiple GNSS data. Case with error only in
the baseline vector

without a baseline velocity error. We can see that the sug-
gested approach provides a good estimate with a standard
deviation of less than two degrees. The constant bias of
around 34 degrees corresponds to the bias in the baseline
estimates. Although the error was introduced only in the
initial baseline, it remains approximately constant during
the simulation time span. Such constant bias in the phase
noise can be typically estimated with very high accuracy
by an appropriate evaluation of the radar data.
Figures 4 and 5 show the results for the simulation includ-
ing a baseline velocity error. Figure 5 demonstrates that
an error in the baseline velocity is interpreted as a clock
frequency offset by the estimation algorithm. Such an er-
ror can heavily degrade the accuracy of the radar images,
introducing geolocation errors and interferometric phase

Figure 4 Simulated phase drift data and estimation re-
sults from multiple GNSS data. Case with initial errors in
the baseline and baseline velocity vectors

ramps [17]. The proposed solution, therefore, depends on
a very accurate estimation of the relative baseline velocity.
In case the error in the estimation of relative baseline ve-
locity is not negligible, an approach based on the SAR data
processing such as the ones described in [18] could be used
to potentially eliminate the phase ramp.
Note that there are other error components not considered
in the estimation that are expected to affect the final accu-
racy result. In particular, the multipath effects could de-
grade considerably the precision and accuracy of the solu-
tion. The unmodeled sources which do not remain constant
during the time span of the radar integration time must be
carefully examined. In case the error remains constant, it
will cause a constant phase shift which may be compen-
sated by appropriate processing.
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Figure 5 Error in the estimation from multiple GNSS
data. Case with initial errors in the baseline and baseline
velocity vectors

5 Conclusions

In conclusion, the technique here presented offers an al-
ternative low-cost simple solution for the phase synchro-
nization in bistatic or multistatic constellations. It also in-
dicates that a sufficiently good performance could be ob-
tained from a low-cost GNSS receiver. The solution relies
on very precise relative navigation data. It assumes that the
precision is in the sub-decimeter level in relative precision
and negligible in relative velocity. For further evaluation
of the idea, a more detailed error analysis is necessary, in-
cluding a solution for compensating those which introduce
fast varying biases in the raw measurements.
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