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Abstract
We consider non-local sensing of scalar signals with specific spatial dependence in the Bayesian
regime. We design schemes that allow one to achieve optimal scaling and are immune to noise
sources with a different spatial dependence than the signal. This is achieved by using a sensor array
of spatially separated sensors and constructing a multi-dimensional decoherence free subspace.
While in the Fisher regime with sharp prior and multiple measurements only the spectral range Δ
is important, in single-shot sensing with broad prior the number of available energy levels L is
crucial. We study the influence of L and Δ also in intermediate scenarios, and show that these
quantities can be optimized separately in our setting. This provides us with a flexible scheme that
can be adapted to different situations, and is by construction insensitive to given noise sources.

1. Introduction

Quantum sensing or quantum metrology [1–3] is one of the most promising applications of an upcoming
quantum technology. Measuring quantities with ever higher precision lies at the heart of most natural
sciences, and accordingly high precision measurements are a tool of uttermost importance. Quantum
devices offer in principle a quadratic scaling advantage in the number of sensors, and have hence been
studied in detail in recent years. Whenever some unknown signal or function should be sensed using
multiple sensors, one is typically faced with a situation that the sensors are at different positions. This is the
case for trapped ions [4–6] as well as for arrays of superconducting qubits, quantum dots or
nitrogen-vacancy centers [7, 8]. Furthermore, with the rapid developments in quantum networks, even
arrays of such quantum sensors distributed over large distances are into reach. Since a single quantum
system or qubit is already a quantum sensor, any such arrangement of multiple qubits corresponds to a
quantum sensor network [5–16]. These networks can be used to measure non-local properties such as field
gradients or spatial Fourier coefficients [17–20], or to increase the precision of atomic clocks,
interferometers and telescope networks [21–26]. While the spatial distribution of sensors is irrelevant for
signals without spatial dependence (as often considered in metrological scenarios), this is a crucial asset in
the sensing of signals with certain spatial correlations.

In this paper we study the sensing of scalar, spatial dependent signals and show that one can indeed
make use of such spatial correlations. By choosing appropriate quantum states of the sensors, one can make
the sensor array sensitive only to a particular signal with a specific spatial dependence. This allows one to
lock in to any signal of choice and measure only this signal. In this way, one can construct decoherence free
subspaces (DFS) for arbitrary given noise sources [8, 23, 27–33] and overcome the known vulnerability of
metrological schemes under noise [27, 28, 34–37]. Such a DFS in quantum computation or standard
quantum metrology is typically thought of to be available only in very specific situations, mainly when there
is some correlated or restricted kind of noise. For noise source with a known spatial dependence one can
essentially always construct such a DFS. The only requirement is that the spatial dependences
of the signal to be sensed, and the one of the noise source are different. In any such case, one can find
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sensor states that are insensitive to a single or even multiple noise sources, while still being sensitive to the
signal [20]. In fact, a sensor array of N + 1 sensors allows one to be insensitive to N noise sources with
different spatial dependences, and sense one specific signal. Notice that this insensitivity only refers to noise
sources with different spatial dependence, but clearly a fluctuating constant noise field still jeopardizes the
sensing of an constant signal field. However, e.g. in situations with different sources and decaying field
strength with certain distance dependence r−α—which is a rather typical situation in many physical
set-ups—, these fields are linearly independent whenever they are located at different positions and sampled
on fixed sensor positions using such a sensor network. Hence a DFS and lock-in to a specific signal can be
constructed. This holds true under generic conditions, and the existence of a DFS is thus typical and not
exceptional.

In [20] such a sensing scheme was introduced and analyzed in the so-called Fisher regime, where the
parameter ϕ to be sensed is already approximately know, and multiple repetitions of the same experiment
are considered. In this case the optimal state for sensing is given by a GHZ-type state, in the noiseless case
just a superposition of two eigenstates of the signal Hamiltonian or generator Ĝ with minimal and maximal
eigenvalue respectively. The achievable precision is given by the quantum Fisher information (QFI)
[38–40]. In a scenario with multiple noise sources, a two-dimensional DFS that contains two states with
different eigenvalues and a certain spectral distance Δ can be generically constructed, and hence the above
mentioned features can be achieved. This ensures that Heisenberg scaling, i.e. a quadratic enhancement over
the best classical protocol, can be obtained even in the presence of additional noise sources. The situation is
different in the so called Bayesian regime where the unknown parameter is specified by a (broad)
probability distribution and only a single or few measurements can be performed. In this case, it is known
that multiple states with different eigenvalues w.r.t. the signal Hamiltonian are required to achieve
Heisenberg scaling [41–43]. Therefore, not only the spectral range Δ but also the number of different
eigenvalues L covered by a probe state are important for quantum metrology in the Bayesian regime, as we
will further investigate in this paper.

In quantum sensor networks, it is often possible to maximize either the spectral range or the number of
levels of a generator, by e.g. placing the sensors at appropriate positions, but not both simultaneously. Thus,
it is important to know how Δ and L will influence the precision for different scenarios as we will
discuss in this paper. Moreover, not the total number L is important in noisy scenarios but the effective
number of levels within the decoherence-free subspace. For a single-shot scenario, i.e. when considering
only a single run of preparing a probe state, letting it evolve and then measure the resulting state, the
number of available levels L is the crucial quantity as long as the measurement time can be freely chosen
and is not considered to be a resource. The longer the evolution time, the larger the required number of
levels. However, the spectral range Δ enters in the required evolution time, as the strength of the signal is
proportional to Δ. Hence of a fixed time, both Δ and L are important. In this paper, we will introduce
different methods to create a large number of linear spaced levels within the decoherence-free
subspace. We introduce different methods with a different trade-off between increasing the number of
effective levels L within the decoherence-free subspace and the maximal achievable spectral range Δ.
Depending on the exact situations, as discussed in the first part of this paper, we can than choose a
corresponding method to either maximally increase L, Δ, or to share the provided resources to increase
both simultaneously.

The main results of this paper can be summarized as follows: (i) we analyze the effect of number of
levels L and spectral range Δ for Bayesian metrology with flat prior. (ii) We provide a general way to
construct multi-dimensional decoherence free subspaces with quantum sensor networks for
spatially correlated scalar signals. (iii) We show how to measure specific signals with a particular spatial
dependence and a given prior, being completely insensitive to noise sources with a different spatial
dependence.

The paper is organized as follows: first, we introduce the setup and summarize our results from [20] in
section 2. Then, we start our investigation by discussing different measurement scenarios in the Bayesian
regime and the influence of Δ and L on the precision in section 3. Consecutively, we described
methods to create effective linear spectra within the decoherence free subspace by either increasing the
internal degree of freedom of the sensors (section 4) or by changing the position of the different sensors
(section 5). At the end, we summarize our results in section 6 by comparing the different situations and
methods.

2. Setting and background

In the following, we investigate methods to achieve maximal precision for estimating the unknown field
strength ω of a global field B0(r) = ωf0(r) with given spatial distribution f0(r). For this purpose, we consider
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Figure 1. A network of quantum sensors described by their locations rj and internal spin sj can distinguish between the signal S
and different noise sources Nk due to their different spatial distributions fk(r).

quantum sensor networks with J sensors located at positions rj as depicted in figure 1. The time evolution of
each local sensor is described by the local operator Ẑj equal to the sum of all Pauli-z matrices of qubits
located at rj. The unknown phase ϕ0 = ωt is generated by the global generator

Ĝ0 =

J∑
j=1

f0(rj)Ẑj (1)

via the time evolution U = exp(−itωĜ0). Throughout this paper, we investigate situations where additional
noise sources are present. These noise sources are describe via similar generators Ĝk with 1 � k � K but
with different spatial distributions fk(rj). Strictly speaking, we assume that the vectors {fk} with
fk = (fk(r1), . . . , fk(rJ)) are linear independent for 0 � k � K. The state ρ = ρ(ϕ0) of the quantum sensor
network after evolving for a time t is given by∫

exp

(
−i

K∑
k=0

ϕkĜk

)
ρ exp

(
i

K∑
k=0

ϕkĜk

)
dϕ1 · · · dϕK . (2)

As a consequence, the coherence between two spin eigenstates |s〉 described by the vector of eigenvalues of
each single sensor s = (s1, . . . , sJ) with Ẑj

∣∣sj

〉
= sj

∣∣sj

〉
is destroyed whenever there exists at least one k > 0

with a scalar product
fT
k (s − s′) �= 0 (3)

preventing us from obtaining information about the unknown phase ϕ0. Thus, optimal probe state consists
of a superposition of eigenstates s which are all orthogonal to {fk} for 1 � k � K as we have demonstrated
in [20]. A priori the components sj can only take on integer multiples of 1/2 which prevents
us from creating spin vectors s orthogonal to {fk} in certain cases. However, we can circumvent this
restriction by adding dynamical control. Here, all spins at a corresponding site are switched at an
intermediate time tj leading to effective spin components sj equal to non-integer multiples of 1/2. In
general, such orthogonal spin vectors can be created whenever there exists more probes J > K than noises
sources K.

Optimal probe states in the Fisher regime (narrow prior, many measurements) consists of the
superposition of the two effective spin eigenstates |±s〉 which maximize the absolute value of the scalar
product sTf⊥. Here, f⊥ denotes the component of f0 which is orthogonal to {fk} with 1 � k � K. However,
the total number of distinct spin eigenstates on which the probe state is supported sets a limit on the
amount of information on the field strength that can be gathered by the probe in a single run [44, 45]. Thus
in the Bayesian regime also effective intermediate levels with |sTf⊥| < max|sTf⊥| play an important role as
we will discuss in the next sections.

3. Spectral range versus number of levels

Let us first concentrate on achievable precisions for parameter estimation in the Bayesian regime without
noise. In general, the precision of the estimation of ω depends on the spectral range Δ = Γmax − Γmin,
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given by the difference of the maximal and minimal eigenvalue Γ of Ĝ0, and the number of levels L of the
generator Ĝ0. Both of them depend on the spatial distribution of the sensors. Thus, generators with linear
spectrum and different spectral range and different number of levels can be achieved by rearranging the
local sensors. Usually, Δ and L cannot be maximized simultaneously. As a consequence, it is important to
know how the precision scales with Δ and L. Therefore, we will investigate this scaling for a couple of
exemplary scenarios in this sections before we investigate achievable effective Δ and L for noisy distributed
sensing in the next section.

3.1. Single-shot estimation
We will start our investigations in the Bayesian regime where we assume flat priors and single-shot
estimation. The extremal case of a flat prior corresponds to one’s complete ignorance of ϕ = ωt, as
described by the prior probability p(ϕ) = 1/(2π) for 0 � ϕ < 2π. For this situation, Berry and Wiseman
[41] determined the optimal probe state for a generator

ĜBW =

N∑
j=1

ẑj. (4)

with linear spectrum. Here, ẑk denotes the Pauli-z matrix of a single qubit. Berry and Wiseman proved that
the phase ϕ can be determined with a precision of

〈(ϕ̂− ϕ)2〉 ≈ π2

N2
(5)

with a single shot measurement and an N-qubit state. The generator ĜBW has a linear spectrum with
L = N + 1 different eigenvalues and a spectral range of Δ = N leading to the spectral decomposition

ĜBW =

N+1∑
μ=1

(μ+ c) |μ〉 〈μ| (6)

with c = −N/2 − 1 being an irrelevant constant which we will neglect from now on.
Here, the number of levels L and the spectral range Δ are proportional to the number of qubits N.

However, this is not necessary the case for global fields B(r) with arbitrary spatial dependence f(r) and
different positioning of the local sensors. Therefore, we investigate in the following how L and Δ influence
the optimal precision separately. Thus, we generalized the results of Berry and Wiseman [41] to frequency
estimation and generators with rescaled linear spectrum

Ĝ0 =
Δ

L − 1

L∑
μ=1

μ |μ〉 〈μ| (7)

=
Δ

L − 1
ĜBW (8)

where L and Δ can be varied independently.
The time evolution determined by exp[−iωtĜ0] is equivalent to exp[−iϕĜBW] with ϕ = (ωtΔ)/(L − 1).
Similar to [41], we assume that the frequency ω is equally distributed between 0 � ω < W0. Letting the

system evolve for

t1 =
2π

W0

L − 1

Δ
(9)

leads to an equal distribution of ϕ with 0 � ϕ < 2π. As a consequence, we can achieve a precision of

〈(ω̂ − ω)2〉 = 〈(ϕ̂− ϕ)2〉
|∂ωϕ|2

≈ W2
0

4L2
(10)

determined by equation (5). As a result, only the number of levels L is important for the precision in a
single shot experiment if the measurement time can be chosen appropriately. However, the time t1 to
achieve this precision scales inversely with the spectral range Δ. Therefore, maximizing the number of levels
is only optimal when the interaction time t1 can be chosen arbitrarily. However, not only the number of
qubits is a resource, but in general also time, which we will investigate in the next section.

Flat priors are not very typical in real experiments. However, they allow analytical solutions and thus the
formulation of scaling properties. In realistic scenarios, the shape of the distribution will change from shot
to shot and has to be determined often via numerical methods or machine learning [46]. In these cases, the
evolution time t1 scales typically with the width of the distribution.
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3.2. Multi-shot estimation
In this section, we investigate scenarios where the total interaction time T is fixed. Here, we assume that T
can be split between different measurements. A very basic approach would be to repeat the measurement
described in the previous section ν = T/t1 times without updating the prior. Since the precision scales with
1/ν, we arrive finally at

〈(ω̂ − ω)2〉 ∼ W2
0 t1

4L2T
∼ W0

2TLΔ
. (11)

As a result, the optimal precision is inversely proportional to the product of the number of levels L times the
spectral range Δ of the generator Ĝ0. This simple approach is easy to apply since it does not involve any
optimization or numerical methods for updating the prior and in addition, no assumptions are necessary.
However, more advanced methods will not only increase the precisions but also make it asymptotically
independent of the initial prior distribution as expected from any reasonable Bayesian estimation strategy
[47].

A better measurement scheme would update the prior p(w) after each measurement and adapt the
probe state, evolution time and measurement for each run. Assuming that the frequency distribution stays
flat at each round we can now define a sequence of interaction times and widths (tk;Wk) with

Wk = W0(2L)−k (12)

and

tk =
L − 1

Δ

2π

Wk−1
=

2π(L − 1)

W0Δ
(2L)k−1. (13)

As a consequence, the total interaction time after n measurement rounds is given by

T =

n∑
k=1

tk =
2π(L − 1)

W0Δ

[(2L)n − 1]

2L − 1
≈ π

ΔW0
(2L)n. (14)

Thus, the maximal number of estimation rounds is upper bounded by

(2L)n � ΔW0

π
T (15)

for a fixed interaction time T. Therefore, the maximal achievable precision is upper bounded by

WT = Wn = W0(2L)−n � π

TΔ
(16)

suggesting that in such an adaptive scheme only the spectral range has an effect on the scaling of the
precision with time. A similar result for general Bayesian adaptive strategies has been proven recently in
[47].

3.3. Single-shot, fixed time estimation
In the two previous subsections, we assumed that it is possible to arbitrarily choose and split the interaction
time. However, often only short interaction times are available in real world estimation problems. In
addition, also preparing a good probe state and performing measurements needs time which exceeds in
some cases the actual interaction time. As a consequence, there exist many scenarios where only a
single-shot estimation with fixed interaction time is possible. In this case, our estimation problem falls into
the regime of Bayesian frequency estimation [48, 49]. For Gaussian prior distributions p(ω), the precision
of the updated distribution after the measurement is given by [48]

〈(ω̂ − ω)2〉 = W2
1 = W2

0

(
1 − W2

0 · F(ρ̄, Ĝ0t)
)
. (17)

Here, F denotes the quantum Fisher information, W0 the variance of the prior and ρ̄ the prior weighted
density operator with matrix elements

ρ̄n,m =

∫
dω cnc∗m exp [−iωt(n − m)] p(ω) (18)

= cnc∗m exp

[
− t2W2

0Δ
2

2(L − 1)2
(n − m)2

]
, (19)
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given in the eigenbasis of Ĝ0. The optimization of the probe state is in general non-trivial and often only
possible with numerical methods and iterative algorithms [48, 50]. However, we can adapt some of the
results of [48] by rescaling the dimensionless time parameter

τ = tW0 → tW0
Δ

L
. (20)

For tW0Δ � 1, all off-diagonal terms in equation (19) survive and thus a GHZ-like probe state is optimal.
In this case, the variance reduction factor is given by

W2
1

W2
0

= 1 − t2W2
0Δ

2 exp
(
−t2W2

0Δ
2
)
. (21)

As a consequence, the precision is mainly determined by the spectral range Δ alone as long as tW0Δ � 1.
For tW0Δ � 1, only off-diagonal elements in equation (19) with n ≈ m survive provided tW0Δ/L is of

the order of unity. Then, the number of different levels is important and states similar to the
Berry–Wiseman state [41] are optimal.

In the intermediate regime, states with a structure interpolating between GHZ-state and the
Berry–Wiseman state are optimal. Again, we can adapt results from [48] to our situation. A fixed number
of levels L in our case corresponds to a fixed number of atoms N in [48] with L = 2N. Thus, for a fixed L
and 2 � L � 40, a ratio of 0.5 � tW0Δ/(L − 1) � 1 is optimal as can be seen from figure 2 in [48]
suggesting that L and Δ should be increased simultaneously in this regime if possible. However, a larger
number of levels L leads always to a higher precision provided the ratio Δ/L is fixed.

For tW0Δ/L � 1, no off-diagonal elements survive and phase estimation is not possible anymore. In
this case, a shorter interaction time should be chosen.

4. Creating linear spectra with local multilevel systems in noisy environments

The advantage of quantum metrology is severely limited by the influence of noise. In the worst case
scenario, the advantage shrinks to a constant factor [27, 28, 34–37]. However, the quadratic improvement
of quantum metrology can be maintained in certain situations by using e.g. error correction or fast control
[8, 23, 27–33]. In [20], we have described how to protect global parameter estimation from noise
sources with given spatial distributions by designing appropriate probe states. There, we considered very
strong noise sources/long interaction times such that all phase information stored in subspaces suffering
from noise disappear and only phase information stored within a DFS maintained (see appendix B in [20]).
We demonstrated the creation of probe states which consists only of superpositions of effective energy
levels of the generator Ĝ0 within a DFS. With these probe states, it is possible to achieve the same precision
scaling as in the noiseless case.

We mainly concentrated in [20] on the Fisher regime and thus on probe states consisting of a
superposition of only two orthogonal states. However, the maximal achievable precision in the Bayesian
regime crucially depends on the number of levels as we have discussed in the previous section. It is in
general a difficult task to find optimal probe states and precision limits in the Bayesian regime. Previous
works [41, 43, 48–50] mainly concentrated on generators Ĝ0 with equally spaced levels. In addition, linear
spectra naturally arise when dealing with multiple identical systems such as photons or qubits.
Therefore, we will also concentrate on this regime and investigate in the following methods to create
effective linear spectra within the DFS. In the limit of strong noise sources, all phase information outside a
DFS vanishes wheres phase information within a DFS is independent from the noise. Therefore, optimal
strategies for noise-free scenarios are also optimal in our case when restricted to DFS. All previous results
[41, 43, 48–50] as well as our considerations from section 3 can therefore be adopted to probe states based
solely on the effective spectra within the DFS. In general, the methods described here can also be used to
create arbitrary spectra.

In this section, we concentrate on methods based on a fixed number of sensor at fixed positions and
variable internal degrees of freedom. In the next section, we will concentrate on methods based on sensors
with fixed internal degrees of freedom but with variable positioning.

4.1. One-dimensional orthogonal subspace
Our goal is to determine the global phase ϕ = tω generated by Ĝ0, equation (1), with 0 � ω � W0 without

being disturbed by global phase noise generated by
{

Ĝk

}
with 1 � k � K and different spatial distributions

fk(rj).

6
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The spatial distribution of each generator Ĝk can be described by the vector fk = (fk(r1), . . . , fk(rj))T for
0 � k � K. In the following, we investigate a situation with one signal source and K noise sources which are
linear independent meaning that their corresponding spatial vectors fk are linear independent.

The phases each single sensor j accumulates depend on the state of the sensor given by the spin
eigenstates Ẑj

∣∣sj

〉
= sj

∣∣sj

〉
. A priori, sj can only take on integer multiples of 1/2. Effective spin eigenstates

with different values sj can be created by inducing a fast spin flip at some appropriate time during the
evolution with a flipping time which is negligible compared to the speed of phase accumulation [20, 43].
The state of our sensor network can then be described by time averaged spin vectors

s̄ = 〈Ẑ〉t = (〈Ẑ1〉t , . . . , 〈ẐJ〉t)
T (22)

determined by the time averaged expectation values 〈Ẑj〉t of the local operators Ẑj. In the following, we
assume that s̄ describe time averaged eigenstates. This means that a system described by the effective spin
vector s̄ is at all times in a spin eigenstate, however, the eigenstate might be instantaneously flipped during
the coherent time evolution generating the phase ϕ = ωt. The coherence between two different effective
spin vectors s̄ and r̄ is preserved if [20]

fT
k (̄s − r̄) = 0 1 � k � K (23)

and the effective signal strength is given by fT
⊥(̄s − r̄). Here, f⊥ denotes the component of the signal f0 which

is orthogonal to all noise vectors fk. Although, there might not exist spin eigenstates |s〉 , |r〉 satisfying
equation (23) for a given system, effective spins s̄, r̄ achieving equation (23) can always be created.

The subspace orthogonal to span {fk} with 1 � k � K is-one dimensional if our sensor network consist
of sensors with only J = K + 1 different positions. In this case, the optimal probe state consists of a
superposition of spin states s̄ parallel to f⊥ (compare with [20]). To create non-integer multiples of 1/2, we
use intermediate spin flips such that the time average of the spin is given by s̄ = 〈Ẑ〉t‖f⊥.

In the following, we investigate methods to create an effective linear spectra described by s̄ within the
decoherence-free subspace. We assume that the position of all sensors are fixed and that each sensor consists
of a quantum system with nj linear spaced energy levels with energies {Em = m} and −nj/2 � m � nj/2.
One possibility to create superpositions of effectively linear spaced levels is to use equivalent local sensors
with nj = n energy levels and create the superposition state

|ψ〉 =
n/2∑

m=−n/2

J⊗
j=1

∣∣∣sign( f j
⊥)m

〉
j
. (24)

For each local system j, we time the local spin flips such that the average energy of the initial level
m = +1/2 is given by

〈1/2|Ẑj|1/2〉j =
|f j
⊥|

2f max
⊥

(25)

where f j
⊥ denotes the component j of f⊥ and f max

⊥ the maximal component of f⊥. As a consequence, each

initial energy state m is mapped to the average spin s̄ = m|f j
⊥|/f max

⊥ and we arrive at the effective probe state

|ψeff〉 =
n/2∑

m=−n/2

J⊗
j=1

∣∣∣∣∣m f j
⊥

f max
⊥

〉
j

=

n/2∑
m=−n/2

∣∣∣∣m f⊥
f max
⊥

〉
(26)

where we relabeled the initial eigenstates |m〉 →
∣∣∣mf j

⊥/f max
⊥

〉
by their effective spin. Thus, the probe state

consists of a superposition of n states with effective spins s̄m‖f⊥ which all lie in the same decoherence-free
subspace.

However, a superposition state with equal level spacing and spectral range can be also achieved with less
resources if n · |f j

⊥|/f max
⊥ � (n − 1) for some j. In this case, we use systems of dimension �n|f j

⊥|/f max
⊥ � for

each local system. However, at least one system still has dimension n. We use this system as control system
for controlled spin flips on all the other systems to create the effective superposition state given in
equation (26).

The maximal number of levels is in both cases given by L = n and the spectral range by Δ = n‖f⊥‖1

with the �1-norm given by ‖f⊥‖1 =
∑

j|f
j
⊥|. Depending on the given scenarios, the precisions discussed in

section 3 can be achieved.
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Figure 2. Visualization of the states of a two qubit system and their projection onto the perpendicular signal component f⊥
(black arrow). The projections of the four spins states (±seff ,±1/2) (red dots) lead to an equally spaced level structure optimal
four quantum metrology in the Bayesian regime. The superposition of the two states (1/2, 1/2) and (−1/2,−1/2) are optimal
for quantum metrology in the Fisher regime. However, their projection together with the projection of (1/2,−1/2) and
(−1/2, 1/2) do not lead to equally spaced levels.

In general, it is also possible to create superpositions of n levels with only single qubits for each sensor.
In this case, an auxiliary system with n levels which is insensitive to all fields (source and noise) is necessary
to control the necessary spin flips (see [43]). In this case, the same number of levels L = n can be
achieved but only a spectral range of Δ = ‖f⊥‖1. Thus, this scheme is only preferable for scenarios where
only a single shot estimation with a comparable long measurement time t � 1/(W0Δ) is possible as
discussed in section 3.1.

4.2. Multi-dimensional orthogonal subspace
There are automatically more levels available in the decoherence-free subspace if the space orthogonal to
span {fk} with 1 � k � K is multi-dimensional. This is possible if there exist more than J > K + 1 different
sensor positions. For example, in the appendix of [20], an example of a three qubit system is discussed,
where all states of the form |±1/2,±1/2, s3〉 with arbitrary but fixed s3 lie within the same decoherence-free
subspace. In this case, the states |̄s〉 used for the superposition probe state must not necessarily be
parallel to f⊥. However, the projection of these states onto f⊥ are not necessary equidistant, see for example
the projection of the states |±1/2,±1/2, s3〉 onto f⊥ as depicted in figure 2 (the state s3 of the third qubit
was neglected in this figure to simplify the presentation). Again, we can us dynamical controlled spin-flips
to solve this problem. In this case, we decrease the spin of one of the systems from 1/2 to seff in such a way
that (

seff

1/2

)T

· f⊥ = 3

(
−seff

1/2

)T

· f⊥. (27)

In this way, the projection of the states |±seff,±1/2〉 lead to linear spaced projections onto f⊥. To obtain
more levels, it is enough to increase the number of linear spaced energy levels of one of the systems. In our
example, we can get L = 2n ‘equally’ spaced states within the decoherence-free subspace. However,
forcing the spectra to be linear by adding spin flips leads to a reduction of the spectral range to
Δ = 2nseff‖f⊥‖1 with seff < 1/2. This method can be generalized to higher dimensional decoherence-free
subspaces.

As a result, we can generate linear multi-level spectra within the decoherence-free subspace for Bayesian
parameter estimation by using well timed spin-flips. The maximal achievable spectral range Δ as well as the
number of levels L scale with the number of local energy levels n similar to the noiseless case. In addition,
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the dimension d = J − K of the space orthogonal to all noise sources can be also used to generate effective
linear spectra by using again well timed spin-flips.

4.3. Arbitrary effective spectrum
We have concentrated on generating effective linear spectra w.r.t. the signal generating Hamiltonian so far,
as such spectra are typically used in a Bayesian estimation scenario with flat prior distribution. However,
there are many other metrological scenarios as well, and the optimal states and optimal effective energy
spectra vary from case to case. Hence we also discuss a general method to obtain arbitrary effective spectra
within a DFS using dynamical control. Once one has constructed a two-dimensional DFS with
eigenstates |v+〉, |v−〉 and eigenvalues λ± = ±Δ/2 where Δ is the spectral range, one can obtain a
multi-dimensional DFS with degenerate eigenvalues by simply placing more sensors (or a higher
dimensional system) at each sensor position. Similarly, adding auxiliary systems that are not taking part in
the sensing process have a similar effect. We assume in the following that each eigenstate is k-fold
degenerate, |v±k 〉 = |v±〉|k〉, with eigenvalues λ±

k = λ±. By performing a controlled-switch between
eigenstates |v+k 〉 and |v−k 〉 at appropriated times, one can generate effective eigenvalues λ̃+

k , λ̃−
k with

arbitrary values 0 � λ̃+
k � Δ/2 and λ−

k = −λ+
k . This allows one to produce an arbitrary symmetric

spectrum. An arbitrary asymmetric spectrum can be obtained by mixing each of the eigenstates separately
with an effective zero-energy state. Notice that effective zero energy levels can be generated by using two
other auxiliary levels. An alternative is to use just the positive part of the spectrum, which however results in
a decrease of the spectral range by a factor of 1/2.

A similar method works to modify a given linearly spaced spectrum {±λk}. By adding degeneries (e.g.
using auxiliary states or levels that do not take part in the sensing process), one can either mix pairs of levels
±λk with effective zero-energy states and move energy down for the two levels. Or one can also mix two
different energy levels λk1 ,λk2 , which results in moving one energy up and the other down (but also changes
the spectral range eventually).

5. Creating linear spectra within the decoherence-free subspace by varying the spatial
distributions

In the previous section, we investigated how to create effectively linear spaced levels assuming a fixed
number of sensors at fixed positions. Here, we increased the number of level L as well as the spectral range
Δ simultaneously by increasing the internal degrees of freedom of the local sensors.

However, the number of available levels L and the maximal achievable spectral range Δ are strongly
influenced by the positioning of the different sensors. Thus, we can increase L or Δ just by varying the
spatial distribution of our sensors without using additional resources such as additional qubits to increase
the internal degree of freedom of the sensors. In general, increasing one will lead to a decrease of the other.
Thus, the trade-off between L and Δ need to be carefully balanced depending on the actual situation as
discussed in section 3.

To be fully flexible, we present here different constructions to achieve states with up to exponentially
many effective energy levels, at the prize of a (linearly) reduced spectral range. In contrast to section 4, we
now assume that each sensor is described by a single qubit. Our results can be generalized to sensor with
more internal degrees of freedom by combining the methods from this section and section 4.

We start by concentrating on gradient estimation with the generator

Ĝ0 =
∑

j

rjẐj, (28)

with normalized positions −1/2 � rj � 1/2. Our goal is to determine the global phase ϕ = tω generated by
Ĝ0 with 0 � ω < W0 without being disturbed by global phase noise generated by

Ĝ1 =
∑

j

Ẑj. (29)

In the Fisher scenario, it is optimal to place N/2 qubits at rj = ±1/2, respectively, because we achieve in this
way the maximal possible spectral range of Δ = N [18]. However, we obtain only L = N/2 different
eigenvalues for Ĝ0. In the following, we discuss different spatial arrangements of our sensors to generate
linear spectra with different combinations of L and Δ which can help to optimize global parameter
estimation in the Bayesian regime.
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5.1. Linear spacing
For simplicity, we assume that the number of qubits N is even. In this case, positioning N sensors with
linear spacing leads to

r±j = ± j − 1/2

N − 1
, 1 � j � N/2. (30)

The maximal eigenvalue Γmax is achieved if all spins with positive rj pointing up and all others down,
leading to

Γmax = 2 · 1

2

N/2∑
j=1

j − 1/2

N − 1
. (31)

In a similar way, we find Γmin = −Γmax. Thus the spectral range is given by

Δ = Γmax − Γmin =
N2

4(N − 1)
≈ N

4
. (32)

Similar considerations for N odd leading to the same scaling of Δ ≈ N/4. The smallest energy change is
achieved if the spins situated at r±1 are changed. Both of these spins need to be switch simultaneously, to
stay in the protected subspace from global field noise. This leads to a minimal energy change of
δ = 1/(N − 1) and as a result to a maximal number of energy levels of L = Δ/δ ≈ N2/4. As a result,
increasing the number of qubits leads to a similar scaling of the spectral range as in the Fisher regime while
we get a quadratic improvement in the number of levels.

5.2. Exponential spacing
The maximal number of levels with equidistant spacing L = 2N/2 is achieved if the particles are placed at

r±j = ±1

2

1

2j−1
, 1 � j � N/2 (33)

where we again took into account that only states within the protected subspace are interesting. In this case,
the maximal and minimal eigenvalues are given by

Γmax/min = ±2

4

N/2∑
j=1

1

2j−1
= ±

(
1 − 1

2N/2

)
(34)

leading to a spectral range of Δ ≈ 2 for large N. As a consequence, the achievable spectral range Δ is
limited in this case and cannot be enhanced above a certain threshold by increasing the number of qubits.
However, the precision depends only on L for single shot estimation if the interaction time t is large enough
such that tW0Δ � 1 (see section 3.1). In this case, it is not necessary to increase Δ and we profit from the
exponential scaling of L.

5.3. Arbitrary functions
The above conducted considerations can be generalized to arbitrary generators

Ĝ0 =
∑

j

f (rj)Ẑj. (35)

Again, our goal is to construct probe states, which are insensitive to global phase noise generated by
Ĝ1 =

∑
j Ẑj. However, now we do not demand that the positioning of the sensors itself is linear or

exponential, but the resulting field strengths f(rj) when hopping from one sensor to another. In this way, we
can generate similar level structures as in the case of gradient estimation.

To achieve linear spacing, the sensors need to be placed at positions rj such that

f (rj) = fj = a
j − 1/2

N − 1
+ b. (36)

To construct a probe state which is insensitive to global field noise, we determine the component f⊥ of f
which is orthogonal to the vector f0 = (1, . . . , 1)T describing global field noise [20]. This component is
given by
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f j
⊥ = f (rj) −

∑N
j=1 f (rj)

N
= a

j − 1/2 − N/2

N − 1
(37)

and is antisymmetric such that f j
⊥ = −f N+1−j

⊥ . The largest eigenvalue of Ĝ0 is achieved if all spins for
1 � j � N/2 pointing down and all other up. The state with the smallest eigenvalue is obtained by flipping
all spins leading to a spectral range of

Δ = 2 · 2 · 1

2

N∑
j=N/2+1

a
j − 1/2 − N/2

N − 1
= a

N2

4(N − 1)
. (38)

The smallest changes within the protected subspace is achieved if the two middle spins (j = N/2 and
j = N/2 + 1) are switched leading to a level spacing of δ = a/(N − 1) and in total L = N2/4 levels similar
to the case of gradient estimation with linear positioned sensors.

For arbitrary function f(rj) it is also possible to create L = 2N/2 equidistant levels within a
decoherence-free subspace with N qubits as we will demonstrate in the following. So far, we have always
used the fact that two qubits with opposite spin form a two-dimensional decoherence-free subspace. That is,
always two qubits form one logical qubit with

|+〉Lj
= |+〉j|−〉−j (39)

|−〉Lj
= |−〉j|+〉−j (40)

leading to

Ĝ1|±〉Lj
= 0 (41)

Ĝ0|±〉Lj
= ±(f (rj) − f (r−j))|±〉Lj

. (42)

Here, |±〉 denotes a spin-eigenstate with the spin pointing up or down, respectively. To create 2N/2 levels
within the decoherence-free subspace, we need N/2 independent pairs (j,−j) of sensors with

f (rj) − f (r−j) =
a

2j−1
, 1 � j � N/2. (43)

The maximal and minimal eigenvalues are then given by

Γmax/min = ±1

2

N/2∑
j=1

a

2j−1
= ±a(1 − 1

2N/2
) (44)

leading to a spectral range of Δ ≈ 2a for large N. Finding the positions r±j is straightforward if f is
continuous and an inverse function f−1 is known (f−1 need not necessarily be unambitious). The pairs
(j,−j) can be freely chosen since the function f0(r) describing the global noise is constant. The optimal
strategy is to choose r1 such that f(r1) is equal to the maximum of f(r) within the area of allowed sensor
positions and r−1 denotes the position of the minimum. All other sensor positions are then consecutively
defined via

f (r±j) =
1

2

(
fmax + fmin ±

fmax − fmin

2j−1

)
. (45)

In general, the optimal positioning will depend on the constraints defining the measurement setup. If
only a single-shot measurement can be performed, and the measurement time is long enough such that
tW0f max

⊥ � 1 than only the number of levels L matters as discussed in section 3.1. In this case, we can get an
exponential scaling of the precision

〈(ω̂ − ω)2〉 = 〈(ϕ̂− ϕ)2〉
|∂ωϕ|2

≈ W2
0

4
2−N . (46)

with the number of qubits N. However, arbitrary long measurement times to achieve tW0f max
⊥ � 1 are not

always possible. In these cases, the precision can be enhanced by increasing the spectral range Δ and the
number of levels L simultaneously as discussed in section 3.3. The spectral range Δ scales at best linearly
with N if the maximal achievable strength f max

⊥ is fixed. For large enough qubit numbers N, we reach the
regime tW0Δ = tW0N‖f⊥‖1 � 1 where the number of levels L plays a crucial role. In this case, choosing a
linear spaced positioning leads to a precision

〈(ω̂ − ω)2〉 = 〈(ϕ̂− ϕ)2〉
|∂ωϕ|2

≈ 4W2
0

N4
. (47)
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Table 1. Summary of spectral range Δ and number of levels L for gradient
estimation with N qubits for different spatial distribution within the subspace
protected from global phase noise. These leads to a precision scaling which is
either, quadratic, quartic or exponential scaling provided tW0Δ � 1
according to equation (10).

Spatial distribution Δ L 〈(ω̂ − ω)2〉 ∼

2-point N N/2 W2
0 /N2

Linear ≈ N/4 ≈ N2/4 4W2
0 /N4

Exponential ≈ 2 2N/2 W2
0 /2N

A summary of achievable Δ, L and resulting 〈(ω̂ − ω)2〉 provided tW0Δ � 1 can be found in table 1.

6. Conclusion

In this paper, we first discussed the influence of the spectral range Δ and the number of levels L, covered by
a probe state and defined by a generator Ĝ of an unknown phase ϕ = ωt, on the precision to estimate ω.
The optimal precision is solely determined by the spectral range Δ if the interaction time t between the
unknown field B = ωf0(r) with strength ω and the sensor network is very small such that t � 1/(W0Δ).
Here, W0 determines the width of the prior of ω. This is also the case if the interaction time can be split into
multiple measurements with arbitrary small interaction times. In this case, the information gain achieved
by probe states based on multi-level states is compensated by longer interaction times for each single
measurement (see equation (9)). Thus, it is possible to either perform a few longer measurements providing
more information, due to a larger L, or many short measurements providing each only a single bit of
information, if L = 2. However, the total amount of available information stays constant and the precision
〈(ω̂ − ω)2〉 depends solely on the spectral range Δ.

However, we are limited in many situations to single-shot estimation due to preparation and
measurement times longer than the available interaction time. Then, the number of levels L becomes more
and more important as tW0Δ grows.

As a consequence, it is optimal to invest the given resources, e.g. number of available qubits n, in
different ways depending on the given estimation situation. Here, we also took the influence of different
noise sources with given spatial distributions fk(r) into account. To generate a maximal spectral range Δ it is
optimal to put as many qubits as possible at a position with maximal effective signal strength f max

⊥ . In this
case, Δ scales linear with the number of qubits at this position. However, we need at least sensors at
J = K + 1 different positions if K linear independent noise sources are present. This reduces the number of
qubits at this positions dramatically.

To create a large number of levels L, it is optimal to place each qubit at a different position. Depending
on the spatial distribution of the sensors, we can either maximize L by sacrificing Δ. In this case, we can get
an exponential scaling of L with the number of qubits n and thus an exponential scaling of the precision
〈(ω̂ − ω)2〉 ∼ 2−N with the number of qubits. However, Δ will be limited by a constant in this case.
Therefore, exponential scaling can only be achieved if long measurement times are available such that
tW0‖f⊥‖1 � 1. In other cases, it is optimal to increase L and Δ simultaneously as discussed in section 3.3.
In such situations, it is e.g. possible to achieve quadratic scaling of L ∼ N2 and still linear scaling of Δ ∼ N.
Thus tW0Δ � 1 can be achieved for large qubit numbers and thus a quatic scaling of the precision
〈(ω̂ − ω)2〉 ∼ N−4 can be achieved with a single shot.
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