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Abstract: We integrate life cycle indicators for various technologies of an energy system model with 
high spatiotemporal detail and a focus on Europe and North Africa. Using multi-objective optimi-
zation, we calculate a pareto front that allows us to assess the trade-offs between system costs and 
life cycle greenhouse gas (GHG) emissions of future power systems. Furthermore, we perform en-
vironmental ex-post assessments of selected solutions using a broad set of life cycle impact catego-
ries. In a system with the least life cycle GHG emissions, the costs would increase by ~63%, thereby 
reducing life cycle GHG emissions by ~82% compared to the cost-optimal solution. Power systems 
mitigating a substantial part of life cycle GHG emissions with small increases in system costs show 
a trend towards a deployment of wind onshore, electricity grid and a decline in photovoltaic plants 
and Li-ion storage. Further reductions are achieved by the deployment of concentrated solar power, 
wind offshore and nuclear power but lead to considerably higher costs compared to the cost-opti-
mal solution. Power systems that mitigate life cycle GHG emissions also perform better for most 
impact categories but have higher ionizing radiation, water use and increased fossil fuel demand 
driven by nuclear power. This study shows that it is crucial to consider upstream GHG emissions 
in future assessments, as they represent an inheritable part of total emissions in ambitious energy 
scenarios that, so far, mainly aim to reduce direct CO2 emissions. 
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1. Introduction 
As the power sector offers the greatest cost-effective potential for emission reduc-

tions compared with other sectors, such as heat and transport, cost-optimized strategies 
to limit global warming to below 2 °C typically have close to zero emissions in the power 
sector by the middle of the century [1]. However, energy system optimization models 
(ESOMs) usually only consider direct, on-site CO2 emissions when assessing the cost-op-
timized design of infrastructure components of future electricity supply (e.g., power 
plants, storage facilities, and grids). 

Life cycle assessments (LCAs) quantify the potential impacts of technologies and pro-
cesses across a comprehensive set of environmental categories, covering entire life cycle 
chains, associated emissions, and ecologically relevant extractions from the environment 
[2]. The LCA literature on renewable energy conversion technologies showed that they 
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are associated with higher upstream energy demand compared to conventional technolo-
gies and higher corresponding indirect (i.e., not caused by the combustion of fuels on site) 
greenhouse gas (GHG) emissions and other environmental impacts per unit of capacity 
[3]. Thus, concerns have been raised that these may affect the emissions reduction poten-
tial of low-carbon technologies and that other environmental stressors may be overlooked 
[4]. ESOMs with high spatial and temporal resolution analyze cost-optimized, long-term 
strategies to meet the emission limitations implied by climate targets [5]. However, indi-
rect emissions, especially those related to the energy required for the construction of 
power plants and the production and transport of fuels and other inputs, are usually not 
considered in those models. Thus, the inclusion of data on life cycle impacts in ESOMs is 
a promising approach in order to overcome the shortcomings of “classical” ESOMs. Due 
to their complementary nature, the combination of ESOMs and LCAs is an emerging field 
of research and can guide energy policy to achieve energy systems with improved overall 
environmental performance. 

To date, life cycle indicators have mostly been linked to model output in order to 
estimate environmental impacts (also called “ex-post assessment”). For example, Berrill 
et al. [6] showed that systems largely based on variable renewable energy (VRE) perform 
better for most impact categories but have larger resource depletion and land occupation 
impacts than systems based on fossil energy options. Hertwich et al. [7] compared the 
global BLUE Map and the business-as-usual scenarios from the International Energy 
Agency (IEA) and found that low-carbon technologies allow for the reduction of pollu-
tion-based impacts, while metal demand increases. Xu et al. [8] confirmed the results of 
the latter two studies for European electricity scenarios, pointing out in particular the high 
land requirements of photovoltaic (PV) installations. Luderer et al. [9] assessed scenarios 
from various integrated assessment models (IAMs) and showed that environmental ef-
fects largely depend on the choice of technology and that mitigation efforts tend to in-
crease resource and land use impacts in line with the former studies. 

While such approaches provide meaningful insights into the environmental perfor-
mance of given scenarios, they do not take full advantage of the model’s capabilities to 
determine environmentally improved system configurations compared to original model 
setups (e.g., pure cost optimization with upper limits for direct CO2 emissions). More spe-
cifically, solutions are overlooked that internalize (also called “model-endogenous inte-
gration”) life cycle environmental impacts. In the literature, integration efforts are mani-
fold and range from the setting of upper limits for certain indicators to the monetarization 
of emissions and indicators to multi-objective optimization. For example, Daly et al. [10] 
set upper limits on both direct and indirect CO2 emissions in an ESOM for the UK and 
found that mitigating the total emissions nearly doubles the marginal abatement costs 
compared to the consideration of direct CO2 emissions only. McDowall et al. [11] took a 
similar approach with a focus on Europe and showed that limiting indirect GHG emis-
sions increases the use of wind power, while the expansion of solar PV declines. Algun-
aibet et al. [12] downscaled the eight planetary boundaries defined by Ryberg et al. [13], 
which aim to provide a safe space for humanity, to the US power sector and showed that 
compliance with the upper limits leads to a doubling of system costs compared to the cost-
optimal solution. Portugal-Pereira et al. [14] considered a tax on both direct and indirect 
GHG emissions for part of the energy system studied. This led to a shift towards the use 
of technologies that did not consider indirect emissions and underlined the importance of 
integrating indirect emissions for all technologies that can be expanded in an ESOM. An-
other study by Pehl et al. [15] followed a similar approach but covered GHG emissions 
for all technologies optimized endogenously. The authors showed that a tax on indirect 
GHG emissions, as opposed to a tax on direct emissions only, leads to an increased ex-
pansion of concentrated solar power (CSP), wind, and nuclear power plants. An aggre-
gated environmental indicator was included in the optimization function by Rauner and 
Budzinski [16] covering the German electricity supply. Applying multi-objective optimi-
zation, the authors showed that an environmentally sustainable system leads to increased 
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deployment of VRE, particularly wind energy, compared to an unconstrained cost-opti-
mal system based mainly on fossil fuels. Multi-objective optimization integrating costs 
and life cycle impacts was conducted by Tietze et al. [17] and applied to an exemplary 
residential quarter. In several model runs that considered different impacts, the authors 
showed a number of different system configurations resulting from different weightings 
of environmental impacts and highlighted the importance of including the life cycle per-
spective in the design of energy systems. Vandepaer et al. [18] optimized both the system 
costs and life cycle impacts and then included predefined system cost constraints in the 
optimization of environmental impacts for the Swiss energy system. The authors demon-
strated that a small increase in costs can result in substantial climate change mitigation. 
However, this statement is based on only a small selection of solutions explored. 

At present, however, the consideration of life cycle GHG emissions as an additional 
objective to system costs is still very limited. Furthermore, the ESOMs in most of the latter 
studies have a low temporal and/or geographical resolution and are, therefore, not able to 
fully capture the feed-in of VRE and the resulting impact on auxiliary infrastructures such 
as storage and grid. We overcome these limitations with the integration of life cycle im-
pacts into the spatiotemporal high-resolution ESOM “Renewable Energy Mix” (REMix). 
The model is particularly designed to assess the infrastructural demand for a reliable 
power supply. We use a comprehensive set of life cycle inventories (LCIs) of up-to-date 
electricity supply, distribution, storage, and conversion technologies. The life cycle indi-
cators generated rely on harmonized LCIs that consider the evolutions in their upstream 
life cycles by incorporating the effects of future decarbonization measures in the global 
electricity sector (such future-oriented applications of LCAs are also known as “prospec-
tive LCAs” [19]). To evaluate the effect of the reduction of life cycle GHG emissions on 
system costs, we apply multi-objective optimization and calculate a pareto front. This con-
cept was first introduced by Vilfredo Pareto and allows for the systematic assessment of 
trade-offs between conflicting objectives [20]. In addition, we analyze the occurrence of 
burden shifts over several life cycle impacts for the solutions explored. The extended 
ESOM is applied to Europe and North Africa (EUNA). Specifically, our aim is to answer 
the following research questions: 
• What are the trade-offs between total system costs and life cycle GHG emissions for 

the future electricity system in EUNA? 
• How does the structure of the power system and the grid change when life cycle 

GHG emissions are reduced? 
• What are the trade-offs that occur regarding further life cycle environmental im-

pacts? 
Our research is particularly useful for energy and environmental policy makers aim-

ing for cleaner power generation considering the entire upstream supply chain. 
This article is structured as follows: Section 2 presents the methodology and the case 

study, Section 3 illustrates the results of the case study, Section 4 presents the discussions, 
while Section 5 draws the main conclusions from the work. 

2. Materials and Methods 
Figure 1 illustrates the workflow of this study and the corresponding sections of the 

paper in which we provide details on the different steps. 
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Figure 1. Flowchart of models, methods, and results. Block circles indicate the corresponding sections in the article. 
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The approach consists of two main parts: ESOM on the one hand and life cycle im-
pacts for the technologies considered on the other hand. The ESOM used in this study is 
REMix, which is extended by an algorithm that enables multi-objective optimization (see 
Section 2.1). The LCI database used provides the technology specific indicators for the 
ESOM (see Section 2.2). We use a specific scenario setup for this case study based on ear-
lier work (see Section 2.3). Then, multi-objective optimization is performed using techno-
economic parameters and the life cycle indicators (in this case study, GHG emissions). In 
addition, environmental ex-post assessment is conducted for the resulting pareto optimal 
solutions. Details on the modeling approach developed are described in the next section. 

2.1. Extended Energy System Model to Perform Multi-Objective Optimization 
In this chapter, we first explain the general structure of the REMix modeling frame-

work and then describe the adjustments necessary to calculate the life cycle indicators for 
the power system and to perform multi-objective optimization. 

2.1.1. The Traditional REMix Modeling Framework 
A comprehensive description of REMix and the corresponding equations are pro-

vided in Gils et al. [21]. In short, the model consists of two main elements: the energy data 
analysis tool (REMix-EnDAT) and the optimization model (REMix-OptiMo) (Figure 1). 
REMix-EnDAT performs the VRE resource assessment in high spatial and temporal reso-
lution. It provides hourly generation profiles for the main technologies aggregated to 
user-defined regions. In addition, electricity demand profiles are generated in this part of 
the model. The supply and demand profiles are used in REMix-OptiMo to determine the 
most cost-effective operation and expansion of all system components during every hour 
of the year. REMix-OptiMo is a deterministic linear optimization program in a formula-
tion of a general algebraic modeling system (GAMS). The model is built in a modular 
structure with a wide range of technology modules (e.g., a module for storage technolo-
gies) that are largely independent of each other. In each module, the parameters, variables, 
equations, and inequalities used to represent the respective technical and economic char-
acteristics are defined. Power generation, storage and grid technologies are represented 
by their installed and maximum installable capacities, their investment and operating 
costs, and their efficiencies. All technology modules allow for the operation and expansion 
of the technologies considered. Additions of power plants, transmission lines or storage 
capacities can be optimized by the model according to the existing potentials and system 
requirements. Investments in new capacities consider technology costs, payback periods, 
and interest rates. 

In short, the model: 
• Minimizes the total system cost, which consists of investment costs (treated as annu-

ities) and the operating costs of the entire system; 
• Decides on the size of energy storage (power capacity, energy capacity), hydrogen 

storage, grid, and generation technologies; 
• Considers a one-year modeling horizon (in our case the year 2050) with full hourly 

resolution (i.e., 8760 time steps) for which the optimal operation of each technology 
at each modeling node is determined. 
In previous studies, REMix was used to estimate the cost-optimal design of energy 

systems and has been applied in several studies, ranging from case studies for specific 
regions [22–27], model comparisons [28] to comprehensive model coupling [29]. The 
model adaptions necessary to consider LCA-based indicators in the REMix are described 
in the next section. 
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2.1.2. Extension of the REMix Modeling Framework 
For the purpose of this study, two new modules are introduced to REMix-OptiMo. 

The first module collects all investment and dispatch variables of the different technolo-
gies and calculates the system-wide life cycle impacts, which can also be used for envi-
ronmental ex-post assessments. This module also contains the description of the second 
objective function (Equation (1)) next to systems costs. Note that for the sake of clarity, we 
simplified the notation (e.g., planning year or technology sets are neglected) compared 
with that implemented in REMix. In the present study, the second objective function to be 
minimized summarizes the life cycle GHG emissions of all technologies considered to the 
overall life cycle GHG emissions. It is composed of the GHG emissions of all added ca-
pacities E  (Equation (2)), with P  being the endogenous optimization results, I  the corresponding technology specific impacts (e.g., per GWelectricity), divided by 
the calendrical lifetime of the plant T  to account for the single year time horizon of 
the model calculation. Operation dependent life cycle impacts E  (Equation (3)) 
consist of the sum over each time step t of the hourly generation of added P (t) 
as well as existing capacities P (t) multiplied with the corresponding life cycle 
impacts related to operation I (t) (e.g., per GWhelectricity). The term is multiplied 
by the efficiency ratio between the LCI data η  and the ESOM η  to correct for dif-
ferences in assumptions on efficiencies. Existing capacities can be defined exogenously. In 
addition, we include a penalty for unsupplied power E . min E + E + E  (1)E =  P × I ×  1T  (2)

E =  P (t) + P (t) × I (t) × ηη  (3)

In the second module, the augmented epsilon-constraint method (ε-CM) described 
by Mavrotas [30] is implemented to perform multi-objective optimization to assess the 
trade-offs between system costs and life cycle GHG emissions. The pareto front covers the 
solution space between the minimum cost and the least GHG emission-intensive solution. 
Compared to a weighted objective function, the ε-CM offers the advantages of finding 
solutions that are not supported by weighting and of avoiding sensitivities to scaling. In 
addition, it allows for a systematic exploration of pareto-efficient solutions. A description 
of the approach adopted can be found in Appendix A. 

The adaptions of the LCIs necessary to populate the REMix model with life cycle 
indicators for the different technologies (i.e., for deriving I  and I (t)) are 
described in the next section. 

2.2. Life Cycle Assessment 
The aim of this study is to quantify life cycle impacts of meeting the electricity de-

mand of the EUNA region in 2050, considering all upstream activities in the supply chain 
of energy technologies. For this purpose, we base this study on the Framework for the 
Assessment of Environmental Impacts of Transformation Scenarios (FRITS) that uses the 
ecoinvent 3.3 cut-off background LCI database [31]. The framework was developed to as-
sess the life cycle impacts of existing energy system scenarios on different sectoral and 
geographical scales and contains the LCI data used in this case study. 

2.2.1. Foreground Life Cycle Inventory Data and Technology Mapping 
In LCA, LCI data are differentiated into fore- and background data. Foreground data 

are those that describe the system that is the focus of the analysis; background data are 
those supporting the modeling of the foreground system. In our case, foreground LCI data 
represent the technologies in REMix. Therefore, the technologies presented in REMix 
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must be mapped to the appropriate LCI data sets based on the technical specifications 
described in both sources. The LCI data for energy technologies that are missing in the 
ecoinvent 3.3 database (e.g., stationary battery storage, high-voltage direct current 
(HVDC) electricity grid, electrolyzers) were collected from scientific sources and inte-
grated into the LCI database. The full list of technologies and corresponding LCI data 
sources are listed in Appendix B, Table A2. 

2.2.2. Adjustments of Fore- and Background Life Cycle Inventory Data 
In LCAs, operations- and infrastructure-related datasets are usually aggregated into 

one LCI dataset. We, therefore, disaggregate the LCI data into operations- and infrastruc-
ture-related processes for each technology to match the corresponding decision variables 
in REMix. 

FRITS enables the consideration of regional adjustments of the global background 
power generation mix. In the present study, the 2 °C scenario by Teske et al. [32] is applied 
to the background database, which describes region-specific power mixes until the main 
feature of renewable energy technologies is that a large proportion of the environmental 
impact occurs in the upstream supply chain of these technologies. Changes in the electric-
ity system affect the environmental impacts caused, in particular, by the manufacturing 
processes. Thus, we capture important improvements in the electricity system that pro-
vides electricity in the manufacturing of power plants, storage and conversion technolo-
gies, and electricity grids. 

A challenge in coupling LCA-based environmental impacts to geographically large-
scale ESOMs is to avoid double counting of environmental impacts in the background LCI 
database. More specifically, the LCI for processes in the upstream supply chain (e.g., steel 
production) may include energy flows from processes that are already within the bound-
ary defined in the ESOM (e.g., electricity production). In this study, we avoid double 
counting for the electricity sector by matching the markets for electricity generation in 
ecoinvent with the regions in REMix (see Table S2). Subsequently, we delete all of the 
input flows (e.g., electricity production by a wind turbine) from these markets. This ap-
proach to avoid double counting in the background has already been implemented in the 
earlier application of FRITS [31], and similar approaches have been used in other work as 
a possible option to address this challenge [15,33,34]. 

In addition, double counting also occurs in operation depended foreground data sets 
(e.g., electricity as input to electrolysis). Thus, these flows are removed from the respective 
LCI data sets. 

2.2.3. Life Cycle Indicators 
In the final step, we generate life cycle indicators that provide the environmental 

scores of the different impact categories for the technologies and integrate them as param-
eters into the model (see Section 2.1.2). 

In this paper, indicators are calculated using the International Reference Life Cycle 
Data System (ILCD) 2.0 2018 impact assessment method that translates thousands of LCI 
entries (e.g., NOX and PM2.5) to sixteen mid-point impact categories using a variety of en-
vironmental mechanisms [35] (Table 1). The method was selected because it was the most 
up to date at the time the study was conducted and was developed in a transparent and 
scientifically sound process. Furthermore, the characterization factors were adapted for 
the ecoinvent database used. 

The technology-specific indicators integrated in REMix are listed in Table S4 of the 
Supplementary Materials. Life cycle CO2eq emissions represented by the impact category 
“climate change” are used as an additional objective in the ESOM. The other indicators 
are applied in environmental ex-post assessment of the different solutions. Note that in 
the following, life cycle CO2eq emissions, which also include emissions other than carbon 
dioxide, such as ethane, methane or nitrogen fluoride, are referred to as life cycle GHG 
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emissions and CO2 emissions are the direct, ESOM-based emissions (traditional scope of 
REMix). 

Table 1. Mid-point indicators following the International Reference Life Cycle Data System (ILCD) 
2.0 2018 methodology [35] used in this study. 

Impact Category Indicators Units 
For multi-objective optimization 

Climate change GWP 100a kg CO2eq 
For additional ex-post assessment of environmental co-benefits and adverse side effects 

Ecosystem quality Freshwater and terrestrial acidification mol H+eq 
 Freshwater ecotoxicity CTUe 
 Freshwater eutrophication kg Peq 
 Marine eutrophication kg Neq 
 Terrestrial eutrophication mol Neq 

Human health Non-carcinogenic effects CTUh 
 Carcinogenic effects CTUh 
 Ionizing radiation kg U235eq 
 Ozone layer depletion kg CFC-11eq 
 Photochemical ozone creation kg NMVOCeq 
 Respiratory effects, inorganics disease incidences 

Resources Fossils (including uranium) 1 MJ 
 Land use points 
 Minerals and metals kg Sbeq 
 Dissipated water m3 watereq 

1 In the ILCD 2.0 2018 methodology, this indicator was initially named “Fossils” and was renamed 
to “Fossils (including uranium)” for the sake of clarity. 

The information considered in the ESOM for the adjustment of the LCA indicators is 
efficiency and lifetime to ensure consistency and to allow for the correct consideration of 
the impacts from construction (see Equations (2) and (3)), in line with earlier integration 
work [16,18]. 

2.3. Scenario Setup 
Our scenario setup is based on the model parameterization and the “CSP&H2” sce-

nario in combination with the “Trend” scenario for transmission grid expansion defined 
in Cao et al. [36]. The “Trend” scenario assumes that all major ten-year network develop-
ment plan (TYNDP) projects [37] are implemented and the current structure of the trans-
mission network will be maintained. New expansion in the high and extra-high voltage 
network is possible. Note that REMix also allows for the expansion of cables (ground em-
bedded overland cables in combination with submarine cables), which are presented sep-
arately from lines (aerial lines in combination with submarine cables) in this work. 

A certain part of power plant capacities is defined exogenously. For conventional 
power plants, the commissioning date from the World Electric Power Plants Data Base 
(WEPP) [38] is combined with lifetime assumptions to determine the phase-out date. The 
capacities remaining in the scenario year are assumed model-exogenous for the modeling. 
Model-exogenous capacities for PV and wind power plants are derived from Reference 
[37]. Wind power plants are divided into on- and offshore plants and PV into open ground 
and rooftop plants. The country-specific distribution is done as follows: For wind, one half 
of the wind power generation capacity given in the data set is divided according to the 
current onshore–offshore ratio, determined from Reference [39]. The other half is divided 
according to the ratio of maximum installable generation capacities based on the potential 
analysis in REMix-EnDAT. PV is allocated exclusively according to the ratio of the maxi-
mum installable generation capacities based on the potential analysis. Hydropower plants 
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are differentiated into run of river, pumped storage, and reservoir hydropower plants. 
For the installed capacities and their geographical allocation, a data set from the Frankfurt 
Institute for Advanced Studies (FIAS) is used [40]. There is no model-exogenous specifi-
cation of generation capacities for biomass and geothermal. Note that in the following, the 
life cycle environmental impacts as well as the system costs are composed of exogenously 
defined as well as added capacities. 

For the sake of simplicity, the heat sector is not considered in the present study. This 
is the main difference with the scenario setup by Cao et al. [36], who, for example, also 
considered the additional electricity demand by heat pumps, electric boilers, and the heat 
demand to be covered by cogeneration. 

In short, the scenario setup has the following characteristics: 
• Regions: European countries (ENTSO-E members), with the exception of Turkey, Ice-

land, Cyprus, and Ukraine; North African countries: Algeria, Morocco, and Tunisia. 
Figure 2 illustrates the spatial resolution and the representation of the power grid; 

• Technological and sectoral scope: Fossil, nuclear, and renewable power generators, 
energy storage for load balancing, electricity exchange, and hydrogen transport (via 
H2 pipelines) among model nodes. Furthermore, we allow direct electricity imports 
via HVDC lines from North Africa to Europe as specified by Hess [25,26]. Concerning 
the sectoral scope, we consider the power system as well as additional electricity de-
mands for electric and H2 vehicles. The hydrogen demand for mobility is specified 
exogenously, while hydrogen production and storage are optimized endogenously. 
All assumptions on specific investment, operation, and maintenance costs are listed 
in Table S1 of the Supplementary Materials; 

• Constraints: To allow regional flexibility in achieving CO2 reduction targets on direct 
emissions of ~95% compared to 1990, we define a CO2 cap (~60 Mt) for the entire 
model region. This cap is based on country-specific annual energy balances [41] for 
electricity generation and fuel-specific CO2 emission factors [42]. Recall that the re-
newable potentials derived from REMix-EnDAT (including hydropower plants) con-
strain the maximum installable capacity of renewable technologies. In addition, nu-
clear power is restricted to currently installed capacities and projects planned in 
countries where it is permitted in line with assumptions used in the project “analysis 
of the European energy system under the aspects of flexibility and technological pro-
gress” (REFLEX) and follow-up publications [43–45]. This results in maximal install-
able capacities of ~131 GW, most of which can be located in France (~63 GW). Fur-
thermore, we distribute the power and hydrogen generation capacities across EUNA 
by setting country-specific self-supply thresholds of 80% in terms of annual demand 
(see Equation (A5) in Appendix A). 
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Figure 2. Geographical scope and abstraction of the power transmission grid as used in this study. 
High-voltage direct current (HVDC) point-to-point transmission options serve to supply electric-
ity from North Africa as studied by Hess [25,26]. 

The use of 80% of the self-sufficiency ratio for electricity and hydrogen generation is 
based on expert judgement deduced in an internal workshop from preliminary model 
runs. 

The annual electricity demand amounts to 3062 TWh for conventional consumers, 
263 TWh for electric vehicles and 570 TWh for H2 vehicles. Note that final inputs for RE-
Mix are hourly time series of electricity and hydrogen consumption. The optimization is 
performed using weather data from the year 2006, which was a year with average capacity 
factors compared to other available years in REMix-EnDAT. Since it is our goal to inves-
tigate a variety of system configurations, we calculate 20 pareto-efficient points for the 
scenario setup. 

3. Results 
We first focus on the trade-offs between system costs and life cycle GHG emissions 

in Section 3. Subsequently, we analyze the structure of the power system and the power 
grid for the individual solutions on the pareto frontier (Section 3.2). Co-benefits and ad-
verse side effects with respect to further life cycle environmental impacts are analyzed in 
Section 3.3 (ex-post assessment of solutions on the pareto front). 

3.1. Trade-Offs between System Costs and Life Cycle Greenhouse Gas Emissions 
The pareto front illustrated in Figure 3 represents the trade-offs between system costs 

and climate impacts for both life cycle GHG emissions (green dots) and the share of direct 
CO2 emitted due to the energy system operation (blue dots). Each point on the pareto front 
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represents an energy system in the year According to the implementation of the ε-CM, the 
solution of the point in the upper left represents the point with least GHG emissions, 
whereas the point on the very right represents the system with the least costs. Finally, the 
solutions for the points between these two extrema result from minimizing system costs 
while constraining life cycle GHG emissions for a given threshold. Starting at the least 
cost-intensive solution, this threshold is increased in equidistant steps. 

 
Figure 3. Pareto front to illustrate the trade-offs between system costs (left y-axis) and life cycle GHG emissions (x-axis) 
(green dots). Share of direct CO2 emissions (right y-axis) in total life cycle GHG emissions for the individual solutions (blue 
dots); direct CO2 emissions are based on the REMix output. 

Following the pareto front from right to left, we initially see a strong decline in life 
cycle GHG emissions in relation to rising system costs. More specifically, 22% (i.e., from 
260 Mt to 204 Mt) of life cycle GHG emissions could be mitigated with an increase in sys-
tem costs of 2%. This range of solutions could be described as the “low-hanging fruit” of 
a cost efficient, comprehensive, climate-friendly electricity supply. A reduction in life cy-
cle GHG emissions by approximately two-thirds (from 260 Mt to 91 Mt) is accompanied 
by an increase in system costs of 21%. A further reduction is theoretically possible to 18% 
of the initial emissions. The cost increase in this case is 63% compared to the cost-optimal 
solution. 

In the cost-optimum solution, the carbon footprint of the electricity mix is 67 g 
CO2eq/kWh; whereas, in the system with least GHG emissions, it decreases to 12 g 
CO2eq/kWh. Compared to the current electricity mix for Europe (409 g CO2eq/kWh) [46], 
this is a reduction of 84% or 97%, respectively. 

As expected, the reduction in life cycle GHG emissions also leads to a reduction in 
direct CO2 emissions. With a 6% cost increase compared to the cost optimum, life cycle 
GHG emissions reduced by 34% (to 170 Mt) and direct CO2 emissions by 63% (to 22 Mt). 
This drop in direct emissions continues and reaches 100% in the last two solutions. As life 
cycle GHG emissions are reduced, the relative cost differences between the individual 
solutions grow. This is particularly evident in the last two points on the pareto front (i.e., 
the reduction of emissions by 78% (to 58 Mt) and 82% (47 Mt) compared to the cost opti-
mum). 

Cost-optimal 
solution

Least emission-
intensive solution

0%

5%

10%

15%

20%

25%

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300

Sh
ar

e 
of

 d
ire

ct
 C

O
2 
in

 li
fe

 c
yc

le
 G

HG
 e

m
is

si
on

s

Sy
st

em
 c

os
ts

 (b
n.

 €
)

Life cycle GHG emissions (Mt)



Energies 2021, 14, 1301 12 of 27 
 

 

From an LCA perspective, the impacts associated with electricity supply in increas-
ingly ambitious systems are being shifted from operations to the manufacturing of the 
generation infrastructure: whereas direct CO2 emissions account for 23% of the total life 
cycle GHG emissions in the cost optimum, their share drops to 0% in the solution with 
least life cycle GHG emissions. At this point, all GHG emissions are caused by background 
processes. This highlights the need for full emissions accounting in future assessments of 
ambitious energy systems. It also shows that technologies with low GHG emissions up-
stream in the supply chain are crucial for ambitious energy systems, as their direct coun-
terparts can almost be omitted with still moderate cost increases. Note, however, that 
while the LCI database has been adapted to reflect low carbon future electricity supply, 
other emission-intensive processes, such as fossil fuel-based heat in industry and freight 
transport, remain at the current state on the database. Further adjustments in these sectors 
would reduce upstream GHG emission and thereby increase the share of direct CO2 emis-
sions in total life cycle GHG emissions. 

To better understand the roles of individual technologies for the solutions on the pa-
reto front, we next analyze the resulting mix of power generators and technologies for 
temporal and spatial load balancing in the power system. 

3.2. Structure of the Power Plant Portfolio 
Figure 4 shows the power generation capacities in panel (a) and the difference be-

tween the two extremes, the cost optimum, and the least GHG emissions intensive solu-
tion, are shown in panel (b). 

 
Figure 4. Power plant and power storage portfolio and transmission capacities in the EUNA region. Panel (a) shows the 
power plant and storage portfolio (left y-axis) and the grid installations (right y-axis) for each solution on the pareto front 
(Figure 3). Panel (b) shows the technology specific differences between the cost-optimal solution and the least life cycle 
GHG emissions intensive solution for both, power generation and storage capacities and grid. Technologies with less than 
a 1% share of capacity in any solution are not shown for the sake of clarity. 

As shown in panel (a), the cost-optimal power system (outer right bars) is dominated 
by PV open ground and wind onshore. Temporal flexibility is mainly provided by Li-ion 
batteries and pumped hydro storage, while the grid is expanded to ~320 TWkm, which is 
in the range of grid expansion needs shown in earlier work with comparable scenario 
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setups [21,36]. Additional flexibility to the system is provided by a small share of com-
bined and open-cycle gas turbines. As shown Figure 5, life cycle GHG emissions in the 
cost-optimal system are dominated by PV open ground and gas power plants. For PV, 
upstream industrial (e.g., flat glass production) and transport processes are responsible 
for most of the GHG emissions, whereas direct combustion emissions dominate the im-
pact for gas turbines. 

 
Figure 5. Shares of the different technologies in the life cycle GHG emissions over the pareto frontier (cost-optimal solu-
tion: far right, least GHG emissions: far left, compare also with Figure 3). Technologies with less than a 1% share of impact 
in any solution are not shown for the sake of clarity. 

The first 22% of the reduction of life cycle GHG emissions (from 260 to 204 Mt) is 
achieved through an expansion of wind onshore and grid, while the share of PV open 
ground systems and Li-ion batteries is reduced. The correlation between the expansion of 
the grid with an increasing share of wind power when dispatchable generation is limited 
has been shown in earlier work [27] and can be observed until life cycle GHG emissions 
are reduced to 148 Mt, where the grid expansion reaches a maximum. In addition, the 
decline of Li-ion battery storage with the reduction of life cycle GHG emissions contrib-
utes to the increasing need for power transmission. Thus, a co-expansion of the grid and 
wind power can be considered a viable option for a cost-effective reduction of life cycle 
GHG emissions. At 148 Mt life cycle GHG emissions, the system is balanced between PV 
and wind onshore with small shares of conventional power plants and CSP to provide 
dispatchable generation. Life cycle GHG emissions are still dominated by PV open ground 
(Figure 5). 

The need for grid expansion and storage, however, decreases when increasing shares 
of CSP and nuclear enter the system to further reduce emissions. Until life cycle GHG 
emissions are reduced to 69 Mt, open-cycle gas turbines are operated at low capacity fac-
tors (<0.01) to meet demand at peak load hours. VREs still make up a considerable share 
in the overall power plant portfolio with offshore wind becoming a more dominant source 
of power supply, as it is associated with higher capacity factors and less specific life cycle 
GHG emissions per unit of electricity supplied than onshore wind power plants and PV. 
A reduction of emissions to 58 Mt is accompanied by an increasing share of CSP, wind 
offshore, with nuclear being deployed to its full capacity (~131 GW) and operating with a 
high capacity factor (>0.9). At this stage, total life cycle GHG emissions are no longer dom-
inated by PV technologies but CSP and wind on- and offshore. Moreover, direct emissions 
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are fully mitigated as gas turbines are no longer operated to cover demand in peak load 
hours. 

The system that is the least GHG emission intensive is characterized by a large share 
of wind off- and onshore, hydro run of river, CSP, and nuclear capacities (Figure 4). As 
the share of CSP is reduced compared to the previous three solutions, hydrogen reconver-
sion provides additional temporal flexibility to the system. In addition, this is the only 
system in which electricity transmission is based on copper-based cables that are more 
climate friendly than aerial lines that rely on aluminum as a conductor. The significantly 
higher costs of cables compared to aerial lines, however, leads to the deployment of this 
technology only in the least emission intensive solution. Total grid transfer capacity is 
almost as high as in the cost-optimal solution. 

Along the pareto front, the total installed capacity is increasingly reduced. Compar-
ing the two extremes, the cost optimum and the least emission-intensive solution in panel 
(b) of Figure 4, the reduction of life cycle GHG emissions to the minimum results in sys-
tems with technologies that are characterized by higher capacity factors and lower GHG 
emissions per power output than the technologies deployed in the cost-optimal solution. 
Although the high share of wind offshore is associated with considerable need for a trans-
mission grid for geographical load balancing, the total grid demand is lower than in the 
cost optimum. 

In summary, it is possible to achieve power systems that are both affordable and sus-
tainable in terms of reducing life cycle GHG emissions. In this respect, PV is still the dom-
inant technology, but with a higher importance of wind onshore and the expansion of grid 
transmission capacity compared to the cost minimal system. Further reductions in life cy-
cle GHG emissions can be achieved through the increased expansion of dispatchable gen-
eration but are accompanied by higher increases in system costs. However, for a compre-
hensive assessment of life cycle environmental sustainability, a multitude of indicators 
needs to be analyzed. Therefore, in the following section, we perform an ex-post assess-
ment of the energy systems presented above using the indicators listed in Table 1. 

3.3. Environmental Ex-Post Assessment 
In this section, the co-benefits and adverse side-effects of the reduction of life cycle 

GHG emissions are analyzed with respect to indicators listed in Table 1. This ex-post as-
sessment of environmental impacts is based on the solutions on the pareto frontier shown 
above. Figure 6 illustrates the evolution of life cycle metrics for the different areas of pro-
tection over the pareto front. 

The majority of indicators show co-benefits with reduced life cycle GHG emissions. 
Only three impact categories increase with the reduction of life cycle GHG emissions. The 
co-benefits are mainly induced by the decreasing deployment of PV open ground instal-
lations, since this technology dominates nearly all impact categories in the cost-optimal 
system (see the relative share of technologies for each impact category in Figure A1 in 
Appendix C). Onshore and offshore wind show the highest impacts for the least GHG-
emitting system in most categories. The increase in nuclear power is responsible for ad-
verse side-effects. 
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Figure 6. Impact on life cycle indicators as a function of life cycle GHG emissions over the pareto 
frontier. Panel (a): indicators related to human health; panel (b): indicators related to resource de-
pletion; panel (c): indicators related to ecosystem quality. Impacts at the solution with minimal 
costs are scaled to Reading the graph from right to left, impact values below 1 indicate co-benefits 
in reducing climate impacts, above 1 show adverse side effects. 

The strongest adverse side-effect on human health (panel (a)) results from exposure 
to ionizing radiation caused by nuclear energy, which increases with its use (up to a factor 
of ~34 compared to the cost-optimal solution). With the exception of ozone depletion, most 
other indicators show clear trends with decreasing climate impacts. At a reduction of life 
cycle GHG emissions to 80 Mt, ozone layer depletion reaches its minimum. At this point, 
Li-ion battery storage leaves the system, after dominating this indicator in the previous 
solutions, and the main driver becomes nuclear power plants. The use of nuclear energy 
is associated with ozone depleting emissions of halogenated hydrocarbons for cooling 
during uranium production. The development of impacts over the pareto front related to 
resource depletion are shown in panel (b). Down to 136 Mt GHG emissions we see co-
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benefits related to reduction of climate impacts. For fossils (including uranium) and dis-
sipated water, they turn into adverse side-effects with further emission reduction. In the 
cost-optimal system, the use of fossils is dominated by electricity generation with gas tur-
bines and the construction of PV plants. As life cycle GHG emissions are reduced, fossils 
and water depletion become dominated by nuclear power. For nuclear power, cooling 
water has a high impact on water depletion. Both, PV and CSP have a high direct land 
demand. CSP accounts for nearly half of the land use when installed capacity peaks at the 
reduction of life cycle GHG emissions to 58 Mt. A further avoidance of life cycle GHG 
emissions from 58 Mt to 47 Mt results in a slight increase in minerals and metals as wind 
offshore and copper-based cables are deployed where the metals used have a higher de-
pletion potential compared to metals used for CSP and aluminum-based aerial lines. The 
development of impacts over the pareto frontier related to ecosystem quality are shown 
in panel (c). For all these indicators, we see co-benefits associated with reducing climate 
impacts. In this group, the contributions of the individual technologies show a similar 
pattern to that of climate change. Only the electrolyzers have a higher contribution to 
freshwater and terrestrial acidification, while gas turbines have a lower impact, especially 
in freshwater ecotoxicity and freshwater eutrophication. As with minerals and metals, the 
use of transmission cables overcompensates for the reduction in freshwater eutrophica-
tion achieved by decreasing PV deployment. Again, the higher impact of copper produc-
tion is responsible for the increase. 

The high share of PV in most impact categories is also consistent with findings by 
Berrill et al. [6], who conducted an LCA of 44 electricity scenarios for Europe in 2016. The 
authors showed that wind-dominated systems have half as much life cycle GHG emis-
sions as PV-based systems. Moreover, they found that PV-based systems have a higher 
environmental impact on indicators that affect human health and ecosystems than wind-
dominated systems. 

Carcinogenic, non-carcinogenic, and respiratory effects show the lowest reduction 
over the pareto front. This means that they are least sensitive to the technological changes. 
Most sensible are ionizing radiation, fossils, and dissipated water, although these changes 
are only due to the expansion and operation of nuclear power. 

As illustrated in Figure A2, compared to today’s impacts of power supply, land use 
is likely to increase should the power system have a high share of PV open ground. A 
similar increase compared to today could be expected in ozone layer depletion in case the 
system has high shares of Li-ion batteries. Moreover, all systems analyzed in this study 
could result in higher depletion potential for minerals and metals compared to today’s 
values. Current levels in ionizing radiation could be exceeded if nuclear energy is largely 
deployed. 

4. Discussion 
In this section, we first summarize our findings and derive the main implications. We 

then examine the role of nuclear power and provide an outlook based on the identified 
needs for further research. 

4.1. Summary and Implications of the Results 
In this study, the ESOM REMix is populated with environmental impacts of the entire 

supply chain of the considered technologies, which is achieved through coupling with the 
elaborated LCA-framework FRITS. Thereby, we conduct the first integration of LCA im-
pacts in an ESOM with high spatiotemporal detail. This enables a comprehensive assess-
ment of the trade-offs of life cycle GHG emissions and system costs of the electricity sector 
in EUNA combining the strengths of energy system modeling and LCA approaches. Fur-
thermore, the comprehensive nature of the methodology provides information on a large 
set of additional environmental co-benefits and adverse side effects, highlighting potential 
areas of conflict between an increasingly climate friendly electricity supply and other life 
cycle impact categories. 
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The results underline the fact that the most cost-effective decarbonization of the 
power sector in EUNA leads to emissions that are largely generated in the upstream sup-
ply chain. A reduction of life cycle GHG emissions, which includes all emissions (direct 
and indirect), strongly reduces direct CO2 emissions, thereby increasing the relative im-
portance of upstream emissions. Moreover, our results show that different low-carbon 
power supply options are not equally effective. Rather, they differ significantly in terms 
of life cycle GHG emissions, with the result that a reduction in these emissions relies in-
creasingly on wind, CSP, and nuclear with moderate variations in grid expansion. At the 
same time, the share of PV and Li-ion storage is declining. A study that confirms these 
observations was published by Pehl et al. [15]. It had a global focus and showed that a tax 
of USD 30 per ton of life cycle GHG emissions leads to an energy system with a larger 
share of wind power, CSP, and nuclear power compared to a system with a tax on direct 
GHG emissions only, underlining the life cycle GHG emission benefits of these technolo-
gies. However, since the authors did not perform multi-objective optimization covering 
the entire solution space of possible system configurations, our study also shows extreme 
solutions with higher deployment of technologies favorable for reducing life cycle GHG 
emissions. 

This study focuses exclusively on very ambitious systems regarding the avoidance 
of direct CO2 emissions. It is, therefore, important to note that even if decarbonization of 
the power sector follows cost optimality, life cycle GHG emissions can be expected to be 
low compared to today’s levels (see Figure A2). 

4.2. The Role of Nuclear Power Generation 
Our analysis shows that the reduction of life cycle GHG emissions largely increases 

ionizing radiation, water consumption and depletion of fossils (particularly uranium) due 
to the expansion of nuclear power. The deployment of nuclear to reduce life cycle GHG 
emissions also raises several other concerns not captured in LCAs, such as the risk of se-
vere accidents, risks to the environment and local communities and the storage and treat-
ment of nuclear waste. Furthermore, Kim et al. [47] showed that the degree of public ac-
ceptance of nuclear power in European countries is highly dependent on perceived po-
tential risks, which could hinder the continuation of nuclear based electricity generation 
through social opposition (e.g., in case of an accident). In this context, we additionally 
conducted REMix calculations without nuclear energy (see Figure 7). Corresponding fig-
ures regarding the pareto frontier and the development of the other environmental indi-
cators can be found in the Supplementary Materials. 

This results in a reduction in the life cycle GHG emissions of up to 59 Mt with a sim-
ultaneous cost increase to EUR 415 billion (Figure S1). Such a system is dominated by 
wind and CSP and accompanied with higher grid expansion and hydrogen re-conversion 
for regional and temporal load balancing compared to a system with nuclear power. Fur-
thermore, systems without nuclear power only show co-benefits with regard to other en-
vironmental impacts with decreasing life cycle GHG emissions (see Figure S2). 

4.3. Life Cycle Data Must Become Prospective 
This study encounters methodological limitations that need to be considered when 

interpreting the results. 
First, the LCIs are not fully prospective with respect to the fore- and background 

processes. For example, fossil-based process heat is responsible for a high share of the life 
cycle impacts of PV. To better understand how these emissions can be reduced in the fu-
ture, a comprehensive understanding of potential decarbonization measures in the up-
stream supply chain of energy technologies and the corresponding integration into life 
cycle databases is necessary. Fully decarbonized industrial and transportation processes 
could largely reduce the upstream emissions and have a significant impact on the results. 
Combined with prospective foreground LCIs, this could also strengthen the role of PV in 
reducing life cycle emissions of ambitious energy systems in future studies. It should be 
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noted, however, that relative differences between technologies are decisive in optimiza-
tion. Thus, if PV does not improve relative to the other technologies when adjustments 
are made to fore- and background LCI data, it can be assumed that the technology mix 
will remain similar as shown here and only the absolute level of environmental impact 
would be affected. 

Second, the classification of technologies for which LCI data are available is not nec-
essarily identical with the rather general classification in the ESOM. For this purpose, we 
selected representative technologies from the available LCI data and, in the case of PV, 
relied on sub-technology compositions to capture different technological characteristics. 
However, future efforts are required to better align the ESOM technology classification 
with the LCIs on energy technologies. Coping with all these challenges, however, involves 
uncertain impacts across the different life cycle phases and requires a significant modeling 
effort, which in turn calls for joint community action. 

 
Figure 7. Power plant and power storage portfolio and transmission capacities in the EUNA region in case of a complete 
phase-out of nuclear power by Panel (a) shows the power plant and storage portfolio (left y-axis) and the grid installations 
(right y-axis) for each solution on the pareto front (Figure S1 (Supplementary Materials)). Panel (b) shows the technology 
specific differences between the cost-optimal solution and the least life cycle GHG emissions intensive solution for both, 
power generation and storage capacities and grid. Technologies with less than a 1% share of capacity in any solution are 
not shown for the sake of clarity. 

4.4. Outlook 
Our modeling approach should be used to include further indicators to aim for com-

pleteness from the perspective of sustainability, such as societal aspects and other eco-
nomic and environmental impacts of the energy transition [48]. Options for performing 
such analyses could include either multi-objective optimization considering a variety of 
conflicting objectives or ex-post assessment. Parallelizing the ε-CM as performed here 
could keep computation time manageable when extending the optimization approach to 
other indicators and more dimensions. However, the calculation of social and economic 
indicators requires more specific modeling approaches as they are currently not suffi-
ciently covered by LCA. 

When interpreting the results of the present study, the limited sectoral resolution 
must be considered. For example, the expansion and operation of technologies in the heat 
and transport sectors are not considered. Vandepaer et al. [18] used a multi-sectoral ESOM 
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for Switzerland and showed, for instance, that in an energy system optimized towards life 
cycle GHG emissions, additional power generation capacity is added to deploy a higher 
proportion of hydrogen-based transportation technologies compared to the cost-optimal 
solution where transportation is mostly based on battery electric vehicles. Therefore, the 
sectoral extension of the approach presented in our study is crucial to fully understand 
the impact of considering life cycle GHG emissions on the structure and overall environ-
mental performance of the entire energy system. 

5. Conclusions 
In this study, we included life cycle environmental impacts in the highly resolved 

ESOM REMix applied for the assessment of infrastructural demand in low-carbon scenar-
ios. We thereby extended the usually cost-oriented nature of such analyses. The ESOM 
was applied to assess future configurations of the power system in Europe and North 
Africa that aims to reduce direct CO2 emissions by at least 95% compared to Within this 
ambitious system, life cycle GHG emissions were considered in the optimization and sys-
tematically reduced to the feasible minimum. Moreover, we provided further insights by 
quantifying other life cycle impacts associated with the different system configurations 
(such as land use, minerals and metals, carcinogenic effects and other impacts). In this 
way, co-benefits as well as adverse side effects for fifteen mid-point indicators that come 
along with a reduction of climate impacts were assessed using the ILCD 2.0 2018 impact 
assessment methodology. 

The first half of possible life cycle GHG emission avoidance can be achieved with 
comparably small increases in total system costs (compared to the cost-optimal solution 
for a 95% reduction in direct CO2 emissions), while a reduction of the last half considera-
bly increases the system costs. Systems where life cycle GHG emissions are reduced at 
moderate costs increasingly rely upon on- and offshore wind power, grid expansion with 
reduced shares of Li-ion batteries and PV. Thereby, the deployment of wind turbines and 
PV panels contribute to the climate impact of electricity generation with up to 70%. The 
increasing reduction of life cycle GHG emissions is supported by the deployment of wind 
offshore, CSP and nuclear power. Nuclear operates as a base-load power plant with high 
capacity factors (>0.9). However, such systems are associated with considerable cost in-
creases (by up to 63% compared to the minimum cost solution). As life cycle GHG emis-
sions are reduced, hydrogen re-conversion is used to cover demand in peak load hours. 

This research contributes to a better understanding of trends in environmental im-
pact categories other than climate change (e.g., land use). The impacts in most categories 
are improved in the reduction of life cycle GHG, i.e., they show co-benefits. Considering 
the increasing deployment of nuclear power plants which represents an option to reduce 
the effects of climate change, it also affects other categories such as ionizing radiation, 
fossils (including uranium) and water use negatively. Moreover, other impacts related to 
nuclear power and not included in LCA such as the risk of an accident, waste treatment 
and social acceptance were outside the scope of our assessment. In an additional model 
calculation, we illustrated that high reductions in life cycle GHG emissions are also pos-
sible without nuclear power. Here, grid expansion for regional load balancing is more 
important than in a system with nuclear power. Moreover, all life cycle indicators improve 
compared to the cost-optimal system. 

In summary, the combination of LCA and ESOMs is of great benefit to both methods. 
Integrated assessments of future energy systems and their impacts on sustainability are 
expected to become more important due to pending developments in the energy system, 
such as renewable electrification of transportation, heat and other sectors. Moreover, 
global supply chains linked to the world’s energy system are becoming increasingly com-
plex and energy system transformations are evolving at different speeds across regions. 
Informed decisions on the design of the future energy system, therefore, require the con-
sideration of impacts upstream in the supply chain to avoid major burden shifts. 
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A potential policy implication from our work is that life cycle impacts of energy tech-
nologies should be considered in the future design of policy instruments, as emissions are 
increasingly shifted upstream in an ambitious energy system. However, current ap-
proaches that combine both modeling worlds in an integrative approach still face several 
limitations, such as missing aspects regarding prospectivity and high uncertainties of LCI 
data and should remain a priority research area in the future. This study should, therefore, 
be regarded as a further step towards integrated model-based assessment and confirms 
the call for joint work between researchers in the field of energy system modeling and 
industrial ecology. For example, it would be of great benefit to develop a system in which 
a centralized, collaboratively developed, and prospective LCI database is used as a refer-
ence with defined criteria to map LCI data to processes in the ESOMs. 

Supplementary Materials: The following are available online at www.mdpi.com/1996-
1073/14/5/1301/s1, Figure S1: Pareto front to illustrate the trade-offs between system costs and life 
cycle GHG emissions for a system without nuclear power, Figure S2: Impact on life cycle indicators 
as a function of life cycle GHG emissions over the pareto front for a system without nuclear power, 
Table S1: Technology-specific cost assumptions, Table S2: Matching of the regions in REMix with 
the electricity markets in ecoinvent, Table S3: Electricity mix in 2050 in the background LCI database 
for Eurasia and OECD Europe, Table S4: Technology-specific life cycle environmental impacts. 
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CSP Concentrated solar power 
ENTSO-E European Network of Transmission System Operators for Electricity 
ESOM Energy system optimization models 
EUNA Europe and North Africa 
ε-CM Epsilon-constraint method 
FIAS Frankfurt Institute for Advanced Studies 

FRITS 
Framework for the Assessment of Environmental Impacts of Transformation 
Scenarios 

GAMS General algebraic modeling system 
GHG Greenhouse gas 
HVDC High-voltage direct current 
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ILCD The International Reference Life Cycle Data System 
LCA Life Cycle Assessment 
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REFLEX 
Analysis of the European energy system under the aspects of flexibility and 
technological progress 

REMix Renewable Energy Mix 
REMix-EnDAT Energy data analysis tool that is part of the REMix framework 
REMix-OptiMo Optimization model that is part of the REMix framework 
TYNDP Ten-year network development plan 
VRE Variable renewable energy 
WEPP World Electric Power Plants Data Base 

Appendix A 
In the present study, we follow the augmented epsilon-constraint method (ε-CM) 

described in Mavrotas [30]. The process consists of calculating the payoff table by opti-
mizing on both objectives f (x) (in our case system costs) and f (x) (in our case life cycle 
GHG emissions) as presented in Equation (A1), while x  is the variable vector used for 
the optimization of f (x) and x  accordingly for f (x): 

Pay − off table = f (x ) f (x )f (x ) f (x )  (A1)

From this table, the best and the worst value is used for each objective function. For 
a problem that is two-dimensional, the best value of a function is achieved when an opti-
mization is performed according to it. Therefore, the worst value is generated, if not opti-
mized towards it. The considered range is, therefore, between f x  and f x . 
Subsequently, on the basis of the determined range, the epsilon (ε) values are defined, 
which set the boundary conditions for the optimization. For this purpose, the range is 
divided into a selected number µ of equidistant intervals, where n represents the elements 
within the set equidistant interval steps ranging from 0 to µ. Thus, µ + 1 ε-values are de-
termined that are one interval step apart from each other, starting with the worst value of 
the target function. These ε-values are often referred to as grid points. Since in a two-
dimensional optimization only one dimension must be converted into a boundary condi-
tion, the ε-values for f  are defined as shown in Equation (A2). For a minimization prob-
lem, it applies that f x > f x . =  f (x ) − f (x ) − f (x ) μ × n (A2)

With these determined points of f (x), the so-called epsilon constraints are defined, 
under which the optimizations of the other objective function then take place in the last 
step described in Equation (A3). min f (x) 

(A3)s. t. f (x)  ≤   

Consequently, for each of these interval steps the first objective function is optimized 
under the condition that the predefined value of f (x) is not exceeded. Thus, n solutions 
are generated, which form the so-called pareto front. 

In order to guarantee the efficiency of the grid point solutions found, we use the aug-
mented ε-CM by integrating the second target function into the optimization. This is 
achieved by minimizing f (x) and maximizing the distance from f (x) to the epsilon 
value. Accordingly, a point at the same value of f (x), but with a lower value of f (x) 
would be found. Therefore, the relation formulated in Equation (A3) is rewritten from an 
inequality by means of the slack variable δ into a binding constraint as shown in Equation 
(A4). To ensure that this slack is also included in the optimization, it is also written into 
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the function to be minimized. The slack is then divided by the determined range and mul-
tiplied by a very small factor, which both ensure a correspondingly low weighting of the 
slack in the optimization. min f (x) − 10 ×  δf (x ) − f (x )  (A4)s. t. f (x)  +  δ =  

To avoid excessive computation times, we decompose the augmented ε-CM and fol-
low a parallel execution of the grid point calculations after the payoff-table is determined. 
To reflect a potential cost variance in the GHG optimum, the last grid point corresponding 
to the GHG optimization in the payout table calculation is recalculated following Equa-
tion (A4). For solving the model, a computing cluster is used consisting of eight machines 
with similar hardware configurations: Intel® Xeon® CPU E5-2697 v4 @ 2.30 GHz. The 
Solver settings are listed in Table A1. 

Table A1. Commercial solver settings for solving the model. 

Solver Cplex 12.10.0.0 
Algorithm Barrier (interior point) 

Maximal number of threads 16 
Convergence tolerance 1 × 10−5 

Cross-over Disabled 
Scaling Aggressive 

Solving the dual problem Disabled 

In order to avoid extreme spatial distributions of technologies across the considered 
regions r and to ensure a certain degree of self-supply of power and hydrogen generation P  in each region, we assume self-sufficiency thresholds of 80% in terms of annual (by 
summation over each time step t) power and hydrogen demand P  (see Equation 
(A5)). ( , ) × ( , , , ),  ≤ . × ( , ) × ( , , , ),  (A5)

The maps M  and M  categorize the technologies τ for each sector s ∈ [electricity, hydrogen] into generation and demand technologies, respectively. 

Appendix B 
The LCI data used and the corresponding mapping to the technologies in REMix are 

listed in Table A2. For PV rooftop and open ground, we assume a share of 70% single-Si 
and 30% multi-Si solar cells in line with data on PV installations by cell type for the year 
2019 reported by [49]. LCI data for CSP is transferred from ecoinvent v.3.5 to v.3.3. 

Table A2. Technology mapping between REMix and available LCI data. 

Technology 
group 

Technology in REMix Corresponding LCI data LCI data source 

Electricity 
generation 

PV open ground Multi-Si panel [50] 
Single-Si panel 

PV rooftop Multi-Si panel [50] Single-Si panel 
Concentrated solar power Concentrated solar power plant (parabolic trough) [51] 

Wind onshore Wind onshore (geared) [51] 
Wind offshore Wind offshore (geared) [51] 



Energies 2021, 14, 1301 23 of 27 
 

 

Hydro reservoir Hydro reservoir [52] 
Hydro run-of-river Hydro run of river [51] 

Geothermal Deep geothermal [51] 
Nuclear power plant Nuclear boiling water reactor [51] 

Biopower Wood-chip-biomass-fired plant (steam turbine) 
LCI data based on [53] 
with wood-ship supply 

based on [51] 
Lignite power plant Lignite power plant [51] 

Hard coal power plant Hard coal power plant [51] 
Open cycle gas turbine Open cycle gas turbine [51] 

Combined cycle gas tur-
bine 

Combined cycle gas turbine [51] 

Conversion Electrolyzer Alkaline water electrolysis (AEL) [54] 

Storage 

Hydrogen storage (cavern) Hydrogen storage in salt caverns [55] 
Hydrogen storage (tank) Carbon fiber hydrogen tank [55] 

Vanadium redox-flow bat-
tery 

Vanadium redox-flow battery [56] 

Li-ion battery Lithium-iron phosphate with lithium-titanate an-
ode (LFP-LTO) [57] 

SOFC fuel cell (hydrogen) SOFC fuel cell [51] 
Pumped hydro Pumped hydro [52] 

Grid 
HVDC line 

HVDC overhead line for connections on land, sea 
cable for connections over water [58,59] 

HVDC cable HVDC land cable for connections on land, sea ca-
ble for connections over water 

[58,59] 

The LCI data is disaggregated to match the investment and dispatch variables in RE-
Mix. However, it was not always possible to include an LCA score for all cost parameters. 
For example, we did not match fixed variable costs with LCI data. In addition, most stor-
age technologies in REMix are disaggregated into storage and converter units that can be 
expanded separately. However, it was not possible to disaggregate the LCI dataset for Li-
ion batteries into storage and converter units [60], so the c-rate was fixed at the value as-
sumed in the LCI data (~0.17). 

Appendix C 
Figure A1 illustrates the relative share of technologies for each impact category 

shown in Figure 6 across the pareto front. 
Figure A2 shows the environmental impacts of the cost-optimal solution and the least 

emission-intensive solution (see Figure 3) relative to the environmental impacts of today’s 
electricity mix in Europe as documented in the ecoinvent database [46]. This comparison 
is based on the environmental impact per kilowatt hour of electricity supplied. 
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Figure A1. Relative share of technologies for each impact category and each solution on the pareto front. Technologies 
with a share of less than 1% in any solution and for any indicator are not shown for reasons of clarity. 

 
Figure A2. Ratio of impacts of the cost-optimal solution (blue line) and the least emission-intensive 
solution (green line) relative to today’s impacts in Europe [46] (red line) using a logarithmic scale. 
The red line separates adverse side-effects (increasing impacts, impact ratio > 1) from co-benefits 
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(decreasing impacts, impact ratio < 1). Note that for this comparison, the original data set from 
ecoinvent v.3.7.1 [46] is used and not further adjusted. Thus, it has a different regional and techno-
logical resolution than the present study and is based on the original ecoinvent database. The com-
parison shown can, therefore, only indicate trends with regard to the life cycle indicators. 
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