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Abstract— High/very-high-resolution (HR/VHR) multitempo-
ral images are important in remote sensing to monitor the dynam-
ics of the Earth’s surface. Unsupervised object-based image
analysis provides an effective solution to analyze such images.
Image semantic segmentation assigns pixel labels from meaning-
ful object groups and has been extensively studied in the context
of single-image analysis, however not explored for multitemporal
one. In this article, we propose to extend supervised semantic
segmentation to the unsupervised joint semantic segmentation of
multitemporal images. We propose a novel method that processes
multitemporal images by separately feeding to a deep network
comprising of trainable convolutional layers. The training process
does not involve any external label, and segmentation labels
are obtained from the argmax classification of the final layer.
A novel loss function is used to detect object segments from
individual images as well as establish a correspondence between
distinct multitemporal segments. Multitemporal semantic labels
and weights of the trainable layers are jointly optimized in
iterations. We tested the method on three different HR/VHR
data sets from Munich, Paris, and Trento, which shows the
method to be effective. We further extended the proposed joint
segmentation method for change detection (CD) and tested on a
VHR multisensor data set from Trento.

Index Terms—Deep learning, high resolution (HR), multitem-
poral image, segmentation.
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I. INTRODUCTION

ULTITEMPORAL information extraction and analysis
have seen an increased interest in the last decade.
Many new high/very-high-resolution (HR/VHR) sensors (e.g.,
Sentinel-2, Pleiades, Quickbird, and Gaofen-2) were launched,
making it possible to analyze multitemporal images at
an unprecedented scale. Different from the multitemporal
low/medium resolution images, pixels in HR/VHR images
show a strong spatial correlation and complexity. Thus, there
is consensus in the literature that object-level information
and semantic details should be extracted to effectively exploit
multitemporal HR/VHR images [1]-[3]. Multitemporal image
analysis methods can be both supervised and unsupervised.
Though supervised methods potentially provide a better result
and are more effective to extract object information, unsu-
pervised methods are preferred in the literature [4] due to
the difficulty of collecting multitemporal labeled data. Most
multitemporal image analysis methods are designed for change
detection (CD) [4], [5] in bitemporal images acquired over the
same geographical area. Other applications include multitem-
poral classification and time-series trend analysis [1], [6].
Segmentation has proved to be useful for multitemporal
HR/VHR image analysis. There are few methods that rely
on superpixel segments for object-based multitemporal image
analysis [4], [7]. In [7], a method is proposed that first detects
superpixel segments from one of the bitemporal images and,
subsequently, applies the same segmentation mask on the other
image. Features extracted from each segment are compared
each other to extract change information. Such methods utilize
segmentation only as a tool to obtain coherent image parts as
a spatial unit of comparison in the CD method. They do not
investigate the semantic meaning of the segments or temporal
relationship between segments. A step forward is semantic
segmentation [8], [9] that assigns semantic label to pixels.
Many works in the computer vision literature [10] have
shown the superiority of semantic segmentation for image
understanding tasks. It has proven to be useful in solving mul-
titemporal image analysis tasks [5]. Saha et al. [5] presented an
unsupervised deep-change-vector-analysis (DCVA) framework
that uses a CNN pretrained for semantic segmentation [9] as
multitemporal feature extractor.
In contrast to mere segmentation, semantic segmentation
attempts to partition the target image into semantically
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meaningful parts. Semantic segmentation assigns a semantic
label to each pixel. Still, it is able to get generally nice
looking segments and not salt and pepper pixel labels. Most
state-of-the-art semantic segmentation methods employ deep
neural network [11]-[13] treating semantic segmentation as
a supervised learning problem. Such methods employ a large
pixelwise labeled data set to train a deep model, and the trained
model is subsequently applied on target images for pixelwise
labeling. They require a substantial amount of pixelwise
labeled training data and have not been explored in the
literature in the context of the multitemporal image analysis.
As a brute-force mechanism, it is possible to individually apply
supervised semantic segmentation on each image separately
for multitemporal analysis. However, such a mechanism does
not exploit the temporal correlation between multitemporal
images. There is a scope of further investigating semantic
segmentation for unsupervised multitemporal image analysis.

Recently, a few deep unsupervised image segmenta-
tion [14]-[16] methods have been proposed in the computer
vision literature. In [14], a large unlabeled data set is required
for training. Exploiting similarity between deep segmentation
and unsupervised deep pixel grouping [15], [17] proposed a
method for unsupervised single-image segmentation. Inspired
by the success of these methods [15] and the potential of
semantic segmentation in multitemporal image analysis [5],
we propose to extend the concept of semantic segmentation to
multitemporal setting in an unsupervised way. The proposed
novel unsupervised segmentation method can ingest multitem-
poral images as input and produces a semantic segmentation
map for each of them where: 1) each label represents a seman-
tically meaningful entity and 2) the segmentation process
takes into account the temporal correlation between corre-
sponding pixels in the multitemporal images. Different from
the supervised segmentation, the exact name of the semantic
label is unknown in the unsupervised scenario. The proposed
method simultaneously processes multitemporal input images
through a trainable deep network and jointly optimizes the
feature representation and label assignment for each image
in an iterative fashion to solve the multitemporal semantic
segmentation problem. As an end result, we obtain coherent
multitemporal semantic segmentation maps being temporally
consistent. We further extend the proposed method for the
CD. The key contributions of this article are summarized as
follows:

1) Extension of the notion of semantic segmentation to the
multitemporal scenario.

2) Definition of an unsupervised multitemporal joint seg-
mentation method.

3) Definition of a set of novel loss functions that can
simultaneously segment the multitemporal images while
establishing a temporal correspondence between multi-
temporal segments.

4) Extension of proposed joint segmentation method for
CD.

The rest of this article is organized as follows. We dis-
cuss the related works in Section II. We present the prob-
lem statement and a synopsis of the proposed solution in
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Section III. We detail the proposed method in Section IV.
Section V describes extension of the proposed method for CD
in bitemporal images. Data sets and results are presented in
Section VI. Results related to CD are presented in Section VII.
We conclude this article and discuss the scope of future
research in Section VIII.

II. RELATED WORKS

As our work focuses on unsupervised deep learning-based
multitemporal semantic segmentation, here, we briefly discuss
the following topics that are related to our work: 1) deep
learning-based image segmentation methods; 2) deep learning-
based multitemporal image analysis; and 3) previous usage of
segmentation in multitemporal image analysis.

A. Deep Segmentation

In the computer vision literature, supervised deep semantic
segmentation is a well-explored topic. Compared with that,
unsupervised methods for deep image segmentation are a less
explored research avenue.

1) Supervised Deep Semantic Segmentation: The supervised
approaches for deep image semantic segmentation can be
considered as a pixel-level supervised learning task given a set
of reliable training pixels. A number of methods have been
proposed in the literature for semantic segmentation using
deep neural networks [9], [11]-[13], [18]-[20]. In [18], region
proposal is combined with CNN for semantic segmentation
and object detection. Fully convolutional network (FCN) [11]
that replace the fully connected layers with the convolutional
layers is one of the effective approaches for supervised seman-
tic segmentation. FCN takes as input an arbitrary spatial
dimension and generates a segmentation map of the same size.
Many variants of the FCN have been proposed in the literature,
e.g., the one in [12] that presents a U-shaped architecture to
supplement a usual contracting network by successive layers
to capture context and a symmetric expanding path to improve
the localization accuracy. SegNet [13] is another variation of
the FCN. It upsamples encoded features by storing the max-
pooling indices used in the pooling layer. As these methods
require a substantial amount of training data, their application
in multitemporal image analysis is limited.

2) Unsupervised Deep Segmentation: Recently,
an increased interest can be seen in the exploration of
unsupervised deep learning techniques, especially based on
transfer learning methods [21] and generative adversarial
network (GAN)-based methods that still require ample amount
of unlabeled data [22]. Aligned with this trend, we observe
that few works have been proposed in the deep learning
literature to address the image segmentation problem in an
unsupervised way [14], [15]. In [14], a W-shaped network is
proposed by modifying the U-network. However, the network
is complex consisting of 46 convolutional layers. Though the
method in [14] does not use label information for training,
it still requires a substantially big data set for training (trained
on Pascal VOC 2012 data set [23]). In [15], an unsupervised
single-image segmentation method is proposed based on
deep clustering that uses fewer layers compared with [14].
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The output label is obtained at the final layer using argmax
classification that is further regulated by superpixel-based
refinement. Weights of the convolutional layers and predicted
labels are jointly optimized in an iterative fashion by using a
loss function that does not require any labeled data.

B. Deep Multitemporal Image Analysis

Recently, deep learning has shown excellent perfor-
mance in many image understanding and computer vision
tasks [24], [25]. Deep learning-based methods are suitable to
extract high-level semantically rich visual features [26], and
thus, they have been shown to be effective for remote sensing
image analysis too [8], [9], [27]-[29]. Since deep learning
methods are data-intensive, they have seen comparatively
fewer applications in the multitemporal image analysis [30].
Most of these methods are supervised and deal with specific
applications. Deep Siamese network is a popular technique in
supervised deep multitemporal image analysis, e.g., the super-
vised CD method proposed by Zhan et al. [31]. Some methods
use preclassification schema to obtain a coarse initial change
map that is used subsequently to further train the CD model to
reduce labeled data dependence [32], [33]. Zhang et al. [32]
proposed a method for CD where a coarse change map is first
detected to identify most likely unchanged pairs that are used
to learn a mapping neural network. Gao et al. [33] proposed
a similar approach using wavelet features for multitemporal
synthetic aperture radar (SAR) image analysis. The recurrent
neural network has been used in several works related to super-
vised CD [34], [35]. Geng et al. [36] proposed a supervised
binary CD method based on contractive autoencoders. Xu ef al.
[37] proposed an autoecnoder-based method to learn the cor-
respondence between prechange image and postchange image.
In an attempt to design deep unsupervised CD, pretrained
CNN networks are used without labeled training data, e.g.,
deep change vector analysis (DCVA) [5], [38]. Such methods
rely on transferring the pretrained deep features for multitem-
poral image analysis, but they do not take into account the
distribution of target scenes. Their accuracy is affected by the
similarity between training data and target scenes.

C. Segmentation for Multitemporal Image Analysis

Segmentation is often used in the object-based multitempo-
ral image analysis as a preprocessing step [4]. Such methods
do not focus on obtaining a semantic segmentation map, rather
they merely use a superpixel segmentation that defines a
perceptually similar continuous region in the image. In [7],
a method is proposed that first detects a segmentation mask
from one of the bitemporal images and, subsequently, applies
the same segmentation mask on the other image. Features
extracted from each segment are compared each other to
extract change information. Zhang et. al. [39] proposed a
method that first detects multitemporal changed objects based
on separate segmentation of the multitemporal images and then
establishes a spatial correspondence between them.

DCVA [5] partially illustrates the usefulness of semantic
segmentation for multitemporal image analysis. In [5], a deep
network trained for semantic segmentation is used to obtain
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coherent multitemporal deep features that are pixelwise com-
pared each other to obtain change information. Peng et. al.
[40] proposed a semantic segmentation inspired architecture
for CD.

III. PROBLEM FORMULATION AND SYNOPSIS OF THE
PROPOSED SOLUTION

A. Problem

We aim to design a multitemporal image segmentation
framework that addresses the segmentation problem jointly in
the multitemporal images. Let X = {X, X»,..., X7} be a set
of T HR/VHR optical images taken over the same geograph-
ical region at different time (r = 1,2,...,7). The images
consist of N pixels x,, m=1,...,Nandr =1,2,...,T)
with M channels. We aim to assign a label c¢,, to each
pixel x,, such that each distinct label bears some meaningful
semantic notion. After segmentation, pixels x,, and x, .4 at
the same geographical position but acquired in two successive
time steps ¢ and ¢ + 1 tend to have the same label if they
are unchanged. If they have different labels, it would imply a
possible presence of change between considered time steps.

B. Synopsis of the Proposed Method

The proposed deep convolutional network-based joint seg-
mentation method addresses the abovementioned aspect in
an effective manner by: 1) obtaining deep representations
from multitemporal images; 2) clustering pixels (i.e., assigning
labels) based on the property that pixels belonging to the same
segment are likely to obtain similar deep feature representa-
tion; 3) iteratively adjusting the deep representation and the
labels to converge in a spatially and temporally consistent way.

Let us assume that multitemporal images are coregistered
as per standard procedure [41]. Multitemporal images are
separately processed through a deep network consisting of
L —1 convolutional layers and one linear projection layer (con-
volutional layer with filter size 1 x 1). The network includes
also other postprocessing layers/functions, e.g., rectified linear
unit (ReLU) and batch normalization. Pooling layer or stride
are omitted in the convolutional layers, and hence, the spatial
size is maintained at the final layer. The deep network is
trainable in an unsupervised way. The training process involves
a set of loss functions that do not require labeled data. Toward
this goal, the same network (i.e., with the same architecture
and same weights) is separately applied to each image in
X, and the output of the final layer is regarded as deep
feature representation of the input images. Using the property
that semantically similar pixels are probable to obtain the
highest activation in the same deep feature, the segmentation
labels are obtained as argmax classification of the deep feature
representation. The multitemporal labels (obtained as argmax
classification) and the multitemporal deep representations are
used to compute a set of novel loss functions that account
for the spatial and temporal homogeneities of the deep feature
representations. The loss functions do not require any external
label and are designed in a way that the network converges
(in iterations) toward a more coherent semantic segmentation
map from each image in A and also learns to assign the
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Fig. 1. Proposed multitemporal image joint segmentation mechanism.

same semantic labels to pixels whenever the values are time
consistent. The network is modulated in an iterative fashion
using the estimated loss. The iterative process is stopped using
a stopping criterion. At convergence, the network is used
to obtain multitemporal segmentation maps. The proposed
framework is shown in Fig. 1.

C. Significance Relative to the Related Works

Comparing to the related works discussed in Section II,
the proposed method is novel and is built upon the methods
discussed in Section II-A, especially the ones that use FCNs
[11] and unsupervised deep clustering [15]. The proposed
method tackles a task unexplored before in deep multitemporal
image analysis (see Section II-B). The proposed task can be
significantly useful, as Section II-C illustrates that segmenta-
tion and semantic segmentation methods are used in different
fields of multitemporal image analysis.

IV. PROPOSED METHOD

We describe the architecture of the deep network and the
mechanism of obtaining deep feature representation from input
image pixels in Section IV-A. The mechanism of assigning
labels based on deep feature representation is described in
Section IV-B. Section IV-C describes the method to further
refine the labels based on spatial homogeneity. The deep
network described in Section I'V-A is trainable without using
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any external labels, and this is achieved by using a set of
loss functions detailed in Section I'V-D. Section IV-E describes
the method of iteratively refining the network weights and
segmentation labels, and Section IV-F details the method of
obtaining final segmentation maps.

A. Deep Feature Representation

In this step, we obtain deep feature representation that
captures pixelwise semantics for each of the multitemporal
images in X. Inspired by the capability of convolutional layers
to learn high-level semantic features [42], a set of learnable
convolutional layers are used toward this goal. Filters from
the first convolutional layer of a deep network are convolved
with the input images to compute a feature representation
from the input image. Filters from successive convolutional
layers are convolved with the output from the preceding
layer. All images are processed separately through identical
networks (i.e., the same set of convolutional layers with the
same weights). In an ideal scenario where the multitemporal
images do not show any change or radiometric differences,
the output produced for each image is expected to be identical.
In a practical scenario, multitemporal images show many
differences even in the absence of changes on the ground,
and thus, the deep feature representation obtained for images
in X differs.

For effectively capturing the spatial and semantic infor-
mation, L — 1 convolutional layers are used. The first con-
volutional layer ingests input images with M channels and
produces an output of M! features. In doing so, the layer
uses filters of spatial size 3 x 3, i.e., learnable weight W
has dimension R¥*3*M*M' The convolution operation does
not use any stride, i.e., filters are moved one pixel at a time.
Pooling layer is not used, and hence, the output of the first
layer has the same spatial dimension as input. The convo-
lutional layer is followed by a ReLU activation function that
introduces nonlinearity to the output of the convolutional layer.
Output H! from the first layer for X, can be represented as

(1)

The ReLU activation function is followed by a batch nor-
malization layer where batch normalization process involves
all the pixels in the image. The T sets of batch normalization
parameters {u}, o'} (t =1,2,...,T) are obtained separately
for each image in X’ and are used to normalize H," to obtain
H'(t=1,...,T).

The following convolutional layers (! =2,..., L — 1) take
input of feature size M'~! and generate output of the feature
size M!. They are further processed through ReLU activation
functions and batch normalization layers. The output obtained
for X, from the last convolutional layer is H~1.

After the convolutional layers, a linear projection layer
(i.e., a convolutional layer with filters of spatial size 1 x 1)
is used to change the dimensionality in the kernel space
to MY = K, where K (set as 100) is a number much
larger than the maximum number of segmentation labels. In
this layer, WX of size RI>1XM"™'xK g ysed to produce an
output of K features each of the N pixels. Each of the K

H' = ReLU(X, ® W").
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feature maps is normalized separately for each image X,
(t = 1,...,T) (similar to instance normalization [43]) to
have zero mean and unit variance. Featurewise normalization
produces feature maps on a similar scale, and thus, they have a
similar chance to be selected via the argmax classification [15].
All the weights of the network W', ..., W’ are learnable
(using a set of loss functions described later which does
not need any external label). After processing images in X
through the convolutional layers, for each input pixel x,,
(n=1,...,N;t=1,2,...,T), we obtain deep features y, ,
of dimension K.

B. Pixel Clustering/Label Assignment

For an input image processed through a series of convolu-
tional layers, it can be assumed that semantically similar pixels
produce high activation in the same deep feature. Based on this
hypothesis, y, . is further processed in this step to assign the
labels ¢, . In detail, ¢, for a specific pixel x,, is obtained
by argmax classification, i.e., by choosing the feature in y, ,
that has maximum value [15]. If the kth feature of y,, is
represented by y,,(k), then ¢, , is obtained as follows:

Cpy = argmax yy, (k). 2)
keK

The abovementioned processing corresponds to the clustering
of feature vectors into K clusters. Using the argmax classifica-
tion, we are able to determine the feature that corresponds to
the highest activation of an input pixel. The pixels that obtain
the highest activation in the same feature are likely to have
similar semantics, and hence, they are grouped together. The
label assignment is separately conducted for each image in X.

C. Spatial Label Refinement

In semantic segmentation, it is expected that there is a
spatial continuity in the labels of the image pixels, i.e., pixels
lying in spatial vicinity are likely to have the same semantic
label. Though this property is partly ensured by usage of
convolutional layers that captures spatial context, we add an
additional constraint that favors similar labels in a neigh-
borhood. ¢, are further refined through a spatial mode-
based statistical filtering to obtain ¢, , for each pixel x,,
(t =1,2,...,T). This helps in preserving spatial consistency
and to reduce a very small group of pixels having a distinct
label from other pixels in the neighborhood. This process
helps in merging labels with a smaller number of pixels with
the ones with a larger number of pixels, thus reducing the
number of distinct labels. Instead of the chosen mode-based
refinement, any other spatial refinement process can be used,
e.g., superpixel-based refinement [15].

D. Spatial and Temporal Homogeneities Measurement

Spatial and temporal homogeneities are estimated from the
multitemporal deep feature representation and multitemporal
labels using a set of loss functions that are designed toward
two objectives.

1) Label assignment of single-time image gets refined in

a meaningful way such that semantic information of
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the image is captured and label assignment converge as
training iterations progress.

2) Pixels x,, for each image in A tend to get the same
label, thus capturing the temporal correlation, however
accounting for a possible change between two time
instants. This is based on the assumption that in a
coregistered time series, generally two pixels in the
consecutive time belong to same object (since changes
have a low prior probability [1]).

To achieve the first goal, following [15], we use cross-entropy
loss between the continuous-valued deep feature representation
yn: computed by the linear projection layer and the discrete-
valued label assignment after spatial refinement c, ,. We obtain
T distinct loss values ¢,, (t = 1,...,T) for the pixel x,,
corresponding to 7" images in X’

€, = crossentropy ()’n,z, c, ) )

n.t

The loss term £, for all N pixels is computed as

|
L= N ;fn,, “)

L, captures the spatial homogeneity of a single-time image X,.

To achieve the second goal, we recall that since the same
network is applied to the multitemporal images, the same
spatial location in images in X are supposed to produce
similar deep feature representation and, hence, similar label
assignment. Thus, cross-entropy loss is computed between
each consecutive pair of images X, and X,;; in X'. For each
input pixel x, , and x, 41, we compute the cross-entropy loss
between features of X, (y,,) with the predicted refined labels
for X,41 (Cnr+1)

Cotir1 = crossentropy(yn,,, C;HI). 5)

This loss function ensures that feature produced for X, are
consistent with the labels generated for X, . Similarly, €, ;11
is obtained as

Coigry = crossentropy(yn,,ﬂ, c,'l’,). (6)

It is possible that a certain pixel n experienced a change
between ¢t and ¢t + 1. In that case, it is expected that they
produce high values for computed losses €, ;;+1 and €y 141
and can contribute in undesired way to the overall loss.
To tackle this issue, we exploit the trimmed cross-entropy loss
inspired by [44]. We sort £, ; ;41 for the N pixels in ascending
order to obtain rearranged values ¢, , .., (n = 1,..., N).
We trim the last N’ pixels while computing the loss capturing
temporal consistency between X, and X,

| N—N' N-N’

Lo = 2NN < Z Copapr Z f:z,z+1,z>~ 0
n=1 n=I

The total loss £ is obtained as sum of loss capturing single-

time image spatial consistency (computed for all 7" images)

and cross-time temporal consistency (computed for all 7 — 1

adjacent pairs from 7 images)

T T-1
L= Li+Y Lo ®)
t=1 t=1
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The loss L captures both the semantic information from X,
t =1,...,T and the temporal consistency between each of
them. Since this loss function computation does not require
any external label, the proposed joint segmentation method is
completely unsupervised.

E. Iterative Segmentation Refinement

All the trainable weights W!, ..., WX of the network
are initialized by the Xavier initialization process [45]. The
training can be thought of as two different interrelated
processes. The first process predicts the cluster labels c, ;
t =12,...,T and n = 1,...,N) given fixed network
weights. The predicted cluster labels are treated as target
cluster labels, and the latter process estimates loss £ and
updates the network weights W', ... W.. For updating of
weights, we exploit stochastic gradient descent mechanism
with momentum. To accomplish a reasonable training process,
this training process is executed for 7 iterations. However,
if the total number of clusters (distinct labels) prematurely
(i.e., before 7 iterations) reaches IC (L < K), then the training
process is stopped.

FE. Obtaining Final Cluster Labels

After the completion of the training process using a stopping
criterion, the trained network is separately applied on each
of the images in X = {X;,X»,..., X7} to obtain final
segmentation maps C = {Cy,C»,...,Cr}. The proposed
method is summarized in algorithmic form in Algorithm 1.

Algorithm 1 Unsupervised Multitemporal Joint Semantic Seg-

mentation

Input: x,, e RY n=1,...,N,t =1,2,...,T, and M is
number of bands)

Output: ¢,;, n=1,...,.N,t=1,2,...,7T)

1: Initialize W', ..., WL [45]

2: for i < 1toZ do

33 fort <« 1toT do

4 Extract feature y,, € RE (n=1,...,N)

5: Cp, < Argmaxy g yn. (k)

6: ¢, , < spatialRefinement(c, ;)

7

8

9

n,t
if number of distinct ¢, , < K then

goto FinalLabel

: Estimate £,

10 fort<« 1toT —1do

11: Estimate £, ;11

12 LS L+ L
13: W', ..., Wl < update(L)

14: FinalLabel: Estimate ¢,; m=1,...,N,t=1,2,...,T)

V. USE OF DEEP JOINT SEGMENTATION FOR CD

The network trained for multitemporal joint segmentation
can be used as a bitemporal deep feature extractor in a DCVA
framework [5] to distinguish the changed pixels (€2.) from the
unchanged ones (w,.). This is based on the assumption that
the network has learned semantic attributes from images while
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iteratively refining the multitemporal segmentation maps. For
bitemporal CD, we focus, here, on two images X; and X»,
and the same methodology can be applied to any other pair of
images from X. X; and X, are separately processed through
the trained network that is used as a deep feature extractor in
this step. Deep features are extracted from L — 1 convolutional
layers of the trained network to form a deep feature hypervec-
tor that captures the semantic in a hierarchical fashion for
CD. An automatic variance-based layerwise feature selection
strategy is applied [5], and the deep change hypervector (G) is
obtained as a concatenation of the deep-feature-differences of
all considered layers. A deep magnitude p is obtained as the
Euclidean norm of deep change hypervector G. As unchanged
pixels (w,.) generate similar deep features, while changed
pixels (€.) generate dissimilar deep features, we distinguish
changed pixels (.) from the unchanged ones (w,.) by using
a threshold applied to p [5], [46].

VI. EXPERIMENTAL VALIDATION OF MULTITEMPORAL
SEMANTIC SEGMENTATION

A. Evaluation Criteria

Due to the possible multiple satisfactory results, unsuper-
vised segmentation can be considered as a subjective task.
To objectively evaluate the performance of the proposed
method for a particular data set, we fix a target class and
evaluate the performance of the proposed joint segmentation
method in terms of how well the target class is detected
in a single cluster on each of the multitemporal images.
Considering target class pixels as positive and all other pixels
as negative, we compute sensitivity (over the positive pixels)
and accuracy (over all pixels). This is based on the assumption
that a good semantic segmentation approach will assign all
pixels belonging to the target class the same label and different
labels to the others. Considering that there are Ny and N_
number of positive and negative pixels (N, + N_ = N) and
N} (N} < Ny) and N* (N* < N_) are identified correctly,
the sensitivity is defined as

o N}
Sensitivity = ——. )
+
The accuracy is defined as
Ni 4+ N*
Accuracy = % (10)

B. Baseline Methods

To the best of our knowledge, the problem statement is
novel, and hence, we cannot directly compare it with existing
methods. We have designed a baseline method using the
single-image deep segmentation method in [15] and transfer
learning. In more detail, the transfer learning-based approach
applies the single-image deep segmentation method individu-
ally on one of the images in time series. The method learns a
deep model. Considering that other images in the time series
are similar (since they are coregistered images from different
times and changes have a low prior probability), the transfer-
learning-based method applies the same deep model on the
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Fig. 2.
proposed method: (f) winter, (g) spring, (h) summer, (i) autumn, and (j) four seasons combined. Segmentation using transfer learning: (k) winter, (1) spring,
(m) summer, (n) autumn, and (o) four seasons combined. Black: urban pixels.

other images of the time series (without training on them) to
obtain segmentation maps. However, this approach does not
exploit the temporal correlation in its training phase. Since this
transfer learning-based approach learns the model individually
on one of the images in time series, it has 7 times less
time requirement than the proposed joint segmentation-based
method.

C. Test Data Sets

We used three quasi-urban data sets comprising of HR
(Sentinel-2) and VHR (Pleiades) images for multitemporal
segmentation showing increasing complexity to test the pro-
posed method in different working conditions. The two HR
data sets show comparable complexity in terms of structural
and geometrical information of the quasi-urban areas: Munich
and Paris. However, the prominent presence of fog/cloud in
the Paris data set makes the latter one slightly more complex
because of the temporal variations in atmospheric conditions.
The VHR (Pleiades) data set is acquired over Trento, Italy,
and is more complex due to higher spatial correlation in VHR
images.

1) Munich Data Set: It is built using HR urban images

from the Sentinel-2 sensor (10m/pixel) consisting of four
images acquired in winter, spring, summer, and autumn

2)

3)

Munich Sentinel2 Images—input images (RGB). (a) Winter. (b) Spring. (c) Summer. (d) Autumn. (e) Reference urban mask. Segmentation using

of 2017 [47]. We used only R, G, B, and NIR channels
(channel numbers: 4, 3, 2, and 8). The images capture
the central area of Munich and its surroundings and
show an area of 718 x 718 pixels. Winter, spring,
summer, and autumn images are shown in Fig. 2(a)—(d),
respectively. They show some seasonal change despite
no substantial change on the ground. The summer image
shows little cloud/fog, whereas the other three do not
show any substantial amount of cloud. A reference urban
mask for the area is shown in Fig. 2(e).

Paris Data Set: 1t is built using HR urban images
from the S2 sensor (10 m/pixel) consisting of two
images acquired in spring and summer 2017 [47]. The
images capture a dominantly urban area of Paris also
showing some vegetation and the Seine river and cover
an area of 718 x 718 pixels. Summer and spring images
are shown in Fig. 3(a) and (b). They show signifi-
cant seasonal change but no significant change on the
ground. The spring image shows a substantial amount of
cloud/fog. A reference urban mask for the area is shown
in Fig. 3(c). We used only R, G, B, and NIR channels
(channel numbers: 4, 3, 2, and 8).

Trento Data Set: It is built using VHR urban images
acquired using the Pleiades sensor (0.5 m/pixel) on
August 2012 [see Fig. 4(a)] and September 2013
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Fig. 3. Paris Sentinel2 images—input images (RGB). (a) Summer. (b) Spring.
(c) Reference urban mask. Segmentation using proposed method: (d) summer,
(e) spring, and (f) two seasons combined. Segmentation using transfer learning
approach: (g) summer and (h) spring. Black: urban pixels.

[see Fig. 4(b)]. The images show an area of
512 x 512 pixels and capture a residential area in
Ravina locality of Trento composed of buildings, roads,
and small vegetation patches. The building mask for
the area is obtained using photointerpretation and direct
knowledge of the area and is shown in Fig. 4(c).

D. Munich Data Set

The segmentation map obtained by the proposed method
in winter, spring, summer, and autumn images are shown
in Fig. 2(f)—(i), respectively. They were trained with the
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TABLE I
SEGMENTATION RESULTS FOR MUNICH DATA SET

Method Category | Sensitivity | Accuracy

Winter 90.91% | 81.45%

Spring 91.05% | 82.22%

Proposed Summer 97.03% 81.54%
Autumn 98.12% | 75.64%

Combined| 88.59% | 84.23%

Winter 99.30% | 67.22%

Spring 99.34% | 69.02%

Transfer learning | Summer 99.81% | 69.92%
Autumn 99.94% | 55.87%

Combined| 98.96% | 74.87%

TABLE II

SEGMENTATION RESULTS FOR PARIS DATA SET

Method Category | Sensitivity | Accuracy
Proposed Summer 97.19% 84.91%
Spring 99.03% | 77.70%
Combined| 96.99% | 85.62%
Transfer learning Sun‘lmer 99.98% | 68.75%
Spring 2421% | 59.68%
Combined| 24.21% | 59.75%

following parameters: L = 4, 7 = 500, and /IC = 2. The black
class corresponds to the urban mask. The winter segmentation
map achieves a sensitivity of 90.91% and an accuracy of
81.45%. The spring, summer, and autumn segmentation maps
show similar results (see Table I). All segmentation maps agree
on most of the analyzed scene, and we illustrate a common
urban mask obtained by their intersection [see Fig. 2(j)].

We compare the proposed method to the transfer learning-
based method. For this approach, we apply single-time seg-
mentation on winter image and, subsequently, the learned
network on the other three images. The results obtained by
this approach are shown in Fig. 2(k) (winter), (1) (spring), (m)
(summer), and (n) (autumn). The sensitivity and the accuracy
obtained by them are given in Table I. The transfer learning
approach obtains slightly oversegmented results; however,
the results are still comparable to those obtained by the
proposed method.

E. Paris Data Set

The segmentation map obtained by the proposed method
on summer and spring images are shown in Fig. 3(d) and (e),
respectively. They were trained with the following parameters:
L =4,7 =500, and K = 2. As evident from the figures,
the black class corresponds to the urban mask. The quantitative
results are shown in Table II. The summer segmentation map
achieves a sensitivity of 97.19% and an accuracy of 84.91%.
The spring segmentation map achieves a sensitivity of 99.03%
and an accuracy of 77.70%. We observe some noticeable
difference in the segmentation map between summer and
spring. However, it can be clearly observed that this difference
is due to strong fog/cloud in the spring image [see Fig. 3(b)].
We illustrate a common urban mask obtained by their inter-
section [see Fig. 3(f)]. The segmentation maps obtained by the
transfer learning approach on summer and spring images are
shown in Fig. 3(g) and (h), respectively. For transfer learning
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(2 ()

Fig. 4. Trento Pleiades Images—input images (RGB): (a) 2012 and
(b) 2013. (c) Reference building mask. Segmentation using proposed method:
(d) 2012, (e) 2013, and (f) 2012 and 2013 combined. Segmentation using
transfer learning approach: (g) 2012 and (h) 2013. Black: building pixels.

approach, we learn the segmentation network on summer
image and, subsequently, use the trained network on spring
image. As described previously in Section VI-B, this process
can be described as single-time segmentation being applied on
the summer image, and the learned network is used to extract
segmentation map from the spring image. Using this approach,
the summer segmentation map achieves a sensitivity of 99.98%
and an accuracy of 68.75%, and the spring segmentation
map achieves a sensitivity of 24.21% and an accuracy of
59.68%. We observe that single-time segmentation on the
summer image obtains comparable results to the proposed joint
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TABLE III
SEGMENTATION RESULTS FOR TRENTO DATA SET

Method Category |Sensitivity | Accuracy
Proposed 2012 89.01% | 73.69%
2013 80.12% | 84.40%
Combined| 76.68% | 84.85%
Transfer learning 2012 41.02% | 80.02%
2013 28.75% | 80.58%
Combined| 18.97% | 80.07%

TABLE IV

CD RESULTS FOR THE TRENTO CD DATA SET

Method |Sensitivity | Specificity | Overall Accuracy
PCVA 0.66 0.90 89.56%
DCVA 0.51 0.96 93.57%

Proposed 0.69 0.98 97.15%

segmentation method; however, the transfer learning approach
fails to effectively propagate the segmentation mask to the
spring image. This clearly shows the advantage of temporal
learning. While the proposed joint segmentation approach
clearly learns to assign the same class to most pixels in
summer and winter images, the reference method (that does
not exploit temporal correlation) fails to do so.

F. Trento Data Set

The segmentation maps obtained by the proposed method
in 2012 and 2013 images are shown in Fig. 4(d) and (e),
respectively. We set the parameters as L = 5, Z = 500, and
K = 2. The black class corresponds to the building mask.
As shown in Table III, the 2012 segmentation map achieves
a sensitivity of 89.01% and an accuracy of 73.69%. The
2013 segmentation map achieves a sensitivity of 80.12% and
an accuracy of 84.40%. Combining building class in 2012 and
2013 segmentation maps by their intersection, we obtain a
common building mask [see Fig. 4(f)]. It obtains a sensitivity
of 76.68% and an accuracy of 84.85%. The segmentation
maps obtained by the transfer learning approach on 2012 and
2013 images are shown in Fig. 4(g) and (h), respectively.
For transfer learning approach, we learn the segmentation
network on 2012 image and, subsequently, use the trained
network on 2013 image. Using the transfer learning approach,
the 2012 segmentation map achieves a sensitivity of 41.02%
and an accuracy of 80.02%, and the 2013 segmentation map
achieves a sensitivity of 28.75% and an accuracy of 80.58%.
We observe that not only the segmentation process could not
be propagated to the 2013 image from the 2012 image but also
the segmentation is not satisfactory for the 2012 image. This
clearly shows the advantage of temporal learning. The joint
segmentation-based approach exploits multitemporal informa-
tion, and it is useful to identify the dominant class in the target
multitemporal images.

To further demonstrate the capability of the proposed
method to learn useful semantic features, we visualize two
features from the last convolutional layer in Fig. 5. It can
be seen that they show useful visual concepts to distinguish
buildings from the background.
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Fig. 5.

Visualization of two randomly chosen features from the last
convolutional layer on Trento Pleiades Images—feature 1: (a) 2012 and
(b) 2013; feature 2: (c) 2012 and (d) 2013.

VII. EXPERIMENTAL VALIDATION OF CD

We show the results for CD on a VHR multisen-
sor data set acquired over Trento, Italy. The Trento CD
data set [48] is built using VHR urban images acquired
using two different optical sensors—Quickbird (acquired in
July 2006 with 14.1° off-nadir angle) and Pleiades (acquired in
September 2013 with 20.9° off-nadir angle). Thus, they
show a temporal difference of seven years, and they are
acquired in different seasons. The prechange Quickbird image
[see Fig. 6(a)] originally shows a 0.6-m/pixel resolution,
and the postchange Pleiades image [see Fig. 6(b)] shows
a 0.5-m/pixel resolution. Images are projected to the same
spatial resolution of 0.5 m/pixel. The reference CD map
obtained using photointerpretation along with knowledge of
the analyzed area is shown in Fig. 6(c). This data set shows
similar characteristics as the third data set in Section VI in
terms of structural and geometrical information but higher
complexity because of being multisensor (Quickbird-Pleiades)
and showing multitemporal differences due to changes on the
ground.

For CD, the sensitivity is defined as the accuracy of
correctly detecting the changed pixels, and the specificity is
defined as the accuracy of correctly detecting the unchanged
pixels [5]. Considering the proposed method, the CD result is
compared with the state-of-the-art unsupervised deep learning-
based DCVA method [5] and segmentation-based Parcel CVA
(PCVA) method [4].

We show the CD map obtained by the proposed method
in Fig. 6(d). The proposed method detects most of the
changed pixels and few false alarms. As detailed in Table IV,
the proposed method outperforms the DCVA method [5]
[see Fig. 6(e)] and the PCVA method [4] [see Fig. 6(f)].
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Fig. 6. Trento CD data set. (a) Prechange Quickbird image (RGB).
(b) Postchange Pleiades image (RGB). CD maps: (c) reference and
(d) proposed, (e) DCVA, and (f) PCVA methods.

VIII. CONCLUSION

In this article, we proposed a deep unsupervised multitem-
poral semantic segmentation method. The proposed method
works directly on multitemporal images and does not require
any labeled training pixel or the availability of abundant unla-
beled multitemporal images for training. The proposed method
represents the multitemporal images using multitemporal deep
features obtained by a trainable deep network. The weights of
the trainable network are adjusted in iterations along with the
predicted multitemporal labels. Thus, the proposed method is
able to jointly optimize the deep feature representation and the
multitemporal label assignment ensuring consistency between
multitemporal labels. The results show that the obtained
labels are semantically meaningful and temporally consistent.
Moreover, the proposed method can work on images from
different seasons that show significant seasonal differences.
To the best of our knowledge, this is the first work to
explore multitemporal joint segmentation. We also detailed
the extension of the method for CD by following the DCVA
approach.

In the future, we plan to extend the proposed method for
other sensors, e.g., passive (SAR) sensors. Contrary to the
multispectral images, SAR images follow the multiplicative
noise model [38] and emphasize the physical properties of the
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target surfaces, while the optical images highlight the struc-
tural details. Thus, the adaptation of the proposed method for
SAR images is expected to be challenging, e.g., modification
may be needed in terms of spatial homogeneity measurement
and loss function. We also plan to extend the proposed method
to multisensor time series comprising of images acquired by
active and passive sensors.
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