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Abstract

The Pareto-efficient combustion (PEC) framework is extended for predicting transient ignition in
turbulent flames. The PEC formulation utilizes a drift term to assess the compliance of specific
combustion submodels with the underlying flow-field representation. This drift term is extended
to consider autoignition delay as a process of interest, and the ignition delay time of a homoge-
neous isobaric reactor is utilized as surrogate. Combustion models considered are the steady-state
flamelet /progress variable (FPV) model and a finite-rate chemistry (FRC) model. Large-eddy sim-
ulations are performed and the proposed PEC autoignition formulation (PEC-AI) is demonstrated
to identify localized regions that require a finite-rate chemistry description in order to accurately
capture the transient ignition dynamics. The model is employed to examine the stochasticity of
the autoignition in the turbulent environment by performing ensemble simulations to construct
probability distributions of ignition time and ignition locations. Comparisons with measurements
show the ability of PEC-AI in capturing the transient ignition dynamics and flame lift-off through
drift-term adaptation with comparable accuracy to FRC simulations at reduced cost. These results
illustrate the versatility of the PEC framework in targeting different combustion response functions
that not only include species and emissions but also transient combustion processes.

Keywords: Pareto-efficient combustion framework, Large-eddy simulation, Autoignition,
Turbulent combustion, Jet-in-hot-coflow

1. Introduction

Autoignition (AI) plays a critical role in flame stabilization, such as diesel fuel ignition, vitiated
flows, industrial furnaces, or staged combustors [1, 2]. In the presence of turbulence and unsteady
mixing, autoignition is a stochastic process that requires the consideration of the local mixture
composition and temperature, the turbulent flow environment, and detailed reaction chemistry.

Flame stabilization by autoignition in lifted flames has been studied experimentally and compu-
tationally in jet-in-hot-coflow (JHC) configurations with well-defined boundary conditions [3, 4, 5,
6]. Lifted flames are highly sensitive to the composition and temperature of the vitiated coflow [2]
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and accurately capturing the lift-off height over a wide range of operating conditions is challenging
for combustion models. In particular, a relatively low coflow temperature tends to increase the
flame lift-off height, and these conditions are most difficult to predict. In these investigations,
it was found that the lift-off height increases with jet and coflow velocities and decreases with
increasing coflow temperature [3, 7]. To model autoignition in a vitiated flame, Domingo et al.
[4] developed a tabulated chemistry model that combines a homogeneous reactor (HR) ignition
model for representing the autoignition regime with a premixed flamelet formulation for capturing
the downstream flame structure. This approach was shown to improve the prediction of the flame
base that is controlled by autoignition, while downstream regions that are represented by non-
premixed regimes show discrepancies with measurements. An unsteady flamelet/progress-variable
model was developed in [5]. In this model, the scalar dissipation rate was introduced and the
thermochemical flame state was then calculated from the solution of unsteady flamelet equations
to describe the transient ignition dynamics. Compared to results obtained from a steady-state
flamelet model, this approach led to accurate predictions of the flame lift-off height and species
profiles. Both models [4, 5] employed presumed probability density functions (PDFs) as closure
models for representing the turbulence-chemistry interaction. More recently, Schulz et al. [6] used
a reduced chemistry model and a dynamically thickened flame model to describe autoignition in
a lifted flame. Statistical results compared favorably with measurements but an overprediction of
the lift-off height was reported.

Transient autoignition was studied experimentally using a pulsed methane JHC configuration |2,
7, 8,9, 10, 11, 12, 13]. Different fuels (methane, propane, dimethyl ether) were used and several
operating conditions with various coflow temperatures were investigated. Stochastic features of
the autoignition dynamics were reported by Arndt et al. [12] in the form of PDFs of autoignition
time and ignition location. This configuration was numerically examined using different modeling
approaches [14, 15, 16]. Fiolitakis and Arndt [14] employed a transported PDF model and a k-¢
turbulence model to simulate the statistically stationary flame behavior. While the mean flame
structure agrees relatively well with experiments, discrepancies were found for the Root Mean
Square (RMS) profiles. Inanc and Kempf [15] used a steady flamelet-based combustion models
to study the transient and stochastic features of autoignition. These simulations reproduced the
locations of the transient ignition kernels and ignition time with good accuracy, but the flame
lift-off height was under-predicted in these simulations. Liu et al. [16] used a finite rate chemistry
model along with a partially stirred reactor model to account for turbulence-chemistry interactions.
Although the jet penetration length and the jet spreading angle are mispredicted, their results
agree well with the experiments and it was found that the regions of highest heat release rate and
temperature are located in the flame propagation region. An analysis of the transient ignition
kernels was performed and it was shown that the Damkohler number is larger in the auto-ignition
region than in the flame-propagation regions that develops further downstream.

The prediction of autoignition and flame stabilization in non-premixed turbulent flames requires
the consideration of multi-mode combustion regimes [4, 5]. Autoignition in vitiated flames is
initiated in regions of low scalar dissipation rate with species composition corresponding to the
most reactive mixture [17]. Subsequently, heat and radicals diffuse towards richer mixtures that
combust in an opposed mixing mode [18] followed by a diffusion-dominated combustion regime [6].
Lean and rich propagating flames are present near the centerline [4]. Hence, in order to accurately
model these flames, adaptive combustion models are needed that describe the transient ignition
dynamics and multi-mode combustion behavior.



An adaptive combustion modeling approach in the form of the Pareto-efficient combustion
(PEC) framework was recently developed to model multi-mode combustion [19, 20, 21]. This
framework employs a combustion submodel assignment to describe different combustion regimes.
In this formulation, the compliance of combustion models to the underlying flow physics is assessed
through the construction of a so-called drift term, which takes into consideration user-specific
requirements about Quantities of Interest (Qol) and computational cost. So far, this formulation
is limited to scalar flow-field quantities, such as species mass fractions, and model extensions are
needed to accurately describe autoignition and transient combustion processes. By addressing this
need, the objective of this work is to extend the PEC formulation to the prediction of autoignition
in turbulent unsteady flames. To this end, we consider the autoignition delay time as a physical
Process of Interest (Pol) and the drift-term formulation is extended to consider this process as a
controlling parameter. This formulation is applied to the DLR-JHC configuration [12].

The remainder of this manuscript has the following structure. Section 2 presents the PEC
framework, and its extension to autoignition is discussed in Sec. 3. The experimental configu-
ration and numerical setup are presented in Sec. 4. In Sec. 5, PEC is applied to the DLR-JHC
configuration and the model mapping is analyzed and compared to monolithic FPV and FRC cal-
culations, before analyzing both statistically stationary flame and stochastic ignition characteristics
via ensemble calculations. The manuscript closes with conclusions.

2. Governing equations and PEC-formulation

In this study, the fully compressible Navier-Stokes equations for reacting flows are solved. The
system of Favre-filtered conservation equations for mass, momentum and energy for LES take the
following form:

ﬁtﬁ = _ﬁv U ) (18’)
ﬁﬁtﬁ = —Vp+V.-(T+ ngs) ) (1b)
pDiE = —V - (up)+ V- (T %) — V- (T+qy,) (1c)

where D; = 0/0t+u-V is the material derivative, p is the density, u is the velocity vector, p is the
pressure, e is the specific total energy, T is the stress tensor, q is the heat flux, and the subscript
‘sgs’ refers to a turbulent subgrid scale quantity. The LES scalar transport equations take the
following form:

ﬁﬁta =-V- (.7 +jsgs) +§¢> ) (2)

~ ~ ~ T
where ¢ = ¢m1, ey ¢mN} combines the scalar solution vectors of the mpy submodels considered
by PEC, M = {m4,...,myn}, and §¢ is the vector of filtered chemical source terms.

In the present study, two submodels are considered. The first model is the Flamelet/Progress

Variable (FPV) formulation [22, 23], where the mixture fraction Z and a progress variable C' are

_m ~ ~ T
transported, ¢ = = (;')FPV = [Z ) C} . The second model is a Finite Rate Chemistry (FRC) model

for which Ny — 1 species mass fractions are transported and the N, species mass fraction is

inferred from total mass conservation:
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~ ~FRC ~ ~
and the vector of transport species is ¢m2 =¢ =Y,...,YN,-1]".

PEC employs a submodels assignment M that maps the computational domain €2 to the set
of models M, here, M = {mi,ma}. The domain is partitioned into N, subdomains Q; with a
boundary 9€; and an interior €;, such that Q; = Q; U 0€;. This submodel mapping uniquely
determines the partitions and satisfies the following properties:

1. The entire domain is recovered by the subdomains: ujﬁls‘zi =,

2. The subdomains are non-overlapping: ;N Q; =0 Vi # j,

3. In each subdomain, a single model is used: M(x) = M(y) Vo € Q;,y €,

4. All subdomains that are separated by a common boundary use different models, M(x) #
/\/l(y) Vi# j,x €y € Qj,aQi N (99]' # ().

The thermochemical state is evaluated from the manifold-describing variables as well as the recon-
struction of the scalar transport equation for model coupling [19], which is further discussed in Wu
et al. [21].

The PEC framework utilizes a local optimization to obtain a submodel assignment M, at a
given time t:

min / eM(x)da —i—)\/ M(x)dx (4)
M:Q—M (9} QO
globalzrror & global cost C
where eM(x) and ¢ (x) are the local error and cost of the model mapping and the user-defined

parameter \ is a penalty term that balances cost and accuracy. In practice, Eq. (4) is solved via a
greedy strategy [19]. In previous studies [19, 20, 21], a set of user-specific Qols, @ = {31, ..., %N, },

is defined and the local error eM is evaluated from the weighted sum of errors of each Qol J €Q:
M= e |B] (5)
YeQ

where 25{1)\/1 is the drift term of Qol {bv and &, > 0 is a normalization constant [19] so that the error
associated with each Qol is of order of unity.

The drift term provides a formal method for assessing the compliance of a combustion model
with the underlying flow-field description via the evaluation of the growth rate of the error of a
candidate submodel. The drift term associated with submodel m = M(x) for a Qol P is [19]:

Dy} = pDy) — pDp™ (6)
=y
where {/;m is the Qol evaluated on the manifold solution of model m. On the right-hand side
of Eq. (6), the first term is the material derivative of Qol v, evaluated from the solution of the
transport equation with initial conditions 1/1 wm, i.e. the current state of the flow field. The
second term is the material derivative of wm predicted from the manifold-describing variables qb
By employing the chain rule, this term can be computed as:

~ ~ 8~m ~ ~m ~, ~m
ﬁthmzﬁﬁgm-m where 7 = 3 (3"). (7)

The difference between these quantities provides a direct measure of the compliance between a par-
ticular combustion model and the underlying flow field description. In this context, it is noted that
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the PEC formulation only assesses the compliance of a combustion manifold with the underlying
flow field representation and employs a hierarchical submodel formulation. Here, we consider FRC
as the model of highest fidelity, as discussed in Sec. 4.2.2. Although only two combustion models
are considered in the present work, the PEC framework can be applied to an arbitrary number of
models, which has been demonstrated in prior studies [19].

3. PEC extension to a process of interest

Autoignition in turbulent flames is a dynamic and non-local combustion process. As such,
the previous Qol-based PEC formulation cannot be directly used for this purpose. By addressing
this issue, the objective of this section is to extend the PEC formulation to consider a Process of
Interest (Pol) and derive a drift term that takes into consideration transient combustion processes.

3.1. Drift term for a process of interest

In many practical applications, the design parameters involve non-trivial physical processes,
such as heat flux, heat release, or autoignition time. These secondary quantities cannot be directly
obtained as a solution of a transport equation. To represent these secondary quantities in the
PEC formulation, we introduce a process of interest, 7, and consider its scalar dependencies, i.e.,
T =m(Yx1,...,Y¥xN,), to construct a drift term. By employing the chain rule, the resulting drift
term, evaluated for the m™ submodel, can then be written as:

N, —

~m or .
PF =2 g Do )

where Om /0, ; is the sensitivity coefficient of w. A detailed analysis of the extension of the
laminar drift term to LES can be found in [20]. With this, the local error for 7 can be evaluated
by normalizing D" as:

em =& DY, (9)
where the normalization coefficient &; > 0 is determined from pre-processed quantities. In the
present work, we defined &, as

o lé (s (22 ) s (s%)ﬂl | (10)

which considers the directional sensitivity coefficient and the production rate of species 1 ;. This
normalization ensures that the maximum of the drift term for a Pol is of order unity. It is noted
that the maxima of both terms in Eq. (10) may correspond to different thermochemical states.
Here, the normalization coefficients are obtained from the FPV-model and are precomputed from
the flamelet library.

3.2. Autoignition time of a turbulent jet-in-hot-coflow flame

The focus of this study is to predict the autoignition in a JHC-burner. As discussed by Mas-
torakos [24] and observed experimentally [3, 10, 11, 12], in vitiated non-premixed flames, autoigni-
tion occurs away from the stoichiometric mixture at very lean conditions, corresponding to the
so-called most reactive mixture fraction Z,,. However, not all regions with Z = Z,,, ignite and
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autoignition sites are found in regions with low scalar dissipation rate, x [24]. Hence, in turbulent
non-premixed flames, autoignition sites are distributed according to the local scalar dissipation
rate. In addition, it was found that the autoignition time, 741, is larger than the autoignition delay
time of a homogeneous reactor, 7, that is 7a1 > 7. Consistent with this analysis, Arndt et al.
[12] reported that in a JHC configuration the fuel is transported into the vitiation coflow where it
mixes with the oxidizer in intermittent regions of low turbulence, forming an ignitable mixture.

With this understanding about the autoignition process, the PEC framework is extended to
capture the autoignition. For this, we consider the autoignition time, 7a7, as a process of interest.
Since the direct derivation and solution of a transport equation for a7 is non-trivial, we consider
a surrogate that closely represents the physical Pol, mpys ™~ Tgurr. Therefore, we represent 7a1 by
the ignition delay of a homogeneous isobar reactor, with mixture composition prescribed from a
non-premixed flamelet solution, 7a1 ~ 7ig, with 7ig(%,). For diffusion flames, it was shown that
the autoignition time is a function of temperature, composition and scalar dissipation rate [24].
However, Eq. (8) indicates that the contribution of any quantity to the drift term of a Pol is the
product of two terms. As shown in [5], iz only exhibits a weak dependency on the scalar dissipation
so that the first term, the sensitivity coefficient, is small. The second term is the drift term of
the scalar dissipation rate itself, which would require an additional of a transport equation. Since
the scalar dissipation rate would be computed irrespectively from the submodel m, the drift term
would be DI = 0.

In the FPV model, which is employed as one of the submodels, the thermochemical state
is parameterized in terms of mixture fraction Z and progress variable C'; which is evaluated as
C = Yco,+Yco+Ym,0+Yu, [25]. However, this model employs a steady-state flamelet formulation
which is unable to predict autoignition [23]. Here, we show how to extend the analysis in order to
identify the leading sensitivities of 7. For this, a sensitivity analysis of 7z at the most reactive
mixture fraction Zy,, is performed. First, Z,, is identified by conducting Cantera simulations of
isobaric HR along the mixing line, leading to a value of Z,, = 0.0048. This value was confirmed
by performing an additional unsteady flamelet simulation of a counterflow diffusion flame at low
scalar dissipation rate. Then, the thermochemical state corresponding to the most reactive mixture
fraction was perturbed, by adding 1% of the maximum mass fraction of a species Y3 during a
HR simulation at the most reacting conditions, to compute the sensitivity coefficients O7ig/0Y.
Results from this sensitivity analysis showed that the largest sensitivity of 7, arises from variations
in Yog. Based on this analysis, hydroxyl is included as an additional independent variable of the
autoignition delay time. In addition, the autoignition time was shown to be sensitive to the
temperature, so that this quantity is added as an additional independent variable. From this
analysis, it follows that 7 = 7ig(,) with . = {Z,C,T,You}. The sensitivity coefficients in
Eq. (8) are then computed using the composition from the flamelet solutions and perturbations of
this manifold with respect to T" and Yopu.

Figure 1 shows results that are utilized for the evaluation of the sensitivity coefficients, and the
computed sensitivity coefficient are illustrated in Fig. 2. In the first step, the sensitivity coefficients
for Omig/0Z and 07,/0C are directly evaluated on the FPV manifold. To ensure smoothness of
the solution, both Z and C' directions are discretized using 500 points. Figure la shows the
temperature on the FPV manifold. The mixing branch is shown as a dashed gray line. For
each of the thermochemical state on this manifold, an isobaric homogeneous reactor calculation is
performed using Cantera [26]. The simulations are performed until 1072 s, which is an order of
magnitude higher than the experimentally observed autoignition time for the operating conditions
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presented in Sec. 4.1. The autoignition delay time is defined as the time at which the maximum
gradient of temperature is reached, namely:

Tig = max arg, (d;T) . (11)
Other criteria were investigated to assess the robustness of this definition for the autoignition delay
time, such as the maximum net production rate of Yoy and Yog+. At the most reactive mixture,
the most relevant conditions for autoignition for the DLR JHC setup [12] and, more generally, for
non-premixed flames [27], these three definitions lead to comparable results for the autoignition
delay time as the difference between the maximum and minimum predicted by this criteria is as
low as 1.75 x 107° s, that is within 2.5% of Tig(Zmr). These HR simulations are initialized with
Ty = T¥PV(Z,C) and reach a final temperature T, however, not all compositions lead to ignition.
Exothermic conditions are identified using the heat release parameter, o = (T — Tp) /T, which
is shown in Fig. 1b. A large region of the flow is endothermic with o < 0 or weakly exothermic
a ~ 0. Isocontours of a = 0.05 are shown in Figs. 1b and lc. Only values above this threshold
— corresponding to a temperature increase of 5.25% with respect to Ty — are considered ignited,
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otherwise the autoignition time is set to 7z — oo. The autoignition delay time 7z is shown in
Fig. 1c. Values of 7z on the mixing line are typically on the order of 10~2 s. For more complex
flames, for instance swirled flames or flames with high levels of recirculation, the ignition conditions
may not be as well characterized in the Z-C space than for JHC configurations and it may be
necessary to include the entire state-space. The sensitivity coefficients with respect to variations
in temperature and OH radicals are determined by performing simulations in which T" and Yopu
from the FPV-manifold are perturbed. The pre-computed autoignition time is not directly used in
the simulation and only employed to evaluate the sensitivity coefficients 0w /0t ; in Eq. (8). The
so computed sensitivity coefficients are shown in Fig. 2.

Since autoignition occurs in regions of low turbulence, we assume that the sensitivity coefficients
are statistically independent from Dm . This assumption allows us to simplify the evaluation of
the drift term, resulting in the followmg expression:

OTig pm
Tlg Z a¢71- i wm ) (]‘2)

in which the sensitivity coefficients are tabulated in the FPV chemistry library. It is noted that if
Eq. (12) is applied to highly-turbulent environments without revising this assumption, the sensi-
tivity regions would be spatially shifted towards regions of higher turbulence. However, this effect
is corrected by modifying the penalty parameter.

4. Experimental configuration and numerical setup

4.1. Experimental configuration

The extended PEC autoignition (PEC-AI) formulation is applied to the DLR-JHC configuration
of Arndt et al. [12]. A schematic of the experimental setup is shown in Fig. 3. The fuel is supplied
by a central jet of diameter D = 1.5 mm surrounded by a vitiated coflow that is supplied through
a square section of size 75 x 75 mm?. The coflow is provided by a fully premixed lean Hp/air

mixture for which the equivalence ratio is modified to obtain different coflow temperatures and

compositions.
z
y
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£
» £
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I
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Solenoid Valve
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Figure 3: Schematic of the DLR-JHC burner (reproduced from Arndt et al. [12]).

To examine the model sensitivity, the present work considers two operation points, having
different temperatures and compositions in the coflow. These conditions are summarized in Table 1.
The CHy jet is supplied by a pulsed valve to study the stochastic autoignition process. The terminal
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bulk velocity of the fuel stream is Upyix = 178 m/s, corresponding to a jet-Reynolds number of
16,000. For both operating conditions studied here, the velocity of the vitiated coflow is 4.1 m/s.

Table 1: Operating conditions of DLR-JHC flame.

Case Jet Coflow

T [K] T[K] Xn, Xmo Xo, Xom Zst
TC1490 290 1490 0.712 0.178 0.102 8.20 x107° 0.0279
TC1585 290 1585 0.755 0.130 0.112 1.82 x10~* 0.0286

Ignition kernels are identified from measurements of OH* chemiluminescence as described
in Arndt et al. [8, 10, 12]. Rayleigh scattering is employed to measure temperature and mixture
fraction [11].

The accuracy and spatial resolution of the measurements of mixture fraction and derived tem-
perature are influenced by several effects. In particular, the finite resolution leads to spatial filtering
and, thus, possibly to reduced mixture fraction fluctuations as small-scale fluctuations are not fully
captured. The laser-light sheet had a thickness of approximately 0.3 mm. Thus, gradients in the
normal direction of the laser-light sheet are averaged. This can also lead to an underestimation
of the mixture fraction and of mixture fraction fluctuations. Furthermore, the in-plane resolution
is limited. The in-plane resolution was determined using an USAF 1951 resolution target with
different spatial frequencies. Within the measurement planes, gradients up to 4 mm™' can be
resolved. The finite signal-to-noise ratio of the measurements limits the minimum resolvable gradi-
ents. Within the coflow (Z = 0), mixture fraction gradients larger than 0.2 mm~—! can be resolved.
In regions with Z > 0 smaller gradients can be resolved due to the higher signal-to-noise ratio.

4.2. Numerical setup

The compressible reacting Navier-Stokes equations are solved with the finite-volume solver
CharLES* [21, 28, 29]. A hybrid scheme developed to minimize the numerical dissipation via a
blending of fourth-order central scheme and second-order ENO scheme on regular meshes is used.
Subgrid-scale (SGS) stresses are modeled by the Vreman eddy-viscosity model [30]. Operator split-
ting is employed for time integration, in which the non-stiff advection-diffusion operators are solved
using a third-order accurate strong-stability preserving Runge-Kutta scheme [31]. To integrate the
stiff chemical source terms, a semi-implicit Rosenbrock-Krylov scheme is used, having 4*"-order
accuracy and linear cost with respect to the number of species [32].

4.2.1. Computational setup

The computational domain considered in this study has a size of 75 x 75 x 120 mm? and the
coflow inlet is located 8 mm below the jet nozzle exit. The origin is located at the center of
the nozzle. The structured mesh contains 5.7 million hexahedral elements with a resolution of
Az = 75pum in the injector and the shear layer. The minimum cell size in the flame region is
0.2 mm, which was found to be sufficient to resolve the ignition kernels, having a characteristic
length of li; = 1.5 mm [12]. At the jet inlet, a fully developed turbulent velocity profile with
5% turbulence intensity is imposed using a digital filter technique [33]. The lowest percentage of
resolved turbulent kinetic energy, near the nozzle exit, is above 80%, which fulfills the resolution
criterion for a reliable LES [34]. Before performing the measurements of the pulsed jet, the Hy/air
matrix burner was operated for at least ten minutes, ensuring that all walls have reach thermal



equilibrium [12]. Therefore, the injector lip and the outer walls are modeled by adiabatic no-slip
walls.

4.2.2. Combustion modeling

Two submodels are used for the PEC-AI simulations, namely a Finite-Rate Chemistry (FRC)
model and the flamelet /progress variable model (FPV). For both models, a reduced CH4/air mech-
anism derived by Jaravel et al. [35] is used to which an OH* sub-mechanism [36] is added in order
to enable direct comparisons with experimental data. The resulting mechanism has a total of
21 species. A dynamically thickened flame model [37] is used for representing the turbulence-
chemistry interaction and constant turbulent Prandtl and Schmidt numbers are used (Pry = 0.7
and Scy = 0.7) outside of the flame region. Since the flame region is dynamically identified by a
flame sensor, this model is not active in regions of autoignition. The maximum thickening factor
in the statistically stationary flame is 3 and the maximum efficiency function is lower than 2. The
exponent of the efficiency function is kept constant, 5 = 0.5. The flame sensor is based on the
source term of progress variable to have a consistent subgrid scale turbulence/chemistry interaction
closure for all combustion models. The FRC model consists of solving transport equations for all
species in the chemical model Eq. (2), with laminar Prandt]l and Schmidt numbers different for all
species. Contrary to more computationally efficient manifold-based combustion models, detailed
FRC models are agnostic to the combustion regime and can, thus, be used to study premixed, non-
premixed and autoignition regimes. As such, and similarly to previous PEC studies [21], the FRC
model is regarded as the model of highest fidelity in the present work. The thermochemical state
in the FPV model is obtained from the solution of steady flamelets along the S-curve, including
the unstable branch. To avoid inconsistencies due to preferential diffusion effects, mixture frac-
tion is transported throughout the entire domain [21]. A first order approximation of the relative
costs of the combustion models can be obtained from the number of transported scalars. As only
two scalars are transported for FPV, the current FRC model should computationally more expen-
sive by an order of magnitude. However, computational overhead associated with the evaluation
of the drift-term, application of boundary conditions, and dynamic submodel assignment require
consideration.

4.2.8. Transient injection conditions

To capture the correct ignition time, the transient injection has to be accurately modeled.
For this, we follow the work by Inanc and Kempf [15] and model the transient injection by a
linear ramp. Papageorge et al. [11] estimated the initial velocity of the jet to be between 40
and 50 m/s. Therefore, an initial bulk velocity of 45 m/s was used and the duration of the
transient injection is set to 0.4 ms. A fully developed turbulent velocity profile is imposed in
the injector (fuel inlet) by prescribing the mean and RMS fluctuations. The ramping strategy
is implemented by scaling the mean and RMS profiles in time and the results are presented in
Fig. 4. Figure 4a shows the temporal evolution of the scaled “mean” target velocity profile at the
center of the injector nozzle (x = 0) by the dashed blacked line. A typical axial velocity signal
recorded at the origin from a FPV simulation is shown by the gray solid line and referred to as
“Probe” in Fig. 4a. This ramping strategy is assessed by comparing the jet penetration length
obtained from monolithic FRC and FPV simulations and PEC-AI with measurements reported
by Arndt et al. [12]. The jet penetration length is computed from an isocontour of mixture fraction,
xypr, = max (x | Z > Zg) where, consistently with [12], the threshold value is set to Zg = 0.1,
approximately three times the stoichiometric value. As shown in Fig. 4b the results obtained for
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the jet penetration length compare favorably with measurements [12] and the combustion models
(monolithic FRC, monolithic FPV and PEC-AI with a penalty term of A = 10~*) do not have an
appreciable effect on the transient jet dynamics during the injection phase.
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Figure 4: a) Transient injection and b) jet penetration length.

5. Results

In this section, results from PEC-AI simulations and comparisons with monolithic FRC and
FPV simulations are presented for two operating conditions. To examine the performance of
PEC-AI in predicting lift-off and transient ignition dynamics, we first consider the Case TC1490
(see Table 1), for which a detailed set of measurements is available. The sensitivity of PEC-AI
in predicting effects of variations in the coflow temperature is examined by considering the Case
TC1585, having a higher coflow temperature and reduced lift-off height. To demonstrate the
merit of the PEC-AI formulation, comparisons with 1) the previously developed PEC-formulation
(denoted by PEC-C) are performed, in which the drift term was defined using the set of Qols, Q =
{Yco,Yco,, Yi1,0, Yi1, } [21] and 2) a PEC-formulation (denoted PEC-C-OH) that also includes OH,
which was identified as species that affects the autoignition time, Q = {Yco, Yco,, Yi1,0, Yi,, You}-

5.1. Influence of penalty parameter

As discussed in Sec. 2, the penalty parameter A allows to balance accuracy and cost of the
PEC-AI simulation. Changing this parameter leads to a change in submodel assignment as well as
a change in the cost and the error of the simulation. Since the error is dependent on the flow-field,
the FRC-utilization will be dynamically adjusted during the transient simulation according to the
user-prescribed value of . In this section, the effect of this parameter on the cost and the error
of the combustion model is examined. The global error is defined from the model mapping as
presented in Eq. (4). From the definition of the drift term (Eq. (6)), it is clear that, since FRC
is considered the model of highest fidelity, if the entire computational domain is assigned to FRC,
M(x) = mgy, the global error is Epgrc = 0. Conversely, assigning the entire computational domain
to FPV, M(x) = my, results in the maximum global error Eppy.

We noted that during the transient ignition process the error grows from a zero value since the
initial mixing state is accurately captured by the FPV model. When the flame reaches a stationary
state, the error converges to a stationary value that fluctuates due to the turbulent flow field.
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To study the effect of A on the submodel assignment, a series of simulations is performed in
which A is changed over a wide range of conditions. The corresponding FRC-submodel utilization
as a function of A is shown in Fig. 5. These simulations are performed for one time-step after
the flame has reached a statistically stationary state. From the results, shown in Fig. 5, it can be
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Figure 5: Percentage of control volumes utilizing FRC and resulting normalized error Eprc(A)/Erpy as a function

of the penalty parameter .

seen that for values of A above 10~! the monolithic FPV model is recovered. While in previous
investigations [19, 20, 21], the monolithic FRC model was recovered (100% FRC utilization), in the
present study, PEC-AT attains a maximum FRC-utilization of 8% in the limit of A — 0. This is due
to the definition of the drift term for autoignition: in large regions of the flow, corresponding to
the coflow, the burnt products and the fuel, the thermochemical state is insensitive to the ignition
delay. Regions of the flow where the thermochemical state may lead to autoignition is, thus, only
defined in a small fraction of the computational domain, here only 8%, which demonstrates the
selectivity of the current drift term formulation. Finally, a A-value of 1072 leads to an error level
of 10% of the monolithic FPV simulation for about 2% of FRC utilization.

In the following, simulations with two different \-values are performed, namely A = 10~* and
A = 1079 leading to a FRC-utilization of about 3.5% and 7%, respectively.

5.2. Comparison of PEC-model assignment

Figure 6 shows instantaneous fields before (A, ¢ = 1.9 ms) and after ignition (B, ¢ = 3.2 ms).
The A parameters for PEC-C (A = 3 x 1072) and PEC-AI (A = 10~%) are chosen such that both
simulations have a comparable FRC-utilization of 4% at statistically stationary conditions.

As shown in Fig. 6A-1 and Fig. 6B-1, the mixture fraction fields are comparable for the two
PEC formulations, before and after ignition. Before ignition (Fig. 6A-2), both PEC formulations
show similar temperature fields and the cold turbulent fuel jet (gray) is mixing with the hot coflow
(white). At this stage, the coherent mixture fraction and temperature fields indicate that the flow
is controlled by turbulent mixing. After ignition (Fig. 6B-2), a discrepancy between temperature
fields is observed. In particular, the two models predict a different flame lift-off height hro, visu-
alized by the lowest axial position of the regions hotter than the coflow (red). In this work, the
lift-off height hyo is defined as the minimum axial location for which the temperature is higher or
equal to a threshold 6r,0, that is h,o = minarg, (T'(z) > 6r0), with 0 = 1560 K. This tempera-
ture threshold corresponds to a 5% temperature increase with respect to the coflow temperature,
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typically used to visualize the temporal evolution of ignition kernels [12]. It is noted that this quan-
tity is highly unsteady such that the values indicated are qualitative; a quantitative analysis of
time-averaged profiles is performed in Fig. 8. The discrepancy in hr,o is explained by the submodel
assignments, as shown in Fig. 6A-3 and Fig. 6B-3, as the two drift term formulations produce
significantly different local submodel assignments. The isocontour of temperature corresponds to
an increase of 5% with respect to the coflow temperature. Before ignition, PEC-C uses FRC in
the core of the jet while PEC-AI assigns FRC in the shear layer and around the most reactive
mixture fraction Zy,,. Steady flamelet models have been shown to under-predict hyo [5, 15]. For
PEC-C, the flame root and Z,,, are located in FPV regions, which explains the under-prediction of
hro. Conversely, PEC-AI detects these regions and assigns them to the FRC submodel. Finally,
as expected, the burned product regions are computed by FPV and small isolated ignition kernels
are assigned to FRC.

<5y
B-3

P

P

PEC-AI PEC-C

Figure 6: Instantaneous fields of (1) mixture fraction, (2) temperature and (3) submodel assignment (A) before and
(B) after ignition. Panels on the left and right correspond PEC-AI (A = 10™*) and PEC-C, respectively. The FRC
regions are in black and FPV regions in grey. Isocontours of temperature (7' = 1560 K) and most reactive mixture
fraction are shown. The axial locations of the radial profiles are shown. Results are shown for Case TC1490.

5.8. Stationary operating condition

5.8.1. Time-averaged profiles

Figure 7 shows centerline profiles of CH4 mass fraction and temperature averaged over 7.5
ms, corresponding to 890 flow time scales based on the bulk velocity and the diameter of the
fuel injector. All models show good agreement with the measurements. It is noted, that FRC
performs better than FPV, especially for the temperature far from the nozzle exit, and this trend
is accurately reproduced by the PEC-AI simulation. The computational costs of the monolithic
FPV and FRC submodels (Table 2) are 1150 and 12500 CPUh per millisecond of physical time.
The PEC calculations lead to a cost of 4810 and 5040 CPUh/ms for the penalty parameters
of A = 107* and A = 1075, that is 38% and 40% of the computational cost of the monolithic
FRC simulation, using dynamic load rebalancing [32]. Computational overhead arises from the
computation of the drift term, the evaluation and exchange of boundary conditions at the submodel
interfaces, and the source term evaluation in spatially inhomogeneous subdomains. Two methods
were used to estimate this overhead. First, the overhead can be expressed from the cost scaling
of a PEC simulation, Cprc = frrcCrre + (1 — frre)Crpv + Coverhead Where frre is the fraction
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of control volumes assigned to FRC and Cyyerhead denotes the computational overhead. From the
aforementioned computational cost, the overhead for the two PEC simulations is 24% and 25% of
the monolithic FRC simulation. The second method consists in using a very large value for the
penalty parameter, here A\ > 1 (see Fig. 5), to evaluate the cost of a simulation with 0% FRC
utilization. With this method, the overhead is determined to be 28% of the cost of the monolithic
FRC simulation.

Table 2: Computational cost and FRC utilization for monolithic and PEC-AI simulations at statistically stationary
conditions.

FRC FPV  PEC-AI (A =10"%) PEC-AI (A= 10"°)

Computational cost [CPUhL/ms] 1150 12500 4810 5040
FRC utilization (stationary conditions) [%] 100 0 3.5 7.0

——FRC = = PEC-AL 4=10"" O Exp. ]
——-FPV PEC-AL 1=10"°

10 20 30 40 350 60

Figure 7: Comparison of centerline profiles for (a) mean CH4 mass fraction and (b) temperature for PEC-AI, FPV,
FRC and experimental data for the case TC1490.

Figure 8 shows a comparison of radial profiles of the mean and RMS results at five axial locations
(shown in Fig. 6A-1 and Fig. 7). The statistical results for PEC-AI are compared with monolithic
FRC and FPV simulations and measurements. The experimental radial profiles are binned into
regular intervals and the mean value is represented as a solid black line. The experimental uncer-
tainties are not represented in Fig. 7 and the minimum and maximum values within each interval are
reported as vertical bars. The mean temperature and Ycy, profiles of FRC are in good agreement
with experimental results for all axial locations, indicating that the flame stabilization and hy,o are
well captured. The flame spreading angle for the stationary flame, visualized by the radial location
of the maximum temperature, is also correctly predicted by FRC. The monolithic FPV simulations
under-predict hro, resulting in a large discrepancy for temperature profiles and spreading angle.
It is noted that the statistically stationary results of the compressible flamelet formulations used in
[15] (not shown here) predict a hro closer to the measurements compared to the monolithic FPV.
However, the mean and RMS profiles of temperature at + = 40 mm and z = 50 mm are comparable
to the monolithic FPV: the maximum measured temperature at = 40 mm is 1500 K and the
maximum predicted temperature are: 1950 K for the monolithic FPV, 1600 K for the approaches
used by [15], and 1580 K for the monolithic FRC. The probability of the dynamic PEC-AI model
assignment (for A = 107%) is shown in Fig. 8 in the form of a colormap. A probability of 0%
corresponds to regions where FPV is always used and 50% to regions where FRC is assigned half
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Figure 8: Radial profiles of temperature and CH4 mass fraction and probability of model assignment for case TC1490
at five axial locations (cf. Fig. 6) for FRC, FPV, PEC-AI and experimental results [2].

of the time. Both PEC-AT simulations show similar profiles and are able to retrieve the mean FRC
profiles and, thus, the correct spreading angle and hr,o. The RMS quantities are over-predicted
for all simulations, indicating that the flame root is predicted to be more unsteady compared to
the experiment. RMS over-predictions, especially for temperature profile, have also been observed
by [14, 15] on the same operating conditions. As the flame stabilization is very sensitive to coflow
conditions, these differences may appear due to uncertainties in the coflow mass flow rate (of the
order 1-1.5%) and, mostly, in the coflow temperature due to a lower signal-to-noise ratio in this
region [12]. This is visible in Fig. 8 as the experimental RMS of temperature in the coflow is of the
order of 25 K at all axial locations. Nonetheless, PEC-AT retrieves profiles in good agreement with
FRC, even in regions where only FPV predicts a flame, e.g. x = 30 mm, which can be attributed
to the fact that FRC is assigned to the flame root (see Fig. 6 for submodel assignment). Since FRC
is considered to be the model of highest fidelity, PEC-AI cannot yield more accurate results that
the monolithic FRC. The probability of locally assigning FRC reduces with downstream distance,
as this region of the flow is well described by the FPV model and the selective drift term sensor
becomes inactive.

Overall, PEC-ATI is capable of retrieving the FRC profiles in regions of interest with only 3.5%
of FRC submodel assignment in the domain for A = 10~ and decreasing the penalty parameter
does not lead to a significant improvement in this case.

5.8.2. Comparison with Qol-based drift term formulation

The time-averaged results of the Pol-based drift term formulation introduced in Sec. 3 have
been analyzed. However, only qualitative comparisons have been conducted so far. Here, we
perform a quantitative comparison between the current Pol formulation and two Qol-based drift
term formulations. The first formulation is the PEC-C (see Sec. 5) for which the set of Qols is
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defined as Q = {Yco, Yco,, Yi1,0, Y, }- This formulation has been used in previous studies using
the PEC framework [21].

From the sensitivity analysis that was performed to identify the scalar dependencies ¢, of the
surrogate 7, the most sensitive quantity has been identified to be Yoi. Adding this species to the
set of Qols may have a strong impact on the solution with minimum changes to the methodology
of [19]. Hence, the second formulation, denoted as PEC-C-OH, uses the following set of Qols,

Q = {YCO') YCOQ 5 YHzO; YH27 YOH}
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Figure 9: Comparison of radial time-averaged temperature profiles for two Pol-based drift term formulations (PEC-C
and PEC-C-OH), the Pol formulation (A = 10™* and A = 107°%) and the monolithic FRC and FPV simulations for
case TC1490.

Figure 9 shows time-averaged radial temperature profiles for PEC-C and PEC-C-OH at = = 30
and x = 40 mm for the case TC1490. As in Fig. 8, these profiles are the most relevant as
they are located upstream and downstream of the experimentally observed flame root. In Fig. 9,
the measurements are reported for reference. However, the comparison of the proposed PEC
formulations should be performed with respect to the monolithic FRC profiles, since the highest-
fidelity PEC formulation is acheived for A = 0, which corresponds to a maximum FRC utilization.
Both Qol-based formulations yield improved predictions of the statistically stationary state in
comparison to the monolithic FPV simulation. In particular, the mean flame lift-off height is
closer to the monolithic FRC. However, as shown in Fig. 6, for PEC-C the shear layer is assigned
to the FPV model and a very similar submodel assignment is obtained for PEC-C-OH (not shown
here). This results in a misprediction of the spreading angle, in particular near the centerline
(r < 4 mm), where the spreading angle predicted by FPV is retrieved by both Qol-based PEC-
formulations. At x = 40 mm, the radial profiles of time-averaged temperature show that the mean
temperature peak is overpredicited by PEC-C and PEC-C-OH. In addition, the radial locations of
these peaks are slightly shifted towards the coflow region. As expected, the addition of Yo to the
set of Qols allows to improve the prediction of the flame lift-off height, as shown by the reduced
peak temperature of PEC-C-OH at x = 40 mm with respect to the PEC-C results.

Even though, Fig. 9 demonstrates that the addition of Yop to the Qol has a marginal effect on
the statistically stationary temperature profiles, this formulation does not improve the prediction
of the autoignition time and location due to a submodel mapping similar to the PEC-C formulation
(Fig. 6).
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5.3.8. Sensitivity to coflow temperature

We proceed by examining the capability of the PEC-AI formulation in predicting effects of
variations in the coflow temperature on the lift-off height. To this end, additional simulations with
a coflow temperature of 1585 K (Case TC1585, see Table 1 for coflow composition) are conducted,
corresponding to the highest coflow temperature for which radial measurements at z = 30 mm are
available [2].
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Figure 10: Time-average radial profiles for monolithic FRC, monolithic FPV, PEC-AI (A = 107%) and measurements
for case TC1585.

Figure 10 shows mean and RMS profiles of temperature and methane mass fraction. Al-
though Arndt et al. [2] reported a coflow temperature of 7. = 1585 K, the radial profile at
x = 30 mm indicates that the coflow temperature is about 25 K below the nominal value. The
large RMS temperature in the coflow suggests that the boundary conditions exhibit a higher level
of unsteadiness compared to the case TC1490. For this high-temperature coflow condition, the
temperature measurements show that the location of the flame root is highly unsteady and is lo-
cated around x = 30 mm, as shown by the peak location in the mean temperature profiles and the
high RMS values at » = 5 mm. FPV grossly under-predicts the flame root location as shown by the
temperature peak for x = 20 mm. In contrast, the monolithic FRC simulation predicts a slightly
higher temperature, indicating that the location of the flame root is under-predicted, which is con-
sistent with the results obtain for the coflow temperature T, = 1490 K and the discrepancy between
the measured and nominal coflow temperature [2]. Both FPV and FRC simulations predict the
same spreading angle as the radial peak-temperature location are the same at x > 30 mm. Results
for the PEC-AI simulation with A\ = 1075 show that the spreading angle of the FRC simulation
is recovered as well as the temperature and methane profiles. Some small discrepancies between
FRC and PEC-ATI are observed in the upper part of the flame at x = 40 mm and z = 50 mm,
corresponding to regions with a very low probability of FRC utilization.
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5.4. Transient ignition dynamics

To assess the capability of PEC-AI to capture stochastic autoignition, ensemble simulations are
conducted and the autoignition time 747, the ignition height har and the radial position ray of the
ignition kernels are recorded from which probability distributions P are computed. Variability is
introduced in each simulation by randomly seeding the inflow conditions of individual simulations
for all combustion models, namely, FPV, FRC, PEC-AI (A = 10~*) and PEC-AI (A = 1079).

5.4.1. Dynamic submodel assignment in PEC-AI

T
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Figure 11: Dynamic submodel assignment, showing (left) instantaneous temperature (in K), and submodel assignment
fields (right) obtained during the transient ignition simulation for PEC-ATI (A = 107°%) for case TC1490. The nozzle
exit coincides with the bottom of the figure.

Figure 11 shows instantaneous results for temperature and submodel assignment obtained dur-
ing a transient simulation for PEC-AI (A = 107°) for case TC1490. At the initial condition (¢ = 0
ms) the thermochemical state is fully described by inert mixing. For this condition, the PEC-AI
submodel assignment is prescribed by a uniform FPV utilization. At later times (0 < ¢ < 2.1 ms)
the mixing layer develops and discrepancies between the thermochemical states predicted by FRC
and FPV appear, which results in a finite drift term. In accordance, the region of FRC utilization
expands in time and is dynamically adjusted and localized around the most reactive mixture. At
t = 0.7 ms, the ejection of a fuel-rich pocket into the high-temperature coflow is observed. Small
autoignition kernels appear in this region at ¢ = 1.7 ms at the most reactive mixture. However,
these autoignition kernels rapidly extinguish by turbulent mixing, as shown by the temperature
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field at ¢ = 2.1 ms. Eventually, sustainable ignition is observed at ¢ = 2.5 ms, resulting in the
successful transition to a stably burning flame.

Figure 12 shows the temporal evolution of the FRC utilization for 20 ensemble simulations
performed for PEC-AI (A = 107%). All simulations are initialized with the FPV-model at ¢ = 0 s.
With the development of the mixing layer (see Fig. 11) the FRC utilization increases as a conse-
quence of the detected deficiency in the FPV-model compliance with the flow-field representation.
Although the submodel assignment for all simulations is similar, differences in the initial conditions
lead to a separation of the flow-field solution. This separation evolves on a time that scales with the
integral time and can be related to the Lyapunov exponent [38]. According to user-specific require-
ments on the solution accuracy (expressed through the selected value of ), the dynamic submodel
assignment changes, which is illustrated in Fig. 12 by the spread of the FRC utilization during the
simulation. The ensemble averaged FRC utilization at the time of autoignition, visualized by the
experimental PDF of 71 in Fig. 12, is 4.5%. In comparison, the maximum FRC utilization for
PEC-AI (A = 10~%), obtained in the stationary flame (Fig. 5), is 3.5% and the ensemble average
FRC utilization at the time of autoignition (not shown here) is only 2%.
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Figure 12: Temporal evolution of the FRC utilization during the ignition phase for 20 separate ensemble simulations
for PEC-AT (A = 107%) and experimental PDF of autoignition time [12]. Results are presented for case TC1490.

5.4.2. Prediction of stochastic ignition dynamics

Following the experimental procedure of Arndt et al. [12], ignition kernels are identified from
thresholding the OH* mass fraction and a level of 10712, corresponding to 50% of the maximum
value, is used. Due to the sudden temporal evolution of You+, the choice of the threshold value
was found to only have a marginal effect on 751, har and ray [24].

To compare the stochastic values of 7a1, hat and ra7 predictied by each model, it is necessary
to evaluate the required sample size, that is, the number of simulations needed. Due to the
computational burden associated to LES calculations, especially for the monolithic FRC, this
sample size should be kept as low as possible. Here, the minimum sample size requirement is
verified a posteriori by analyzing the convergence of the cumulative mean and standard deviation
of Ta1, hat and ra1 (not show here) as the samples are collected. This is shown in Fig. 13 for each
of the considered combustion models. The standard deviation o of a given Gaussian distribution
is reported as a range around the mean value, u + ko, where p denotes the mean and k is chosen
to be k = 0.125, such that 25% of the ignition events fall within the reported ranges of 7o1 and
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Figure 13: Convergence of the mean and standard deviation as a function of the number of collected samples for the
monolithic FRC, the monolithic FPV and PEC-AT (A = 107* and A = 107°) simulations. Results are presented for
the case TC1490.

har. Even though large variations of the cumulative mean and standard deviations are visible for
less than 10 samples, the orders of magnitude of these quantities are well established for all models
with approximately 15 samples. Although small variations are still present, the differences between
the considered models is statistically significant. As shown in Fig. 13, the value of 20 samples is
sufficient to obtain the stochastic quantities of the different combustion models with reasonable
accuracy.

The mean and standard deviation obtained for each model are compared with the measurements
for the case TC1490 in the form of a Gaussian distribution in Fig. 14 after collecting 20 samples.
This comparison shows that the obtained predictions from the monolithic FRC simulation are
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Figure 14: Normalized distributions for ignition time, height and radius for PEC-AI, monolithic FRC and FPV
simulations and the measurements. The shaded area corresponds to the range reported by [12]. Results are presented
for case TC1490.

in satisfactory agreement with measurements. hpo is well predicted, 7a1 is shifted by 0.2 ms
(< 5%) and the radial location 71 falls within the experimentally observed range [12]. This result
confirms that the consideration of inlet turbulence is adequate to reproduce the distribution of
the measured quantities. In contrast, monolithic FPV simulations significantly over-predict these
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quantities, which was also observed by Inanc and Kempf [15] for other steady-state flamelet-based
combustion models. This can be attributed to the fact that steady flamelet models do not account
for the transient ignition, which is controlled by the initial development of a radical pool [5].

PEC-AI results are within the values predicted by FRC and FPV. Using a penalty term of
A = 1074, the predictions of the ignition delay are improved over FPV simulations with average
relative errors of the mean 751 of 14% and 30% compared to the prediction of FRC and FPV,
respectively.

Decreasing the value of the penalty parameter to A = 107%, leading to a larger FRC utilization,
significantly improves the accuracy for predicting the transient ignition. For all quantities, 7ag,
hat and ra1, PEC-AI (A = 10_6) is able to generate results that are comparable to FRC results at
reduced cost and a substantially lower FRC-submodel assignment that does not exceed 5% of the
computational domain. These results demonstrate that regions necessary for predicting transient
ignition dynamics are successfully identified by the novel drift term formulation for autoignition.

6. Conclusions

In this study, the PEC framework is extended to predict the autoignition in turbulent flames. To
this end, the drift-term formulation is extended to consider processes of interest by introducing the
ignition delay of an isobaric homogeneous reactor as surrogate for the autoignition. A sensitivity
analysis is performed to identify parametric dependencies of ignition delay to thermochemical
quantities, consisting of temperature, mixture fraction, progress variable and OH mass fraction.

The resulting PEC-AI formulation is applied to the DLR-JHC configuration and two different
operating conditions are considered. FRC and FPV are used as submodels for the PEC-ATI sim-
ulations. Monolithic FRC simulations are performed to demonstrate the capability of accurately
modeling transient ignition features and lift-off height. Comparisons with monolithic FPV simu-
lations show significant mispredictions of ignition time and flame lift-off of the FPV model. The
extended PEC-AI formulation dynamically identifies deficiencies of the FPV model and locally
assigns the FRC submodel in regions of the most reactive mixture composition. An analysis of the
submodel assignment and the performance of the PEC-AI formulation is performed, showing that
the FRC accuracy is recovered using less that 5% FRC-utilization in the computational domain.
The computational cost for the PEC-AI simulation was less than 40% of that of a monolithic
FRC simulation. The PEC overhead arising from the computation of the drift term, application
of boundary conditions at submodel interfaces, and the source term evaluation is approximately
25% and further improvements are achievable using subzone lumping and more efficient domain
partitioning.

The transient autoignition process is studied by performing ensemble simulations and distribu-
tions of ignition time, height and radial locations of the ignition kernels are reported. It is shown
that the utilization of PEC-AI improves the solution accuracy by targeting deficiencies of the FPV
combustion model. The effect of the level of FRC utilization is shown by conducting two sets of
ensemble calculations with two values for the penalty parameter. Although statistically stationary
conditions were in agreement with measurements, a penalty parameter of A = 10~% was found to be
necessary to accurately capture the transient ignition processes, resulting in 4.5% FRC utilization
at the time of ignition. This PEC-AI simulation of highest fidelity was found to fully recover the
FRC-results at significantly reduced cost.

This study illustrates the ability of the PEC formulation in targeting different combustion
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response functions that include not only species and emissions but also transient combustion pro-
cesses.
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