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We present a class of self-scaling collocation integrators which, unlike explicit Runge-
Kutta integrators, will automatically preserve quadratic constants of motion such as energy,
linear momentum, and angular momentum, without the need for small stepsizes. However,
collocation integrators in general require numerical optimization to solve an implicit set of
equations which are difficult and computationally expensive to solve when the problem’s Ja-
cobian becomes ill-conditioned. Therefore, the integrators we present automatically scale the
collocation conditions using a generalized eigenvalue problem (GEVP) approach, and exploit
the Jacobian’s structure to improve the optimization algorithm’s precision and speed. Nu-
merical results show that the presented integrators preserve invariants in a broader class of
integration problems, with an improvement of approximately one order of magnitude over
traditional Runge-Kutta 4(5) schemes.

I. Nomenclature

𝐴 = amplitude of oscillation
𝑎 = cylinder diameter
𝐶𝑝 = pressure coefficient
𝐶𝑥 = force coefficient in the x direction
𝐶𝑦 = force coefficient in the y direction
c = chord
d𝑡 = time step
𝐹𝑥 = 𝑋 component of the resultant pressure force acting on the vehicle
𝐹𝑦 = 𝑌 component of the resultant pressure force acting on the vehicle
𝑓 , 𝑔 = generic functions
ℎ = height
𝑖 = time index during navigation
𝑗 = waypoint index
𝐾 = trailing-edge (TE) nondimensional angular deflection rate

II. Introduction
Despite being developed over 100 years ago, explicit Runge-Kutta methods are still among the most widely used

numerical integration techniques [1–4], with many well-known integration schemes, such as Euler integration, falling
into the broad class of Runge-Kutta integrators. Part of this success is due to the reasonably high orders of accuracy that
simple Runge-Kutta methods can achieve. For example, the 1-stage Euler integration method is first-order accurate [5],
the classic 4-stage Runge-Kutta method is 4𝑡ℎ-order accurate [5], and the 17-stage method presented in [6] is 10𝑡ℎ-order
accurate. However, the number of stages required to achieve higher orders of accuracy increases rapidly, and since
a general parameterization of such integrators is lacking, even calculating the parameters of higher order integrators
becomes a difficult task [1]. In addition, explicit Runge-Kutta integration methods can become unstable for large
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integration timesteps, and since a proper timestep cannot be determined a priori without first analyzing the differential
equation to be integrated, such methods are typically a poor choice for general-purpose numerical integration.

Conversely, variable timestep explicit Runge-Kutta integrators largely avoid instability and mimic the behavior of
higher-order integrators by producing an estimate of the integration error, and decreasing the integration timestep if
the estimated error is above a predefined threshold. For example, embedded Runge-Kutta pairs produce an estimate
of the integration error by comparing the estimated solution of two different Runge-Kutta integrators with different
orders of accuracy. However, although one can choose the tolerance of a variable timestep integrator to be arbitrarily
small, the internal timestep required to achieve such a tolerance will also be small, and hence the method will require
many function evaluations to integrate a differential equation. In addition, despite being able to choose arbitrarily small
tolerances, explicit Runge-Kutta methods are fundamentally incapable of preserving quadratic constants of motion,
such as energy, linear momentum, and angular momentum, and hence the errors in such quantities will grow at a rate
proportional to the chosen tolerance [7].

Gauss collocation integrators [4], on the other hand, are inherently capable of preserving quadratic constants of
motion, and can easily be chosen to have an arbitrarily high order of accuracy since the coefficients of the method are the
roots of a polynomial. The disadvantage of these methods is, however, that they require a numerical optimization method
to solve an implicit set of equations at each time step. Hence whereas variable timestep explicit Runge-Kutta methods can
be used off-the-shelf, collocation methods require one to choose a numerical optimization method, where the accuracy
of the collocation method is dependent on the accuracy of the optimization method. Furthermore, since optimization
solvers are generally sensitive to scaling, one must ensure that the problem is properly scaled and conditioned before
using a collocation integrator, which is a step that is not required by explicit Runge-Kutta methods.

In this paper, we present a generalized eigenvalue problem (GEVP) approach for automatically scaling the collocation
conditions, thereby making their solution faster and more reliable [8]. Furthermore, we introduce a novel hybrid
Jacobian computation approach which splits the computation into a component that can be computed a priori, and a
contribution due to the differential equation that can be computed efficiently using a complex-step approximation [9].
The self-scaling collocation scheme that we propose is made significantly faster by using the hybrid Jacobian approach,
while the automatic scaling improves the conditioning of the numerical problem to be solved, leading to more accurate
results.

The paper is organized as follows: in Sec. III, explicit and implicit Runge-Kutta methods are introduced and
compared. Section IV introduces the class of implicit Gauss collocation methods. In Sec. V the systematic hybridization
of the Jacobian matrix, which exploits the structure of the collocation problem, is described in detail, while in Sec. VI
the generalized eigenvalue problem (GEVP) scaling is applied to the collocation scheme. Results from attitude and
orbital dynamics are shown in Sec. VII, while some final remarks are expressed in Sec. VIII.

III. Numerical Integration Techniques
In this paper, we investigate the performance of several Runge-Kutta integration methods for solving initial value

problems of the form:

Problem III.1 Given the differential equation

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑓

(
𝑡, 𝑥(𝑡)

)
(1)

along with an initial condition 𝑥(𝑡0) ∈ R𝑛 and a timestep ℎ, compute an estimate 𝑥(𝑡0 + ℎ) of 𝑥(𝑡0 + ℎ).

where the family of Runge-Kutta methods is described in the following definition [1–4]:

Definition III.1 An 𝑠-stage Runge-Kutta method is a numerical integration method of the form

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
𝑠∑︁
𝑗=1

𝑏 𝑗 𝑘 𝑗

𝑘𝑖 = 𝑓

(
𝑡0 + 𝑐𝑖ℎ, 𝑥(𝑡0) + ℎ

𝑠∑︁
𝑗=1
𝑎𝑖, 𝑗 𝑘 𝑗

) (2)
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or equivalently,

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
𝑠∑︁
𝑗=1

𝑏 𝑗 𝑓

(
𝑡0 + 𝑐 𝑗ℎ, 𝑋 𝑗

)
𝑋𝑖 = 𝑥(𝑡0) + ℎ

𝑠∑︁
𝑗=1
𝑎𝑖, 𝑗 𝑓

(
𝑡0 + 𝑐 𝑗ℎ, 𝑋 𝑗

) (3)

where 𝑎𝑖, 𝑗 , 𝑏 𝑗 , 𝑐𝑖 ∈ R for 𝑖, 𝑗 ∈ [1, 𝑠], and the coefficients 𝑎𝑖, 𝑗 , 𝑏 𝑗 , 𝑐𝑖 are independent of 𝑡0, ℎ, 𝑥(𝑡0), and 𝑓 .

For example, Euler integration is a 1-stage Runge-Kutta method which produces an estimate 𝑥(𝑡0 + ℎ) of the form
[4]:

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ 𝑓
(
𝑡0, 𝑥(𝑡0)

)
(4)

and the 4𝑡ℎ-order Runge-Kutta integrator [5] is a 4-stage integrator which produces an estimate of the form

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) +
ℎ𝑘1
6

+ ℎ𝑘2
3

+ ℎ𝑘3
3

+ ℎ𝑘4
6

𝑘1 = 𝑓

(
𝑡0, 𝑥(𝑡0)

)
𝑘2 = 𝑓

(
𝑡0 +

ℎ

2
, 𝑥(𝑡0) +

ℎ𝑘1
2

)
𝑘3 = 𝑓

(
𝑡0 +

ℎ

2
, 𝑥(𝑡0) +

ℎ𝑘2
2

)
𝑘4 = 𝑓

(
𝑡0 + ℎ, 𝑥(𝑡0) + ℎ𝑘3

)
(5)

One of the distinguishing features of both Euler integration and the 4𝑡ℎ-order Runge-Kutta method is that they are
explicit integration methods. In contrast, the implicit midpoint method [4] is an implicit Runge-Kutta method since the
estimate 𝑥(𝑡0 + ℎ) is the solution of the implicit equation

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ 𝑓
(
𝑡0 +

ℎ

2
,
𝑥(𝑡0 + ℎ)

2
+ 𝑥(𝑡0)

2

)
(6)

Although implicit methods such as Eq. (6) will generally require numerical optimization to solve, and are therefore
much more computationally expensive than explicit Runge-Kutta methods, as we will see, implicit Runge-Kutta methods
are capable of preserving quadratic constants of motion and will generally have higher orders of accuracy than explicit
methods with the same number of stages.

Order of Accuracy To classify the accuracy of an integration method, we compare the Taylor series of the true and
estimated solution about the initial condition 𝑥(𝑡0). Specifically, since the Taylor series of the true and estimated solution
are given by

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
𝑑𝑥

𝑑𝑡
(𝑡0) +

ℎ2

2!
𝑑2𝑥

𝑑𝑡2
(𝑡0) +

ℎ3

3!
𝑑3𝑥

𝑑𝑡3
(𝑡0) + · · · (7)

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
𝑑𝑥

𝑑𝑡
(𝑡0) +

ℎ2

2!
𝑑2𝑥

𝑑𝑡2
(𝑡0) +

ℎ3

3!
𝑑3𝑥

𝑑𝑡3
(𝑡0) + · · · (8)

then the error 𝑒(𝑡0 + ℎ) in the estimate 𝑥(𝑡0 + ℎ) is given by

𝑒(𝑡0 + ℎ) = ℎ
[
𝑑𝑥

𝑑𝑡
(𝑡0) −

𝑑𝑥

𝑑𝑡
(𝑡0)

]
+ ℎ

2

2!

[
𝑑2𝑥

𝑑𝑡2
(𝑡0) −

𝑑2𝑥

𝑑𝑡2
(𝑡0)

]
+ (9)

+ ℎ
3

3!

[
𝑑3𝑥

𝑑𝑡3
(𝑡0) −

𝑑3𝑥

𝑑𝑡3
(𝑡0)

]
+ · · ·
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where the higher-order terms in ℎ will have little effect on the error when ℎ is small. Hence the goal of a numerical
integration technique is to ensure that

𝑑𝑥

𝑑𝑡
(𝑡0) =

𝑑𝑥

𝑑𝑡
(𝑡0), · · · , 𝑑 𝑝𝑥

𝑑𝑡 𝑝
(𝑡0) =

𝑑 𝑝𝑥

𝑑𝑡 𝑝
(𝑡0)

for some reasonably high value of 𝑝. In fact, this is precisely how a method’s order of accuracy is defined:

Definition III.2 A numerical integration method is 𝑝𝑡ℎ-order accurate if for all initial conditions 𝑥(𝑡0), all timesteps
ℎ, and all differential equations of the form

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑓

(
𝑡, 𝑥(𝑡)

)
(10)

the first 𝑝 derivatives of the estimate and true solution are equal, that is,

𝑑ℓ𝑥

𝑑𝑡ℓ
(𝑡0) =

𝑑ℓ𝑥

𝑑𝑡ℓ
(𝑡0), for all ℓ = 0, . . . , 𝑝 (11)

in which case, the error in the estimate 𝑥(𝑡0 + ℎ) is on the order of ℎ𝑝+1, that is,

𝑥(𝑡0 + ℎ) − 𝑥(𝑡0 + ℎ) = 𝑂
(
ℎ𝑝+1) (12)

Remark III.1 To compute the order of accuracy of a method, we implicitly assume that the Taylor series of the
function 𝑓 in Eq. (10) exists, and that it is locally convergent within some positive radius for every point in the domain
of interest. These assumptions are common in the integration literature since one typically requires at least Lipschitz
continuity to ensure that there exists a unique solution to the the differential Eq. (10) [7].

The Euler integration method is 1𝑠𝑡 -order accurate, the 4-stage Runge-Kutta method is 4𝑡ℎ-order accurate, and the
implicit midpoint method is 2𝑛𝑑-order accurate. However, proving that a specific Runge-Kutta method is 𝑝𝑡ℎ-order
accurate requires checking a very nonlinear set of equations that is beyond the scope of this paper [1]. Nonetheless, some
of the necessary conditions are illustrative for understanding why implicit methods can have higher orders of accuracy
than explicit methods. In this case, it is convenient to think of the coefficients 𝑎𝑖, 𝑗 , 𝑏 𝑗 , 𝑐𝑖 that define a Runge-Kutta
method as entries of the matrices 𝐴 ∈ R𝑠×𝑠 , 𝐵 ∈ R1×𝑠 , and 𝐶 ∈ R𝑠×1, which we concisely write in a Butcher tableau [1]:

[
𝐶 𝐴

𝐵

]
=


𝑐1 𝑎1,1 · · · 𝑎1,𝑠
...

...
. . .

...

𝑐𝑠 𝑎𝑠,1 · · · 𝑎𝑠,𝑠

𝑏1 · · · 𝑏𝑠


(13)

For example, the Butcher tableau for Euler integration is given by[
𝑐1 𝑎1,1

𝑏1

]
=

[
0 0

1

]
(14)

the Butcher tableau for the 4𝑡ℎ-order Runge-Kutta method is given by

𝑐1 𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4

𝑐2 𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4

𝑐3 𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4

𝑐4 𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4

𝑏1 𝑏2 𝑏3 𝑏4


=



0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6


(15)
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and the Butcher tableau for the implicit midpoint method is given by[
𝑐1 𝑎1,1

𝑏1

]
=

[
1/2 1/2

1

]
(16)

As we can see from Eqs. (14)-(16), the defining feature of an explicit method is that the 𝐴-matrix must be strictly
lower triangular, which reflects that the values 𝑘𝑖 in Eq. (2) only depend on the values 𝑘1, . . . , 𝑘𝑖−1. Thus the following
fact will allow us to bound the order of accuracy of an explicit Runge-Kutta method in terms of its number of stages:

Fact III.1 If (𝐴, 𝐵, 𝐶) denote the Runge-Kutta matrices of a 𝑝𝑡ℎ-order accurate Runge-Kutta integration method,
then for all ℓ = 1, . . . , 𝑝,

𝐵𝐴ℓ−11𝑠 =
1
ℓ!

(17)

where 1𝑠 ∈ R𝑠×1 denotes a matrix of 1’s.

Proof. Suppose that the differential equation in question is linear, that is,

𝑑𝑥

𝑑𝑡
(𝑡) = 𝐺𝑥(𝑡) (18)

where 𝑥(𝑡) ∈ R𝑛 an 𝐺 ∈ R𝑛×𝑛 . Then the Taylor series of the true solution is given by

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ𝐺𝑥(𝑡0) +
ℎ2

2!
𝐺2𝑥(𝑡0) +

ℎ3

3!
𝐺3𝑥(𝑡0) + · · · (19)

Furthermore, using form Eq. (3) of the Runge-Kutta method, we find that

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
𝑠∑︁
𝑗=1

𝑏 𝑗𝐺𝑋 𝑗 (20)

𝑋𝑖 = 𝑥(𝑡0) + ℎ
𝑠∑︁
𝑗=1
𝑎𝑖, 𝑗𝐺𝑋 𝑗 (21)

and hence for 𝑞 > 0,

𝑑𝑞𝑥

𝑑𝑡𝑞
(𝑡0 + ℎ) =

𝑠∑︁
𝑗=1

𝑏 𝑗𝐺

[
ℎ
𝑑𝑞𝑋 𝑗

𝑑𝑡𝑞
+ 𝑞

𝑑𝑞−1𝑋 𝑗

𝑑𝑡𝑞−1

]
(22)

𝑑𝑞𝑋𝑖

𝑑𝑡𝑞
=

𝑠∑︁
𝑗=1
𝑎𝑖, 𝑗𝐺

[
ℎ
𝑑𝑞𝑋 𝑗

𝑑𝑡𝑞
+ 𝑞

𝑑𝑞−1𝑋 𝑗

𝑑𝑡𝑞−1

]
(23)

Therefore evaluating the derivatives at ℎ = 0, we find that

𝑑𝑞𝑥

𝑑𝑡𝑞
(𝑡0) = 𝑞

𝑠∑︁
𝑗=1

𝑏 𝑗𝐺
𝑑𝑞−1𝑋 𝑗

𝑑𝑡𝑞−1 (24)

𝑑𝑞𝑋𝑖

𝑑𝑡𝑞
= 𝑞

𝑠∑︁
𝑗=1
𝑎𝑖, 𝑗𝐺

𝑑𝑞−1𝑋 𝑗

𝑑𝑡𝑞−1 (25)

Next, letting

𝑋 ,
[ 𝑋1...
𝑋𝑠

]
∈ R𝑛𝑠×1 (26)

5



then from Eqs. (24)-(25) it follows that

𝑑𝑞𝑥

𝑑𝑡𝑞
(𝑡0) = 𝑞

(
𝐵 ⊗ 𝐺

) 𝑑𝑞−1𝑋

𝑑𝑡𝑞−1 (27)

𝑑𝑞𝑋

𝑑𝑡𝑞
= 𝑞

(
𝐴 ⊗ 𝐺

) 𝑑𝑞−1𝑋

𝑑𝑡𝑞−1 (28)

where ⊗ denotes the Kronecker product. Therefore

𝑑1𝑥

𝑑𝑡1
(𝑡0) = 1!

(
𝐵 ⊗ 𝐺

)
𝑋,

𝑑2𝑥

𝑑𝑡2
(𝑡0) = 2!

(
𝐵𝐴 ⊗ 𝐺2

)
𝑋,

𝑑3𝑥

𝑑𝑡3
(𝑡0) = 3!

(
𝐵𝐴2 ⊗ 𝐺3

)
𝑋

Furthermore, evaluating Eq. (20) at ℎ = 0, we have that

𝑋𝑖 = 𝑥(𝑡0), for all 𝑖 = 1, . . . , 𝑠 (29)

and hence 𝑋 =

(
1𝑠 ⊗ 𝐼𝑛

)
𝑥(𝑡0). Thus

𝑑1𝑥

𝑑𝑡1
(𝑡0) = 1!

(
𝐵1𝑠

)
𝐺𝑥(𝑡0), (30)

𝑑2𝑥

𝑑𝑡2
(𝑡0) = 2!

(
𝐵𝐴1𝑠

)
𝐺2𝑥(𝑡0), (31)

𝑑3𝑥

𝑑𝑡3
(𝑡0) = 3!

(
𝐵𝐴21𝑠

)
𝐺3𝑥(𝑡0) (32)

Finally, from Eq. (32), we have that the Taylor series of the estimate is given by

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
(
𝐵1𝑠

)
𝐺𝑥(𝑡0) + ℎ2

(
𝐵𝐴1𝑠

)
𝐺2𝑥(𝑡0)+ (33)

+ ℎ3
(
𝐵𝐴21𝑠

)
𝐺3𝑥(𝑡0) + · · · (34)

Therefore, comparing the Taylor series of the estimate (33) with the Taylor series of the exact solution (19), we find that
the coefficients of a 𝑝𝑡ℎ-order accurate Runge-Kutta method must satisfy Eq. (17).

The significance of Fact III.1 is encapsulated in the following corollary:

Corollary III.1 A 𝑝-stage explicit Runge-Kutta method is at most 𝑝𝑡ℎ-order accurate.

Proof. If a 𝑝-stage Runge-Kutta method is explicit, then for all 𝑖 ∈ [1, 𝑝], the values 𝑘𝑖 in Eq. (2) must depend only on
the values 𝑘1, . . . , 𝑘𝑖−1, meaning that the 𝐴-matrix of a 𝑝-stage explicit Runge-Kutta must be strictly lower triangular.
Furthermore, since the 𝐴-matrix must be strictly lower triangular, it follows that 𝐴𝑝 = 0𝑠×𝑠 , and hence condition of Eq.
(17) in Fact III.1 cannot hold for ℓ ≥ 𝑝 + 1.

The following example demonstrates the effect of the integration timestep and the order of accuracy on the integration
error.

Example III.1 The position 𝑟 =
[
𝑥 𝑦 𝑧

]𝑇
∈ R3 of a satellite in orbit about the Earth can be modeled by the

simplified differential equation

𝑑2𝑟

𝑑𝑡2
(𝑡) = − 𝜇⊕𝑟 (𝑡)

𝑟 (𝑡)

3

2

(35)
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where 𝜇⊕ = 398, 600 km3/s2 denotes Earth’s gravitional parameter [10], and 𝑟 denotes the position of the satellite
expressed in an inertial frame located at the center of the Earth. Furthermore, if the orbit is circular, then the magnitude
of the velocity vector is given by 



𝑑𝑟𝑑𝑡 (𝑡)



2

=

√︄
𝜇⊕

𝑟 (𝑡)

2

(36)

Hence if a satellite is in a 300 km circular orbit about the Earth at the initial position and velocity

𝑟 (𝑡0) =


6678 km
0
0

 ,
𝑑𝑟

𝑑𝑡
(𝑡0) =


0

7.726 km/s
0

 (37)

then the position and velocity at a general time 𝑡 are given by

𝑟 (𝑡) = 6678 km


cos (𝜃 (𝑡))
sin (𝜃 (𝑡))

0

 ,
𝑑𝑟

𝑑𝑡
(𝑡) = 7.726 km/s


− sin (𝜃 (𝑡))
+ cos (𝜃 (𝑡))

0

 (38)

𝜃 (𝑡) = (𝑡 − 𝑡0)
√︄

𝜇⊕

𝑟 (𝑡)��32 =
2𝜋

(
𝑡 − 𝑡0

)
5431 s

(39)

where the satellite’s orbital period is 5431 s.
However, if we try to obtain the position 𝑟 by integrating Eq. (35) over one orbital period using timesteps of ℎ = 100

s with the 1𝑠𝑡 -order accurate Euler integration method of Eq. (4), then Fig. 1 shows that the estimated 𝑥 and 𝑦 positions
of the satellite diverge from the true circular orbit. Furthermore, although it appears that the 4𝑡ℎ-order Runge-Kutta in
Eq. (5) and implicit midpoint in Eq. (6) methods do a good job of integrating the orbital equation, Fig. 2 shows that
even those methods produce nontrivial integration errors which are inversely proportional to both the order of accuracy
and the integration timestep.

Fig. 1 Position of a satellite in a 300 km circular orbit over one orbital period using 100 second timesteps.

7



Fig. 2 Example of 2-norm of the error in the the integrated position of a satellite.

Remark III.2 Example III.1 demonstrates that the 4𝑡ℎ-order Runge-Kutta method is almost always preferably to
both the Euler integration and implicit midpoint methods in terms of integration accuracy when using the same timestep
for both methods. However, although the 4𝑡ℎ-order Runge-Kutta errors in Fig. 2 might seem reasonable even for the
large timestep of ℎ = 100 s, it is important to remember that:

1) What constitutes an “acceptable" error is extremely dependent on the intended use of the integrated variables.
2) The timesteps ℎ = 10 and 100 s were arbitrarily chosen. If we were simulating many orbits of a satellite, then it

might seem reasonable to try an integration timestep of 1 orbital period (5431 s), in which case, both methods
would produce unacceptably large errors.

The danger in using fixed timestep Runge-Kutta integrators is that they are typically only needed in cases where
we cannot compute the exact integration error, which means that we will often have no way of knowing whether the
integration solution is accurate in such cases. For example, if we try to integrate the dynamics of a solar sail in a 300
km orbit about the Earth, then it will be difficult to say a priori whether the sail should deorbit due to aerodynamic
drag, or actually gain altitude by harnessing solar radiation pressure. Hence unlike Example III.1, where we used the
knowledge that the orbit was circular to conclude that Euler integration produced a bad estimate in Fig. 1, we would
have no rationale for thinking that a solar sail simulation was correct or incorrect. This is precisely the problem that
variable timestep integrators address.

Variable Timestep Integrators Variable timestep numerical integrators improve upon fixed timestep integrators,
such as the Euler of Eq. (4) and 4𝑡ℎ-order Runge-Kutta of Eq. (5) methods, by producing an estimate of the integration
error, and decreasing the integration timestep if the estimated error is above a predefined threshold. For example,
embedded Runge-Kutta pairs produce an estimate of the integration error by comparing the estimated solutions of two
different Runge-Kutta integrators with the same 𝐴 and 𝐶-matrices, but different 𝐵-matrices and different orders of
accuracy, 𝑝low and 𝑝high. For instance, one of the most famous embedded Runge-Kutta pairs is the Dormand-Prince
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method, which has the Butcher tableau 
𝐶 𝐴

𝐵high

𝐵low

 =

=



0 0 0 0 0 0 0 0
1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45 − 56

15
32
9 0 0 0 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0 0
1 9017

3168 − 355
33

46732
5247

49
176 − 5103

18656 0 0
1 35

384 0 500
1113

125
192 − 2187

6784
11
84 0

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40



(40)

where the integrators (𝐴, 𝐵low, 𝐶) and (𝐴, 𝐵high, 𝐶) are 𝑝low = 4𝑡ℎ and 𝑝high = 5𝑡ℎ order accurate, respectively [2].
The usefulness of having estimates 𝑥low and 𝑥high with different orders of accuracy is due to the fact that their

difference is approximately equal to the integration error in the lower-order estimate, that is,

𝑥𝑝low (𝑡0 + ℎ) − 𝑥𝑝high (𝑡0 + ℎ) =
[
𝑥𝑝low (𝑡0 + ℎ) − 𝑥(𝑡0 + ℎ)

]
+

−
[
𝑥𝑝high (𝑡0 + ℎ) − 𝑥(𝑡0 + ℎ)

]
= 𝑂

(
ℎ𝑝low+1) +𝑂 (

ℎ𝑝high+1) = 𝑂 (
ℎ𝑝low+1) (41)

Hence using the difference

𝜀 , 𝑥𝑝low (𝑡0 + ℎ) − 𝑥𝑝high (𝑡0 + ℎ) (42)

as an estimate of the integration error in the lower-order accurate method, we find that 𝜀 is approximately of the
form 𝜀 ≈ 𝛼ℎ𝑝low+1. Therefore given the estimated integration error 𝜀 after one integration timestep ℎ, it follows that
𝛼 ≈ 𝜀

ℎ𝑝low+1 , where the timestep ℎ𝛿 that would have been required to produce an error of


𝜀

 = 𝛿 is approximately

given by

ℎ𝛿 ≈ ℎ
(
𝛿

𝜀



)1/(𝑝low+1)

(43)

where the norm


𝜀

 is typically taken to be the infinity norm. Thus if the norm of the estimated integration error 𝜀 is

larger than some predefined tolerance 𝛿, then we should reject the estimated solution 𝑥low (𝑡0 + ℎ) and recompute the
Runge-Kutta estimate using a timestep less than or equal to the one computed by using Eq. (43).

Remark III.3 There are numerous additional issues to be addressed to make the implementation of a variable
timestep integrator with the update in Eq. (43) efficient. However, to avoid a complete and detailed explanation of
the programming strategies involved, we use Matlab’s ode45 function in the following examples to show the typical
performance of such an implementation [11]. Note, however, that Matlab’s implementation is far from perfect, and
in fact, although the ode45 function allows one to set both the absolute and relative integration error tolerances, one
cannot completely decouple these tolerances in their implementation. Hence we always set the absolute and relative
tolerances to be equal.

Example III.2 Consider again a satellite in a 300 km circular Earth orbit, as in Example III.1. Figure 3 shows the
integration error in the position 𝑟 of the satellite during one orbital period when using Matlab’s implementation of the
Dormand-Prince method (ode45) along with the integration tolerances AbsTol = RelTol = 𝛿 = 10−15, 10−10, 10−5,
and 1. From Fig. 3, we see that the integrated errors are indeed proportional to the chosen tolerances, with no need to
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choose the sample timestep a priori. However, since the tolerances are also proportional to the required timestep (see
Eq. (43)), the timesteps required to achieve these tolerances vary widely. For instance, the median timesteps used by
ode45 to achieve the tolerances AbsTol = RelTol = 𝛿 = 10−15, 10−10, 10−5, and 1 are ℎ =1.1 s, 6.0 s, 60 s, and 140 s,
respectively.

Fig. 3 Example of 2-norm of the error in the the integrated position of a satellite when using Matlab’s ode45.

Runge-Kutta Methods which Preserve Quadratic Constants of Motion A quadratic constant of motion (or
quadratic invariant) of the differential equation

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑓

(
𝑡, 𝑥(𝑡)

)
(44)

is a quadratic equation that a solution 𝑥(𝑡) ∈ R𝑛 of Eq. (44) satisfies for all times 𝑡, that is,

𝑥𝑇 (𝑡)𝑄𝑥(𝑡) = 𝛾, for all 𝑡 (45)

where 𝑄 ∈ R𝑛×𝑛 is symmetric and 𝛾 ∈ R. The following fact, along with a complete proof of [12], gives a sufficient
condition for Runge-Kutta methods that preserve quadratic invariants:

Fact III.2 Let (𝐴, 𝐵, 𝐶) denote the matrices of an 𝑠-stage Runge-Kutta method. If

𝐵𝑇 𝐵 = diag(𝐵)𝐴 + 𝐴𝑇 diag(𝐵) (46)

then for all time-invariant differential equations of the form

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑓

(
𝑥(𝑡)

)
(47)

the Runge-Kutta method will preserve quadratic invariants of the form of Eq. (45), that is, for all timesteps ℎ, we will
find that

𝑥𝑇 (𝑡0 + ℎ)𝑄𝑥(𝑡0 + ℎ) = 𝑥𝑇 (𝑡0)𝑄𝑥(𝑡0) (48)

Proof. From the equivalent form in Eq. (3) of a Runge-Kutta method, we have that

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) +
(
𝐵 ⊗ 𝐼𝑛

)
𝐹 (49)

𝑋 =

(
1𝑠 ⊗ 𝐼𝑛

)
𝑥(𝑡0) +

(
𝐴 ⊗ 𝐼𝑛

)
𝐹 (50)
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where

𝐹 , ℎ


𝑓
(
𝑋1

)
...

𝑓
(
𝑋𝑠

)
 , 𝑋 ,


𝑋1
...

𝑋𝑠

 (51)

Furthermore, since 𝑄 is symmetric, then from Eq. (49), we find that

𝑥𝑇 (𝑡0 + ℎ)𝑄𝑥(𝑡0 + ℎ) = 𝑥𝑇 (𝑡0)𝑄𝑥(𝑡0) + 2𝐹𝑇
(
𝐵𝑇 ⊗ 𝑄

)
𝑥(𝑡0) + 𝐹𝑇

(
𝐵𝑇 𝐵 ⊗ 𝑄

)
𝐹 (52)

Next, pre-multiplying Eq. (50) by 𝐹𝑇
(
diag(𝐵) ⊗ 𝑄

)
, we find that

𝐹𝑇
(
diag(𝐵) ⊗ 𝑄

)
𝑋 = 𝐹𝑇

(
𝐵𝑇 ⊗ 𝑄

)
𝑥(𝑡0) + 𝐹𝑇

(
diag(𝐵)𝐴 ⊗ 𝑄

)
𝐹 (53)

where differentiating the quadratic invariant in Eq. (45), it follows that[
𝑑𝑥

𝑑𝑡
(𝑡)

]𝑇
𝑄𝑥(𝑡) + 𝑥𝑇 (𝑡)𝑄 𝑑𝑥

𝑑𝑡
(𝑡) = 2

[
𝑑𝑥

𝑑𝑡
(𝑡)

]𝑇
𝑄𝑥(𝑡) = 2 𝑓 𝑇 (𝑥(𝑡))𝑄𝑥(𝑡) = 0 (54)

for all 𝑡, and hence

𝐹𝑇
(
diag(𝐵) ⊗ 𝑄

)
𝑋 =

𝑠∑︁
𝑖=1

𝑏𝑖 𝑓
𝑇
(
𝑋1

) [
𝑄 +𝑄𝑇

]
𝑋𝑖 = 0 (55)

Furthermore, combining Eqs. (52), (53), and (55), we find that

𝑥𝑇 (𝑡0 + ℎ)𝑄𝑥(𝑡0 + ℎ) = 𝑥𝑇 (𝑡0)𝑄𝑥(𝑡0) + 𝐹𝑇
( [
𝐵𝑇 𝐵 − 2diag(𝐵)𝐴

]
⊗ 𝑄

)
𝐹 (56)

Finally, since

𝐹𝑇
(
diag(𝐵)𝐴 ⊗ 𝑄

)
𝐹 = 𝐹𝑇

(
𝐴𝑇 diag(𝐵) ⊗ 𝑄

)
𝐹 (57)

it follows that if there exists a 𝜃 ∈ R for which

𝐵𝑇 𝐵 = (2 − 𝜃)diag(𝐵)𝐴 + 𝜃𝐴𝑇 diag(𝐵) (58)

then Eq. (48) holds. However, since 𝐵𝑇 𝐵 is symmetric, we must have that (2 − 𝜃)diag(𝐵)𝐴 + 𝜃𝐴𝑇 diag(𝐵) is
symmetric, and therefore either diag(𝐵)𝐴 is symmetric, or 𝜃 = 1. Therefore, if Eq. (58) holds for some 𝜃, then Eq.
(46) must also hold.

Remark III.4 Aside from degenerate Runge-Kutta methods where 𝐵 = 0 (and hence 𝑥(𝑡0 + ℎ) = 𝑥(𝑡0)), the
condition in Eq. (46) in Fact III.2 can only be satisfied by implicit Runge-Kutta methods since the 𝐴-matrices of explicit
Runge-methods will have zeros on the diagonal, whereas the product 𝐵𝑇 𝐵 will have non-zero diagonal entries. To show
that Fact III.2 is also necessary condition, one would also have to show that if

𝐹𝑇
( [
𝐵𝑇 𝐵 − 2diag(𝐵)𝐴

]
⊗ 𝑄

)
𝐹 = 0 (59)

then Eq. (46) holds, although there are clearly pathological cases where this is not true, such as when 𝑓 (𝑥) = 0. Hence
although we have not ruled out the possibility of developing an explicit Runge-Kutta method which preserves quadratic
invariants for specific differential equations, it will not be possible to develop explicit Runge-Kutta methods which
preserve quadratic invariants in the general case.

Example III.3 The implicit midpoint rule will preserve quadratic invariants since it satisfies Fact III.2, that is,

1 = 𝐵𝑇 𝐵 = diag(𝐵)𝐴 + 𝐴𝑇 diag(𝐵) = 1
2
+ 1

2
= 1 (60)

However, neither the Euler in Eq. (4) nor 4𝑡ℎ-order Runge-Kutta method satisfy Fact III.2.
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IV. Collocation Methods
Definition IV.1 An 𝑠-stage collocation method produces an estimate

𝑥(𝑡) = 𝑥(𝑡0) + (𝑡 − 𝑡0)𝑥1 + · · · + (𝑡 − 𝑡0)𝑠𝑥𝑠 (61)

of the solution 𝑥(𝑡) of the differential equation

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑓

(
𝑡, 𝑥(𝑡)

)
(62)

by determining the constant vectors 𝑥1, . . . , 𝑥𝑠 ∈ R𝑛 such that

𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐𝑖ℎ) = 𝑓

(
𝑡0 + 𝑐𝑖ℎ, 𝑥(𝑡0 + 𝑐𝑖ℎ)

)
(63)

for all of the distinct points 𝑐1, . . . , 𝑐𝑠 ∈ R, where 𝑐1, . . . , 𝑐𝑠 ∈ R are called the collocation points.

Fact IV.1 An 𝑠-stage collocation method with the collocation points 𝑐1, . . . , 𝑐𝑠 produces the same estimate 𝑥(𝑡0 + ℎ)
as an 𝑠-stage Runge-Kutta method with the Butcher tableau

[
𝐶 𝐴

𝐵

]
=


𝑐1
...

𝑐𝑠

𝑉𝑠𝑉̃
−1
𝑠

1𝑇𝑠 𝑉̃
−1
𝑠


(64)

where

𝑉𝑠 ,


𝑐1 𝑐2

1 · · · 𝑐𝑠1
...

...
...

𝑐𝑠 𝑐2
𝑠 · · · 𝑐𝑠𝑠

 , 𝑉̃𝑠 ,


1 2𝑐1 · · · 𝑠𝑐𝑠−1

1
...

...

1 2𝑐𝑠 · · · 𝑠𝑐𝑠−1
𝑠

 (65)

Proof. First, note that at the collocation points, the collocation solution in Eq.(61) is of the form

𝑥(𝑡0 + 𝑐𝑖ℎ) = 𝑥(𝑡0) + 𝑐𝑖ℎ𝑥1 + · · · (𝑐𝑖ℎ)𝑠𝑥𝑠 (66)
𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐𝑖ℎ) = 𝑥1 + 2𝑐𝑖ℎ𝑥2 + · · · + 𝑠(𝑐𝑖ℎ)𝑠−1𝑥𝑠 (67)

Hence letting 𝑘𝑖 ,
𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐𝑖ℎ), we have that

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) +
[
𝑥1 · · · 𝑥𝑠

]
diag

(
ℎ, ℎ2, . . . , ℎ𝑠

)
1𝑠 (68)[

𝑥(𝑡0 + 𝑐1ℎ) · · · 𝑥(𝑡0 + 𝑐𝑠ℎ)
]
=

(
11×𝑠 ⊗ 𝑥(𝑡0)

)
+

+
[
𝑥1 · · · 𝑥𝑠

]
diag

(
ℎ, ℎ2, . . . , ℎ𝑠

)
𝑉𝑇𝑠 (69)[

𝑘1 · · · 𝑘𝑠

]
=

[
𝑥1 · · · 𝑥𝑠

]
diag

(
1, ℎ, . . . , ℎ𝑠−1

)
𝑉̃𝑇𝑠 (70)

and therefore

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
[
𝑘1 · · · 𝑘𝑠

] (
1𝑇𝑠 𝑉̃

−1
𝑠

)𝑇
(71)[

𝑥(𝑡0 + 𝑐1ℎ) · · · 𝑥(𝑡0 + 𝑐𝑠ℎ)
]
=

(
11×𝑠 ⊗ 𝑥(𝑡0)

)
+

+ ℎ
[
𝑘1 · · · 𝑘𝑠

] (
𝑉𝑠𝑉̃

−1
𝑠

)𝑇
(72)
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where the matrix 𝑉̃𝑠 is invertible since it is the product of the full rank matrix diag(1, . . . , 𝑠) and a Vandermonde
matrix constructed from 𝑐1, . . . , 𝑐𝑠 , which has full rank since the collocation points are distinct [13].

Finally, since the collocation solution of Eq. (61) satisfies Eq. (63) at each of the collocation points, then from Eq.
(72) it follows that

𝑘𝑖 = 𝑓

(
𝑡0 + 𝑐𝑖ℎ, 𝑥(𝑡0) + ℎ

𝑠∑︁
𝑗=1

(
𝑉𝑠𝑉̃

−1
𝑠

)
𝑖, 𝑗
𝑘 𝑗

)
, for all 𝑖 = 1, . . . , 𝑠 (73)

where (·)𝑖, 𝑗 denotes the (𝑖, 𝑗) entry of (·). Hence, combined with Eq. (71), that is,

𝑥(𝑡0 + ℎ) = 𝑥(𝑡0) + ℎ
𝑠∑︁
𝑗=1

(
1𝑇𝑠 𝑉̃

−1
𝑠

)
𝑗
𝑘 𝑗 (74)

we see that the collocation method of Eqs. (73)-(74) is equivalent to a Runge-Kutta method of Eq. (2) with the Butcher
tableau in Eq. (64).

In this paper, we are primarily concerned with Gauss collocation methods:

Definition IV.2 An 𝑠-stage Gauss collocation method is a collocation method where the collocation points are the
zeros of the polynomial

𝑑𝑠

𝑑𝑡𝑠

[
𝑡𝑠 (𝑡 − 1)𝑠

]
(75)

For example, the Butcher tableaus of 1 and 2-stage Gauss collocation methods are shown in Table 1, where comparing
Table 1 with the Butcher tableau given in Eq. (16), we see that the 1-stage Gauss collocation method is equivalent to the
implicit midpoint method. Furthermore, Gauss collocation methods are interesting in the context of this paper due to

Stages 1 2

[
𝐶 𝐴

𝐵

] 
1
2

1
2
1




3 −
√

3
6

1
4

3 − 2
√

3
12

3 +
√

3
6

3 + 2
√

3
12

1
4

1
2

1
2


Table 1 Butcher tableaus of 1 and 2-stage Gauss collocation methods.

the following fact:

Fact IV.2 Gauss collocation methods preserve quadratic invariants.

Proof. A formal proof of Fact IV.2 is showed in [4].

V. Hybrid Jacobian Computation
To compute an 𝑠-stage collocation estimate, one must solve the implicit set of Eq. (63) for the constant vectors

𝑥1, . . . , 𝑥𝑠 ∈ R𝑛 at all of the collocation points 𝑐1, . . . , 𝑐𝑠 . Specifically, since the collocation estimate is of the form

𝑥(𝑡) = 𝑥(𝑡0) + (𝑡 − 𝑡0)𝑥1 + · · · + (𝑡 − 𝑡0)𝑠𝑥𝑠 (76)
𝑑𝑥

𝑑𝑡
(𝑡) = 𝑥1 + 2(𝑡 − 𝑡0)𝑥1 + · · · + 𝑠(𝑡 − 𝑡0)𝑠−1𝑥𝑠 (77)
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then like in Eqs. (69)-(70), we find that at the collocation points, the estimate and its derivative are of the form[
𝑥(𝑡0 + 𝑐1ℎ) · · · 𝑥(𝑡0 + 𝑐𝑠ℎ)

]
=

(
11×𝑠 ⊗ 𝑥(𝑡0)

)
+

[
𝑥1 · · · 𝑥𝑠

]
𝑊𝑠 (78)[

𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐1ℎ) · · · 𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐1ℎ)

]
=

[
𝑥1 · · · 𝑥𝑠

]
𝑊̃𝑠 (79)

𝑊𝑠 , 𝑉𝑠diag
(
ℎ, ℎ2, . . . , ℎ𝑠

)
(80)

𝑊̃𝑠 , 𝑉̃𝑠diag
(
1, ℎ, . . . , ℎ𝑠−1

)
(81)

where 𝑉𝑠 and 𝑉̃𝑠 are given by Eq. (65). Hence to compute the collocation estimate, one must solve the implicit system
of constraints

𝐹
(
𝑥1, . . . , 𝑥𝑠

)
,


𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐1ℎ) − 𝑓

(
𝑡0 + 𝑐1ℎ, 𝑥(𝑡0 + 𝑐1ℎ)

)
...

𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐𝑠ℎ) − 𝑓

(
𝑡0 + 𝑐𝑠ℎ, 𝑥(𝑡0 + 𝑐𝑠ℎ)

)

= 0𝑠𝑛×1 (82)

or equivalently,

𝐹
(
𝑋̂
)
, =

(
𝑊̃𝑠 ⊗ 𝐼𝑛

)
𝑋̂ −


𝑓

(
𝑡0 + 𝑐1ℎ, 𝑥(𝑡0) +

(
𝑒𝑇1 𝑊

𝑇
𝑠 ⊗ 𝐼𝑛

)
𝑋̂

)
...

𝑓

(
𝑡0 + 𝑐𝑠ℎ, 𝑥(𝑡0) +

(
𝑒𝑇𝑠𝑊

𝑇
𝑠 ⊗ 𝐼𝑛

)
𝑋̂

)

= 0𝑠𝑛×1 (83)

where 𝑋̂ ,
[
𝑥𝑇1 · · · 𝑥𝑇𝑠

]𝑇
∈ R𝑛𝑠×1, and 𝑒𝑖 is an 𝑠 × 1 vector whose only nonzero element is the 𝑖𝑡ℎ entry, which is

1. Furthermore, to increase optimization algorithm’s precision and speed, we will use the Jacobian of the constraints in
Eq. (82), which we propose splitting into the sum of an analytical and numerical component, that is,

𝐽 ( 𝑋̂) , 𝜕𝐹

𝜕𝑋̂
( 𝑋̂) = 𝐽𝐴 + 𝐽𝑁 ( 𝑋̂) (84)

where the analytical part 𝐽𝐴 can be computed exactly a priori, and the numerical part 𝐽𝑁 is determined by the differential
equation being integrated.

Analytical Jacobian The analytic component 𝐽𝐴 of the Jacobian matrix defined by Eq. (84) is the contribution due

to the derivatives
𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐1ℎ), . . . ,

𝑑𝑥

𝑑𝑡
(𝑡0 + 𝑐𝑠ℎ) given in Eq. (82), which is exactly given by

𝐽𝐴 = 𝑊̃𝑠 ⊗ 𝐼𝑛 (85)

Since this contribution to the Jacobian depends on the timestep and collocation points, but not the differential equation,
it only needs to be computed once at the beginning of the optimization, thereby reducing the time required to compute
the Jacobian and solve the implicit system of collocation constraints of Eq. (82).

Numerical Jacobian The numerical component 𝐽𝑁 ( 𝑋̂) of the Jacobian matrix in Eq. (84) is due to the derivatives
of the differential equation terms 𝑓

(
𝑡0 + 𝑐1ℎ, 𝑥(𝑡0 + 𝑐1ℎ)

)
, . . . , 𝑓

(
𝑡0 + 𝑐𝑠ℎ, 𝑥(𝑡0 + 𝑐𝑠ℎ)

)
in Eq. (82) with respect to 𝑋̂ .

Since these terms are problem-dependent and could be highly nonlinear, it will not always be possible to calculate
their symbolic derivatives in a reasonable amount of time. Instead, we use complex-step differentiation [9, 14, 15] to
numerically compute their derivatives with respect to 𝑋̂ , since unlike traditional finite-differences schemes, complex-step
differentiation does not suffer from roundoff errors.

Example V.1 The complex-step estimate of the derivative of a scalar function 𝑔 is given by

¤𝑔𝑐𝑠 (𝑦) =
imag

(
𝑔(𝑦 + 𝑖ℎ)

)
ℎ

(86)
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which is 2𝑛𝑑-order accurate when 𝑔 is analytic [16], that is,
𝑑𝑔

𝑑𝑦
(𝑦) = ¤𝑔𝑐𝑠 (𝑦) +𝑂

(
ℎ2) (87)

Similarly, the 3, 5, and 7-point central difference approximations given by

¤𝑔3 =
𝑔 (𝑦 + ℎ) − 𝑔 (𝑦 − ℎ)

2ℎ
(88)

¤𝑔5 =
−𝑔 (𝑦 + 2ℎ) + 8𝑔 (𝑦 + ℎ) − 8𝑔 (𝑦 − ℎ) + 𝑔 (𝑦 − 2ℎ)

12ℎ
(89)

¤𝑔7 =
𝑔 (𝑦 + 3ℎ) − 9𝑔 (𝑦 + 2ℎ) + 45𝑔 (𝑦 + ℎ) − 45𝑔 (𝑦 − ℎ) + 9𝑔 (𝑦 − 2ℎ) − 𝑔 (𝑦 − 3ℎ)

60ℎ
(90)

are 2𝑛𝑑 , 4𝑡ℎ , and 6𝑡ℎ-order accurate, respectively. The absolute errors in the complex-step and 3, 5, and 7-point central
difference approximations of the Jacobian of the function

𝑔(𝑦) = sin(𝑦)𝑒−𝑦2
(91)

about the point 𝑦 = 1 are shown in Fig. 4 for various stepsizes ℎ. Figure 4 shows that although the higher-order
central difference methods are more accurate than the complex-step derivative approximation for small stepsizes, the
complex-step approximation is not affected by roundoff, and hence yields derivative approximations that are on the
order of machine precision for small stepsizes [9]. Conversely, for small stepsizes, Fig. 4 shows that the traditional
central difference approximations are dominated by roundoff, and hence drastically underperform the complex-step
approximation.

Fig. 4 Absolute errors in the computation of first derivative of 𝑔(𝑦) for various stepsizes ℎ.

The 𝑘 𝑡ℎ column 𝐽𝑁 ,𝑘 ( 𝑋̂) of the numerical Jacobian 𝐽𝑁 ( 𝑋̂) is therefore given by

𝐽𝑁 ,𝑘
(
𝑋̂
)
= = −1

ℎ
imag


𝑓

(
𝑡0 + 𝑐1ℎ, 𝑥(𝑡0) +

(
𝑒𝑇1 𝑊

𝑇
𝑠 ⊗ 𝐼𝑛

) (
𝑋̂ + 𝑖ℎ𝑒𝑘

) )
...

𝑓

(
𝑡0 + 𝑐𝑠ℎ, 𝑥(𝑡0) +

(
𝑒𝑇𝑠𝑊

𝑇
𝑠 ⊗ 𝐼𝑛

) (
𝑋̂ + 𝑖ℎ𝑒𝑘

) )


(92)

where we use ℎ = 10−12 for the remainder of this paper.
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Remark V.1 Although the complex-step approximation could be applied to the entire Jacobian in Eq. (84), we
compute the terms separately since the analytical part only needs be computed once a priori, thereby improving the
computational efficiency of the calculation.

Remark V.2 The Jacobian can also be approximated using dual-numbers [17, 18], although this yields a heavier
computational load than the complex-step approach, with negligible changes in the results. Alternatively, tools for
symbolic differentiation may be employed, but most of the time they require third-party tools, while complex-step can
easily be coded with any programming language.

VI. Self-scaling: GEVP method
Obtaining fast, precise, and reliable results from numerical optimization is often dependent on having a well-scaled,

and therefore well-conditioned, Jacobian matrix [15, 19]. One traditional approach to scaling has been to scale the
variables of the problem manually to either the range [0, 1] or [−1, 1] by using knowledge about the magnitudes of the
variables that one expects. For instance, in atmospheric reentry problems, the radial position of the reentry vehicle is
typically divided by the radius of Earth, resulting in a radial position that is very close to 1 [20].

However, although manual scaling can be effective, it is time-consuming, problem-dependent, and in some cases,
must be changed dramatically for the same problem with different parameters or initial conditions. For example, the
scaling needed for an orbital-dynamics problem around the Moon is very different from the scaling needed for the same
problem around the Sun, and the scaling needed at apogee might be very different from at perigee. Furthermore, since
one only knows a posteriori whether the scaling was useful, choosing a good range for variable scaling is a matter of
experience and luck.

Over the years, several automatic scaling techniques were proposed to address these problems [15, 19, 21], although
they all still require at least a rough estimate of the upper and lower bounds of the variables involved in the problem.
Furthermore, although one could simply guess conservative bounds when no a priori estimate can be made, the scaling
process will suffer as a result. Hence we implement a generalized eigenvalue problem (GEVP) based scaling technique
to automatically determine the function and variable scalings [8]. This method, which has already been successfully
used for Lattice Quantum Chromodynamics problems [22, 23], does not require an a priori estimate of the variable
bounds, and can be solved efficiently with many off-the-shelf packages such as YALMIP [24] and SeDuMi [25].

The GEVP-based automatic scaling method that we propose is based on premultiplying the problem constraints 𝐹
and optimization parameters 𝑋̂ in Eq. (83) with nonsingular diagonal matrices 𝐾𝑝 and 𝐾𝑞 , respectively, before solving
the modified problem

𝐾𝑝𝐹
(
𝑌
)
= 0, 𝑌 = 𝐾𝑞 𝑋̂ (93)

for 𝑌 . Then, once a solution 𝑌 is obtained via numerical optimization, the parameters 𝑋̂ are found to be given by
𝑋̂ = 𝐾−1

𝑞 𝑌 . Specifically, we propose using the scaling matrices that minimize the condition number of the Jacobian in
Eq. (84) evaluated at the initial condition, that is, the scaling matrices which solve the scaling problem:

Problem VI.1 Given a Jacobian matrix 𝐽 ∈ R𝑛𝑝×𝑛𝑞 , find two diagonal and nonsingular matrices 𝐾𝑝 ∈ R𝑛𝑝×𝑛𝑝 and
𝐾𝑞 ∈ R𝑛𝑞×𝑛𝑞 which minimize the condition number of 𝐾𝑝𝐽𝐾𝑞 , that is,

minimize
𝐾𝑝 ,𝐾𝑞

𝜎
(
𝐾𝑝𝐽𝐾𝑞

)
𝜎

(
𝐾𝑝𝐽𝐾𝑞

) such that 𝐾𝑝 and 𝐾𝑞 are diagonal and nonsingular (94)

where 𝜎(·) and 𝜎(·) denote the largest and smallest singular values of (·), respectively.

If the Jacobian 𝐽 at the initial condition has full rank, then one can show that Problem VI.1 is equivalent to the
generalized eigenvalue problem [8]:

Problem VI.2 Given 𝐽 ∈ R𝑛𝑝×𝑛𝑞 ,

minimize
𝑃,𝑄,𝛾

𝛾2 such that 𝑄 ≤ 𝐽𝑇 𝑃𝐽 ≤ 𝛾2𝑄, 𝑃 > 0, 𝑄 > 0
and 𝑃 and 𝑄 are diagonal (95)
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Specifically, if the Jacobian 𝐽 has full rank, then the solution to the scaling problem (Problem VI.1) is given in terms of
the solution of the GEVP (Problem VI.2) by 𝐾𝑝 = 𝑃1/2 and 𝐾𝑞 = 𝑄−1/2, where 𝛾 is an upper bound for the condition
number of the scaled matrix 𝐾𝑝𝐽𝐾𝑞 . However, since the GEVP is bilinear in 𝛾 and 𝑄, Problem VI.2 cannot be solved
directly by most LMI parsers such as YALMIP. Instead, we solve the GEVP by using the method of bisection, that is,
via the following algorithm:

Algorithm VI.1 A bisection-based GEVP solver which uses an LMI parser such as YALMIP and SeDuMi as solver
to deal with the GEVP when 𝛾 is fixed:
function

[
𝑃,𝑄, 𝛾

]
= GEVP( 𝐽, 𝜀 )

𝛾low = 1, 𝑃 = 𝐼𝑛𝑝 , 𝑄 = 𝐼𝑛𝑞
𝛾high = 𝜎 (𝐽) /𝜎 (𝐽)
while

(
𝛾high − 𝛾low > 𝜀

)
{

𝛾 =
(
𝛾high − 𝛾low

)
/2

\\Use an LMI parser and Sedumi as solver such as YALMIP to determine if 𝛾 is feasible:
if

(
∃𝑃,𝑄 such that 𝑄 ≤ 𝐽𝑇 𝑃𝐽 ≤ 𝛾2𝑄 and 𝑃 > 0 and 𝑄 > 0

)
{

𝛾high = 𝛾

store the solutions 𝑃,𝑄
} else {

𝛾low = 𝛾

}}
return 𝑃,𝑄, 𝛾

Remark VI.1 If the system is already perfectly scaled, that is, if the condition number of 𝐽 is 1, then the GEVP
algorithm (Algorithm VI.1) will return 𝑃 = 𝐼𝑛𝑝 and 𝑄 = 𝐼𝑛𝑞 .

Remark VI.2 SeDuMi is only capable of solving semi-definite LMIs. Therefore, to enforce the positive definiteness
of 𝑃 and 𝑄 in Problem VI.2, we impose the constraints

𝑃 > 𝜀𝑝 𝐼𝑛𝑝 , 𝑄 > 𝜀𝑞 𝐼𝑛𝑞 (96)

where 𝜀𝑝 = 𝜀𝑞 = 10−7 throughout the remainder of this paper.

As we will show in Sec. VII, the use of the scaling matrices obtained in this manner improves both the accuracy and
speed of computing the collocation estimates.

VII. Simulations
In the following sections, use both a 4-stage Gauss collocation integrator and Matlab’s ode45 to integrate:
1) The attitude dynamics of a satellite.
2) The orbital dynamics of a satellite.
3) The full 6DOF dynamics of satellite, that is, both the attitude and orbital dynamics of a satellite simultaneously.

where we compare how well the integrators preserve quadratic invariants such as the norm of the quaternion, angular
momentum, position vector, and specific mechanical energy.

Attitude propagation The attitude dynamics of a rigid satellite in torque-free motion are given by

𝑑𝑞

𝑑𝑡
(𝑡) = 1

2
𝑞(𝑡)𝜔(𝑡)

𝑑𝜔

𝑑𝑡
(𝑡) = 𝐼−1

(
𝜔(𝑡) ×

[
𝐼𝜔(𝑡)

] ) (97)

where 𝑞(𝑡) ∈ R4 denotes the quaternion representation of the satellite’s attitude, 𝜔(𝑡) ∈ R3 denotes the angular velocity
of the satellite, 𝑞(𝑡)𝜔(𝑡) denotes the quaternion product, 𝐼 ∈ R3×3 denotes the positive-definite moment of inertia of
the satellite about its center of mass, and 𝐼, 𝜔, and 𝑞 are all expressed in the body-fixed frame. The attitude dynamics
defined by Eq. (97) preserve the quadratic invariants:

1) The quaternion norm: ‖𝑞(𝑡)‖ = ‖𝑞(𝑡0)‖ = 1
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2) The angular momentum: ‖𝐼𝜔(𝑡)‖ = ‖𝐼𝜔(𝑡0)‖
To compare how well the integrators preserve the these quadratic invariants, we integrate Eq. (97) using a 4-stage

Gauss collocation integrator and Matlab’s ode45 with 100 uniformly-generated random initial conditions and inertia
matrices, where the initial quaternion 𝑞(𝑡0) is scaled to have a norm of 1, the angular velocity vector 𝜔(𝑡0) is uniformly
generated in the range [−0.05, 0.05] rad/s, and the inertia matrix is randomly generated so that it is symmetric and
positive definite with values approximately in the range [1, 10]. The dynamics are then integrated over 100 seconds
using a timestep of ℎ = 0.5 s, where the AbsTol and RelTol options of ode45 are set to 10−20. Under these conditions,
Figs. 5a and 5b show the mean error evaluated over the 𝑁𝑠 (in this case equal to 200) time steps in the quaternion and
angular momentum norms for each of the 100 simulations, that is,

𝜀 ‖𝑞 ‖ ,
1
𝑁𝑠

𝑁𝑠∑︁
𝑘=1

����


𝑞(𝑡0 + ℎ𝑘)


 − 1
���� (98)

𝜀 ‖𝐼 𝜔 ‖ ,
1
𝑁𝑠

𝑁𝑠∑︁
𝑘=1

����


𝐼𝜔(𝑡0 + ℎ𝑘)


 − 


𝐼𝜔(𝑡0)


���� (99)
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(a) Mean error in the quaternion norm.
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(b) Mean error in the angular momentum norm in Eq. (99).

Fig. 5 Mean errors in the quaternion and angular momentum norms.

From Figs. 5a and 5b, we see that the collocation integrator typically produces a mean error that is 10 to 100 times
smaller than ode45, although the increased accuracy comes at the price of increased computational time. Specifically,
the mean and standard deviation of the collocation integrator’s runtimes are 7.8 and 3.0 s, respectively, while the mean
and standard deviation of ode45’s runtimes are 5.3 and 4.6 s, respectively. The errors in the quaternion and angular
momentum norms for three randomly selected simulations are shown in Figs. 6a-6b for demonstrative purposes.

Remark VII.1 Since the condition number of the Jacobian was in the range [200, 220] for all of the attitude
dynamics cases that we considered, the collocation problem was already well-conditioned, and hence the GEVP-based
scaling did not greatly improve the results. Hence the results shown in Figs. 5-6 do not use the GEVP-based scaling. In
fact, since the GEVP scaling is the most time-consuming part of the algorithm, for these cases it is recommended to use
the hybrid-jacobian collocation scheme only.

Table 2 shows the mean and the standard deviation of the errors for both the schemes. Moreover, the corresponding
statistics for the CPU time is provided. One can observe that the use of the collocation schemes improves the accuracy
of the results both in terms of quaternions and angular momentum. Specifically, the improvement in the mean is more
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(a) Error in the quaternion norm.
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(b) Error in the angular momentum norm.

Fig. 6 Errors in the quaternion and angular momentum norms during the first three simulations of the test
campaign.

Method/Performance ode45 Collocation Self-scaling Collocation
𝜀 ‖𝑞 ‖ (𝜇) 5.257e-15 4.710e-16 4.280e-16
𝜀 ‖𝑞 ‖ (𝜎) 3.277e-15 2.725e-16 2.697e-16

𝜀 ‖𝐼 𝜔 ‖ , kg m2/s (𝜇) 8.587e-15 2.053e-15 2.001e-15
𝜀 ‖𝐼 𝜔 ‖ , kg m2/s (𝜎) 7.538e-15 1.457e-15 1.561e-15
CPU Time, s (𝜇) 5.276e-0 7.859e-0 1.511e+1
CPU Time, s (𝜎) 4.622e-0 2.957e-0 4.021e+0

Table 2 Attitude propagation - statistics (100 simulations).

than one order of magnitude for the quaternion, and about 4 times in terms of angular momentum. Similar trends are
observed for the standard deviations. This improvement is paid in terms of a larger CPU time (with a mean value of
about 15 s for the self-scaling collocation versus a value of 5.3 s for the standard ode45. It is worth noting that there is
no significant difference between the results with and without GEVP scaling, as expected, in terms of accuracy, which
slightly improves when the GEVP is employed. However the larger CPU time required for solving the GEVP problem
suggests to use the simple version of the algorithm in cases like this one.

Orbit propagation The orbital dynamics of a satellite are given by Eq. (35) in Example III.1, where the orbital
dynamics preserve the quadratic invariants:

1) The norm of the position vector: ‖𝑟 (𝑡)‖ = ‖𝑟 (𝑡0)‖
2) The specific mechanical energy:

𝐸 (𝑡) = 1
2
‖𝑣(𝑡)‖2 − 𝜇⊕

‖𝑟 (𝑡)‖ =
1
2
‖𝑣(𝑡0)‖2 − 𝜇⊕

‖𝑟 (𝑡0)‖
= 𝐸 (𝑡0) (100)

Furthermore, as in Section VII, we compare how well a 4-stage Gauss collocation integrator and Matlab’s ode45
preserve these quadratic invariants by integrating the orbital dynamics of Eq. (35) with 100 uniformly-generated random
initial conditions. Specifically, we generate 100 random initial positions 𝑟 (𝑡0) ∈ R3 with altitudes between 300 and 900
km, and choose an initial velocity vector 𝑣(𝑡0) perpendicular to the initial position with the magnitude necessary to
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achieve a circular orbit. The dynamics are then integrated over one orbital period using a timestep of ℎ = 10 s, where
the AbsTol and RelTol options of ode45 are set to 10−20.

However, whereas the attitude dynamics in Eq. (97) were well-conditioned for the parameters we considered, the
orbital dynamics in Eq. (35) are not, with condition numbers on the order of 22500. The use of the GEVP-based
automatic scaling method reduces the condition numbers to the range [50, 75]. Furthermore, using the self-scaling
collocation integrator, Figs. 7a and 7b show the mean error in the norm of the position vector and the mean error in the
specific mechanical energy for each of the 100 simulations, that is,

𝜀 ‖𝑟 ‖ ,
1
𝑁𝑠

𝑁𝑠∑︁
𝑘=1

����


𝑟 (𝑡0 + ℎ𝑘)


 − 


𝑟 (𝑡0)


���� (101)

𝜀 ‖𝐸 ‖ ,
1
𝑁𝑠

𝑁𝑠∑︁
𝑘=1

����


𝐸 (𝑡0 + ℎ𝑘)


 − 


𝐸 (𝑡0)


���� (102)

with 𝑁𝑠 that in this case is not constant, as the final time for each of the orbit changes according to the random value of
the radius.

0 20 40 60 80 100
10

−12

10
−11

10
−10

Cases

ε
‖r
‖

 

 

ode45
self−scaled collocation

(a) Mean error in the norm of the position vector.
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(b) Mean error in the specific mechanical energy.

Fig. 7 Mean errors in the norm of the position vector and the specific mechanical energy for 100 randomly
generated initial conditions.

From Figs. 7a-7b, we see that the self-scaled collocation integrator typically produces a mean error that is 3 times
smaller than ode45, although again the at the price of increased computational time. Specifically, the mean and standard
deviation of the self-scaled collocation integrator’s runtimes are 13.8 and 0.47 s, respectively, while the mean and
standard deviation of ode45’s runtimes are 0.31 and 0.17 s, respectively. The errors in the norm of the position and
specific mechanical energy for three randomly selected simulations are shown in Figs. 8a-8b for demonstrative purposes.

Remark VII.2 Since the norm of the position vector is a quadratic invariant, then we see that the specific mechanical
energy is of the form

𝐸 =
1
2
‖𝑣(𝑡)‖2 − 𝑐 = 1

2
‖𝑣(𝑡0)‖2 − 𝑐 (103)

and hence it can also be classified as a quadratic invariant. Table 3 summarizes the results obtained for this case. Also
in this case units are omitted, and are km for the radius, and km2/s2 for the specific energy.
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Fig. 8 Errors in the norm of the position vector and specific mechanical energy during the first three simulations
of the test campaign.

Method/Performance ode45 Collocation Self-scaling Collocation
𝜀 ‖𝑟 ‖ , km (𝜇) 6.119e-11 2.084e-11 1.993e-11
𝜀 ‖𝑟 ‖ , km (𝜎) 1.194e-11 1.285e-11 1.258e-11

𝜀 ‖𝐸 ‖ , km2/s2 (𝜇) 2.082e-13 7.953e-14 7.759e-14
𝜀 ‖𝐸 ‖ , km2/s2 (𝜎) 5.666e-14 4.573e-14 4.663e-14
CPU Time, s (𝜇) 3.068e-1 1.473e+1 1.385e+1
CPU Time, s (𝜎) 1.733e-1 5.265e-0 4.763e-0

Table 3 Orbit propagation - statistics (100 simulations).

Also in this case we can observe an improvement of the accuracies for both the invariants of the system, that is, the
radius and the specific energy of the spacecraft. The mean error is reduced by about 70% for what regards the radius
and 63% in terms of energy when the self-scaling approach is used. No significant variations of the error’ standard
deviations are observed. Finally the CPU time is larger when the self-scaling collocation approach is implemented, as in
the previous case. Also in this case no significant differences are observed when the GEVP is scaled with respect to the
case where the collocation scheme is employed without it. For instance the error in terms of radius magnitude reduced
from 2.084e-11 (when there is no GEVP scaling) to 1.993e-11 (with GEVP scaling). However, an interesting result with
respect to the previous case is that despite the extra CPU time required to compute the GEVP scaling matrices, the
overall CPU time to obtain a solution is 1 s less than the case when there is no GEVP scaling. This means that the
better-conditioned problem is not only more accurate, but the optimization underlying the implicit scheme is significant
quicker in finding a solution if compared to the non-scaled case.

6-DOF propagation The full six degree of freedom (6DOF) dynamics of a satellite are obtained by simultaneously
simulating both the attitude (defined by Eq. (97)) and orbital dynamics (defined by Eq. (35)), in which case we should
find that the norm of the position vector, specific mechanical energy, quaternion, and angular momentum are preserved.
To compare how well a 4-stage Gauss collocation integrator and Matlab’s ode45 preserve these quadratic invariants, we
integrate the 6DOF dynamics over one orbital period with a timestep of ℎ = 5 s and 1000 uniformly-generated random
initial conditions, that is, random initial positions, velocities, quaternions, angular velocities, and inertia matrices, as
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described in Sections VII-VII.
As in the case of pure orbital dynamics, we find that the condition number of the Jacobian is approximately 300-400

times smaller after applying the GEVP-based scaling, and hence the automatic scaling is used throughout this section.
Specifically, using the automatic GEVP-based scaling, Fig. 9 shows that mean errors in the norm of the position vector,
specific mechanical energy, quaternion, and angular momentum are approximately 10 times smaller than ode45, which
is also apparent in the three randomly selected simulations shown in Fig. 10. However, as in the previous cases, the
self-scaled collocation integrator is slower than Matlab’s ode45, with a mean and standard deviation runtime of 68.3
and 9.3 s, respectively, compared to ode45’s mean and standard deviation of 25.4 and 18.3 s. However, although ode45
typically is faster than the self-scaled collocation integrator, the worst-case ode45 runtime was 199.5 s, compared to
137.5 for the self-scaled integrator.
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(b) Mean error in the specific mechanical energy.
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(c) Mean error in the quaternion norm.
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(d) Mean error in the angular momentum norm.
Fig. 9 Mean errors in the norm of the position vector, specific mechanical energy, quaternion, and angular
momentum over one orbital period.
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(b) Error in the specific mechanical energy.
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(c) Error in the quaternion norm.
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(d) Error in the angular momentum norm.

Fig. 10 Errors in the norm of the position vector, specific mechanical energy, quaternion, and angular momen-
tum during the first three simulations of the test campaign.
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Method/Performance ode45 Collocation Self-scaling Collocation
𝜀 ‖𝑞 ‖ (𝜇) 2.929e-14 1.327e-15 1.131e-15
𝜀 ‖𝑞 ‖ (𝜎) 1.653e-14 7.359e-16 7.476e-16

𝜀 ‖𝐼 𝜔 ‖ , kg m2/s (𝜇) 2.775e-15 5.381e-15 1.048e-15
𝜀 ‖𝐼 𝜔 ‖ , kg m2/s (𝜎) 3.288e-15 4.341e-15 2.256e-15
𝜀 ‖𝑟 ‖ , km (𝜇) 9.057e-11 2.860e-11 2.672e-11
𝜀 ‖𝑟 ‖ , km (𝜎) 5.833e-11 1.533e-11 1.508e-11

𝜀 ‖𝐸 ‖ , km2/s2 (𝜇) 3.470e-13 1.076e-13 1.028e-13
𝜀 ‖𝐸 ‖ , km2/s2 (𝜎) 2.139e-13 5.635e-14 5.649e-14
CPU Time, s (𝜇) 2.543e+1 1.842e+2 6.835e+1
CPU Time, s (𝜎) 1.823+1 2.036e+1 9.258e+0

Table 4 6-DOF propagation - statistics (100 simulations).

The results associated with the 6-DOF case are summarized in Table 4. Also in this case we can observe a slight
improvement when the GEVP scaling with respect to the unscaled case. Both are in general more accurate than the
traditional Runge-Kutta schemes. For instance, the accuracy in terms of quaternion magnitude invariant is about 20
times better than the results obtained by using ode45, and three times better in terms of radius magnitude. In terms
of performance of the hybrid-Jacobian collocation method with and without the GEVP scaling, we can observe that
the accuracy is equal or better when the GEVP is employed for this case. However, the CPU time required to obtain
a solution is much smaller when the GEVP technique is used (the mean CPU time is about 70% less than the time
obtained without GEVP scaling), which means that, as expected, a better conditioned problem converges faster, despite
the time spent in the computation of the scaling matrices, and can lead to a significant difference of the running time for
large simulation campaigns.

Long-time run Finally, to show the validity of the results over longer timespans, an example of simulation carried
over a total time of 30 orbits has been included. The results are depicted in Figs. 11a through 11d.

Figures 11a-11d show the results obtained for one case in terms of errors with respect to the true invariants. Moreover,
the mean of the errors are overlapped. One can observe that even for longer runs the proposed algorithm behaves better
than the traditional schemes. This is true for all the invariants involved, and is particularly stark for the quaternion norm
and the angular momentum. For this specific case the collocation algorithm becomes also more efficient in terms of
CPU time. Indeed, the ode45 scheme generates the solution in 812 s, against a CPU time of 495 s when the collocation
scheme is adopted, which means that for a long run the proposed method is both more accurate and faster than the
traditional solutions.

VIII. Conclusions
We presented a class of self-scaling collocation integrators which, unlike explicit Runge-Kutta integrators,

automatically preserve quadratic constants of motion such as energy, linear momentum, and angular momentum.
Specifically, whereas variable timestep Runge-Kutta integrators, such as the Dormand-Prince method (ode45), can
theoretically reduce the integration errors in invariants by reducing the integration timestep, the Gauss collocation
integrators that we presented automatically preserve such invariants, regardless of the integration timestep.

However, since collocation integrators in general require numerical optimization to solve an implicit set of equations
which are difficult and computationally expensive to solve when the problem’s Jacobian becomes ill-conditioned, we
introduced a GEVP-based approach to automatically scale the collocation conditions, thereby making their solution
faster and more reliable. For example, for the case of the orbit propagation the GEVP-based scaling approach yielded a
Jacobian with a condition number 300-400 smaller than in the unscaled case.

In addition, we introduced a novel hybrid Jacobian computation technique for collocation methods which splits the
computation into a component that can be computed a priori, and a contribution due to the differential equation that can
be computed efficiently using a complex-step approximation, thereby making the Jacobian computation faster and more

25



Time (s) #104

0 2 4 6 8

- - - -kr(
t)

k
!

kr
(t

0
)k
- - - -

10-13

10-12

10-11

10-10

10-9

ode45
self-scaled collocation
ode45 - mean
self-scaled collocation - mean

(a) Error in the norm of the position vector.

Time (s) #104

0 2 4 6 8

- - - -kE
(t

)k
!

kE
(t

0
)k
- - - -

10-15

10-14

10-13

10-12

10-11
ode45
self-scaled collocation
ode45 - mean
self-scaled collocation - mean

(b) Error in the specific mechanical energy.

Time (s) #104

0 2 4 6 8

- - - -kq(
t)

k
!

1- - - -

10-16

10-15

10-14

10-13

10-12 ode45
self-scaled collocation
ode45 - mean
self-scaled collocation - mean

(c) Error in the quaternion norm.

Time (s) #104

0 2 4 6 8

- - - -kI!
(t

)k
!

kI
!
(t

0
)k
- - - -

10-16

10-15

10-14

10-13

10-12

ode45
self-scaled collocation
ode45 - mean
self-scaled collocation - mean

(d) Error in the angular momentum norm.

Fig. 11 Long Timespan - Errors in the norm of the position vector, specific mechanical energy, quaternion,
and angular momentum for a total time equal to 10 orbits.

accurate than via traditional finite difference approaches. Together, the GEVP-based self-scaling collocation integrator
and hybrid Jacobian computation that we presented are better at preserving quadratic invariants such as the norm of
the quaternion, angular momentum, position vector, and specific mechanical energy than variable timestep explicit
Runge-Kutta methods, such as Matlab’s ode45, over a wide range of problems and initial conditions. Specifically, as we
demonstrated in Sec. VII, our self-scaling integrator typically achieved errors in the quadratic invariants that were one
to two orders of magnitude smaller than ode45.
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