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Summary

Summary

The Loads Kernel Software allows for the calculation of quasi-steady and dynamic maneuver 

loads, unsteady gust loads in the time and frequency domain as well as dynamic landing loads 

based on a generic landing gear module.

This  report  is  a published  copy  of the Loads Kernel  User Guide,  Version  1.01 as of  11.

January 2021. Due to continuous development, the most recent version is accessible on an 

internal wiki page (not publicly accessible).

Wiki: https://wiki.dlr.de/display/AE/Lastenrechnung%3A+Loads+Kernel
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AIC Matrix of aerodynamic influence coefficients
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VLM Vortex lattice method

Software

Centaur CFD mesh generation software by CentaurSoft

Loads Kernel Loads and aeroelastic analysis software developed in this thesis

MSC.Nastran NASA structural analysis code, commercially distributed by MSC software

Python High-level programming language for general-purpose programming

Scipy Python library for scientific and technical computing 

SOL103 Modal analysis sequence (MSC.Nastran)

SOL144 Static aeroelastic solution (MSC.Nastran)

SOL200 Structural optimization sequence (MSC.Nastran)

Tau Computational fluid dynamics solver developed by DLR
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XI



Nomenclature

Torsional moment

Load factor

Stiffness matrix of fiber layer in global coordinate 
system

Stiffness matrix of fiber layer in local coordinate system

, Maximum allowable stress, shear

Aerodynamic integration matrix

Spline matrix

U Gust velocity

Onflow velocity

Reference span width

Pressure coefficient

Reference length

Distance between two points
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 1 Introduction

 1.1 Loads Kernel Feature List - From a User's Perspective

• Direct integration in DLR-AE loads process

◦ Fewer manual steps

• Simple inputs (dictionaries and lists), always SI units

◦ Less mistakes

• Human readable python code (no black box)

◦ Good control and knowledge about of what is happening

◦ Better physical understanding

◦ Easy to modify, deviate from standard procedure

• Export of data in Python, Matlab, CPACS and Nastran format

◦ Special analyses in the user's favorite environment

• Model Viewer

◦ Quick visualization of simulation model

◦ Identification of model shortcomings → quality control

• Loads Compare

◦ Comparison of different sets of loads → quality control

1
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Figure 1.1: Visualization of simulation model with the Model Viewer



 1.1 Loads Kernel Feature List - From a User's Perspective

3

Figure 1.2: Comparison of different sets of loads with Loads Compare



 1 Introduction

 1.2 Loads Kernel Feature List - From a Technical Perspective

• VLM and DLM

◦ Linear and nonlinear version, induced drag

• Maneuver: VLM

• Gust: VLM + DLM with rational function approximation (RFA) in time domain

• Structural flexibility

◦ Modal approach

◦ Eigenvalue/-vector analysis of mass and stiffness matrices

◦ Matrices (Mgg, Kgg) exported from MSC.Nastran or CoFE

◦ Guyan condensation (optional)

• Aero-structural coupling

◦ Rigid body spline (with nearest neighbor search)

◦ Surface and volume spline (radial basis functions)

• Trim conditions for different types of maneuver

◦ Pitch-,  roll-,  yaw-maneuver,  landing at  constant  sink  rate,  gliding  with  loss  of 

altitude at constant speed, ...

◦ EFCS for control surface scheduling

• Direct solution with non-linear trim algorithm

• Iterative solution scheme for CFD

• CFD (DLR Tau Code) for maneuver loads

◦ Structural flexibility and control surfaces via mesh deformation

◦ CFD surface mesh deformation by LK → volume deformation by Tau

◦ Directly comparable to VLM-based solution: same trim conditions, matrices, ...

◦ Benefits form LK's integration in our loads process

4



 1.2 Loads Kernel Feature List - From a Technical Perspective

• Linear and non-linear equation for rigid body motion

◦ Free flying, flexible aircraft in time domain

◦ Flight mechanics included → good for comparisons with flight test

◦ Rigid  body  motion  captured  correctly  (aperiodic  motion  difficult  in  frequency 

domain)

◦ Non-linear control possible (not possible in frequency domain)

◦ Non-linear external forces, e.g. from landing gear

 1.3 Dependencies

• Anaconda Python 3 with 

◦ Numpy, scipy, matplotlib, … (all standard modules)

◦ Mayavi (optional, for visualizations in post-processing,  conda install -c anaconda 

mayavi)

◦ Pyfmi (optional, for external EFCS controller, conda install -c conda-forge pyfmi)

• Tau-Python (optional, for CFD analyses, currently only available in Python 2)

 1.4 Installation & Launch

Phabricator repository: https://phabricator.ae.go.dlr.de/diffusion/LAEK/repository/

hg clone https://phabricator.ae.go.dlr.de/diffusion/LAEK/repository/ (to create a local working 

copy of the repository)

hg update Release_XY (to update into the most recent release)

pyenv anaconda3 (to select the python environment)

python launch.py 

5
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 2 Theoretical Foundations

 2.1 Coordinate Systems

In this section, a brief description of the coordinate systems and coordinate transformation is 

given. Only the principal coordinate systems that are important for the understanding of this 

work are shown. More detailed information is given in most books on flight dynamics such as 

by Cook [13], chapter 2 or by Brockhaus et al. [18], also chapter 2.

Most information related to mass and structure is exported from an external program, in this 

case MSC.Nastran, and is usually given in a global, structural coordinate system 'g'. In most 

cases, the origin is in front of the aircraft and axes orientation is “rear-right-up” as sketched in 

Figure 2.1. In addition, a body fixed coordinate system 'b' with the same orientation is placed 

with its origin at the center of gravity . That system will be used for example in Section 

7

Figure 2.1: Overview of principal coordinate systems for a free-flying 
aircraft



 2 Theoretical Foundations

2.5 for the equations of motion.  The transformation between sets, such as 'g' and 'b', can be 

accomplished  using  splining  methods  as  described  in  Section  2.3.  The  flight  physical 

coordinate system is also placed at  but with a “front-right-down” orientation. Finally, an 

earth-fixed coordinate system 'i' is used as a reference frame for the free-flying aircraft. To a 

certain extend and for small  angles,  splining methods might be used for  these  coordinate 

transformations as well. However, for the free-flying aircraft, angles can be large, and non-

linear transformations need to be applied.

A transformation of velocities  from the earth fixed inertial coordinate system 'i' into 

the flight physical coordinate system  according to ISO  9300  (see Brockhaus et  al. [9]) is 

achieved by successive rotation  of the Euler angles  ,   and   about the axis  ,  , and   

respectively

(2.1)

using the direction cosine matrix 

  . (2.2)

A transformation of angular rates  from the earth fixed inertial coordinate system 'i' 

into the flight physical coordinate system 

(2.3)

is achieved using matrix

  . (2.4)

For a transformation in opposite direction, the inverse of  is given by

(2.5)

8
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and the inverse of  is given by

  . (2.6)

Note that due to the trigonometric functions singularities may occur, for example if   or  

approach  . However, this is not the case for most flight maneuvers relevant for loads 

simulation. These singularities could be avoided by using quaternions instead of Euler angles 

for the rotations in three dimensional space. 

 2.2 Steady and Unsteady Aerodynamics

The classical aerodynamic approach  using a steady Vortex Lattice Method (VLM) and  an 

unsteady Doublet Lattice Method (DLM) is chosen in this work. The formulation of the VLM 

used and described herin follows closely the derivation given by Katz and Plotkin [26] using 

horse  shoe vortices.  The DLM is  formulated as  presented by  Albano and Rodden [2]. It 

should be mentioned that the origins of compressible, unsteady aerodynamic theories date 

back to the early 1940s when for example Küssner published his General Airfoil Theory [34], 

referring  again  to  Prandtl [43] who  introduced  the  theory  of  a  lifting  surface  based  on 

potential accelerations instead of velocity fields in 1936. The translation  of Küssners work 

into  English  language  by  NACA [35],  shows that  the  development  of  the  DLM was  an 

international  effort  with  contributions  of  scientists  from multiple  nations. At  the time  of 

formulation,  its solution was only possible for some special cases and it took three decades 

until,  in the late 1960s,  Albano and Rodden had the computational power available for a 

general,  numerical  solution  applicable  to  arbitrary  three-dimensional  wings.  Therefore, 

Albano and Rodden didn't actually invent the DLM but were those bright minds who properly 

implemented the DLM for the first time. For further reading, a historical overview is given by 

R. Voss [57] and a very comprehensive work on the mathematical background is published by 

Blair [7]. 

An implementation  of the DLM  in Matlab is  publicly  available from Kotikalpudi [29,30]. 

That version is translated into the python language for performance and independence from 

commercial licenses. In a next step, it is slightly adapted to respect the dihedral of the wings, 

and  the  Prandtl-Glauert  transformation  with   is  applied  to  the  VLM as 

9
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suggested by Hedman [23].  In addition,  the computational process is split  into more sub-

functions  to  allow  for  the  extraction  of  matrices  at  different  stages,  e.g.  to  obtain  the 

circulation matrix  and the  matrices for both lift and drag. 

Both the VLM and the DLM are based on a matrix of aerodynamic influence coefficients 

, which depends on the Mach number , the reduced frequency  defined by

(2.7)

and  the  geometry  of the aircraft.  The geometry is discretized using an aerodynamic panel 

mesh as sketched in  Figure 2.2.  The  matrix  then relates an induced downwash  on 

each aerodynamic panel to a circulation strength , which is translated to a complex pressure 

coefficient . 

(2.8)

With  for the quasi static case, the solution of the DLM is equivalent to the VLM [46]. 

The calculation of the steady aerodynamic forces is given by 

(2.9)

10
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 2.2 Steady and Unsteady Aerodynamics

dynamic pressure

aerodynamic integration matrix

AIC-matrix

downwash due to rigid body motion

downwash due to control surface deflections

downwash due to flexible structural deformation

downwash due to flexible structural motion

downwash due to camber and twist of the profiles

containing  several  sources  of  aerodynamic  forces.  For  the  steady  aerodynamics,  the 

downwash due to rigid body motion , due to control surface deflections , due to 

flexible structural deformation  and due to flexible structural motion  is calculated 

from the onflow and the aircraft motions. Camber and twist of the profiles create an additional 

offset in downwash which is accounted for by the term . Note that the aerodynamic 

grid remains undeformed and the aerodynamic forces are modeled by changing the induced 

downwash  for  every  panel.  Using  an  AIC-matrix  approach  leads  to  a  local  pressure 

distribution which is integrated using matrix . As the AIC-matrix is normalized with the 

dynamic pressure , the resulting loads need to be multiplied with  to obtain forces and 

moments. In this implementation, forces from the different sources given in equation (2.9) are 

calculated independently and superimposed

  , (2.10)

which is possible due to linearity.

For dynamic gust analyses, two additional components  and  are added 

to the steady aerodynamic forces 

. (2.11)

Term   represents the  aerodynamic  forces  due  to  the  gust  acting  on  the  aircraft. 

Because the gust induced downwash is applied to every panel individually, penetration effects 

are taken into account. Note that this is a very generic approach and allows for arbitrary gust 

fields. In this case, the gust velocity

(2.12)
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is defined by the certification specifications CS 25.341 [16] in dependence of the distance  

penetrated into the gust  and the design gust  velocity  .  The so-called gust  gradient   

determines  the  length  (parallel  to  the  aircraft's  flight  path) for  the  gust  to  reach its  peak 

velocity. 

Because the gust encounter is a very short and sudden event, the certification specifications 

explicitly ask to  account for unsteady aerodynamic characteristics.  In this  work,  unsteady 

aerodynamic forces in the time domain are obtained by a rational function approximation 

(RFA) as suggested by Roger [47].  Similar implementations are shown by  various authors. 

From all authors, Gupta [19] gives the most detailed description. The work by Kier and Looye 

[27] points  out the features of the “physical  RFA”.  Karpel and Strul [25] have a  slightly 

different  focus  (minimizing  the  number  of  states  of  the  RFA)  but  give  an  overview  on 

possible constraints. Other publications making use of the RFA are by Goggin [18], Abel [1] 

and Vepa [53]. A difference of this work with respect to other authors is the approximation on 

panel level using physical coordinates.  This leads to a large number of lag states but the 

implementation is more generic and leads to physical, nodal forces. This is required in order 

to use the force summation method, which will be explained in Section 2.5. In other works, 

so-called gust-modes are used that include all panels in one row. This is more difficult with 

highly  swept  flying  wing configurations.  In  addition,  these  gust-modes  have  shown 

difficulties  in  the  approximation  due  to  a  spiraling  nature  of  the  transfer  function  in  the 

complex plane, see for example Figure 9 in [58]. Finding a good approximation of the gust-

modes is still a field of research [58]. 

In the RFA, the  matrix is approximated for each reduced frequency  with the following 

rational function:

  . (2.13)

The approximation is done by solving the equation (2.13) in a least squares sense. Matrix  

is omitted during the approximation, as suggested by Kier and Looye [27].  In addition, it is 

necessary to separate into real and imaginary parts. This is possible with

  . (2.14)

12



 2.2 Steady and Unsteady Aerodynamics

In this work, the poles  used for the approximation are determined by 

(2.15)

as given by Roger [47]. A slightly different proposal is given by ZONA [62]. Both methods 

were tested and showed comparable results.  In addition to the number of poles  , the 

frequency range and frequency distribution is important. It is recommended to provide many 

samples close to zero with an increasing step size up to the highest reduced frequency . 

Typical value for the reduced frequency are  with  , but the actual 

values strongly depend on the aircraft configuration.

However, there is no general rule and the quality of the approximation has to be checked 

carefully, because too few poles result in a bad approximation, leading to nonphysical results. 

Figure 2.3 shows the real and imaginary parts of the first 3x3 entries of the  matrices and 

allows for a qualitative assessment of the approximation. Every blue dot marks the values of 

one given reduced frequency  . The red line is calculated from the approximation. In this 

case,  the approximation  looks good  by visual  judgment in the area covered by the given 

reduced frequencies. In addition, an extrapolation is shown. Here, the results are questionable 

in some cases. As a consequence, the given reduced frequencies should cover the complete 

13
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 2 Theoretical Foundations

range of application and an extrapolation should be avoided. A quantitative assessment is 

possible by calculating the root mean squared error  of the given and the approximated 

matrices at the given frequencies

  . (2.16)

For  typical  configurations,  the  root  mean  squared  error  should  drop  below 

 for all reduced frequencies. 

With  and  defined in equation (2.7),  may be written as

  . (2.17)

Equation (2.13) is expanded to

  . (2.18)

Transformation from the Laplace domain into the time domain leads to 

  . (2.19)

The lag states  are defined as

(2.20)

or

(2.21)

in the Laplace domain. Transformation into the time domain yields

  . (2.22)

14
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It can be seen that the evolution of the lag states is described by a differential equation, which 

can be solved independently or simply appended to the system of equations which will be 

described in Section 2.5.

From  equation  (2.19)  it  can  the  seen  that  a rational  function  approximation  allows  for  a 

decomposition of the aerodynamic forces into a steady term  depending on the downwash 

, corresponding to equation (2.10), a damping term  depending on the rate of change of 

the downwash  and a term  depending on the acceleration of the downwash . Because 

 is  difficult  to  calculate,  it  is  omitted  in  the  approximation  step.  The  unsteady  terms 

 depend on the  lag  states  .  As  the  time simulation 

usually starts from an initial steady level flight, the lag states are assumed to be zero at the 

beginning. 

Drag is neglected by most commercial software packages and has little direct influence on the 

loads. In addition, wing structures are typically sized by the shear force , bending moment 

 or torsional moment . However, the local induced drag is important to capture the roll-

yaw-coupling  of  the aircraft.  (Note  that  there are  also other  contributors  to  the roll-yaw-

coupling,  e.g. profile drag,  which is  not considered at  this  point.)  Thus,  the induced drag 

might have an indirect influence on the loads. Therefore, the VLM is extended. The standard 

procedure described above involves a linearization about an angle of attack , resulting 

in a lift vector orthogonal to the body frame but not orthogonal to the onflow for angles of 

attack  . This would result in an artificial drag component depending on the angle of 

attack  ,  which  is  not  desired.  This  can  be  avoided  by  selecting  a  slightly  different 

formulation of the VLM

  . (2.23)

The induced downwash   on each aerodynamic panel  is  multiplied  with  the  circulation 

matrix   obtained from the VLM. The cross product of the onflow vector   and the panel 

span  vector   at  quarter  chord  yield  a  lift  vector  orthogonal  to  the  onflow  condition. 

Multiplication with the air density  and translation matrix  gives the aerodynamic forces 

.  The  induced  downwash   is  calculated  in  the  same  way  as  before, 

allowing for a smooth integration into the existing code.

15
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In a flow field, the Trefftz plane located at an infinite distance downstream of the aircraft may 

be used to  analyze the wake in  order  to  obtain the total  induced drag  .  In  a  similar 

manner, the wake  of every panel, defined by the trailing vortices of the horseshoe, may 

be used to calculate the local induced drag  at every panel. Formally, this can be expressed 

with matrix  and  from equation (2.8), which gives the downwash of the wake

, (2.24)

and the downwash leads to the induced drag

. (2.25)

The calculated induced drag can be compared to the theoretically lowest induced drag for 

planar wings based on an elliptical  lift  distribution.  Division of theoretical and calculated 

induced drag yields the span efficiency value 

 , (2.26)

which should be close to . 

To maintain compatibility of the formulation of the the VLM with the DLM, in this work the 

linearization about an angle of attack   is used. Also, the formulation of the induced 

drag is not compatible to the DLM. An application where both effects are important is shown 

in [55,56] at the example of a sailplane. That work was prepared using the same methods and 

tools but is not part of this thesis.

 2.3 Aero-Structural Coupling

In a next step step, the aerodynamic forces need to be applied to the structure. Formally, the 

coupling  can be handled using  a transformation matrix   which relates displacements of 

the structural grid  to displacements of the aerodynamic grid  with

. (2.27)

In addition, the transposed matrix   transfers forces and moments from the aerodynamic 

grid  to the structural grid  with

. (2.28)

16
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Note that the structural displacements and loads  (index  'f')  are  not given in physical but  in 

modal coordinates,  which will be explained in more detail in Section  2.4.  The size of the 

problem depends on the degrees of freedom of both the aerodynamic and structural grid. In 

this case, the structural grid has a much finer discretization with 34482 degrees of freedom. 

Therefore,  a projection into modal coordinates  in combination with a truncation of higher 

frequency modes implies a significant reduction.

In  general,  a  transformation  matrix   may  be  defined  by  various  methods [54].  One 

commonly used approach for loads calculation is the rigid body spline. Each grid point of the 

dependent  grid  is  mapped  to  exactly  one  point  on  the  independent  grid.  The  distance 

 between these two grid points is  assumed as a  rigid body that transfers 

forces and moments. In addition, forces  create moments  due to their lever arm

. (2.29)

In reverse, translations and rotations are directly transferred and rotations create additional 

translations. For one set of two points, this can be expressed by matrix  with

. (2.30)

The mapping of the points may be defined manually or automatically,  e.g. with a nearest 

neighbor search. This concept is quite versatile and can be used for many application other 

than the aero-structural coupling, e.g. to gather all external forces  at the center of gravity 

. (2.31)

Another widely used method are  radial basis functions.  A very good example is given by 

Neumann and Krüger [40] who  show the application to large, industrial scale models. The 

method is best visualized by a curve running through a number of supporting points. At the 

supporting  points,  the  results  are  exact.  For  the  values  in-between,  the  results are 

approximated.  The approximation is influenced by the neighboring supporting points which 

are weighted according to their distance to the approximation point. Although the  influence 

17
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reduces over the distance, every supporting point has an influence on all other points. This 

influence  is  calculated  with  the  help  of  radial  basis  functions.  A popular  example  is  the 

Infinite Plate Spline (IPS) by Harder and Desmarais [21] which uses

(2.32)

as a function for the influence . Beckert and Wendland [4] have compared and investigated 

various radial basis functions as an alternative to equation (2.32). Some radial basis functions 

provide a compact support radius, limiting the influence to a local area. However, Neumann 

[39] showed that local radial basis functions are likely to results in crinkled surfaces, which is 

not beneficial. Therefore, in this work only globally supported radial basis functions will be 

applied. Finally, the spline can be constructed as a surface spline where only two dimensions 

are considered. An extension by the third dimension leads to a volume spline.

Advantages and disadvantages with respect to flying wing configurations have been discussed 

by Voß and Klimmek [54] and are summarized in Tables 2.1 and 2.2.  The rigid body spline 

allows for a clear and comprehensible mapping of the aerodynamic grid to the structure. Due 

to the direct mapping of the rigid body spline, matrix  is sparse while  is dense when 

using a global surface or volume spline. To construct a surface or volume spline, a system of 

equations needs to be solved. This results in longer computational time in comparison to the 

rigid body spline. Although globally correct, a surface or volume spline may locally result in 

very large, opposing forces, which are not physical.  This behavior has been observed when 

the number of structural grid points is  much larger than the number of aerodynamic grid 

points.  These large,  local  forces may change the magnitude of section loads significantly 

while the integral forces of the entire aircraft are correct. Therefore, the rigid body spline is 

more suitable for the transfer of forces and moments. In contrast, a surface spline is more 

suitable for smooth surface deformation whereas a rigid body spline usually results in bad and 

bumpy surface deformations. This is acceptable when using aerodynamic panel methods such 

as VLM or DLM, but may have a fatal impact on CFD simulations. 
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advantages disadvantages

• clear and comprehensible mapping
• forces and moments are conserved
• forces and moments normally act on 

the proper structural element (e.g. 
intersection between wing and control 
surface, intersection between fuselage 
and wing)

• use of different coordinate systems 
possible

• fast

• possibly high nodal forces
• possibly uneven/bumpy surface 

deformation (fatal impact on CFD 
simulation)

Table 2.1: Advantages and disadvantages of rigid body splines

advantages disadvantages

• high quality surface deformation
• forces are distributed evenly on the 

structure

• slow for large problems
• splining should be conducted 

separately for each structural part
• locally unphysical, possible problems 

in section forces

Table 2.2: Advantages and disadvantages of surface and volume splines

 2.4 Modal Analysis, Structural Degrees of Freedom and Masses

The degrees of freedom for a grid point of a finite element model  (FEM)  include the six 

components of displacement: translation in , , and  direction and rotation about the , , 

and   axis. In MSC.Nastran, these degrees of freedom are organized in  so-called  sets [63]. 

The relation of the most relevant sets for this work is shown in Figure 2.4. The global set, or 

g-set,  contains all  degrees of freedom and is the top-level set.  Usually,  the g-set contains 
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linear  relationships,  which  are  for  example  constructed  with  rigid  body  elements  and 

multipoint constraints. These dependent degrees of freedom are moved into the m-set. The 

remaining, independent degrees of freedom form the n-set.  Sometimes, a structural model 

contains single point constraints, for example to realize a clamping. These degrees of freedom 

are  moved  into  the  s-set.  The  remaining  degrees  of  freedom are  organized  in  the  f-set. 

Therefore,  the  f-set  contains  all  “free”  degrees  of  freedom,  the  corresponding  mass  and 

stiffness matrices  and  are no longer singular and suitable for a solution if arranged in a 

set of equations.

Finally, the f-set may be partitioned into the a-set and the o-set. This process can be achieved 

by a  static condensation or Guyan reduction [20]. In aeroelastic applications, the wing and 

fuselage structure is often condensed to a loads reference axis  (LRA). The loads reference 

axis is placed e.g. along the quarter chord line of the wing. A typical example is shown in 

Figure 2.5. Note that the points of the leading and trailing edge (LE and TE, green points) are 

connected  with  rigid  body  elements  to  the  loads  reference  axis.  The  concept  of  a  loads 

reference axis  has several  advantages.  First,  the model  is  simplified significantly,  making 

physical  interpretations  easier.  Second,  mass  estimates  are  often  done  by  a  different 

department  than  the  structural  analysis.  The  loads  reference  axis  is  a  suitable  basis  for 

communication  and  data  exchange,  as  condensed  masses  can  be  easily  attached  to  the 

condensed  structural  grid  points.  Third,  computational  time  is  reduced  for  all  following 

calculations. However, considering the available computational power of today, this argument 

is no longer relevant. Finally, local modes are avoided during the modal analysis. Such local 
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Figure 2.5: Condensed finite element model of  
the FERMAT configuration [28]
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modes  appear  if  for  example  a  thin  shell  element  vibrates  at  a  low  frequency.  Using  a 

condensation, the model is “cleaned” from such local modes. 

Remark: Technically,  there  is  no  such  thing  as  a  “cleaning”  procedure.  The  spatial 

resolution of the structural model is reduced so much that local modes are not resolved by 

a sufficient number of points. Only global mode shapes can be represented.

The partitioning of the f-set into the a-set and the o-set is achieved in the following way. The 

equation for static deflection 

(2.33)

relating forces  to stiffness matrix  times deflections  can be rearranged to 

(2.34)

according to Guyan [20]. Here, the degrees of freedom with index 'o' are those to which no 

force is applied to and which can be eliminated. With , the equations are solved to

. (2.35)

From this, the reduced stiffness matrix  is identified as

. (2.36)

Due to the analytical solution of the problem, the Guyan reduction of the stiffness matrix is 

exact. 

The same procedure could be applied to the mass matrix , although the term  is usually 

zero  as  mass  matrices  are  usually  diagonal.  However,  multiplication  with   would 

eliminate all masses of the o-set and only the masses on the a-set would remain. This problem 

is solved by Guyan by combining mass and stiffness matrices

(2.37)

to obtain a reduced mass matrix, too.  The influence of the masses on the o-set is weighted 

with the stiffness.  Guyan states that “the eigenvalue-eigenvector problem is closely but not 

exactly preserved” [20].  Comparison studies show that this is true for low frequencies. The 
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higher the frequency, the greater the deviation. Therefore, the Guyan reduction is suitable for 

typical aircraft configurations. 

For  convenience  and  to  significantly  improve  computational  performance,   is 

written as

(2.38)

and solved for  . This step has to be done only once, and, in addition, the solution of a  

sparse linear system  is much faster than a matrix inversion. 

A modal  analysis  comprises  the  characterization  of  the  dynamic  behavior  of  an  elastic, 

vibrating system. The oscillating behavior of that system about an idle state is described by 

modal parameters such as natural frequency, mode shapes, modal mass and modal damping. 

The behavior of the undamped, unexcited system of mass  and stiffness  is governed by 

, (2.39)

which corresponds to 

(2.40)

in the frequency domain. Damping is omitted at this step and added later in equation (2.47). 

The problem can be rearranged to the form of the generalized eigenvalue problem

, (2.41)

with  being the matrix of generalized eigenvectors and  the generalized eigenvalues of  

and  . For large matrices   and  , which is usually the case in structural dynamics, the 

system is solved iteratively for the first   eigenvalues. In MSC.Nastran, the calculation of 

the  real  eigenvalues  typically  uses  the  Lanczos  method,  in  Scipy  an  Arnoldi  method  is 

available [36,52]. Because matrices  and  are sparse, using the sparse eigenvalue analysis 

capability  significantly  increases  performance.  Both  methods  have  been tested  and return 

numerically equivalent eigenvalues  for typical aircraft configurations. The eigenvectors  

are more difficult to compare. Here, the modal assurance criterion  (MAC) [3] is a suitable 

means for comparison. Assuming two eigenvectors  and  , the MAC value is calculated 

with
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  , (2.42)

resulting  in  a  scalar  value   where  a  value  of 1.0  indicates a  perfect 

agreement  of  both eigenvectors.  Applied to  all  combinations  of  eigenvectors,  a  matrix  of 

MAC values is constructed. 

The Auto-MAC with   is  shown in  Figure 2.6.  As expected,  all  values along the 

diagonal are very close to 1.0. The off-diagonal terms show very small values close to 0.0. 

The areas of weak correlation are due to the discretization of the numerical model. Figure 2.7 

shows the MAC matrix comparing the eigenvectors obtained from MSC.Nastran SOL103 and 

Scipy for a typical aircraft configuration. It can be seen that the eigenvectors are numerically 

equal.

Assuming  the  modal  analysis  is  conducted  on  the  reduced  a-set,  the  corresponding 

displacements of the remaining degrees of freedom ,  and  need to be reconstructed 

from  the  eigenvectors.  The  displacements   of  the  o-set,  see  equation  (2.34),  may  be 

reconstructed from the a-set with 

. (2.43)

The s-set displacements  are set to zero. With this information, the displacements  of the 

n-set can be assembled. As mentioned at the beginning, the m-set is linearly dependent on the 
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n-set.  Therefore,  the displacements   of the m-set can be derived from   by applying 

matrix  [38]

. (2.44)

Following that  procedure,  the eigenvector   for  all  degrees  of  freedom of the  g-set  is 

assembled. 

The benefit and the physical interpretation is the following. An eigenvalue analysis of a finite 

element model projects the dynamic deformation into a set of flexible modes.  Because the 

resulting  mode shapes  are  uncoupled,  a  superposition  of  several  modes is  possible.  With 

,  the eigenvalue   defines the angular  frequency of the mode.  The eigenvector   

contains the  corresponding deflection  in  physical  coordinates.  In  addition,  eigenvector   

allows for the calculation of the modal stiffness and modal mass matrices  and  from 

the original matrices  and  in physical coordinates:

(2.45)

(2.46)

In absence of a more rational analysis, uniform modal damping [5] 

(2.47)

may be assumed with typical damping values ranging from . For simplicity, in 

most academic works no damping is assumed. 

Note that at this step, index 'f' refers to the flexible mode set obtained from modal analysis 

and not the f-set including the “free” degrees of freedom. This inconsistency exists because if 

no reduction is made and no degrees of freedom are omitted, the f-set is equivalent to the a-

set. Therefore, the a-set is favored for calculation purposes and the f-set is rarely used.

The final challenge of the Guyan reduction lies in the determination of the degrees of freedom 

for the a-set. The LRA concept mentioned at the beginning of this section is a very good 

choice for classical wing-fuselage-empennage configurations but has its  limits with planar 

flying wings of low aspect ration. Because of the low number of ribs, only very few points 

would be selected for the a-set. In addition, the resolution in chord direction is questionable 

and not representative, especially in the fuselage region. Therefore, a new selection scheme 
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for the a-set is required. The use of sub section corner points is a suitable answer to the above 

problem. One sub segment is the area between two ribs and two spars, as visualized in Figure

2.8. The identification of the corner points of every sub section leads to a satisfactory number 

of points distributed over the whole aircraft. In addition, only structurally significant points 

are selected. The o-set then consists of the remaining degrees of freedom.

With the assumption that low frequency modes are more important than higher frequency 

modes, a truncation is possible. The number of modes   to be kept should be selected in 

relation with the highest desired frequency . That frequency should be selected again in 

relation to the capabilities of the unsteady aerodynamics. If the system is analyzed in free-free 

conditions, the first six eigenvalues are characterized by  and correspond to the rigid 

body motion of the system. They are discarded if only the flexible modes are required. 

With the knowledge of the set definitions and a mass matrix , the total mass properties of 

the rigid body can be calculated.  This is done in  a  two step approach.  In  the first step, all 

masses are gathered at a reference point 0 by applying  and 

 . (2.48)

The resulting matrix  has the shape 6x6 with the following entries of interest:

25

Figure 2.8: Selection of degrees of freedom of 
the a-set based of sub section corner points

Sub section 
corner points



 2 Theoretical Foundations

. (2.49)

The finite element method theoretically allows for different mass properties in the directions 

,  and . Practically, this is usually not the case and leads to the assumption

(2.50)

Therefore, the total aircraft mass  can be derived from the upper left corner of . The 

upper right corner contains a coupling between translational and rotational mass terms in the 

form of . At the center of gravity, they should become zero. With this information, these 

terms can be used to establish the offset  of the center of gravity.

(2.51)

In the second step, the final rigid body mass matrix  is calculated with respect to the body 

coordinate system 'b' located at the .

(2.52)

In the upper left corner, mass matrix  is given. In the lower right corner, the inertia matrix 

 is located, including moments of inertia ,  and  about the the ,  and  axis of the 

body  coordinate  system  'b',  plus  some  additional  coupling  terms  ,   and  .  All 

remaining entries should become zero. Matrices  and  are important to calculate the rigid 

body motion of the aircraft, which is presented in the next section.

 2.5 Equations of Motion

The motion of the aircraft is divided into a rigid and a flexible part. For the rigid body motion, 

the  aircraft  is  considered  as  a  point  mass  with  inertia  matrices   and  ,  where  the 

components of the inertia tensor  are calculated with respect to the body axes 'b'. Its origin is 
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positioned at the center of gravity. All external forces and moments  are gathered at the 

same point. The non-linear equations of motion are given by

(2.53)

and

(2.54)

yield the translational and rotational accelerations  and  of the aircraft body frame. The 

coupling terms between translation and rotation   and   are derived by 

Waszak, Schmidt and Buttrill [11,59,60]. Gravitational acceleration is accounted for by  

in equation (2.53).

In addition to the rigid body motion of the aircraft, linear structural dynamics are incorporated 

by

(2.55)

Here, generalized external forces  interact with linear elastic deflections , velocities  

and  accelerations  .  The  matrices  ,   and   refer  to  the  generalized  mass, 

damping, and stiffness matrices from equations (2.45) to (2.47) from Section 2.4.

 2.6 System of Equations and Quasi-Steady Solution Schemes 

The calculation of aerodynamic forces and the evaluation of the equation of motion described 

in  the  previous  sections  are  transformed into  a  single  set  of  coupled  equations.  For  the 

solution of this system, it is convenient to convert the equations into a first order system:

  . (2.56)

The vector  contains the aircraft position and Euler angles  with respect 

to  the  earth-fixed  frame  'i',  vector   describes  the  aircraft  velocities  and  rates 

. The vector  contains the aircraft velocities and rates  in 
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the  body-fixed  frame  'b',  vector   the  aircraft  translational  and  rotational  accelerations 

. Vector  contains the control commands about ,  and  axis . 

To find the trimmed state of the aircraft, trim conditions need to be defined in such a way that 

the system is not over- or under-determined in order to calculate one unique solution of the 

equations. One example of such a trim condition is a horizontal level flight at a given velocity 

. This requires the roll and pitch rates   to be zero while the control surface deflections 

 are flagged as free. Yaw is omitted due to the lack of a dedicated control about the  axis. 

Equation (2.56) is then solved with Powell's  non-linear root-finding algorithm [17,42,51]. 

This procedure is validated numerically [54] against MSC.Nastran SOL144. Once the initial 

flight condition is found, a time simulation may be started. 

The above description of the solution of the trim problem uses a direct approach based on 

partial derivatives to construct the jacobian matrix. Note that the structural deformation is 

already included by terms  ,   and  . Using a different aerodynamic method such as 

CFD, the calculation of partial  derivatives is no longer feasible,  especially if  many mode 

shapes are considered for structural deformation. Therefore, an iterative approach is selected 

as  sketched  in  Figure  2.9.  Based  on  a  CFD  solution  for  the  undeformed  geometry,  the 

structural  deformation  is  calculated  and  applied  to  the  CFD  mesh.  The  fluid  structure 

interaction (FSI) loop is  repeated until  convergence is  achieved.  The FSI solution is  then 

subject to an outer loop to determine the trim condition. The solution of the trim problem is 

found (as before) using Powell's non-linear root-finding algorithm. The difference is that the 

trim  problem  is  more  non-linear.  Compared  to  the  direct  trim  solution  using  potential 

aerodynamics, the tolerances for convergence need to be modified as both the CFD and the 

FSI solutions are solved iteratively, too. The challenge is the selection of an appropriate set of 

convergence  criteria.  Convergence  of  the  CFD  solution  is  determined  using  Cauchy 

convergence of the lift, drag, rolling and pitching moment coefficients. Convergence of the 

FSI  loop  is determined by an inspection of the maximal relative translational deformation 

between the current and the last loop. The following set of parameters is selected in this work: 

• Convergence of the trim solution: 

• Convergence of fluid structure interaction: 
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• Convergence  of  the  CFD  solution:  Cauchy  convergence  with  , 

 ,  and  using 30 samples

 2.7 Aeroelastic Response in the Time Domain

The time simulation is performed by an integration of equation (2.56) over a period of time. 

In the case of unsteady aerodynamics, the lag states described in section 2.2 are added to the 

system. Two different integration schemes have been tested. The explicit runge-kutta method 

of 4th/5th order [15] and an implicit  Adams-Bashforth method [10], both implemented in 

Scipy [50],  have  shown  numerically  equivalent  results.  Because  of  the  fewer  function 

evaluations, the Adams-Bashforth method is selected.

 2.8 Aeroelastic Response in the Frequency Domain

For the frequency domain description, the rigid body motion is represented with the help of 

rigid body modes with index 'b'. The rigid body modes are created artificially by application 

of  a  unit  translation  and  unit  rotation  about  the  center  of  gravity.  To  avoid  numerical 

problems, the translation in x-direction is omitted. That modes are joined with the flexible 

modes with index 'f', creating the h-set. 

29

Figure 2.9: Sketch of iterative trim solution scheme



 2 Theoretical Foundations

The basic equation reads

, (2.57)

where  and  are the velocity and deformation dependent aerodynamic terms. While in 

the time domain the downwash is calculated individually, compare equation (2.9), and using a 

python function, in the frequency domain the calculation of the downwash is realized based 

on matrices   and  for the velocity and deformation dependent  downwash. Matrices   

 and  are given by

(2.58)

and 

(2.59)

with the panel areas represented in matrix  and the normal vectors in . Matrix  projects 

the nodal aerodynamic forces from physical into generalized coordinates.

With 

(2.60)

the transfer function 

(2.61) 

is constructed for every frequency sample. Because the  matrices are only calculated for 

selected reduced frequencies  ,  this step requires a linear interpolation of matrices   and 

. Extrapolation to lower or higher reduced frequencies is usually necessary but should be 

done with care and for a limited range only. 

The gust excitation requires a Fourier transformation of the induced gust velocities  for 

every aerodynamic panel. The nodal and generalized aerodynamic gust forces  and  

are given by 

(2.62)

and 

 . (2.63)
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The Fourier transformation usually results in positive and negative frequencies but the  

matrices are only defined for positive frequencies. Therefor, the above operations can only be 

performed for positive frequencies and the results  need to be mirrored using the complex 

conjugate. Note that this procedure is very error-prone and differs for odd and even numbers 

of frequency samples. 

The aeroelastic responses of the aircraft  due to gust is  calculated in terms of generalized 

deformation  by simple matrix multiplication

, (2.64)

repeated for every sample frequency. The generalized velocity and acceleration is given by

(2.65)

and 

. (2.66)

The frequency domain results  are then transferred into the time domain  using the inverse 

Fourier transformation. 

For  application  of  the  force  summation  method,  see  section  3.1,  the  distributed  nodal 

aerodynamic forces in physical coordinates  need to be reconstructed based on equation 

(2.62). This is the most time-consuming part of the frequency domain analysis as it requires 

an interpolation of the  matrix for every frequency sample.

The  highest  frequency  is  given  by   and  the  frequency  resolution  by 

. The frequency  should be sufficiently high to resolve at least all 

structural  modes but  not  too high to  avoid  excessive extrapolation  of  the   matrices, 

which depend on the reduced frequency . The frequency resolution  should be sufficiently 

small to resolve rigid body motion with low frequency content. With  , 

this typically results in much long simulation times compared to the time span of the gust 

encounter itself.

 2.9 Stability Analysis

The stability analysis differs slightly from the frequency domain description presented in the 

previous section. The basic principle is to set the right hand side to zero and to determine the 
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eigenvalues of that system at increasing speeds. There are different solution schemes for this 

task, three of them are considered in this work. 

The K-Method is probably the most simple but the fastest method. The formulation follows 

closely the description given by Schwochow [48], section 7.7.1, page 110. Similar to equation 

(2.57), the basic equation reads

 , (2.67)

where the velocity and deformation dependent contributions to the induced downwash given 

by matrices  and  are combined to one single term

 . (2.68)

Division of equation (2.67) by  and rearrangement of the aerodynamic term  leads to

(2.69)

with the eigenvalue

 . (2.70)

The eigenvalues are calculated for the first frequency sample and sorted from low to high 

frequencies. To track the modes of the following samples, the MAC value is used to compare 

the eigenvector of the current solution with the previous one.  

In a last step, the frequency  , the damping   and the speed   can be calculated from the 

eigenvalues with

 , (2.71)

 , (2.72)

and

 . (2.73)

The  KE-Method used  in  Nastran  is  similar  to  the  K-Method.  The formulation  given by 

Rodden [45] places the eigenvalue with the mass term, resulting in 
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(2.74)

with the eigenvalue

 . (2.75)

The eigenvalues are calculated for the first and second frequency sample and sorted from low 

to  high  frequencies.  To  track  the  modes  of  the  following  samples,  the  next  expected 

eigenvalue is extrapolated based on the two previous eigenvalues.

The frequency , the damping  and the speed  is given by

 , (2.76)

 , (2.77)

and

 . (2.78)

The formulations of the K and the KE-Method are very similar and can be converted from one 

to the other.  The two main distinctions are the definition of the eigenvalue and the mode 

tracking technique. Both methods don't account for structural damping and are only valid at 

the point of flutter, where the damping is zero. Another disadvantage is that the sample points 

are defined by the reduced frequency and not by flight speed, which requires many samples 

and gives the flutter curves a distinct look, see section Error: Reference source not found, and 

gives  no information  for  low flight  speeds. Using a  cubic inter-  and extrapolation  of  the 

aerodynamic matrices leads to smooth flutter curves. 

A more physical representation of the damping is  given by the  PK-Method proposed by 

Hassig [22]. This leads to an eigenvalue problem of second order, which is converted into an 

eigenvalue  problem  of  first  order  but  of  double  size.  The  result  are  complex  conjugate 

eigenvalue pairs, which are more difficult to interpret physically, especially with respect to the 

rigid body modes. Also, the sample points are defined by the flight speed, which gives nicer 

flutter curves, but requires an iterative procedure to match the reduced frequency with the 
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flight speed for every mode and at every sample point. In this implementation, the iteration 

scheme  as  proposed  by  Rodden [45] is  used.  Because  at  low  flight  speeds  the  reduced 

frequency may become very large, only a linear inter- and extrapolation of the aerodynamic 

matrices is feasible.

The state-space notation of equation (2.57) is

. (2.79)

Matrices   and  are defined similarly to equations (2.58) and (2.59), but without the 

dynamic pressure and flight speed as

(2.80)

and 

 . (2.81)

The  eigenvalues  of  matrix   are  determined  for  the  first  flight  speed  with  a  reduced 

frequency  .  The oscillatory eigenvalues  appear  as complex conjugate pairs,  where 

only those with positive imaginary part are of physical interest. The selection criterion is that 

the imaginary part must be . Note that at low flight speeds, the rigid body modes 

might be non-oscillatory due to missing structural stiffness and very small aerodynamic terms. 

This results in eigenvalues of very low imaginary part but large real part. To enable a good 

mode tracking, it is recommended to chose the first flight speed sufficiently high, such that all 

rigid body modes of interest do oscillate at that point. Although modes might not be shown in 

the flutter curves due to bad eigenvalue identification, their influence and interaction with 

other oscillatory modes is still captured correctly. 

From this starting point, the reduced frequency  needs to be matched with the flight speed  

for each mode of frequency . Convergence of that iterative procedure is determined when the 

difference  between step  and step  is .

The frequency  and damping  is given by

(2.82)

and
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 . (2.83) 

Due to the formulation of the damping coefficient , negative values indicate a stable system. 

Also,  note that  there is a factor of 2.0 between  the structural damping   and the damping 

coefficient . For example, a modal damping of  corresponds to .

 2.10 Landing Impact

The landing gear of an aircraft has to fulfill several purposes. An overview is given by Krüger 

et al. [33].  State of the art aircraft landing simulations are normally carried out using multi 

body simulation  techniques,  e.g.  as  described  by Krüger [32] and Cumnuantip [14], and 

include a detailed model of the landing gear and tires. However, the aircraft is often assumed 

as a rigid body, neglecting the dynamic response of the aircraft's flexible structure. There are 

several possibilities to address this shortcoming. One approach is to incorporate the aircraft's 

structural properties in the multi body simulation environment. This can be achieved by a 

modal  representation  of  the  aircraft  as  Lemmens [37] demonstrates  for  a  business  jet. 

Castrichini et al. [12] even include unsteady aerodynamics for the calculation of both gust and 

ground loads. An alternative to the modal representation is the discretisation of the elastic 

structure by means of rigid bodies, which are connected by rotational springs to account for 

wing bending and rotational  stiffness,  as shown by Krüger [31].  A different  approach by 

Jaques and Garrigues [24] uses a dynamic, transient finite elements (FE) analysis. Special 

nonlinear elements, joints and hinges are added to the FE code to describe the behavior of the 

landing gear. 

For aircraft loads analyses, the primary task is to analyze the effect of the landing impact on 

the aircraft structure and to include the resulting loads in the sizing process.  Therefore, the 

selected approach in this work includes the landing gear directly within the transient, dynamic 

loads simulation. For a sizing procedure in the preliminary design phase, some simplifications 

may be made while maintaining the key elements, which are explained in the following. The 

emphasis lies on the absorption of  the  vertical kinetic energy occurring during the landing 

impact.  Therefore,  the landing  gear  module considers the  vertical  components  of  all 

accelerations, velocities, translations and forces. The  following  equations are derived from 

[14,32].
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A typical  landing gear  of  a  large aircraft  is  shown in  Figure  2.10.  One key feature  is  a 

hydropneumatic air and oil shock absorber. The gas spring force 

(2.84)

is calculated based on a pre-stress force  , a stroke length  , a maximal stroke   and a 

polytropic coefficient  with . The damping force  

(2.85)

depends on the stroke velocity  and damping coefficient . 

For the tires, a linear behavior is assumed, forces act in z-direction and only when the tire 

makes contact with ground. Its deflection  is determined by subtracting its rolling radius  

from its nominal radius . This leads to 

(2.86)

with a tire stiffness  and damping coefficient . In addition, the tire may have a mass , 

causing a force 

(2.87)

In a next step, the landing gear model is incorporated into the time simulation. The positions, 

velocities and accelerations of the landing gear attachment point, indicated in Figure 2.10, are 

extracted at every time step and fed into the landing gear module. The landing gear reaction 

forces are then applied as external forces   on the aircraft. As the landing gear model is 
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 2.10 Landing Impact

evaluated “on-the-fly”, the interaction between aircraft and landing gear is captured. In this 

way, the landing gear forces are counteracted by the aircraft's inertia, leading to a balanced set 

of loads.
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 3 Loads and Aeroelastic Analysis

 3.1 Loads Recovery and Identification of Dimensioning Loads

The resulting nodal loads acting on the aircraft structure may be calculated by two different 

methods,  the  mode  displacement  method [6] and the  force  summation  method [44].  The 

convergence of the mode displacement method (MDM), given by

 , (3.1)

strongly depends on the number of modes considered for the modal deformation vector  . 

The more modes are used,  the more precise is the result.  Using all  modes,  both methods 

should lead to identical results. 

With the force summation method (FSM), given by

 , (3.2)

the calculation is done using physical coordinates and the sum of inertia and external forces 

leads to the loads that are carried by the structure.  Because of the more precise results,  the 

force summation method is selected.  Note that this only possible because the approximation 

of the unsteady aerodynamics (RFA) is performed in physical coordinates, see Section  2.2, 

and is thereby harmonized with the FSM. For most other applications, such as stability, flutter 

or  aeroservoelasticity,  there  is  no  need to  recover  nodal  forces  and the  approximation  in 

generalized coordinates is sufficient. 

In a typical loads analysis campaign for aircraft certification, several thousands of load cases 

need  to  be  computed.  This  is  because  structural  strength  has  to  be  demonstrated  for  all 

maneuvers at all flight points. Thus, the maneuver cases need to be combined with all mass 

configurations, flight speeds, altitudes, Mach numbers, etc. The difficulty is to determine the 
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load cases that yield the dimensioning loads in advance. To reduce the amount of guesswork 

and uncertainties already during the preliminary design, emphasis is put on a comprehensive 

loads process including a large number of load cases to ensure a thorough design. 

From the nodal loads   obtained from equation (3.2), so-called interesting quantities are 

calculated.  Interesting  quantities  usually  include  section  forces  and  moments  at  various 

stations  (e.g.  along  the  wing)  and  attachment  loads  (e.g.  from control  surfaces,  payload, 

landing gear, etc.). These quantities are calculated at monitoring stations. The calculation of 

section loads at the monitoring stations   involves an integration of the nodal loads  , 

which can be expressed as a matrix multiplication.

(3.3)

The section loads can be plotted as one-dimensional envelopes that show the section loads at 

one aircraft component, e.g. along the wing. The minimum and maximum values determine 

the highest loads, compare Wright and Cooper [61], chapter 18.9.1, Figure 18.17. With this 

procedure, only one quantity can be examined. A more sophisticated approach can be realized 

with two-dimensional loads envelopes that show a combination of two quantities, for a wing 

typically  the  shear  force  ,  bending moment   or  torsional  moment  .  These  plots, 

sometimes referred to as SMT-Plots, are  very important for the dimensioning of an aircraft 

structure. Typical examples are shown in Figure 3.1. Every dot corresponds to one load case. 

In a next step, the convex hull is drawn to identify not only the minimum and maximum 

values of one quantity but also the minimum and maximum of two combined quantities. This 

approach is very useful for maneuver loads, but not directly applicable to gust or landing 

loads. 
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 3.1 Loads Recovery and Identification of Dimensioning Loads

In contrast to maneuver loads, 1-cos gust or landing loads are the result of a time simulation. 

Therefore, they can no longer be represented by one single dot as shown previously in Figure

3.1. The approach selected in this work involves an extraction of several snapshots from the 

time simulation.  In this way, dynamic loads are transferred into  quasi-static loads and are 

usable for a dimensioning process.  The snapshots are selected by identifying the minimum 

and maximum values at every monitoring station for every interesting quantity. An example is 

shown in Figure 3.2. Every dot corresponds to one snapshot, which has been identified from 

the time simulation, and one gust simulation produces several dots. A closer look reveals that 

the right upper corner of the convex hull is formed by three snapshots from gust load case 

number 46 at the time steps t=0.185s, 0.190s and 0.195s. 
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 3 Loads and Aeroelastic Analysis

One can also see that the three selected snapshots are very close to each other. In general, the 

number of dimensioning load cases could be reduced further by using a more  conservative 

shape than the convex hull.

 3.2 Assembly of the Methods for Flight Loads Analysis

The methods and theories presented in the Sections 2.1 through 3.1 are prepared and tested in 

simple scripts, first using academic examples, then with more complex aircraft configurations. 

Whenever  possible,  comparisons  are made  to  other  software.  The  individual  scripts  are 

integrated into functions and modules to be assembled to the Loads Kernel software package. 

Therefore, the development can be considered as a major  contribution to  this thesis  and is 

inseparably connected to this work. From a technical perspective, the following points are 

improved with respect to the standard solution by MSC.Nastran:

• VLM and DLM Code, translated to python

◦ Linear and nonlinear version, induced drag

• Aero-structural  coupling  (not  new,  but  required  e.g.  for  CFD  surface  mesh 

deformation)

◦ Rigid body spline (with nearest neighbor search)

◦ Surface and volume spline (radial basis functions)

• Trim conditions for different types of maneuver

◦ Pitch-,  roll-,  yaw-maneuver,  landing at  constant  sink  rate,  gliding  with  loss  of 

altitude at constant speed, ...

◦ EFCS for control surface scheduling

• Linear and non-linear equation for rigid body motion

◦ Free flying, flexible aircraft in time domain

◦ Flight mechanics included → good for comparisons with flight test

◦ Rigid  body  motion  captured  correctly  (aperiodic  motion  difficult  in  frequency 

domain)
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◦ Non-linear control possible (not possible in frequency domain)

◦ Non-linear external forces, e.g. from landing gear

• CFD (DLR Tau Code) for maneuver loads

◦ Structural flexibility and control surfaces via mesh deformation

◦ CFD surface mesh deformation by LK → volume deformation by Tau

◦ Directly comparable to VLM-based solution: same trim conditions, matrices, ...

◦ Benefits form LK's integration in our loads process

The Loads Kernel is split into three processing steps:

• pre

• main

• post

These three steps need to be performed sequentially, but can be performed individually. The 

process flow is sketched in  Figures  3.3 and  3.4. The data is stored to  the file system after 

every step. This is an advantage if for example only the load case definitions are changed 

while the model itself remains unchanged. In that case, only the main- and post-processing 

have to be repeated. This is also beneficial if the main-processing is to be run on a different 

computer or a high performance cluster. The resulting model data from the pre-processing can 

be copied to any location, where the main-processing is started. The resulting response may 

be  copied  back  to  the  local  file  system  for  the  post-processing  step.  Indeed,  the  main-

processing is parallelized in the sense that  load cases are calculated in parallel where  

is the number of local CPUs. This is achieved by a worker / listener concept with a pool of 

 workers  and  one  listener  which  collects  the  results.  The  worker  and  the  listener 

communicate via a queuing system available in the Python multiprocessing module.

During the pre-processing, all required model data is read, processed and assembled to one 

model. Input to the pre-processing are the mass and stiffness matrices, the FE geometry and 

the aerodynamic panel mesh. The pre-processing is designed in such a way that it directly 

interfaces with the data and files prepared by ModGen. The mass and stiffness matrices are 
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exported from MSC.Nastran in the op4 file format, which is achieved with a DMAP alter. 

Technically, MSC.Nastran is only used in the role of a pre-processor and the use of any other 

FE processor is  thinkable.  From the mass matrix,  the center of gravity,  the mass and the 

corresponding moments of inertia are calculated as described in Section  2.4. Optionally, a 

Guyan reduction is applied. Next, a modal analysis is conducted to determine the eigenvalues 

and the eigenvector. Finally, the generalized mass and stiffness matrices are calculated. This 

procedure is repeated for all mass cases. For the definition of the aerodynamic panel mesh, 

CAERO4, CAERO7 or CQUAD4 cards are parsed. CAERO4 are used in MSC.Nastran while 

CAERO7 are used in ZAERO. With the aerodynamic panel mesh, the VLM and the DLM 

routines are started, according to the requirement of steady or unsteady aerodynamics. In the 

case of unsteady aerodynamics, the rational function approximation as described in Section 

2.2 is performed automatically. This procedure is repeated for all Mach numbers defined in 

the operation parameters by the user. In addition, the AESURF and AELIST cards defining 

the control surfaces are parsed. With the help of a rigid body spline, deflection matrices are 

constructed that allow the calculation of the induced downwash on a control surface due to a 

given  rotation  angle  about  a  hinge  line.  The aero-structural  coupling  depends  on  the  FE 

geometry and the aerodynamic panel mesh. As described in Section 2.3, either a rigid body 

spline  or  a  surface  or  volume  spline  based  on  radial  basis  functions  may  be  used.  The 

resulting coupling  matrix  is  stored  in  the  model  as  a  sparse matrix  to  save  memory and 

computational  time  during  the  main-processing.  In  a  next  step,  the  parameters  of  the 

international standard atmosphere (ISA) are calculated with respect to the altitudes requested 

in the operation parameters. Finally, a matrix for the integration of section loads is built based 

on the monitoring stations defined by the user. The resulting model data is stored to disk.

Remark: Because  the  ISA documents  are  not  publicly  available,  the  US  standard 

atmosphere [64], which is equivalent up to 32 km altitude, may be taken as a convenient 

alternative reference.

The run time of the pre-processing can be very rapid for small, condensed models and rather 

lengthy if large FE models are involved or unsteady AIC matrices need to be calculated for 

many reduced frequencies and Mach numbers. As mentioned at the beginning, it is beneficial 

that the pre-processing has to be done only once if no changes are made to the model, which 

is an advantage with respect to commercial software. 
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The main-processing depends on the model data prepared in the pre-processing. In addition, a 

load case definition is needed as input. The load case definition contains parameters for every 

load case that  shall  be calculated and typically comprises parameters such as the type of 

maneuver, the mass configuration, flight speed, altitude, load factor, rates, accelerations, sub 

case identification number etc. In addition to the sub case identification number, the user may 

assign a descriptive string, preferably according to the nomenclature defined by Chiozzotto 

[41]. With this input, the first step of the main-processing is to establish a set of so-called trim 

conditions. The aircraft states are set as free or fixed according to the selected maneuver and 

in such a way that the system is neither over- nor under-determined. Next, the solution of this  

system is computed, yielding a trimmed aircraft as described in Section  2.5. For gust and 

landing loads, a time simulation is started, using the trimmed aircraft as an initial solution. 

Nodal loads are recovered from the aircraft states using the force summation method (FSM). 

In a next step, these nodal loads are integrated to section loads. In case of a time simulation, 

the dynamic section loads need to be transferred into single snapshots as described in Section 

3.1. In addition, the nodal loads are translated into a global coordinate system. The results of 

the main-processing are stored to disk in a response file. 

The calculation time for one maneuver load case is below one second for all models that have 

ever been used with the Loads Kernel. Therefore, even several hundreds of load cases are 

calculated within some minutes. Time domain simulations are a little more time consuming as 

they  usually  involve  structural  dynamics  and  unsteady  aerodynamics.  In  most  cases,  the 

corresponding states change rapidly during the time simulation, resulting in very small time 

steps of the integration scheme, selected in Section 2.5. This is desirable in order to achieve 

good results but comes at the cost of many function evaluations. Changes of the maximum 

allowable time step size were tested and finally increased slightly to . The 

relative tolerance is set to . Using these parameters, no degradation of the results 

could be observed. 

The post-processing is dedicated to the evaluation, visualization and export of the results. The 

dimensioning load cases  are identified as described in Section  3.1.  The automated plotting 

allows for a fast control of the results and a quick detection of erroneous data by the user. For 

maximum compatibility, currently four different formats are supported for the export of the 

corresponding nodal loads:
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• MSC.Nastran format using FORCE and MOMENT cards

• Internal, hierarchical format using the pickle module in Python 

• DLR CPACS format using the Tixi XML interface library [49] 

• Matlab format using the scipy.io module in Python
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Figure 3.3: Schematic process flow of the Loads Kernel pre-processing
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Figure 3.4: Schematic process flow of the Loads Kernel main and post-processing



 4 Input Definitions

 4.1 Job Control

Because  of  the  number  of  input  parameters  and  possible  changes,  please  see 

./doc/jcl_documentation.py for a detailed description of all inputs and simulation parameters.

 4.2 Examples

Two aircraft with different simulation set-ups are available: 

• Discus2c sailplane

• Allegra configuration with forward-swept wings and T-tail

They can be found in the examples repository: https://phabricator.ae.go.dlr.de/diffusion/117/

 4.3 Tips for Aeroelastic Modeling

This section gives hints  for typical mistakes to help the user and to create less problems 

during the transfer of the aeroelastic model from Nastran to Loads Kernel.

• Nastran models created by ModGen are usually parsed without complications. 

• Nastran models from other sources are possible and have been integrated successfully, 

but note that all Nastran input cards must be in “8-character-notation”.

• The FE model  should be “clean” in the sens that there are no unconnected GRID 

points.

• The  aerodynamic  panel  model  should  be  defined from left  to  right,  such  that  the 

normal vectors point in the same direction for both left and right wing. Loads Kernel 
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 4 Input Definitions

should handle arbitrary panel orientations, however, not all combinations have been 

tested  yet.  In  addition,  other  codes  might  have  difficulties  as  well,  leading  to 

unnecessary mistakes. 

• Only  one  control  surface  should  be  defined  per  AESURF card,  even  though  two 

control surfaces are possible in Nastran.
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