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Abstract: This work analyzes the relationship between crash frequency N (crashes per hour) and
exposure Q (cars per hour) on the macroscopic level of a whole city. As exposure, the traffic flow
is used here. Therefore, it analyzes a large crash database of the city of Berlin, Germany, together
with a novel traffic flow database. Both data display a strong weekly pattern, and, if taken together,
show that the relationship N(Q) is not a linear one. When Q is small, N grows like a second-
order polynomial, while at large Q there is a tendency towards saturation, leading to an S-shaped
relationship. Although visible in all data from all crashes, the data for the severe crashes display a
less prominent saturation. As a by-product, the analysis performed here also demonstrates that the
crash frequencies follow a negative binomial distribution, where both parameters of the distribution
depend on the hour of the week, and, presumably, on the traffic state in this hour. The work presented
in this paper aims at giving the reader a better understanding on how crash rates depend on exposure.

Keywords: road safety; traffic states; crash rates; temporal crash rate pattern

1. Motivation

Recent years have seen some progress when it comes to the availability and analysis of
crash data [1–3], or [4]. This has triggered new work and new methods, most notably from
machine learning that have the potential to improve knowledge, models, and, ultimately,
also the state of traffic safety.

In many cases, road safety work consists of identifying crash blackspots, determining
corrective measures, implementing them, and later evaluating them. A reasonable defini-
tion of a road accident blackspot will involve the number of crashes per unit of exposure.
This paper deals with the problem of modeling the relationship between crash rates and
exposure. A better understanding of this relationship allows traffic safety management
targeting hazardous locations more clearly based on risk and not merely on crash frequency.

Traditionally, one approach in this context is the development of crash prediction
models. They estimate the impact of several variables xj· on crash frequencies. This is done
by applying models of the type [5–9]:

Ni = β0(Qi/Q0)
β1 exp(µi) = β0(Qi/Q0)

β1 exp

(
n

∑
j=2

β jxji + ζ

)
, (1)

where Ni is the crash frequency at a certain instance i (time, place,. . . ), Qi is an exposure
variable, Q0 is a baseline flow, µi is the mean value of the crash rate, the xij are factors
thought to influence the crash frequency, and the β j are coefficients that quantify the
strength of each factor. Moreover, there is a gamma-distributed noise term ζ here where
exp(ζ) has mean one and variance γ.

The crash frequencies themselves are then found as a realization of a stochastic process
with a negative binomial distribution (NBD) with a mean µ and variance σ2:
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σ2 = µ + γµ2. (2)

The parameter γ describes how much the NBD deviates from a Poisson distribution,
with γ = 0 for a Poisson distribution.

The exposure variable, which in the following will be mainly the traffic flow, is difficult
to include properly in traffic safety analyses. This is due to the fact that crashes are rare
events, and that more often than not, a measurement of the exposure is not available at
the site and time of the crash. If available, it is often only in the form of an average over
a day, and very often from travel demand models instead of directly measured. Similar
difficulties plague the other data source of exposure, which is the one that stems from
travel surveys. In many cases, they are averages over large spatial areas (as in travel survey
data) although attempts exist to integrate traffic flow with more detail [10–13]. However, it
might be speculated that crash probabilities depend strongly on the traffic state itself, with
traffic flow being one of the major influencing variable [14,15].

Especially of interest is the relationship between the crash frequency N when dis-
played versus the traffic flow Q, see [14]. Note that often not N itself is displayed as a
function of Q, the crash rate ρ is used instead:

ρ(Q) =
N(Q)

Q
. (3)

The crash rate is the ratio between an average crash frequency and the corresponding
average traffic flow, leading to a continuous variable. As is demonstrated in Section 3.1,
another interpretation is to use the discrete number of crashes in one hour and the associ-
ated traffic flow in this hour, which leads to a mixture between a discrete and a continuous
distribution. (A similar approach can be found in [16], they have used the mileage on the
x-axis.)

Some thoughts about the relationship between N(Q) and ρ(Q) are in order. It is very
likely that the crash rate does not vanish as a function of Q, even for very small exposure
Q we expect that the crash rate does not drop to zero, and the results of this work will lend
additional credibility to this idea. So:

N(Q) ∝ Q ⇔ ρ(Q) ∝ ρ0 for Q→ 0. (4)

For freeway traffic, a good deal of results for N(Q) and ρ(Q) are available. The most
commonly used model has a roughly U-shaped form for ρ(Q), where crash rates are rather
large for small and large flows and have a minimum for intermediate flows. e.g., the
work [17,18] claims:

ρ(Q) = c1Q−β1 + c2Qβ
2 . (5)

where the exponent β1 is around 1, and β2 is between 1 and 2. Note that it is assumed that
the flow values are normalized to a constant flow so that the units drop out. The first term
is for single-vehicle crashes, while the second term describes multi-car crashes. Ceder also
observed that one should discern free traffic from congested traffic; this, however, raises
the question of how to do this properly based on hourly values. Furthermore, a recent
meta-analysis [19] that used 118 studies come to a similar conclusion, albeit with different
exponents β1, β2.

Similar results exist [15,20,21] or the German study [22], sometimes more symmetric
second-order polynomial relationships ρ(Q) ∝ c1(Q−Qc)2 + c0 have been used to describe
the data. The approach of [23] is a bit different since it displays crash rate as a function of
a novel indicator that is difficult to translate into traffic flow or volume/capacity ratios.
Note as an oddity that one of the earliest models on this topic [24] proposed an inverse
U-shaped relationship, which is once again a second-order polynomial; this time, the crash
rate is being small for small flow and large flows, which were in this case AADT values
(AADT = annual average daily traffic). However, Veh’s data are also consistent with the
assumption that the crash rate is constant, or a weakly increasing function of exposition.
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In essence, it could be stated that currently there is no univocal picture about the
relationship ρ(Q) for freeway data; for a more complete overview see [25]. Note, however,
that at least the idea of a diverging crash rate for Q→ 0 might be questionable; however,
this is not the topic of this work.

Results are different when looking at the relationship between ρ and AADT as an
exposure variable. In this case, crash rates increase with Q, eventually again as a power-law
ρ(Q) ∝ Qβ [26].

Very little work has been done so far that looks at the relationship N(Q) on the basis
for a whole city, with notable exceptions of [27] with a more theoretical approach, and [28]
trying to test this theory without having real flow data available, and the recent work on a
network-based macroscopic safety diagram [29].

The hypothesis behind this work was the assumption that at least the crash frequency
that involves two cars should be a second-order polynomial function of the traffic flow [30].
A similar idea is also proposed in [27,31]. Therefore, a reasonable model for the crash
frequency in a city is a combination of single-car crashes (which can be assumed to be
proportional to the number of vehicles around Q) and an interaction term proportional to
Q2. This interaction term is due to a naive assumption that if vehicles move independently
of each other, then there is a probability proportional to Q2 that they meet:

N = α1Q + α2Q2 (6)

Note that it is not easy to bring Equation (6) in line with Equation (1): the latter
one is tailored towards the use of generalized linear models (GLM) with a logarithmic
link function, and by exchanging Qβ1 with α1Q + α2Q2, the very character of this model
is changed into something that no longer can be treated as GLM with a logarithmic
link function.

However, this work deals only with the prefactor and ignores exp(µi), so a GLM and
its generalization GAM (generalized additive model) can still be used, but in most cases
with the identity as the link function.

As a final remark, note that models with a power-law term as in Equation (1) are not
in line with the assumption in Equation (4) that the crash rate becomes constant for small
exposure. However, when looking closely into [17,18], then Equation (5) function might be
modified to avoid the divergence at Q→ 0 by modifying the first term in the equation into
c1(Q + b)−β1 .

2. The Data

This paper uses two types of data. The first one is a large crash database that contains
all crashes reported by the Berlin police in the city of Berlin, Germany, during the years
2001–2019. The data are de-identified, i.e., they do not contain numberplates or names
of the crash participants or any other information that can be used to identify them.
Furthermore, for the subset of data used in the work reported here, the crash-time has been
aggregated to the hour.

Note that common practice in Berlin is different from other German federal states since
even a lot of property damage only (PDO) crashes are reported in the database. However,
even here the analyst must be aware of the fact that these numbers are biased due to the
under-reporting of small crashes. For this paper, only some part of the data in this database
has been used, see below for a more detailed description.

The second set of data stems from the Traffic4cast competition [32]. It contains de-
identified data from most of the days of 2018 in Berlin, where the speeds and the number of
probes of a certain vehicle fleet have been recorded. Since such a data set is a bit unusual, it
has been complemented by two other de-identified data sets so that comparisons between
the different data could be performed that are interesting in their own right. These are
the annual hourly count data from 28 detection sites, which have been provided by the
German Federal Highway Research Institute (BASt) and data from the latest travel survey
in Germany named Mobility in Deutschland (MiD) [33].
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2.1. The Crash Database

The crash database has been provided by the Berlin police, and it is not publicly
available. It contains for each crash i about 60× ni variables (some redundant), where ni is
the number of people involved in the crash. Here, only the time ti, the severity, and the
vehicle types have been used. Time is described with minutes’ resolution; however, it is
good not to use these numbers to this precision since preference for multiples of 15 min can
be observed (see also [3]). The severity of each crash is described by the number of lightly
injured, the number of severely injured, the number of fatalities, and the damage.

In the following, only severe (crashes with injured or killed participants) and non-
severe PDO crashes will be distinguished. The database contains 1,888,038 crashes, and
what is important for the analysis below: most of all crashes are between two cars, as can
be seen in Figure 1.
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Figure 1. Distribution of the number of road users involved (left), and the traffic shares (right) in the
Berlin crash data set. The Misc traffic mode is being used by the police to denote any traffic mode
that cannot be assigned. The y-axis is logarithmic, the numbers on top of the bars are the percentages
of the respective shares.

For this study, the timestamps of all crashes of the database have been rounded down
to the nearest full hour and translated to the corresponding hour of the week (0–167). Since
the data set spans 19 years, each hour occurs 992 times in the data set, resulting in 992
crash numbers for every hour of the week h. Therefore, for each hour of the week, the
distribution of counts can be determined directly. The results are displayed in Figure 2 as a
boxplot, and they display a strong weekly pattern. Very similar results have been reported
recently by [34].

The Figure 3 displays this result for the Monday only as a violin plot so that the shape
of the distributions can be seen more clearly. Moreover, the distribution of severe crashes
has been included in this Figure as well.
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Figure 2. Box plot of the crash frequency per hour of the week. The blue bar is the median, the boxes
are the 25- and 75-percentiles, the whiskers display the minimum and the maximum of the data.
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Figure 3. Distribution of the hourly crash counts as a function of the hour of the day on Mondays,
displayed as a violin plot. The orange violins are for all crashes, the red ones for the severe crashes
(which are shifted left by half an hour). The white circle is the median of the values.

2.2. The Distribution of the Crash Frequency

Most likely, the individual distributions in each hour are following an NBD. This can
be tested by plotting their variance σ2 against their mean value µ. An NBD displays then a
second-order polynomial relationship between µ and σ2 as stated already in Equation (2),
where the parameter γ specifies the deviation of the distribution from a Poisson distribution.
The results can be seen in Figure 4. Figure 4 shows that the data follow an NBD. Also, the
same analysis has been performed for severe crashes only. Various fits to this cloud of data-
points have been included in this Figure as well demonstrating that the assumption of the
NBD fits these data quite well. All fits are done with R’s lm() function [35], which executes
a linear least-squares fit to these data. The fit for the severe crashes is even better (larger R2),
leading to two different estimates for the γ variable. For all crashes, γ is estimated as
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γ = 0.091± 0.003, while it is larger for the severe crashes with γ = 0.153± 0.003. All fits are
highly significant, with p-values for the parameters well below p < 10−10, and R2-values
above 0.93.
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Figure 4. Variance versus mean for all crashes (left) and the severe crashes (right). For comparison, a
linear relationship is fitted as well, and the theoretical Poisson result is also included (broken red lines).

Furthermore, the distribution of each hour of the week can be fitted directly with an
NBD. From this, it can be stated that not only µ depends on the hour of the week (and
presumably, on the traffic state during this hour), the same is true for γ as well, see Figure 5.
We have found little work showing such a relationship between γ and the traffic state;
in [36] it is shown that their parameter k = 1/γ depends on the length of a road section
and that they have not found a dependence of k on AADT.

all crashes

severe crashes

0.0

0.5

1.0

1.5

0 24 48 72 96 120 144 168
hour

γ

Figure 5. The parameter γ as a function of hour of the week, for all crashes (dark-red) as well
as for the severe crashes (dark-green). Whenever the fit has failed, γ has been computed from
γ = (σ2 − µ)/µ2. These curves are not smoothed.
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2.3. The Traffic Flow Data

The traffic flow data are from the Traffic4cast challenge (T4C), where scientists were
asked to find the best possible prediction of the traffic state in a city. Traffic state is defined
as the speed and flow pattern vi,j(t), qi,j(t) of the cars of a large vehicle fleet, resulting from
about 1011 probe vehicle data. The index i, j is running from 0 to 436× 495 respectively,
while the time t is aggregated to five minutes intervals. Each i, j refers to a specific
100× 100 m box, where the boxes cover the whole area of Berlin. Note that the data have
been aggregated so that in each of the spatial boxes an 8-bit number {0, . . . , 255} results for
the flows qi,j(t), and the speeds vi,j(t).

Altogether, data of 273 days from the training-set have been used here, and have been
aggregated into hourly values as well for the analysis here. Note that neither the flow nor
the speed values can be related to ”real” numbers, they are in a complicated manner scaled
variables. Nevertheless, especially the aggregated flow values Q(t) = ∑i,j qi,j have been
used, they should be proportional to the real traffic flow in the city.

When doing the same aggregation as with the crash data (and taking care of the fact
that the timestamps of the training data set are in UTC, Coordinated Universal Time),
a similar plot as in Figure 2 is obtained in Figure 6.
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100k

200k
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Figure 6. Boxplot of the (hourly) traffic flow per hour of the week.

Again, a zoom-in of the flow data is provided in Figure 7; moreover, the aggregated
speed data have been drawn there as well, and a fundamental diagram (which is a so-
called macroscopic fundamental diagram [37]) to demonstrate that these data display a
reasonable behavior [29].
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Figure 7. Zoom of the boxplot (left), aggregation is now in 10 min intervals. The speeds have been
added to the flow. In the (right) panel, speed and flow are combined to a density plot, which is just
the macroscopic fundamental diagram for the flow data (now in the data set’s native 5 min intervals).

2.4. Supplemental Traffic Flow Data

Since this data set is unusual, it is compared to other data sets that describe the weekly
pattern of demand for transport. As already mentioned, two of them have been used
here: the annual hourly count data from 28 detection sites in Berlin [38], which have been
provided by the BASt, and data from the latest version of Germany’s travel survey MiD.

The BASt data [38] are hourly counts for every hour of 2018, 12 of them are located on
federal roads through Berlin, the other 16 are located on the freeways in Berlin. They count
only motorized traffic (several types are recognized, here only the total count is used), and
since they are installed on major roads only, there might be a certain tendency toward large
demand values, which might be different from the T4C data set. To match the T4C data,
and to ease later analyses, each weekly demand curve Q(h) where h being the hour of the
week, has been scaled to yield Q̂(h) so that its sum is one:

Q̂(h) =
Q(h)

∑167
h=0 Q(h)

(7)

Subsequently, these scaled curves for the different sites have been added to get an
aggregated traffic demand curve for this data, they are named LOOP in the following. This
normalization has also been performed for all the other weekly demand patterns, to easily
compare them with each other.

The MiD data set is different (the data can be obtained from [39]), since it is from a
travel survey conducted in 2016 and 2017. Altogether 960,619 trips have been collected
for the MiD. They are distributed over all of Germany, and considerable efforts have been
undertaken to make it a representative sample of the mobility of the German population.
For the purpose here, all trips for large cities have been picked, which yields 172,761 trips
in total, of which 73,696 belong to motorized traffic. Furthermore, trips with travel-speeds
larger than 150 km/h have been eliminated, which left 58,525 trips in the final data set.

Each trip in this data set is described by 116 variables, of which only the starting time,
the trip duration, the trip distance, and an expansion factor have been used. The expansion
factor assigns a weight to each trip so that the MiD data are in line with the kilometers
traveled in Germany.
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They have been counted according to the starting time of the trip, and have been again
aggregated to the number of trips per hour of the week (named MiD-Q in the following).
Moreover, each trip has been multiplied either by its trip duration (named MiD-T) or by its
trip-length (MiD-X) to yield an alternative exposure measure for inclusion into the analysis.

There are similarities between the flow patterns from the three sources, and this is
at least satisfactorily given how very different they are. The correlation between them is
between 0.65 for the worst pair (T4C and MiD-X) and 0.98 for the best pair (LOOP and
T4C). See also the pairwise comparison below for more details. This correlation improves
considerably if long trips (distance larger than 40 km, duration longer than 90 min) are
excluded from the MiD data, but this has not been done in the following.

The MiD-T and MiD-X data are noisier than the MiD-Q data, which points to problems
with the sampling, especially long trips that do not happen that often and may have an
under-sampling issue, but also short trips may not have been faithfully recorded by
the respondents.

Figure 8 displays the weekly normalized pattern of the T4C, the LOOP, and the MiD-Q
data, respectively. As can be seen from Figure 8, there are differences between them: the
MiD data display more pronounced weekly patterns, and the Saturdays and Sundays have
too much traffic when compared to the T4C and LOOP data, but also when compared to
the working days. Especially the small demand at night in the MiD data might be due to a
sampling or under-reporting effect, for the excess on weekends, there is no explanation
right now. However, this is a known effect [40] and is therefore not a bug in the analysis
done here.

The difference between the T4C and the LOOP data is more subtle: in essence, the
pattern of the LOOP data is more pronounced (in most cases), this can be attributed to the
fact that they are samples from roads with considerable demand, while the T4C data are
samples over the whole Berlin road transport system. This sampling of the T4C data may
tend to smooth out large amplitudes when compared to the LOOP data.

0 50 100 150

0.0

0.5

1.0

1.5

Hour of the week (h)

Q̂
 (%

)

T4C LOOP MiD−Q

Figure 8. Comparison of the weekly flow pattern Q̂(h) obtained from the T4C, the LOOP, and the
MiD-Q data.

Figure 9 provides a more complete characterization of the correlation between the five
different exposure data.
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Figure 9. Pairwise comparison of five possible exposure values. The density plots display the measure
on the right of each row on the y-axis versus the measure on the top of each column on the x-axis,
giving more detailed information than just the correlation itself.

3. On Crashes and Cars

To investigate the relationship between the crash frequency and the traffic flow, there
are two possibilities to relate them to each other with the data sets at hand. The first
one and most convincing one is, for the data from 2018, to plot for each hour of the year
where the T4C traffic flow data are available (these are 6552 of the 8760 possible ones) the
corresponding crash frequency. The second one is to plot only the aggregated data against
each other, i.e., the crash data for each hour of the week from the years 2001–2019 against
the weekly flow data from 2018. The results are similar, but not identical. The aggregated
approach will tend to smooth out extreme values and therefore yield a less noisy, but also a
less clear signal.

There is a third approach: to sample from all crash data for each hour of 2018 where
flow data are available one data set from the crash data that has the same hour of the week.
This has been done as well; however, the results are not displayed here since they are
almost the same as the data for 2018.

3.1. The 2018 Data

In Figures 10 and 11, the 2018 data are analyzed. For each hour where the traffic flow
Q is present, there is also the crash frequency N in this hour. To aggregate the data, the
flow values have been summarized into bins with an equal number of Q-values (in this
case, 50 bins for the Q-values have been chosen, resulting in 131 (Q, N)-pairs for each
bin). This leads to bins on the Q-axis that have different widths. Then, for each bin, the
mean value of the N-values can be computed and displayed in Figure 10 as an orange line
overlaid on the distribution of (Q, N)-values in the background as a greyscale density plot,
where darker grey means higher density. Three models have been estimated for these data,
which is the power-law of Equation (1) (which yields an exponent of β1 = 1.50± 0.01), the
proposed second-order polynomial model of Equation (6), and a GAM-fit (Generalized
Additive Model) [41,42]. Especially at small flows, all these models give roughly the same
results. They differ at large values of the traffic flow: the empirical curve, as well as
the GAM-model, show a tendency towards saturation, while the two other models do
not. Note, that the GAM-fit overlaps with the empirically determined curve very nicely,
which adds credibility to this result. Note, too, that almost all results for the fitted models
are statistically highly significant and pretty much comparable to each other, where the
GAM-model has the smallest AIC (Akaike Information Criterion), but not by very much.
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Therefore, from the visual appearance, one may favor the GAM-model, since it describes
especially the saturation part better. Statistics, however, is not that clear; the AIC values
differ just by just 1% between the best and the worst model. This is due to the fact that
the data for large demand are rare, and therefore statistics gets weak there. Some of the fit
results are summarized in Table 1.
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Figure 10. N versus Q̂ data, together with a line that connects the means computed from the data,
and three different models: a gam (dark blue), a second-order polynomial model (green), and a
power-law model Qβ1 (red).
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Figure 11. ρ versus Q̂ data, together with points (red) that are the mean values of ρ computed from
the data, and two different models: the green curve is from the model Equation (8), while the blue
curve belongs to Equation (9).
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Table 1. Results of the fits of the three models displayed in Figure 10.

Model Link R Function AIC Parameters
(All p < 2 × 10−16)

power log gam 35,129 23.57 Q1.50

polynomial id glm.nb 35,186 7.43 Q + 16.65 Q2

gam id gam 34,821 12.25 + 2.99 s(Q)

To learn more about the relationship between N and Q̂, in Figure 11 the crash rate ρ
has been analyzed as well. Here, two data-points with ρ-values larger than 200 have been
eliminated, and then two different models have been applied to these data. (Please note that
the hyperbola visible in Figure 11 are a consequence of the discreteness of N.) Especially the
aggregated data (average ρ in each of the Q̂-bins, the red points in Figure 11) suggests that
ρ(Q̂) consists of two different branches: for Q̂ < Qc, where Qc ≈ 0.9, a linearly increasing
relationship seems an appropriate description of the data presented, while for Q̂ ≥ Qc
another linear decreasing relationship fits the data well.

ρ(Q̂) =

{
c0 + c1Q̂ Q̂ < Qc

c2 + c3(Q̂−Qc) Q̂ ≥ Qc with c2 = c0 + c1Q̂c
(8)

Note, from comparing this bi-linear fit (the green curve) to the averaged data (red
points) in Figure 11, the left branch might be described a bit better by a power-law (the
blue curve in Figure 11):

ρ(Q̂) =

{
c0 + c1Q̂β : Q̂ < Qc

c2 + c3(Q̂−Qc) Q̂ ≥ Qc with c2 = c0 + c1Q̂β
c

(9)

It turns out that β = 1.60± 0.11; in this case, the fits have been performed with a
non-linear regression (the function ‘nls()’ from R [35]) because of the need to fit the point
Qc where the two branches meet as well, which changes the fit into a non-linear one.

Therefore, the relationship between N and Q̂ might be something like:

N(Q̂) =

{
c0Q̂ + c1Q̂β+1 Q̂ < Qc

c2Q̂ + c3Q̂(Q̂−Qc) Q̂ ≥ Qc
(10)

Note that c2 = c0Q̂c + c1Q̂β+1
c is needed for a continuous function, and where β = 1

might occur.
In Figures 12 and 13, a similar behavior is to be seen for the severe crashes. However,

the saturation does not look as convincing as for all crashes, and the crash rate is better
approximated by the bi-linear model Equation (8)-the non-linear fit does not converge
properly for Equation (9).

In Figure 13, four curves have been plotted on top of the data (orange line): the power-
law model Equation (1), the second-order polynomial model Equation (6), the GAM-model
(blue), and finally, the Q · ρ(Q) curve (violet) where the parameters of ρ(Q) have been
estimated by the non-linear fit to Equation (8) which means that β = 1.

Nevertheless, it can be stated that the models with saturation do better describe the
data for large values of the traffic flow.

An additional observation, which is mentioned here in passing, is the dependence
of the crash frequency N on speed V. The data suggest that N decreases as a function of
speed. Note, however, that there is a very strong negative correlation between speed and
flow as is apparent from Figure 7 and is well-known from traffic flow theories. It is not clear
to us how to properly disentangle the two to get a pure dependence of crash frequency
on speed.
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Figure 12. ρ versus Q̂ for the severe crashes only, again with the mean values of the empirical data
(orange) and the bi-linear model (blue) of Equation (9).
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Figure 13. N versus Q for the severe crashes only, again with the empirical data and the four differ-
ent models.

3.1.1. Weekly Curves of the Crash Rate

A different view of these data can be constructed by analyzing the crash rate Equation (3)
as a function of the hour of the week, which is done in Figure 14.

Once more, the curves have been normalized so that it is easier to compare them
with each other. Although the survey data show the well-known effect that the risk is
larger during the night (from midnight to 3 a.m.) [43–45], the traffic flow data display
a completely different behavior. Risk is lower during the night, except for the nights at
weekends, and it is higher during the busy times of the day. The amplitude of the safety
index is, however, smaller for the flow data, and this seems, at least, reasonable. The
difference in ρ for the survey data is most likely too strong.

In fact, looking at the flow curves themselves in Figure 8 it could be seen that the
survey data have a smaller value during the night, resulting in larger than indicated by
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flow data risk at night. Part of this result can be traced to the fact that the survey data have
passenger traffic only, so at least the business and freight traffic is missing. However, the
share of crashes with trucks is not much different during the night, only the accident costs
per crash are much larger during these night hours (results not shown), the latter being a
well-known result.

0.01

0.05
0.10

0.50
1.00

5.00
10.00

50.00

Hour of week

ρ̂
MiDX MiDT MiDQ LOOP T4C

0 24 48 72 96 120 144 168

Figure 14. Risk index ρ as a function of the hour of the week for the five different exposure variables.
The blue rectangles indicate the hours between 0 a.m. and 6 a.m.

In Figure 15, the crash rate is plotted only for the T4C data, but this time for all crashes
as well as for the severe crashes. Note that there is one difference between the two curves:
while the risk index ρ̂ is almost flat between 8 and 16 o’clock for all the crashes, the risk
index for the severe crashes still display the double peak structure also visible in the crash
data as well as in the traffic flow data.

0.5
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1.5
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ρ̂

0 24 48 72 96 120 144 168
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Figure 15. Risk index ρ as a function of the hour of the week for all crashes (top, black) and the
severe crashes (bottom, red). The blue rectangles indicate the hours between 0 a.m. and 6 a.m., the
area around the curves is the 99% confidence interval of the mean. They have been computed by
bootstrapping.
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The amplitude, i.e., the ratio between the smallest and the largest crash rate is roughly
a factor of 4, and this is what has been reported in other research, so it seems that at least
the range is in line with the results from other research.

3.1.2. A Remaining Pattern

Since there are models at hand (the bi-linear one is used in the following), it is
interesting to see whether there is any weekly pattern left if the actual crash frequency is
divided by the expected crash frequency N̂ according to the model. This number will be
called prediction index Λ in the following and is defined as:

Λ =
N
N̂

(11)

The resulting pattern in Figure 16 looks similar to the risk index ρ, but has a smaller
amplitude. Therefore, the model in Equation (10) explains at least some of the variability
of the weekly pattern in the crash numbers. Nevertheless, it is surprising that Λ displays
so much of the weekly pattern of N(h) and Q(h).

0 50 100 150

0.5

1.0

1.5

2.0

weekH

Λ
=

N
N̂

, ρ̂

Figure 16. The prediction index Λ (green) as a function of the hour of the week, together with the
safety index ρ̂ (red). The shaded areas are the 99% confidence intervals of the mean values which
have been computed by bootstrapping.

4. Summary and Conclusions

This work has analyzed several databases that allowed mapping the crash frequency
to the number of vehicles on travel as an exposure variable, on a weekly basis with an
aggregation time of one hour. From this, it was possible to find a parameterized form of
the distribution of the crashes itself, the dependence of its parameters on the week of the
hour (and therefore on the traffic state), and the relationship between the crash frequency
and the exposure. The data indicate that the crash frequency saturates with larger traffic
flow (which is also related to an increase in congestion).

The crash rate as a function of traffic flow displays an interesting bi-linear relationship
that has a maximum at about Q̂ ≈ 1 (Equation (8)). This is similar to the inverse “U” that
has been reported already in Veh’s work [24], and it may have a connection to the theory
proposed in [27]. For small values of the traffic flow, this is suspiciously close to the naive
approach Equation (6), and this is at least satisfactorily since there is a simple mechanistic
model available for this kind of relationship. If, however, the more complicated model in
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Equation (9) turns out to be a better description, then the question might be asked where
the additional Q̂0.6 comes from (the exponent was β = 1.60± 0.11, 0.6 larger than 1).

These results suggest that the simple power-law model that comes with the traditional
approach to road safety modeling (Equation (1)) is not in line with the results presented
here. However, these results are also not in line with most of the results from research on
freeway traffic. There is, however, a certain similarity with what has been proposed in [27].

The most surprising and conflicting result of this research is that the crash rate in the
city of Berlin seems to be smaller during the night hours, so traveling is safer than it is
during the day. If this is true in fact and not a glitch in the data or the data analysis, then a
simple explanation might be that driving during the day with its much stronger traffic is
more demanding, causing a higher error rate. However, this is for sure not the whole story
behind since the crash rate from 8 a.m. to 6 p.m. for all the crashes (but not for the severe
crashes, they still do display the double peak structure) is more or less constant within the
analysis performed here, while the traffic flow changes considerably over this time.

Several things might have gone wrong with the approach presented here. First is that
it is not clear that the traffic flows determined from the T4C database are a good measure
of the real traffic flow, and whether this traffic flow is a good proxy for the exposure of
cars to crashes. Or, for that matter, that there is a simple linear relationship between traffic
flow and exposure. On the other hand, the comparisons to the loop data and the MiD data
indicate that the usage of those data is an interesting investigation. In addition, as can be
seen especially from Figures 8 and 9, the survey data (MiD data in this case) seem to have
issues of their own, which only might become visible in comparisons as the ones done here.
Nevertheless, a recommendation for future research is to watch out more closely for the
role of the traffic state in general on crash probability. Here, the traffic state is understood
as the combination of flow and speed and maybe other variables as well that may influence
traffic safety.

It will be interesting to see whether similar results can be found in other circumstances,
or whether these results are just an oddity of research in traffic safety.

Another direction of research is related to the dependence of crash frequency on speed,
or much better, its dependency on the two-dimensional description of the traffic state
by flow and speed (Q, V), respectively, the fundamental diagram. For freeways, some
steps have been done already in this direction [15]. However, this is difficult since such a
proposed relationship N(Q, V) cannot be formulated as a simple function, since there are
values of (Q, V) that are never realized in real traffic.
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9. Ambros, J.; Jurewicz, C.; Turner, S.; Kieć, M. An international review of challenges and opportunities in development and use of

crash prediction models. Eur. Transp. Res. Rev. 2018, 10, 35. [CrossRef]
10. Theofilatos, A. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials.

J. Saf. Res. 2017, 61, 9–21. [CrossRef]
11. Petraki, V.; Ziakopoulos, A.; Yannis, G. Combined impact of road and traffic characteristic on driver behavior using smartphone

sensor data. Accid. Anal. Prev. 2020, 144, 105657. [CrossRef]
12. Shi, Q.; Abdel-Aty, M. Big Data applications in real-time traffic operation and safety monitoring and improvement on urban

expressways. Transp. Res. Part C Emerg. Technol. 2015, 58, 380–394. [CrossRef]
13. Wu, Y.; Abdel-Aty, M.; Lee, J. Crash risk analysis during fog conditions using real-time traffic data. Accid. Anal. Prev. 2018,

114, 4–11. [CrossRef] [PubMed]
14. Lord, D.; Manar, A.; Vizioli, A. Modeling crash-flow-density and crash-flow-V/C ratio relationships for rural and urban freeway

segments. Accid. Anal. Prev. 2005, 37, 185–199. [CrossRef] [PubMed]
15. Imprialou, M.I.M.; Quddus, M.; Pitfield, D.E.; Lord, D. Re-visiting crash–speed relationships: A new perspective in crash

modelling. Accid. Anal. Prev. 2016, 86, 173–185. [CrossRef] [PubMed]
16. Jovanis, P.P.; Chang, H.L. Modeling the Relationship of Accidents to Miles Traveled. Transp. Res. Rec. 1986, 1068, 42–51.
17. Ceder, A. Relationships between road accidents and hourly traffic flow—II: Probabilistic approach. Accid. Anal. Prev. 1982,

14, 35–44. [CrossRef]
18. Ceder, A.; Livneh, M. Relationships between road accidents and hourly traffic flow—I: Analyses and interpretation. Accid. Anal.

Prev. 1982, 14, 19–34. [CrossRef]
19. Høye, A.K.; Hesjevoll, I.S. Traffic volume and crashes and how crash and road characteristics affect their relationship—A

meta-analysis. Accid. Anal. Prev. 2020, 145, 105668. [CrossRef]
20. Zhou, M.; Sisiopiku, V. Relationship Between Volume-to-Capacity Ratios and Accident Rates. Transp. Res. Rec. 1997, 1581, 47–52.

[CrossRef]
21. Martin, J.L. Relationship between crash rate and hourly traffic flow on interurban motorways. Accid. Anal. Prev. 2002, 34, 619–629.

[CrossRef]
22. Pöppel-Decker, M.; Schepers, A.; Koßmann, I. Grundlagen Streckenbezogener Unfallanalysen auf Bundesautobahnen; Technical Report

M 153; Bundesanstalt für Straßenwesen (BASt): Bergisch Gladbach, Germany, 2003. (In German)
23. Kononov, J.; Durso, C.; Reeves, D.; Allery, B. Relationship Between Traffic Density, Speed, and Safety and Its Implications for

Setting Variable Speed Limits on Freeways. Transp. Res. Rec. J. Transp. Res. Board 2012, 2280, 1–9. [CrossRef]
24. Veh, A. Improvements to reduce traffic accidents. In Proceedings of the ASCE, Meeting of the Highway Division, New York,

NY, USA, 1937; pp. 1775–1785.
25. Theofilatos, A.; Yannis, G. A review of the effect of traffic and weather characteristics on road safety. Accid. Anal. Prev. 2014,

72, 244–256. [CrossRef] [PubMed]
26. Wang, C.; Quddus, M.A.; Ison, S.G. Impact of traffic congestion on road accidents: A spatial analysis of the M25 motorway in

England. Accid. Anal. Prev. 2009, 41, 798–808. [CrossRef] [PubMed]
27. Shefer, D.; Rietveld, P. Congestion and Safety on Highways: Towards an Analytical Model. Urban Stud. 1997, 34, 679–692.

[CrossRef]

http://doi.org/10.4236/jtts.2017.72015
https://github.com/Robinlovelace/stats19-gisruk
http://dx.doi.org/10.1016/j.aap.2017.02.022
http://www.ncbi.nlm.nih.gov/pubmed/28262098
http://dx.doi.org/10.1186/s12544-018-0301-0
http://dx.doi.org/10.3141/1897-11
http://dx.doi.org/10.1016/j.tra.2010.02.001
http://dx.doi.org/10.1016/j.aap.2014.06.003
http://dx.doi.org/10.1186/s12544-018-0307-7
http://dx.doi.org/10.1016/j.jsr.2017.02.003
http://dx.doi.org/10.1016/j.aap.2020.105657
http://dx.doi.org/10.1016/j.trc.2015.02.022
http://dx.doi.org/10.1016/j.aap.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28576419
http://dx.doi.org/10.1016/j.aap.2004.07.003
http://www.ncbi.nlm.nih.gov/pubmed/15607290
http://dx.doi.org/10.1016/j.aap.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26571206
http://dx.doi.org/10.1016/0001-4575(82)90005-7
http://dx.doi.org/10.1016/0001-4575(82)90004-5
http://dx.doi.org/10.1016/j.aap.2020.105668
http://dx.doi.org/10.3141/1581-06
http://dx.doi.org/10.1016/S0001-4575(01)00061-6
http://dx.doi.org/10.3141/2280-01
http://dx.doi.org/10.1016/j.aap.2014.06.017
http://www.ncbi.nlm.nih.gov/pubmed/25086442
http://dx.doi.org/10.1016/j.aap.2009.04.002
http://www.ncbi.nlm.nih.gov/pubmed/19540969
http://dx.doi.org/10.1080/0042098975970


Safety 2021, 7, 3 18 of 18

28. Noland, R.B.; Quddus, M.A. Congestion and safety: A spatial analysis of London. Transp. Res. Part A Policy Pract. 2005,
39, 737–754. [CrossRef]

29. Alsalhi, R.; Dixit, V.V.; Gayah, V.V. On the existence of network Macroscopic Safety Diagrams: Theory, simulation and empirical
evidence. PLoS ONE 2018, 13, e0200541. [CrossRef]

30. Retallack, A.; Ostendorf, B. Relationship Between Traffic Volume and Accident Frequency at Intersections. Int. J. Environ. Res.
Public Health 2020, 17, 1393. [CrossRef]

31. Elvik, R.; Erke, A.; Christensen, P. Elementary Units of Exposure. Transp. Res. Rec. 2009, 2103, 25–31. [CrossRef]
32. HERE. Traffic4Cast–Traffic Map Movie Forecasting. 2019. Available online: https://www.iarai.ac.at/traffic4cast/ (accessed on 7

January 2021).
33. Follmer, R.; Gruschwitz, D. Mobility in Germany—Short Report. Technical Report, Fas, DLR, IVT and Infas 360 on Behalf

of the Federal Ministry of Transport and Digital Infrastructure (BMVI) (FE no. 70.904/15). 2019. Available online: http:
//www.mobilitaet-in-deutschland.de/pdf/MiD2017_ShortReport.pdf (accessed on 27 May 2020).

34. Cabrera-Arnau, C.; Prieto Curiel, R.; Bishop, S.R. Uncovering the behaviour of road accidents in urban areas. R. Soc. Open Sci.
2020, 7, 191739. [CrossRef]

35. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
36. Cafiso, S.; Di Silvestro, G.; Persaud, B.; Begum, M. Revisiting variability of dispersion parameter of safety performance for

two-lane rural roads. Transp. Res. Rec. J. Transp. Res. Board 2010, 2148, 38–46. [CrossRef]
37. Geroliminis, N.; Daganzo, C.F. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transp.

Res. Part B Methodol. 2008, 42, 759–770. [CrossRef]
38. BASt. Automatische Zählstellen 2018; Bundesanstalt für Straßenwesen (BASt): Bergisch Gladbach, Germany, 2018. (In German)
39. DLR. Clearing House Transport; DLR: Cologne, Germany, 2018.
40. Köhler, K. (DLR, Institute of Transport Research, Oberpfaffenhofen, Germany). Personal communication, 2020.
41. Wood, S. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017.
42. Zhang, Y.; Xie, Y.; Li, L. Crash frequency analysis of different types of urban roadway segments using generalized additive model.

J. Saf. Res. 2012, 43, 107–114. [CrossRef] [PubMed]
43. Folkard, S. Black Times: Temporal Determinants of Transport Safety. Accid. Anal. Prev. 1997, 29, 417–430. [CrossRef]
44. Åkerstedt, T.; Kecklund, G.; Hörte, L.G. Night Driving, Season, and the Risk of Highway Accidents. Sleep 2001, 24, 401–406.

[CrossRef] [PubMed]
45. Regev, S.; Rolison, J.J.; Moutari, S. Crash risk by driver age, gender, and time of day using a new exposure methodology. J. Saf.

Res. 2018, 66, 131–140. [CrossRef]

http://dx.doi.org/10.1016/j.tra.2005.02.022
http://dx.doi.org/10.1371/journal.pone.0200541
http://dx.doi.org/10.3390/ijerph17041393
http://dx.doi.org/10.3141/2103-04
https://www.iarai.ac.at/traffic4cast/
http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_ShortReport.pdf
http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_ShortReport.pdf
http://dx.doi.org/10.1098/rsos.191739
http://dx.doi.org/10.3141/2148-05
http://dx.doi.org/10.1016/j.trb.2008.02.002
http://dx.doi.org/10.1016/j.jsr.2012.01.003
http://www.ncbi.nlm.nih.gov/pubmed/22709995
http://dx.doi.org/10.1016/S0001-4575(97)00021-3
http://dx.doi.org/10.1093/sleep/24.4.401
http://www.ncbi.nlm.nih.gov/pubmed/11403524
http://dx.doi.org/10.1016/j.jsr.2018.07.002

	Motivation
	The Data
	The Crash Database
	The Distribution of the Crash Frequency
	The Traffic Flow Data
	Supplemental Traffic Flow Data

	On Crashes and Cars
	The 2018 Data
	Weekly Curves of the Crash Rate
	A Remaining Pattern


	Summary and Conclusions
	References

