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ABSTRACT 
The overarching goal of SALDi (South African Land 
Degradation MonItor) is to implement novel, adaptive, and 
sustainable tools for assessing land degradation in multi-use 
landscapes in South Africa. This presentation demonstrates 
results from hyper-temporal Sentinel-1 and -2 timeseries 
concerning woody cover mapping in complex savanna 
systems, invasive slangbos bush encroachment in grassland 
areas and regional soil moisture retrievals. Validation has 
been performed by cross-comparisons, field trips and 
permanently installed soil moisture networks. 
 

Index Terms—Sentinel-1, Sentinel-2, South Africa, land 
degradation, savanna, vegetation structure, disturbances, 
soil moisture 
 

1. INTRODUCTION 
 

The project ‘South African Land Degradation Monitor 
(SALDi)’ contributes to the German-South African Science 
Program SPACES by addressing the dynamics and 
functioning of multi-use landscapes with respect to land use, 
land cover change, water fluxes, and implications for habitats 
and ecosystem services. Particularly, SALDi aims:  
i) to develop an automated system for high temporal (bi-
weekly) and spatial resolution (10 to 30 m) change detection 
monitoring of ecosystem service dynamics, 
ii) to develop, adapt and apply a Regional Earth System 
Model (RESM) to South Africa and investigate the feedbacks 
between land surface properties and the regional climate, 
iii) to advance current soil degradation process assessment 
tools as a limiting factor for ecosystem services. 
 

2. MATERIALS & METHODS 
 

SALDi builds on innovative synergistic methodologies 
combining  biophysical  and  empirical retrievals from radar  

 
remote sensing data [1, 2, 3], complemented by methods 
providing a basis for recording land use [4, 5], vegetation 
cover [6, 7] and productivity from optical remote sensing 
data. The synergistic exploitation of the advantages of optical 
(vegetation vitality, coverage and types of land use) and radar 
(vegetation structure, surface moisture) holds high potential 
for the complex South African landscapes. Corresponding 
validation work in the field is an essential element [8]. 
 
2.1. Study area 

 
Protected areas within our six study regions (Fig. 1) represent 
benchmark sites, providing a foundation for baseline trend 
scenarios, against which climate-driven ecosystem service 
dynamics of multi-used landscape (cropland, rangeland, 
forests) are evaluated.  

 
Figure 1. SALDi study sites across South Africa. 

 
2.2. In situ information  
 
In situ soil moisture probes were installed in March 2019 in 
each of the six SALDi study regions. Three of them are 
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situated in National Parks (Augrabies Falls, Mokala and 
Kruger National Park). Each soil moisture network consists 
of a central data logger unit with eight 10 m cables radiating 
into eight directly opposing directions, each equipped with a 
SMT-100d soil moisture sensor. The soil moisture as well as 
soil temperature is measured in a 30 min interval at a depth 
of 6 to 10 cm. Further in situ information stem from drone 
campaigns and extensive field data collections during three 
6-week site visits. 
 
2.3. Satellite data 
 
We are utilizing Sentinel-1A/B C-Band VV/VH-SAR time 
series with a 10 m resolution. The revisit time is 12 days in 
average for South Africa. Pre-processing is done using 
pyroSAR, a Python framework for large-scale SAR-
processing providing processing utilities in ESA’s Sentinel 
Application Platform (SNAP) as well as GAMMA Remote 
Sensing software [10]. Sentinel-2A/B data were pre-
processed to L2A and used to calculate a wide range of 
vegetation indices (e.g. NDVI, EVI, SAVI, REIP) using 
DLR’s Sen2Cor-processor. The time frame starts with the 
first Sentinel-1 and -2 acquisitions and continues.  

SANSA in collaboration with SARAO (South African 
Radio Astronomy Observatory), is developing an open data 
cube, Digital Earth South Africa (DESA) based on SPOT 
data. Other datasets from different sensors will be ingested at 
a later stage. The analysis-ready data, that is, harmonized, 
standardized, interoperable, radiometrically and 
geometrically consistent data [9], is being ingested in the data 
cube. Algorithms and models for developing products such 
as land degradation indicators will be developed using Jypiter 
notebooks. SALDi’s data cubes will be linked for access and 
exercises. 
 
2.4 Woody Cover Mapping 
 
South African savanna ecosystems are characterized by 
woody vegetation (shrubs and trees) and grasslands with 
large seasonal changes and vulnerability to impacts from 
droughts, fires and herbivory. Hence, structural monitoring is 
an essential component. Sentinel-1 time series were applied 
to a random forest machine learning approach [11]. For 
training, high resolution airborne LiDAR were utilized. 
 
2.5 Disturbances  
 
Land degradation can be triggered by numerous mechanisms 
that range from slowly operating, low onset processes (e.g. 
climate change) to abrupt disturbance events like floods or 
fires. Fires are an important agent because the recovery of 
vegetation in a system that is already out of equilibrium can 
result in completely different and often reduced assemblage 
of plant species. Sentinel-2 vegetation indices (e.g. NDVI, 
EVI, SAVI, REIP) were used to construct time series for 
selected areas, in order to describe and quantify vegetation 
trends before and after fire events. 
 

2.6 Slangbos Monitoring 
 
In the grassy plains of central South Africa (Freestate 
Province), slangbos (Seriphium plumosum, bankrupt bush) 
communities increasingly encroach into the prevalent open 
landscapes. The rapid change of the vegetation composition 
poses great challenges to local ecological dynamics as well 
as to livestock breeders as it potentially reduces grassland 
productivity. A national survey by the South African 
Department of Agriculture, Forestry & Fisheries (DAFF) set 
the expansion of the bush under scrutiny. Due to the large 
area infested, remote sensing in conjunction with machine 
learning models have been tested and led to good results [12]. 
 
2.7 Soil Moisture Estimates 
 
Multi-temporal co- and cross-polarized Sentinel-1 C-band 
data were used to segment vegetation structure followed by a 
Sentinel-2/Landsat-8 NDVI-based analysis of vegetation 
dynamics. Thus, pixel values representing soil moisture 
changes only, and not leaf dynamics, were identified. A 
hyper-temporal backscatter model was then applied to 
generate soil moisture maps [13]. Certain regions in South 
Africa experienced some of the most severe drought 
conditions on record during the southern summer 2015/16 
[14]. Our analysis covers a time span between March 2015 
and November 2019. Geographical focus is on Kruger 
National Park south of 25 degrees latitude (site 6, Fig. 1).  

 
3. RESULTS & DISCUSSION 

 
3.1 Woody Cover Mapping 
 
Sentinel-1A/B VV/VH- data from 2016/2017 were used to 
map vegetation structure in the Kruger National Park (Figure 
2). A high-resolution LiDAR data set [15] was reclassified 

Figure 2. Sentinel-1 derived woody cover map of the southern part of the 
KNP with a spatial resolution of 10 m for the years 2016/17.  
 
for training. The woody cover estimation is derived from the 
decision tree classifier random forest [14] using an MLR 
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implementation. Spatial cross-validation resulted in an 
overall RMSE of approximately 23 %. The final product was 
validated against a second independent LiDAR derived 
woody cover data set [16], resulting in a RMSE of 24 % [17].  
 
3.2 Disturbances 
The Western and Eastern Cape provinces of South Africa are 
home to one of only six floral kingdoms in the world. The 
Cape floristic region is dominated by a natural shrubland or 
heathland vegetation with an extremely high number of 
endemic species called fynbos. The fynbos ecoregion is 
exceptionally prone to fires, with appropriate fire regimes 
playing an important natural role in system functioning. Fire 
scars are often visible for multiple years. Invasive species in 
fynbos often interact with fire by increasing fire frequency 

and intensity. In addition, some invasive species have faster 
reproduction rates than the endemic plant types and displace 
the original vegetation with a low diversity assemblage, 
whilst concurrently changing the future fire characteristic, 
and are thus being considered a case of land degradation. 
The recovery after wild fires can be observed by time series 
of vegetation indices like NDVI derived from Sentinel-2 
(2016-2018) at different sites. A common pattern (compare 
Fig. 3) shows no recovery of the index in the year of the fire 
event and slow recovery during subsequent years. NDVI 
levels comparable to pre-fire times or neighboring areas not 
affected by fires are not attained during our observation 
period of three years. Observations over longer time spans 
will be able to show natural response rates and eventually 
help to delineate areas where the recovery is hampered.

 

 
Figure 3. NDVI fire time series based on Sentinel-2 data of Cape Agulhas region: Fires 3 and 5 occurred in 2017 and exhibit a slow recovery. Fire 1 started 
before 2016 and slowly recovered 2017 and 2018, but NDVI values do not reach pre-fire levels at sites 3 and 5, probably indicating onset of degradation. 

 
3.3 Slangbush Monitoring  
 
A random forest algorithm has been chosen for classification 
since it has been proven suitable for spatio-temporal 
applications [12]. The model is trained on the relationship of 
bush structure and backscatter signals to gain sensitivity for 
subtle feature discrimination. Training samples were 
retrieved from aerial imagery and Google Earth. Ground truth 
information and expert knowledge has been retrieved through 
field visits and photo documentation 

The structural elements of slangbos are likely to be 
recorded by the C-Band signals. The fraction of bush 
compartments is roughly of the size where C-Band waves 
interact mostly. Additionally, the round bush geometry 
implies to be a strong volume scatterer. First investigations 
imply stronger VH backscatter with growing bush volume 
and bush cover density (see Figure 4). 

 
3.4 Soil Moisture Estimates 
 
In situ soil moisture data from the Kruger National Park site 
near the Lower Sabie Basalt Supersite provide evidence for 
the strong relation between rainfall events and soil moisture 

(Figure 5 during March and April 2019) and the very seasonal 
soil moisture pattern. Rainfall records were collected at the  

 
Fig. 4: Median and standard deviation interval of Sentinel-1 VH time series 
(temporal resolution less than 7d, 354 scenes). Sites associated with slangbos 
(Seriphium plumosum) return a stronger signal (red, n = 564 pixels). 
Agricultural sites leave stronger patterns of seasonality without overall slope 
(blue, n = 1393 pixels). Plots being subject to slangbos control through 
chemical treatment, burning or manual uprooting or ploughing return 
significantly less backscatter (black, n = 105 pixels).  
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two closest climate stations (Lower Sabie and Crocodile 
Bridge) and used for comparison with the Sentinel-1 derived 
surface moisture (SurfMI). The agreement and the dynamics 
between Sentinel-1 derived SurfMI and in situ soil moisture 

 information shows a reasonable performance and indicate, 
that the suggested synergistic radar-optical approach allows 
the separation and retrieval of surface moisture conditions in 
this complex savanna landscape. 

 

  

Figure 5. Sentinel-1 SurfMI and in situ soil moisture and precipitation time series for the Kruger National Park (Precipitation Data provided by 
SANParks Data Repository).    
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