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Abstract. One of the most critical problems of realistic visualization of the real-world objects 

is physically adequate modeling of their reflection of light. Reflection of light by objects 

occurs both from the surface and the bulk of matter (scattering). Accounting for the light 

reflection from the surface of objects was solved almost a century ago based on its 

representation as a Fresnel randomly rough surface. Scattering by a bulk of matter is the 

subject of radiation transfer theory, which has only recently received its known completion in 

the form of discrete transfer theory. Strict analytical methods for solving the radiation 

transport equation (RTE) are often not highly effective for calculating the radiance factor. For 

a long time, in the absence of effective numerical methods for solving problems and the 

unavailability of high-speed computers for practical calculations, approximate methods for 

solving RTE were developed. However, their accuracy and applicability limits were poorly 

defined. The discrete transfer theory allowed us to evaluate the existing approximate methods 

for solving the UPI, their accuracy, and the efficiency of application for calculating the 

radiance factor. It is shown that the most effective method is the method of synthetic 

iterations. The method is based on the selection of the solution anisotropic part based on a 

small-angle approximation of the RTE solution. The solution regular part can be calculated 

by any approximation. Then a simple iteration from the complete solution is performed to 

refine the angular distribution of the radiance factor. 

Keywords: Radiance Factor, Reflectance, Radiative Transfer, Synthetic Iteration, 

Discrete Ordinates. 

1 Radiance factor 

One of the most pressing problems of computer graphics (CG) today is the mathematical 

model of reflection by objects of the real world [1, 2]. The concept of light reflection was 

introduced to optics by the first physicist on earth, Abu Ali al-Haysam [3], in the XI century. 
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It is difficult to list all the names in a short article that the theory of reflection owes its 

development over 1000 years. Common reflection characteristics were introduced by C. 

Fabry [4]. A complete reflection characteristic is the surface radiance factor, which, 

according to the International lighting vocabulary [5], is determined as the ratio of the 

radiance of the surface element in the given direction to that of the perfect reflecting or 

transmitting diffuser identically irradiated and viewed. 

Since the lighting conditions are not predefined, the radiance factors for diffuse and 

directional lighting should be distinguished. Let us consider the radiance ˆ( , )L r l  at the 

point defined by the radius-vector r and propagating along the direction ˆl . Then, the 

radiance factor ˆ ˆ( ; , ) r l l  in the viewing direction l̂  due to the directed illumination of the 

studied surface area at the point r in the direction ˆl  is defined as follows: 

 𝜌(𝒓; �̂�, �̂�′) = 𝜋
𝐿(𝒓,�̂�′)

𝐸(𝒓)(�̂�,�̂�)
, (1) 

where ˆ( , )L r l  is a visible surface radiance, ( )E r  is normal irradiance from incident 

radiation, N̂  is the surface normal at the point r. 

It is straight forward to see that according to (1) the radiance factor is the same as the 

definition of bidirectional reflectance distribution function (BRDF). However, according to 

[4], the term radiance factor is applicable for both reflected and transmitted radiation. 

Accordingly, if a thin horizontal layer is irradiated from above ˆ( , )L


r l  and below 

ˆ( , ),L


r l  the radiance ˆ( , )L r l  of the radiation coming out of the layer can be represented 

as: 

 [
𝐿(𝒓, �̂�)|

𝜇<0

𝐿(𝒓, �̂�)|
𝜇>0

] =
1

𝜋
∮ [

𝜌(𝒓; �̂�′, �̂�)𝛩(𝜇′ > 0) 𝜏(𝒓; �̂�′, �̂�)𝛩(𝜇′ < 0)

𝜏(𝒓; �̂�′, �̂�)𝛩(𝜇′ > 0) 𝜌(𝒓; �̂�′, �̂�)𝛩(𝜇′ < 0)
] [

𝐿↓(𝒓, �̂�′)

𝐿↑(𝒓, �̂�′)
] |𝜇′|𝑑�̂�′, (2) 

where ˆ ˆ( ; , ) r l l  is the radiance factor by transmission, ˆ ˆ( , )  = N l , ˆ ˆ( , ) = N l . The  

function is equal to 1 if the argument value is true, and 0 if it is false. 

Thus, in the general case, the slab is characterized by a matrix of radiance factor. For 

radiance factors, the principle of reciprocity is observed: transmission and reflection from 

top to bottom and from bottom to top are equal. 

In [6], a model of slab reflection was proposed, which determined all further efforts in 

this direction. The model [6] is based on the representation of the reflection process as the 

sum of two processes: a reflection from the Fresnel randomly rough surface (RRS)of the 

interface between media and light scattering by the thickness of substances. The 

development of the RRS reflection model has been very productive. In the article [7], the 

primary relations of reflection from the RRS were formulated, and subsequent works were 

mainly its refinements. 
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The problem of reflection (scattering) of light by the entire volume of the layer is 

reduced to a boundary value problem for the radiation transfer equation (RTE), which 

turned out to be a mathematically more complex problem, practical algorithms for solving 

which in fact only by the end of the XX century. In [8, 9], a complete, analytically rigorous 

model of radiation reflected by a layer was proposed. With all the advantages of this model, 

it requires setting environment such characteristics that are not clear to the average user of 

the software. 

However, before precise methods for solving RTE were developed, approximate 

methods were developed that were limited in their scope. They were commonly referred to 

as engineering methods since they were often used in the design of various devices. These 

methods were often developed separately, based on some narrow assumptions about the 

properties of the medium and the light field inside. From the present time, when a strict 

analytical solution of the RTE is available, it is of considerable interest to assess the 

accuracy and applicability limits of these engineering approximations. It will allow us to 

determine their suitability for use in CG algorithms. 

2 Discrete radiative transfer theory 

We start our analysis with the boundary value problem formulation for the radiance field 

ˆ( , )L  l  in the case of a homogeneous slab of the optical thickness 0 . Here   is the vertical 

coordinate measured in dimensionless optical thickness and is zero at the layer top, while 

 ˆ ,=  l  is the direction given in spherical coordinates by the cosine of polar angle   and 

the azimuthal angle  . The slab is illuminated by a mono-directional plane source at the 

top of the layer with  0 0 0
ˆ ,=  l  being the direction of incidence, 0  the cosine of the 

polar incident angle, while 0 0 = . The boundary value problem for ˆ( , )L  l  reads as 

follows [10]: 

 {
𝜇

𝜕𝐿(𝜏,�̂�)

𝜕𝜏
+ 𝐿(𝜏, �̂�) =

𝛬

4𝜋
∮ 𝐿(𝜏, �̂�′)𝑥(�̂�, �̂�′)𝑑�̂�′ ,

𝐿(𝜏, �̂�)|
𝜏=0,𝜇>0

= 𝛿(�̂� − �̂�0),  𝐿(𝜏, �̂�)|
𝜏=𝜏0,𝜇<0

= 0,
  (3) 

where x is the single scattering phase function. 

Direct numerical solution of Eq. (3) is impossible due to singularities in ˆ( , )L  l  (i.e. the 

delta-function) coming from the upper boundary conditions. To overcome this problem, the 

total radiation is expressed as a sum of the direct radiation and the diffuse radiation [11].  

Note that the first (singular) part can be evaluated analytically, while the diffuse part can be 

found numerically. In practice, this approach is not efficient when the single scattering 

phase function is forward peaked (e.g. due to large particles compared to the wavelength of 
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the light [12]), for which several hundreds of Legendre expansion coefficients have to be 

taken into account. For the sake of numerical efficiency, in addition to the singular part, the 

so called small-angle part of the radiance is treated analytically, while the remaining part of 

the radiance field is smooth. This framework is based on the following representation of the 

radiance field [13]: 

 𝐿(𝜏, �̂�) = 𝐿𝑎(𝜏, �̂�) + �̃�(𝜏, �̂�),  (4) 

where ˆ( , )aL  l  is the anisotropic part which incorporates all singularities in the angular 

domain, while ˆ( , )L  l%  is the regular part of the solution. As shown in [13], substituting Eq. 

(4) into Eq. (3) gives a new boundary problem with an additional source term. The 

numerical solution based on the discrete ordinate method involves the following steps: 

• Fourier cosine expansion of the radiance and phase functions; 

• discretization of the radiance field in the angular domain by introducing a set of 

Gaussian points  i

  and weights  iw , 1,...,i N= , where N is the number of discrete 

ordinates per hemisphere, the upper index ‘+’ refers to the downwelling radiance, while 

‘-’ corresponds to the upwelling radiance.  

• replacing the scattering integral with a finite sum [14] in the discrete ordinate space; 

• transformation of the radiative transfer equation into the differential matrix equation 

with respect to column vectors consisting of the radiance values at Gaussian nodes.  

After performing these steps, the original problem is transformed into the following 

equation: 

 
𝑑𝐶(𝜏)

𝑑𝜏
= −𝐵𝐶(𝜏) + �⃡� ⃗ −1Δ  ⃗ (𝜏),  (5) 

where 𝐶(𝜏) ≡ [𝐶−(𝜏),  𝐶+(𝜏)]
𝑇
, 𝐶±(𝜏) ≡ {𝐿𝑚(𝜏, 𝜇𝑖

±)}
𝑖=1,𝑁

, B is the layer matrix,  Δ  ⃗  is the 

source term, while M diag( , )i i

− +=  
t

. Expressions for B and  Δ  ⃗   are given in [13]. The 

general solution of the inhomogeneous equation (5) is given as the sum of the particular 

solution of the inhomogeneous equation and general solution of the homogeneous equation: 

 −𝐶(0) + 𝑃(0, 𝜏0)𝐶(𝜏0) = ∫ 𝑃(0, 𝜏)�⃡� ⃗ −1Δ  ⃗ (𝜏, 𝜇0)𝑑𝜏
𝜏0

0
,  (6) 

where  

 𝑃(𝑡, 𝜏) ≡ 𝑒𝐵(𝜏−𝑡) (7) 

is the solution to the homogeneous equation. 𝑃(𝑡, 𝜏) is referred to as the propagator and 

relates the radiance fields at spatial coordinates t and . That means, if a radiance field at   

is known, it can be ‘propagated’ to the point  t by applying the propagator (7). However, 

our original problem (3) is a two-point boundary value problem, i.e. at each boundary only 

a half of boundary conditions (for one hemisphere) is provided. Therefore, solution (6) 
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based on the propagators cannot be readily applied. 

To solve the two-point boundary value problem, the eigenvalue decomposition of the 

matrix exponential in Eq. (7) should be performed. Then, applying the so called scaling 

transformation [15] and taking into account the boundary conditions, a robust solution of 

Eq. (6) can be obtained, which can be written in the form of scatters (see detailed derivations 

in [13]): 

 [
𝐶−(0)

𝐶+(𝜏0)
] = [

�⃗�−

�⃗�+

] + [
𝑅− 𝑇−

𝑇+ 𝑅+

] [
𝐶+(0)

𝐶−(𝜏0)
],  (8) 

where �⃗�± are the source vectors, which correspond to the intrinsic radiation of the layer, 

while 𝑅 and 𝑇 are the reflection and transmission matrices incorporating the discrete values 

of reflection and transmission coefficients, respectively. Note that �⃗�± , 𝑅 and 𝑇 are 

expressed in terms of eigenvectors of the layer matrix (explicit expressions can be found, 

e.g. in [16]). Obviously, the column-vectors 𝐶+(0),  𝐶−(𝜏0) in Eq. (8) correspond to the 

radiances, sticking the slab, and are defined by the boundary conditions. The column-

vectors 𝐶−(0),  𝐶+(𝜏0) correspond to the transmitted and reflected radiances. Thus, Eq.(8) 

relates the incoming and outgoing radiances and, thus, can be considered as a generalization 

of the radiance factor (2) 

Equation (8) can be transformed back into the propagator-like form suited for one-point 

boundary value problem: 

 𝐶(𝜏0) = [
𝑇+ − 𝑅−𝑇−

−1𝑅+ 𝑅−𝑇−
−1

−𝑇−
−1𝑅+ 𝑇−

−1
] 𝐶(0) + 𝐹.  (9) 

In [17] such kind of transformation was referred to as the stellar product. The entries of 

scatter matrices satisfy Riccati equation, which correspond to the one-point boundary value 

problem. Note that Eqs. (8)-(9) are the strict analytical solution to Eq. (3) in the form of 

brightness coefficient matrices. 

Two comments are in order. First, following Kolmogorov [18], the physical laws are 

established by discrete measurements, and then formulated in term in a continuous setting. 

One can argue that nowadays it is more productive and efficient to formulate physical laws 

(at least in light engineering) directly in a discrete form. Secondly, the accuracy of the 

solution is determined by the number of ordinates used. The use of many ordinates places 

high demands on computer power. As the solution is based on the matrix multiplication, 

the matrix inversion and the eigen decomposition, the computational time increases faster 

as N2. Therefore, engineering applications require high-performance approximate solution 

techniques, which would be less demanding on computational power. 
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3 Radiance field inside a slab 

After the solution of the discrete RTE, taking into account the boundary conditions, the 

two-points boundary value problem is transformed into two one-point boundary value 

problems (with initial conditions) that allows using each of them to determine the radiance 

field inside the slab [19]: 

• through the field on the upper boundary 

 𝑈−1𝐶(𝜏) = 𝑒−Γ⃡𝜏𝑈−1𝐶(0) + 𝑒−Γ⃡𝜏 ∫ 𝑒 Γ⃡𝑡𝑈−1�⃡� ⃗ −1Δ  ⃗ (𝑡, 𝜇0)𝑑𝑡
𝜏

0
, (10) 

• through the field on the lower boundary 

 𝑈−1𝐶(𝜏) = 𝑒 Γ⃡(𝜏0−𝜏)𝑈−1𝐶(𝜏0) − 𝑒−Γ⃡𝜏 ∫ 𝑒 Γ⃡𝑡𝑈−1�⃡� ⃗ −1Δ  ⃗ (𝑡, 𝜇0)𝑑𝑡
𝜏0

𝜏
. (11) 

Note that the same function is on the left side of both formulae (10) - (11), and the 

expressions on the right sides are different ones. In this case, expression (10) contains only 

positive exponents for the upper hemisphere of sighting directions, and expression (11) 

contain the same for the lower one. Since left sides are equal, then right sides are also equal. 

That allows us to take the expression for the lower hemisphere from (10), and for the upper 

hemisphere from (11): 

𝑈−1𝐶 = [
𝑒 Γ⃡−(𝜏0−𝜏)u⃡11𝐶−(𝜏0) + 𝑒 Γ⃡−(𝜏0−𝜏)u⃡12𝐶+(𝜏0)

𝑒−Γ⃡+𝜏u⃡21C ⃗ −(0)
] +

𝑒−Γ⃡𝜏 [
− (∫ 𝑒 Γ⃡𝑡𝑈−1�⃡� ⃗ −1Δ  ⃗ (𝑡, 𝜇0)𝑑𝑡

𝜏0

𝜏
)

−

(∫ 𝑒 Γ⃡𝑡𝑈−1�⃡� ⃗ −1Δ  ⃗ (𝑡, 𝜇0)𝑑𝑡
𝜏

0
)

+

]. (12) 

The obtained expression contains only negative exponents. Therefore, the radiance field 

calculation does not present any problems for the arbitrary slab optical depth. Substituting 

the expression for the source function in (6) and calculating the corresponding integrals in 

(12), we get the resultant expression for the radiance field inside the slab: 

 𝑈−1𝐶(𝜏) = [𝑒
Γ⃡−(𝜏0−𝜏) 0

0 𝑒−Γ⃡+𝜏
] �⃗�(𝜏0) + �⃗�(𝜏), (13) 

where 

 �⃗�(𝜏) ≡ ∑
2𝑘+1

4𝜋
𝑞𝑘 𝑑𝑖𝑎𝑔 (

𝑑𝑘𝑒
−𝑑𝑘

𝜏
𝜇0

𝛾𝑖𝜇0−𝑑𝑘
−

𝑒
−

𝜏
𝜇0

𝛾𝑖𝜇0−1
) 𝑈−1(1⃡ − 𝜇0�⃡� ⃗ −1)𝑄 ⃗ 𝑘

𝑚𝐾
𝑘=𝑚 , (14) 

 �⃗�(𝜏0) ≡ [
𝑢11𝐶−(𝜏0) + 𝑢12𝐶+(𝜏0)

𝑢21𝐶−(0)
] − [

(�⃗�(𝜏0))
−

(�⃗�(0))
+

]. (15) 
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The radiance angular distributions at some points of the turbid medium are presented in 

Fig. 1 as polar diagrams. 

 

Fig. 1. Normalized radiance angular distribution inside the slab: aerosol, t0 = 10, L = 1.0, q0 = 60º. 

Red line – t=0.01t0, green – t=0.25 t0, blue – t=0.50t0, magenta – t=0.75t0, black – t=0.90t0. 

4 Analysis of approximate methods 

Most of the approximate solution techniques were derived in the XX century, when 

there was a lack of computational power even to perform summation across thousands of 

Legendre expansion coefficients. Even the methods outlined below are not sufficiently 

accurate, they are several orders of magnitude faster than the rigorous discrete ordinate 

solution. Nevertheless, as we will see later, the ideas behind these approximate techniques 

can be reused in the framework of state-of-the-art computational codes for engineering 

applications. 

4.1. Two-Stream Approximation 

A natural approximation based on the theory outlined in Section 2 is the two-stream 

approximation. It can be derived by setting N to 1. Thus, we have one discrete ordinate per 

hemisphere. Physically the problem (3) is reduced to the case in which we are interested 

only in irradiances of upwelling and dowelling radiation. Despite that fact that the radiance 

distribution across the polar hemispheres is not considered, the radiant energy is preserved.  

Note that such an approximation was formulated by Schuster [20] and Schwarzschild 

[21] in the framework of astrophysical radiative transfer. Mathematically, the feature of the 

two-stream approximation is that the eigenvalue problem can be solved analytically, and 

the solution can be expressed in a closed form, thereby yielding high computational speed. 
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4.2. Diffuse approximation 

We present all functions in the RTE in the boundary value problem (3) as a spherical 

function expansion for the case P
1
 of the spherical harmonics method: 

 ( )
1

0

00 0 1 1 0

1

1ˆ ˆ ˆ ˆ( , ) ( )Y ( ) ( )Y ( ) ( ) 3 ( )
4

m

r m

m

L C C E
=−

 =  +  =  + 


l l l lE , (16) 

 ( )
1

0

00 0 1 1 0

1

1ˆ ˆ ˆ ˆ( , ) ( )Y ( ) ( )Y ( ) ( ) 3 ( )
4

m

m

m

s s s
=−

  =  +    + 


l l l s l , (17) 

 
0

2l 1ˆ ˆ ˆ ˆ( ) P ( )
4

l l

l

x x


=

+
  = 


l l l l , (18) 

where 𝐸0(𝜏) ≡ ∮ 𝐿𝑟(𝜏, �̂�)𝑑�̂� ,   𝐸(𝜏) ≡ ∮ 𝐿𝑟(𝜏, �̂�)�̂�𝑑�̂� are spatial irradiance and light vector, 

respectively, and similarly s
0
(), s() for the source function; 

2 1 ( )!ˆY ( ) P ( )e
4 ( )!

m n im

k l

k l n

l n

+ −
= 

 +
l , P ( )n

l   are the associated Legendre polynomials. 

,km kmC s  are coefficients of radiance expansion and source functions by spherical functions. 

After substituting (16)-(18) in RTE, we consistently integrate the resulting expression 

by the full solid angle and with the weight l̂ . Taking into account the orthogonality of 

spherical functions we obtain a connected system of two equations [22]: 

 
0 0

0 1

(1 ) ( ) ( ) ( ),

1
( ) (1 ) ( ) ( ),

3

E s

E x

 −  +  = 



  +  −  = 


s

E

E
  (19) 

that corresponds to the P
1
-approximation of the spherical harmonics method [22]. 

Under the assumption that the medium is homogeneous e=const, we can calculate the 

divergence from the second equation of the system (19), express ( ) E  from the first and 

substitute it into the second, which finally leads to the equation [22]: 

 0 02

1
( ) ( ) ( )E E

a
  −  =   , (20) 

where 1(1 )(1 )a x=  − − , 0

2

( ) ( )
( )

3 (1 ) 3

s

a

  
   − +

 −

s
 is the source function. 

Equation (20) admits an analytical solution. 
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4.3. Invariant imbedding and matrix operator method 

The invariant imbedding method was proposed by V. A. Ambartsumian in the first half of 

the 20th century [23]. This method is based on the fact that the addition to the semi-infinite 

medium of a layer with an arbitrary thickness and the same optical properties does not 

change the reflected light intensity. As the layer can be of arbitrary thickness, we add an 

infinitely thin layer, so that in this layer the multiple scattering collisions can be neglected. 

The resulting equation is formulated for the reflection function. Note, that here we deal with 

the one-point boundary value problem. In the discrete ordinate setting, the Ambartsumian 

equation is transformed into matrix Riccati equation [24]. 

A consequence of the invariant imbedding principle is the so-called matrix operator 

method. Considering Eq. (8) for two adjacent layers, a similar equation can be derived for 

an efficient layer, which has the same optical properties as the system of two-layers [13]. 

Note that this principle can be used for the adding-doubling algorithm, in which the 

reflection and transmission matrices are found for a very thin layer using a certain 

approximation, and then by multi-fold doubling the corresponding entries for the desired 

optical thickness can be obtained. 

4.4. Method of iterations 

The radiation transfer equation was first formulated by Chwolson [25] and Lommel [26] in 

photometry for calculating the transmission and reflection of milk glasses. The equation 

was expressed in an integral form, and the solution was proposed by the iteration method. 

In the method of iterations, the diffuse radiance can be expressed as follows [27]: 

 
0

,
sN

s

s

L L
=

=   (21) 

where Ls refers to the s-fold scattered radiance, while Ns the maximum scattering order 

considered. The expansion (21) is called Neumann series, and the computational technique 

based on Eq. (21) is called successive order of scattering (SOS). The computations of Ls 

can be organized iteratively. Let us consider the radiative transfer equation from Eq. (3), 

 
ˆ( , ) ˆ ˆ( , ) ( , )

L
L J

 
 +  = 



l
l l   (22) 

in which the multiple scattering term is denoted by the source function ˆ( , )J  l , i.e.  

 𝐽(𝜏, �̂�′) =
𝛬

4𝜋
∮ 𝐿(𝜏, �̂�′)𝑥(�̂�, �̂�′)𝑑�̂�′.  (23) 

At the zero-th iteration we set  

 0/

0 0
ˆ ˆ ˆ( , ) ( )L e

− 
 =  −l l l   (24) 
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and evaluate 0
ˆ( , )J  l  according to Eq. (23). Now the right hand side of Eq. (22) is known 

and Eq. (22) can be integrated, yielding for the diffuse downwelling and upwelling radiation 

 
0

ˆ ˆ( , ) ( , )s s

d
L J e

−
−




 = 
l l   (25) 

and  

 
L

0
ˆ ˆ ˆ( , ) ( , ) e ( , ) e .

L

s s s

d
L L J

 −  −
− −

 




 =  + 

l l l   (26) 

respectively. Then ( )ˆ,sL  l is used to find 1
ˆ( , )sJ +
 l from Eq. (23) as  

 𝐽𝑠+1(𝜏, �̂�′) =
𝛬

4𝜋
∮ 𝐿𝑠(𝜏, �̂�′)𝑥(�̂�, �̂�′)𝑑�̂�′.  (27) 

The iterative scheme (24)-(27) converges to a ’true’ solution. However, if the medium 

is transparent, the convergence is awfully slow. Also, note, that the at low number of 

iterations the energy is not conserved. 

4.5. Small-angle approximation 

For sighting angles close to incident angles (i.e. 0   ), the small angle approximation 

can be used to compute the transmitted radiance for the case of extended in the forward 

direction phase functions [28]. The initial boundary value problem is then transformed into  

 {
𝜇0

𝜕𝐿(𝜏,�̂�)

𝜕𝜏
+ 𝐿(𝜏, �̂�) =

𝛬

4𝜋
∮ 𝐿(𝜏, �̂�′)𝑥(�̂�, �̂�′)𝑑�̂�′ ,

𝐿(𝜏, �̂�)|
𝜏=0,𝜇>0

= 𝛿(�̂� − �̂�0).
  (28) 

Note that  is substituted by 0  before the derivative. The advantage of the small-angle 

radiative transfer equation is that it can be solved analytically. In particular, Eq. (28) can be 

solved by using the spherical harmonics method, i.e. expanding the radiance into Fourier 

cosine series and then Legendre series. Note that on the left hand side of Eq.(28) we have 

0 / ddL   instead of / ddL  , and thus, all terms in Eq. (28) have the same expansion 

kernels. The solution reads as follows 

( )( )
( )

( )

( )
0

1
1

SAA 0 0

0

!1
, , ) 2 2 1 e P )P cos( ( ( ,

4 !
)

n
m m

m n n

m n m

n m
L n m

n m

  − − 


= =

−
   = − +   

 +
  (29) 

where 0m is 1 if m=0 and zero, otherwise, n  is the Legendre expansion coefficients of 

the phase function, while Pm

n
 are the associated Legendre polynomials. The small-angle 
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solution gives a Dirac delta function at the upper boundary and a peaked function inside the 

scattering medium. The amplitude of the peaked function decreases with increasing the 

optical depth, while its width increases with increasing the optical depth. Fig.2 illustrates 

the small-angle solution. As we can see, it agrees well with the discrete ordinate solution 

for angles close to the incident angle. 

 

Fig. 2. Comparison between the discrete ordinate solution, the small-angle approximation, and the 

single scattering approximation. The computations are performed for the Henyey-Greenstein phase 

function with the asymmetry parameter 0.9. The single scattering albedo is 0.99. The angle of 

incidence is 60 degrees. (left) the optical thickness is 0.3. (right) The optical thickness is 2.0. 

5 Synthetic iterations 

Keeping in mind the advantages and limitations of the exact discrete ordinate approach and 

approximate solution techniques, we can formulate a hybrid approach based on synthetic 

iterations [29-30]. Originally such an approach was formulated in nuclear physics. The 

computations of the radiance field are performed in two steps. At the first step, an 

approximate solution is found. It should preserve the energy balance (i.e. the integral 

quantity) while we are not interested in a detailed angular dependency of the radiance field. 

At the second step, the solution is refined by using the iteration technique similar to 

Eqs. (25)-(26). However, here at the first iteration we already have a good approximation, 

while in the original formulation of iterative method, the initial solution based on the single 

scattering approximation has a large error. 

A computationally efficient method of synthetic iterations applied to Eq. (3) consists in 

the following steps: 

1. the anisotropic part of the radiance field (together with the singular component) is 

expressed by using the small-angle approximation; 

2. the remaining regular part of the radiance is computed in the two-stream 

approximation, which preserves the energy balance; 

3. associating the current solution with the source function in Eqs. (25)-(26), the solution 
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is refined for given viewing angles by applying iterative scheme (25)-(26). To perform 

integration over t, we make use of expressions for the radiance inside the layer (see Eqs 

(13)-(15)). 

Note that the synthetic iteration method inherits advantages from both approximate and 

discrete ordinate solution techniques.  

6 Summary 

Analytical discrete transfer theory [9] allowed us to show the relationship of all approximate 

methods for determining the radiance factor, its accuracy, and applicability. The most 

significant method for improving the accuracy of approximate solution methods is to isolate 

the anisotropic part (4) from the solution based on the small-angle approximation 

(subsection 4.5). The regular part of the solution can be determined by any approximation, 

which provides an accurate definition of the reflection coefficient. To improve determining 

the accuracy of the angular distribution of the radiance factor (BRDF), the method of 

synthetic iterations (section 5) is the most effective. It seems that this approach solves all 

the problems of determining the radiance factor of the real-world objects. 
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