# Atmosphere and Ocean Monitoring using GNSS reflected signals: Current Status and Prospects at GFZ

#### Milad Asgarimehr<sup>1</sup>, Caroline Arnold<sup>2</sup>, Nikolina Govedarica<sup>3</sup>, Mostafa Hoseini<sup>4</sup>, Maximilian Semmling<sup>5</sup>, Felix Stiehler<sup>2</sup>, Tobias Weigel<sup>2</sup>, Jens Wickert<sup>1,3</sup>

- 1 German Research Centre for Geosciences GFZ, Potsdam, Germany.
- 2 Deutsches Klimarechenzentrum DKRZ, Hamburg, Germany
- 3 Technische Universität Berlin, Berlin, Germany.
- 4 Norwegian University of Science and Technology, Trondheim, Norway
- 5 Institute for Solar-Terrestrial Physics DLR-SO, Neustrelitz, Germany







Jeo X

# What is GNSS-R?

- The exploitation of GNSS signals after **reflection** off the Earth's surface
- A bistatic radar technique
- Multistatic
- Cross correlation of the reflected signal with a local replica or the direct GNSS signal
- Correlation power inversely proportional to the ocean roughness (diffuse scattering case)
- Cost-effective
- High spatiotemporal resolution



NTNU



Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020



## **GNSS-R Satellite Missions**







# **Bistatic Radar Equation**



![](_page_4_Picture_3.jpeg)

Intergeo Digital 2020 | Asgarimehr et al. | Oct 14, 2020

Slide 5

NTNU

### **Delay-Doppler Maps**

DEUTSCHES KLIMARECHENZENTRUM

GFZ

Helmholtz-Zentrum

POTSDAM

![](_page_5_Figure_2.jpeg)

Slide 6

NTNU

DLR

NTNU

## Comparison during rainfalls

ASCAT

![](_page_6_Figure_3.jpeg)

ASCAT (left) and TDS-1 (right) winds versus ECMWF winds during rainfalls (Asgarimehr et al., 2018).

![](_page_6_Picture_5.jpeg)

Intergeo Digital 2020 | Asgarimehr et al. | Oct 14, 2020

![](_page_7_Picture_0.jpeg)

NTNU

### Rain attenuation

![](_page_7_Figure_2.jpeg)

Rain attenuation effect at different rain rates and incidence angle of 20 degrees (Asgarimehr et al., 2019).

![](_page_7_Picture_4.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

NTNU

### Rain signature

![](_page_8_Figure_2.jpeg)

GFZ Helmholtz-Zentrum Ports dam

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

![](_page_9_Picture_0.jpeg)

NTNU

#### Rain signature – dual polarization observations

![](_page_9_Figure_2.jpeg)

![](_page_9_Picture_3.jpeg)

Intergeo Digital 2020 | Milad Asgarimehr | Oct 14, 2020

![](_page_10_Picture_0.jpeg)

NTNU

#### Rain Signatures – dual polarization observations

![](_page_10_Figure_2.jpeg)

The power of reflected RCHP (a) and RHCP (b) signals and their ratio (c) vs elevation angle at different Sea Surface salinity (SSS)

![](_page_10_Picture_4.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

### **Ocean Eddies**

Feasibility of sensing mesoscale ocean eddies
using GNSS-R measurements

![](_page_11_Figure_3.jpeg)

- NBRCS jumps at the eddy center (single-jump behavior)
- NBRCS jumps at the eddy edges with a lower value at the center (double-jump behavior)

![](_page_11_Figure_6.jpeg)

ā!

DLR

NTNU

Geo

![](_page_11_Picture_7.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

X©09L

NTNU

### Why Machine Learning?

- · Potential disagreements between the true and the predefined functions
- No direct information on affecting factors and potentially unknown effects

![](_page_12_Figure_4.jpeg)

![](_page_12_Picture_5.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

### Machine Learning

![](_page_13_Figure_2.jpeg)

Successively incorporation of variables

**Optimal architecture** 

(Asgarimehr et al., 2020)

![](_page_13_Picture_6.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

![](_page_13_Picture_9.jpeg)

![](_page_14_Picture_0.jpeg)

#### FNN wind speeds - TDS-1

#### **Conventional approach**

#### **Machine Learning**

NTNU

![](_page_14_Figure_4.jpeg)

(Asgarimehr et al., 2020)

Geo®X

![](_page_14_Picture_6.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

NTNU

DLR

### FNN wind speeds

![](_page_15_Figure_2.jpeg)

Mean Absolute Error (MAE) of Artificial Neural Network (ANN) and Least Squares (LS) based GMFs for each GPS satellite (Asgarimehr et al., 2020).

![](_page_15_Picture_4.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

![](_page_16_Picture_0.jpeg)

#### **FNN** wind speeds - CYGNSS

#### **Conventional approach**

#### **Machine Learning**

NTNU

![](_page_16_Figure_4.jpeg)

![](_page_16_Picture_5.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

![](_page_17_Picture_0.jpeg)

Jeo X

NTNU

#### Deep learning - Convolutional Neural Network

- Most commonly applied to analyzing visual imagery
- Recognition of not only the pixel values, but also the visual patterns (the values with respect to each other).

![](_page_17_Figure_4.jpeg)

![](_page_17_Picture_5.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

![](_page_18_Picture_0.jpeg)

Geo<sub>®</sub>X

NTNU

## Deep learning – CNN + FNN

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020

# **Concluding Remarks**

- Using the TDS-1 and CYGNSS data, GNSS-R wind speed datasets are developed.
- Suitability for extreme weather: the rainy data of TDS-1, show RMSE and bias of 2.94 and -0.21 m/s, whereas, ASCAT demonstrates a significant degradation to 1.03 and 3.16 m/s.
- GNSS-R observations are insignificantly affected by rain attenuation, less than 3% by rain rates lower than 10 mm/h, which is still ignorable.
- Considerable splash effect at winds lower than 6 m/s: a challenge or opportunity?
- Spaceborne GNSS-R measurements respond to the existence of eddies.
- Dual polarization measurements show an even higher potential for detecting rain.
- Machine Learning as an alternative inversion approach: significant improvement of 20% in the general RMSE and 1.2 m/s (32%) for SVN 34.
- The best quality of wind products so far are obtained using deep learning, RMSE of 1.62 with the CNN+FNN model.

![](_page_19_Picture_10.jpeg)

NTNU

NTNU

#### **General Remarks**

![](_page_20_Figure_2.jpeg)

![](_page_20_Picture_3.jpeg)

Intergeo Digital 2020 | Asgarimehr et al.| Oct 14, 2020