
Adaptive Model Mediated Teleoperation
Using Reinforcement Learning

Master thesis
in German Aeroscpace Center, DLR

Institute of Robotics and Mechatronics
Modular Dexterous Robotics (Modex) Lab

Universität Hamburg
MIN-Fakultät

Department Informatik

Author
Hadi Beik-Mohammadi

01.01.2020

Gutachter: Prof. Dr. S. Wermter (UHH)

Dr. Matthias Kerzel (UHH)

Betreuung: Dr. Neal Y. Lii (DLR)

Hadi Beik-Mohammadi

Matrikelnummer: 6885407

Fritz-Bauer-Str 22

81249 München

mailto:6beik@informatik.uni-hamburg.de
mailto:wermter@informatik.uni-hamburg.de
mailto:kerzel@informatik.uni-hamburg.de
mailto:Neal.Lii@dlr.de

Abstract

Due to similarities in learning techniques, Reinforcement Learning (RL) is the
closest alternative to human-level intelligence. Teleoperation systems using RL
can adapt to new environmental conditions and deal with high uncertainty due to
long-time delays. In this thesis, we propose a method that takes advantage of RL
capabilities to extend the human reach in dangerous remote environments. The
proposed method utilizes the Model Mediated Teleoperation (MMT) concept in
which the teleoperator interacts with a simulated setup that resembles the real
environment. The simulation can provide instant haptic feedback where the data
from the real environment are delayed. The proposed approach enables haptic
feedback teleoperation of high-DOF dexterous robots under long time delays in a
time-varying environment with high uncertainty.
In existence of time delay, when the data is received by the remote system the
environment may change drastically, therefore, the attempt for task execution will
fail. To prevent failure, an intelligence system is realized in two layers, the first
layer utilizes the Dynamic Movement Primitives (DMP) which accounts for cer-
tain changes in the environment. DMPs can adjust the shape of a trajectory
based on given criteria, for example, a new target position or avoiding a new ob-
stacle. But in an uncertain environment, DMPs fail, therefore, the second layer
of intelligence makes use of different reinforcement learning methods based on
expectation-maximization, stochastic optimal control and policy gradient to guar-
antee the successful completion of the task.
Furthermore, To ensure the safety of the system, and speed up the learning process,
each learning session for RL happens in multiple simulations of the remote system
and environment, simultaneously.
The proposed approach was realized on DLR’s haptic hand-arm user interface/ex-
oskeleton, Exodex Adam. It has been used for the first time in this work as the
master device to teleoperate a high-DOF dexterous robot. This slave device is an
anthropomorphic hand-arm system combining a five-finger hand (FFH) attached
to a custom configured DLR lightweight robot (LWR 4+) more closely fitting to
the kinematics of the human arm. An augmented reality visualization implemented
on the Microsoft Hololens fuses the slave device and virtual environment models
to provide environment immersion for the teleoperator.
A preliminary user-study was carried out to help evaluate the human-robot inter-
action capabilities and performance of the system. Meanwhile, the RL approaches
are evaluated separately in two different levels of difficulty; with and without un-
certainty in perceived object position.
The results from the unweighted NASA Task load Index (NASA TLX) and System
Usability Score (SUS) questionnaires show a low workload (27) and above-average
perceived usability (71). The learning results show all RL methods can find a
solution for all challenges in a limited time. Meanwhile, the method based on
stochastic optimal control has a better performance. The results also show DMPs
to be effective at adapting to new conditions where there is no uncertainty involved.

III

Abstract

Zusammenfassung

Aufgrund von Ähnlichkeiten in den Lerntechniken ist Reinforcement Learning (RL)
die nächstliegende Alternative zu menschlicher Intelligenz. Teleoperationssysteme,
die RL verwenden, können sich an neue Umgebungsbedingungen anpassen und mit
hoher Unsicherheit aufgrund von langen Zeitverzögerungen umgehen. In dieser
Arbeit schlagen wir eine Methode vor, die sich die Fähigkeiten von RL zunutze
macht, um die menschliche Reichweite in gefährlichen, abgelegenen Umgebungen
zu erweitern. Die vorgeschlagene Methode nutzt das Konzept der Model Mediated
Teleoperation (MMT), bei der der Teleoperator mit einer simulierten Umgebung
interagiert, die der realen Umgebung ähnelt. Die simulierte Umgebung kann ein
sofortiges haptisches Feedback liefern, während das Feedback aus der realen Umge-
bung verzögert ist. Der vorgeschlagene Ansatz ermöglicht die haptisches Feedback
für Teleoperation von Robotern mit vielen Freiheitsgraden (DOF) unter langen
Zeitverzögerungen in einer zeitvarianten Umgebung mit hoher Unsicherheit.
Bei einer Zeitverzögerung, wenn die Daten vom entfernten System empfangen wer-
den, kann sich die Umgebung drastisch ändern, weshalb der Versuch der Auf-
gabenausführung fehlschlagen kann. Um ein Scheitern zu verhindern, ist ein intel-
ligentes System in zwei Ebenen realisiert, wobei die erste Ebene Dynamic Move-
ment Primitives (DMP) verwendet, die bestimmte Änderungen in der Umgebung
berücksichtigen un konpensieren können. DMPs können die Form einer Trajek-
torie nach vorgegebenen Kriterien anpassen, z.B. eine neue Zielposition oder die
Vermeidung eines neuen Hindernisses. Aber in einem unsicheren Umfeld versagen
DMPs, daher nutzt die zweite Ebene verschiedene Methoden des Reinforcement
Learnings, die auf Erwartungs-Maximierung, stochastischer optimaler Steuerung
und Policy Gradient basieren, um die erfolgreiche Bewältigung der Aufgabe zu
garantieren.
Darüber hinaus, um die Sicherheit des Systems zu gewährleisten und den Lern-
prozess zu beschleunigen, findet jede Lernepisode für RL in mehreren Simulationen
des entfernten Systems und der Umgebung gleichzeitig statt. Der vorgeschlagene
Ansatz wurde auf der haptischen Hand-Arm-Benutzeroberfläche/Exoskelett des
DLR, Exodex Adam, realisiert. Er wurde in dieser Arbeit erstmals als Mastergerät
zur Teleoperation eines hoch-DOF-fähigen Roboters eingesetzt. Bei diesem Slave-
Gerät handelt es sich um ein anthropomorphes Hand-Arm-System, bei dem eine
Fünf-Finger-Hand (FFH) an einem speziell konfigurierten DLR-Leichtbauroboter
(LWR 4+) angebracht ist, der sich eng an die Kinematik des menschlichen Arms
anlehnt. Eine auf dem Microsoft Hololens implementierte Augmented-Reality-
Visualisierung verschmilzt das Slave-Gerät und virtuelle Umgebungsmodelle, um
dem Teleoperator eine Immersion in die Umgebung zu ermöglichen.
Eine vorläufige Benutzerstudie wurde durchgeführt, um die Fähigkeiten und die
Leistung des Systems in Bezug auf die Mensch-Roboter-Interaktion zu bewerten.
Zugleich werden die RL-Ansätze getrennt in zwei verschiedenen Schwierigkeits-
graden bewertet; mit und ohne Unsicherheit in der wahrgenommenen Objektposi-
tion.
Die Ergebnisse aus den ungewichteten Fragebögen NASA Task Load Index (NASA

IV

Abstract

TLX) und System Usability Score (SUS) zeigen eine geringe Arbeitsbelastung (27)
und eine überdurchschnittlich hohe wahrgenommene Benutzerfreundlichkeit (71).
Die Lernergebnisse zeigen, dass alle RL-Methoden in kurzer Zeit eine Lösung für
alle Herausforderungen finden können. Die auf stochastischer optimaler Steuerung
basierende Methode erziehlt dabei die beste Performance. Die Ergebnisse zeigen
auch, dass sich DMPs effektiv an neue Bedingungen anpassen können, wenn keine
Unsicherheit besteht.

V

Abstract

VI

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective and Approach . 1
1.3 Major Contribution . 2
1.4 Thesis Structure . 2

2 Background and Related Work 3
2.1 Teleoperation for object manipulation and remote task execution . . 3

2.1.1 Model Mediated Control (MMT) 5
2.2 Reinforcement Learning . 8

2.2.1 Value-based reinforcement learning 9
2.2.2 Policy Search Methods . 10
2.2.3 Dynamic Movement Primitives 12
2.2.4 Learning the DMP . 13
2.2.5 Extending DMPs to multiple degrees of freedom 14
2.2.6 Model-Free Policy search . 15
2.2.7 Episodic Natural Actor-Critic (eNAC) 15
2.2.8 Policy Learning by Weighting Exploration with the Returns

(PoWER) . 18
2.2.9 Policy Improvement using Path Integrals(PI2) 18

3 Methodology 21
3.1 Modular Architecture . 21
3.2 Trajectory Encoding . 23
3.3 Reinforcement learning . 26

3.3.1 Learning under Uncertainty 29

4 Implementation and Validation 33
4.1 Master-Slave Command . 33
4.2 Hand Posture Estimation (HPE) 34
4.3 Grasping and Force Calculation in Simulation 40

4.3.1 Gesture recognition . 43
4.4 Hardware . 43

4.4.1 Architecture . 43
4.4.2 Exodex Adam Haptic Interface 44

VII

Contents

4.4.3 Augmented Reality . 49
4.4.4 Links and Nodes . 50
4.4.5 Slave Device . 51

4.5 Evaluation . 51
4.5.1 Preliminary User-study Procedure 52
4.5.2 Tasks . 53
4.5.3 Questionnaire . 54

5 Results and Discussion 57
5.1 Grasp Without Uncertainty . 57
5.2 Grasping Under Uncertainty . 61
5.3 Userstudy . 63
5.4 Summary Discussion . 67

6 Conclusion 70
6.1 Future work . 71
6.2 Disclaimer . 71

Bibliography 73

VIII

List of Figures

2.1 The figure shows the general structure of a telemanipulation system. 5
2.2 The figure illustrates a simplified architecture for Passivity based

teleoperation. 5
2.3 The figure shows a different level of abstraction in teleoperation. . . 6
2.4 The figure shows an extended version of the smith predictor. 6
2.5 The figure shows the architecture of a teleoperation system with an

RNN estimator. 7
2.6 The figure shows the teleoperation architecture based on a neural

network method . 8
2.7 The figure illustrates the Markov Decision Process (MDP) 9
2.8 The figure shows multiple transformation systems sharing a canon-

ical system. 14

3.1 The figure illustrates the proposed architecture. 22
3.2 The figure shows the activation of each basis function 24
3.3 The figure shows the activation of kernels after learning. 25
3.4 The figure shows a reconstructed trajectory generated by a DMP. . 26
3.5 The figure shows the trajectories generated using a different number

of kernels. 26
3.6 The figure shows two trajectories with the same shape but with

different target positions . 27
3.7 The figure shows the general structure of policy parameter pertur-

bation methods . 28

4.1 The figure shows the Simulink model related to the LWR impedance
controller. 35

4.2 The figure shows how the operator hand model is evolved in the two
steps to be used as the robot hand. 36

4.3 The figure shows the operator’s hand attached to the Exodex Adam
haptic interface. 36

4.4 The figure shows from left to right first the human hand with the
glove and finger caps, the MRI generated hand model, and the Five
Finger Hand (FFH). 37

4.5 The figure shows the Simulink model for joint-to-joint mapping of
the middle finger from the human hand to the robot hand. 39

IX

List of Figures

4.6 The figure shows different stages of grasping a cube. The left image
shows the normal condition, the center image shows when the middle
and ring finger activate the diaphragm. The right image shows the
situation where the object is successfully grasped. 40

4.7 This figure shows the force equilibrium in 2D 41
4.8 The figure shows the Simulink model for arbitrary object penetra-

tion detection. This model also calculates the pose of the fingertip
on the surface of the object if necessary. 42

4.9 The figure depicts the Simulink model of the LWR of the Exodex
Adam setup. The model consists of four modules, Control, High-
level controller, Plant, and Visualization. 46

4.10 The figure depicts the hand interface of the Exodex Adam setup.
The hand involves five fingers that attach to the human hand using
magnetic clutches. 46

4.11 The figure depicts the Simulink model of the hand interface of Ex-
odex Adam setup. The model consists of four modules, Command,
High-level controller, Plant, and Visualization. 47

4.12 The figure 4.12 shows the control loop for each finger based on [24].
Zm, Zu, Ze define the impedance of the haptic interface, user and
the virtual environment, respectively. 48

4.13 The figure shows the human hand attached to the interface. The
magnetic clutch coupled with each fingertip of the interface is the
physical attaching point of the interface and the user. 49

5.1 The figure shows the success rate after each update. 58
5.2 The figure shows the learning cost over 100 updates. 59
5.3 The figure shows the update number required for different approaches

to find a solution. 60
5.4 The figure shows the update number required for different approaches

to find a solution. 61
5.5 The figure shows the trajectories generated by different approaches. 62
5.6 The figure shows the number of updates that different RL approaches

need to learn to grasp the rock when there is a deviation from the
demonstration target in X and Y directions. 63

5.7 The figure compares different approaches in grasping the cylinder. . 63
5.8 The figure compares the trajectories deployed on the simulated and

real robots. The vertical axis determines the end-effector position
in the X-axis and the horizontal axis shows the time. The blue
line illustrates the movement trajectory of the real robot while the
orange line shows the simulated trajectory. 64

5.9 The figure shows the number of necessary updates for PI2 shape and
goal learning under uncertainty. 65

5.10 The figure shows the trajectories generated under different uncer-
tainty in object position. 66

5.11 The figure compares different step sizes in the eNAC algorithm. . . 67

X

List of Figures

5.12 The figure shows the result of the NASA-TLX questionnaire. 68
5.13 The figure shows the result of the NASA-TLX questionnaire Average

over all objects. 69
5.14 The figure shows the result of system usability score questionnaire

averaged over all tasks. 69

XI

List of Figures

XII

Chapter 1

Introduction

1.1 Motivation

In long-distance teleoperation, signals can take minutes to reach the teleoperator.
The time delay introduces inconsistency or mismatch between master and slave
that falsifies the provided feedbacks. For instance, the teleoperator receives the
haptic feedback when the slave robot has already collided with an object in the
remote environment. The reaction to faulty feedback might put the robot at a
higher risk. Additionally, the visual information provided to the operator refers to
the past which is no longer relevant and correct. In a grasping scenario, if during
data transmission the object moves the teleoperation fails. Therefore, providing
real-time data from the remote environment is undesirable.
Approaches such as passivity-based control [49, 4, 48, 19] and predictive display
[9, 7] can reduce the inconsistency but the problems appear when the time delay
increases or becomes variable. A unique way of approaching the time delay problem
is introduced by Model Mediated Teleoperation (MMT) [53, 85]. MMT uses a copy
or a simulation of the remote environment at the master-side to provide instant
feedback for the teleoperator. It has been used in several areas, for example surgical
teleoperation [40], space robot teleoperation [51].
MMT requires an accurate model of the remote environment and slave device.
Modeling a non-linear time-variant system so-called remote environment is not an
easy task. The MMT approaches attempt to estimate/predict/approximate the
environment model using different approaches such as neural networks [82] which
suffer from complexity and lack of determinism.

1.2 Objective and Approach

To tackle time delay issues, an approach with characteristics such as instant vi-
sual and haptic feedback as well as intelligence to adapt to new environmental
conditions is expected. The slave side intelligence must compensate for errors
and mistakes in the demonstration, therefore, discarding the need for an accurate
model of the remote environment on the master-side. Accordingly, providing in-

1

Chapter 1. Introduction

stant haptic and visual feedback does not require the precise future state of the
environment and a simple approximation is sufficient.
The approach used in this thesis adopts the architecture from the MMT scheme
and combines it with Dynamic Movement Primitives (DMP) [64] and model-free
Reinforcement Learning (RL) [78, 76, 61]. The slave system uses DMPs to account
for certain changes in the model by transforming the trajectory into a non-linear
dynamical system. The new form of the trajectory can be modified on the spot,
the changes such as the shape as well as the start/target of the trajectory can be
readjusted almost instantly. To increase the system intelligence the slave should
be able to adapt to uncertainties in the model that cannot be considered before
execution. The policy search RL methods are designed to explore and search for a
viable solution in a limited time. Therefore, RL agents can complement DMPs and
ensure that the task is completed successfully. Three RL methods are evaluated,
PoWER based on expectation maximization, eNAC based on policy gradient, and
PI2 based on stochastic optimal control.

1.3 Major Contribution

This study examines two main hypothesis:

• Integrating Dynamic Movement Primitives and Reinforcement Learning meth-
ods into a Model Mediated Teleoperation architecture can effectively com-
pensate for the changes of the trajectory in a dynamic environment.

• Goal learning using Reinforcement Learning can effectively account for the
human error and uncertainty that are presented in a Model Mediated Tele-
operation architecture.

This study includes the design and implementation of the following:

• A complete Model Mediated Teleoperation pipeline using the DLR Exodex
Adam hand-arm haptic interface.
• A physics simulation for the slave, master devices and the remote environ-

ment.
• An augmented reality visualization of the teleoperation scenario.

1.4 Thesis Structure

In chapter 2 ”Background and Related work”, we begin by presenting a brief but
essential background on RL and MMT. In chapter 3 ”Methodology”, we proceed
to describe the approach and detail description of proposed MMT architecture. In
chapter 4 ”Implementation and Evaluation”, we describe the design and implan-
tation of necessary modules to provide a framework for experiments. In chapter 5,
”Results and Discussion” the results are illustrated and a detail explanation is pro-
vided. Finally, in Chapter 6, “Conclusion and Future work”, we give a conclusion
and discuss future work.

2

Chapter 2

Background and Related Work

2.1 Teleoperation for object manipulation and

remote task execution

Teleoperation provides a framework for an operator to interact with a remote
environment using an intermediate device. The intermediate device is combined of
two interconnected parts so-called master and slave. Using the master device, the
operator remotely controls the slave through a communication channel. Although
the slave is assumed to be passive, due to the bilateral control scheme it affects the
master device by position or force feedback. The bilateral control scheme provides
feedback to the operator which augments the remote environment to be perceived
by the operator’s senses such as haptic, visual, and auditory.
Grasping and object manipulation can be realized in different ways, the robot con-
figurations can be pre-recorded and used as a look-up table. The corresponding
configurations can be selected based on the closest object position to the current
position [46]. On the other hand, to reduce the inconsistency between config-
urations end-to-end deep learning with pre-trained neural networks [45] can be
used instead of hard-coded lookup tables. Furthermore, online deep reinforcement
learning can be used as an online solution where the agent learns to reach for grasp
by interacting with the environment [17, 18, 6, 26, 27]. The idea of learning from
demonstration (LfD) can increase the stability and performance of the grasping
and in-hand manipulation [76, 41].
In practice, a teleoperation scenario may take place in different levels of abstrac-
tion, automation, and shared autonomy. Using a task-driven approach with gesture
recognition, it has been demonstrated that in-hand manipulation can be effectively
carried out for all six possible DOF, on free and partially constrained objects [33].
DLR and ESA’s METERON SUPVIS Justin project [66, 68, 67] was a teleoper-
ation mission with high-level abstraction and complete task autonomy where an
astronaut in orbit commands a robot on the ground to execute a task. The task
also can be a combination of primitive tasks such as pulling, pushing, grasping,
in-hand-manipulation and placing an object. The astronauts were briefed about

3

Chapter 2. Background and Related Work

how to demonstrate the task in a high-level graphical user interface but none of
them were informed about how the tasks were deployed on the low-level motion
planners. In this case, the task performance relies mainly on slave’s intelligence
while low-level manipulation tasks rely on the operator’s skills, prior knowledge,
and sufficient sensory feedback.
On the other hand, teleoperators continue to demand immersive user experience
with haptic feedback of force reflection to feel the object and environment through
telerobotics. Various work has been carried out to study force reflection in-hand
telepresence, including an exoskeleton system that uses neural network [14].
Furthermore, previous work [32] has evaluated and shown the effectiveness of hap-
tic feedback in increasing in-hand teleoperation performance, as compared to other
feedback conditions. By considering the viscosity of the environment, a telepres-
ence system can be extended to interact in a mixed media environment of fluid,
gas, and solids up to the fingertips [69].
The bilateral teleoperation architecture usually contains 2-channel (e.g. position-
force) [16] or 4-channel (position-force-position-force) [12] which ensures the con-
sistency between two models and the safety of the slave. For example, if during
a task an object in the remote environment hinders the slave movement, instant
force feedback can inform the operator to prevent colliding with an object or stop
penetrating to a hard surface. Instant force feedback requires high bandwidth
communication channels with no time delay.
But, teleoperation missions usually involve transmitting data with time delay. The
duration of the time delay depends on distance, communication bandwidth, net-
work buffering, processing on relay stations or other factors. Therefore, the feed-
back may reach the operator with long time delays. The latency varies in different
applications which can last a few milliseconds up to hundreds of seconds. For
example, interplanetary teleoperation from earth to mars takes between 13 to
22 minutes depending on the planets’ relative positions. Time-delay can cause
telepresence to become unstable, particularly for high-DOF, long-delay systems.
Kontur-2 [5], METERON Haptics-1 and Interact experiments[34] have all tackled
this with increasing levels of success from 20 msec to 800msec+ timed delays.
As figure 2.3 shows the level of abstraction and the time delay are important factors
to categorize different teleoperation schemes. The high bandwidth force feedback
methods which provide high-quality instant force feedback usually use the force
or position values as the feedback without any intermediate transformation. The
passivity based approaches are shown in figure 2.2 focus on the lossless transmission
of energy and stability of a passive system where an energy variable (e.g. velocity)
gets transformed into wave-variables bidirectionally [49, 4, 48, 19]. But, passivity
like most approaches suffers from instability where the time delay is too long
and variable and/or when the remote environment changes throughout the time,
stochastically.
The third common approaches use a predictive display to predict the visual clues
to compensate for the time delay [7]. Authors in [9] use an estimator to predict
the state of an unmanned vehicle by using the dynamics of the vehicle. The
estimator uses a feed-forward and feed-back way simultaneously, to compensate

4

2.1. Teleoperation for object manipulation and remote task execution

H
um

an

M
as
te
r

N
et
w
or
k

S
la
ve

E
nv
iro
nm

en
t

Figure 2.1: The figure shows the general structure of a telemanipulation system
with five elements; human operator, a master device, communication channel (net-
work), slave device and remote environment. A human operator using the master
device controls/commands the slave device to interact with/adjust the remote en-
vironment. This operation usually occurs through a network (e.g. satellites, relay
stations, etc) and is usually slowed down due to bandwidth, network buffering,
processing on relay stations or other reasons [82]

.

H
um

an

M
as

te
r

N
et

w
or

k

S
la

ve

E
nv

iro
nm

en
t

W
av

e
va

ria
bl

e
Tr

an
sf

or
m

at
io

n

W
av

e
va

ria
bl

e
Tr

an
sf

or
m

at
io

n

Figure 2.2: The figure illustrates a simplified architecture for Passivity based tele-
operation using wave variables. In this approach, the forces and positions are
transformed into wave-variables and send to the slave side and transformed back
to the forces and positions before being deployed on the slave device. The same
procedure is applied for force and position feedback to the master device.

for the drifting of the vehicle since the estimator does not consider the terrain
shape. Using the estimated state the predictive display manipulated the raw video
for the operator. The predictive display has been studied in different areas such
as surgery [60] or space robotics [55].

2.1.1 Model Mediated Control (MMT)

One of the first foundations of control in the presence of time delay was intro-
duced by Otto Smith, so-called Smith predictor [72]. As figure 2.4 shows this
predictor compensates for the inconsistency caused by the time delay, by a closed-
loop transfer function (the blue loop). The transfer function contains a predictor
that resembles the real plant. Considering the transfer function without time delay
defined as,

K(z) =
D(z)G(z)

1 +D(z)G(z)
, (2.1)

5

Chapter 2. Background and Related Work

High Bandwidth Force Feedback

Wave-Base Methods

Predictive Display

Model Mediated Approach

Task-Based Supervisory Control
Le

ve
l o

f A
bs

tr
ac

tio
n

Time Delay

Figure 2.3: The figure shows a different level of abstraction in teleoperation in-
spired by [43]. The vertical axis shows the level of abstraction and the horizontal
axis shows the time delay. But, by increasing the abstraction and use task-based
supervisory control the operator instead of using motion command, can deploy
complicated high-level commands such as ”Grasp the Red Box”. Due to high time
delay, the feed-backs are usually augmented based on a prediction/approximation
of the environment and the slave device.

+
-

+
- Controller Plant

Predictor

D
el

ay

+

-

 Z-k

 Z-k

Figure 2.4: The figure shows an extended version of the smith predictor that
compensates the time delay of the plant by replacing the predictor inspired by
[82]. The predictor estimates the output of the plant given the input generated
by the controller (blue loop). Furthermore, the outer loop of the architecture
is responsible to compensate for the model mismatch between the plant and the
predictor at each time step.

where D(z) and G(z) are the controller and the plant, correspondingly. The time
delay can be integrated in the transfer function,

K̂(z) =
D̂(z)G(z)z−k

1 + D̂(z)G(z)z−k
. (2.2)

By designing the controller D̂ in a way that K̂(z) = z−kK(z) the output of the
predicted controllers matches the real system with a delay of k[82]. The figure
2.4 shows an extended version of the smith predictor in which a second loop (red
loop) is added to compensate for the modeling errors in the predictor. Without
the second loop, the errors in the predictor never get fixed and it might lead
to accumulated error in the predicted model. In conclusion, since the approach
stabilizes the linear time-invariant systems [85], it is not beneficial for the nonlinear
dynamic system which performs tasks in a time-variant environment.

6

2.1. Teleoperation for object manipulation and remote task execution

M
as

te
r

+
+

Controller

D
el

ay

Local Nonlinear
Compensator

Linear
Predictor

+
-

Delay
TM + Ts

RNN
Estimator

+
-

+-

TM
H

hm
an

En
vi

ro
nm

en
t

+
+

Ts

Sl
av

e

Figure 2.5: The figure shows the architecture of a teleoperation system where an
RNN estimates the behavior of the non-linear plant [82]. The local non-linear
compensator eliminates the non-linear part of the delayed controller output. The
linear model is deployed on the master side to provide instant feedback for the
operator.

The MMT approaches use an intermediate model of the remote environment to
provide instantaneous sensory feedback for the operator. The intermediate model
predicts the real environment in which the operator can instantly react, therefore
the accuracy of the model guarantees the safety of the slave device and remote
environment. In [54], an approach is introduced to synchronize the slave and the
intermediate model while keeping master and slave responsive. The experiment
was successfully deployed and evaluated on one DOF slave device.
In [44], second sensory feedback is provided for the master where a laser proximity
sensor predicts the future contacts. Therefore, the collisions are easily detected
using the secondary sensor instead of the unnecessary synchronization of the com-
plete model. The approach has been successfully deployed and evaluated in one
DOF. On the other hand, in [2], a hybrid approach is proposed where a combi-
nation of classical Kelvin-Voigt model and the nonlinear Hunt-Crossley model is
used to estimate the remote environment with six DOF teleoperation system under
negligible time delay. As the figure 2.5 shows an RNN based approach where the
neural network approach is used to extend the smith predictor to non-linear sys-
tems [23]. The architecture divides the nonlinear model of the slave-environment
into three parts,

• a linear predictor which works as a smith predictor and simulates the linear
behavior as a predictive controller on the master side,

• an RNN estimator to approximate the dynamics of the non-linear plant,

• a non-linear compensator to remove the non-linear effects from the controller
output.

The communication channels are assumed to have two different delays from the
master to slave TM and from slave to master TS. An unknown system is modeled
using RNN,

ẋ(t) = Asx(t) + bW Tφ(x(t)) + bu(t) + bd(t) + ε(t), (2.3)

7

Chapter 2. Background and Related Work

D
el

ay

NN 1

H
um

an

En
vi

ro
nm

en
tT

NN 2 T

Sl
av

e

M
as

te
r

Figure 2.6: The figure shows the teleoperation architecture proposed by [71] where,
two neural networks are deployed to estimate the force feed-back from the remote
environment

where W Tφ(x(t)) is the non-linear compensation that should be estimated by the
RNN, and the locally compensated non-linearity,

u(t) = τ(t− T)− Ŵ Tφ(x(t)). (2.4)

Where τ(t− T) is the output of the controller based on the linear predictor after
time delay T (red arrow in figure 2.5). Before the controller output enters the
plant, the compensator adds the non-linear terms (blue arrow).

One might also consider replacing the linear predictor with a neural network model,
the authors in [71] have used two neural networks as shown in the figure 2.6, NN1
estimates the force feedback fe from the slave environment and the input of the
network is the x, ẋ, ẍ. Then the weights of the NN1 are transferred to NN2 to be
used as a locally simulated environment for the master controller.

Different studies have investigated the machine learning approaches to deal with
the time delay [59, 21, 15].

2.2 Reinforcement Learning

Reinforcement learning (RL) refers to a branch of machine learning that utilizes
a bio-inspired reward-punishment technique. The RL agent uses the Markov De-
cision Process (MDP) to execute the actions in which it has received or likely
to receive a reward. The reward is task-dependent and can be instantaneous or
delayed. Consequently, the MDP determines a time trade-off to maximize the po-
tential future reward. As a result, the RL agent may ignore small rewards and
execute several actions with no return to receive a bigger reward at the end. The
figure 2.7 depicts the agent-environment interaction used in MDP where the RL
agent interacts with an environment e where the actions are followed by their asso-
ciated positive or negative returns. The MDP is defined by its action-space a ∈ A,
state-space s ∈ S, transition dynamics P (st+1|st, at), reward function r(st, at) and
its initial state probability µ0(s). The MDP principle assumes the information
about the current action at and state st is enough to estimate the next state st+1

and/or future reward rt+1 [77].

8

2.2. Reinforcement Learning

Agent Environment

at

st

rt

st+1

rt+1

Figure 2.7: The figure illustrates the Markov Decision Process (MDP) agent-
environment interaction. (inspired from [77]).

Using future cumulative return Jπ the RL agent attempts to estimate the optimal
policy. The optimal policy

π∗ = argmax
π

Jπ, (2.5)

defines the best-known action at based on the current state st where

Jπ =
H∑
t=0

Rt. (2.6)

The Rt indicates the reward at time t and H is the MDP horizon. Depending
on the task’s temporal behaviour such as repetition or continuity, the cumulative
expected reward is associated with different time horizons [25]. In rhythmic tasks
where an agent has to repeat a task over and over such as walking or balancing
[63, 31] the horizon is infinite which changes the future cumulative reward [11]

Jπ = argmax
π

∞∑
0

γtrt. (2.7)

The γ is the discount factor to relinquish the effect of distant future rewards. On
the other hand, in the non repetitive tasks (stroke based tasks) [30, 47] the horizon
is finite

Jπ = argmax
π

T∑
0

rt. (2.8)

2.2.1 Value-based reinforcement learning

In value-based RL, instead of estimating the optimal policy, the value of each
action is estimated via function approximation. The value of action indicates the
potential reward of that action given any state s at time t,

Q(st, at) = r(st, at) + γV ′(st+1|st, at). (2.9)

Therefore, final optimal policy π∗ is defined using the value function Q,

π∗(st) = argmax
at

Q(st, at). (2.10)

9

Chapter 2. Background and Related Work

Furthermore, The generalized policy function can be derived from,

π(s, a) =
e−Q(s,a)∑
a e
−Q(s,a)

. (2.11)

The value function based methods normally cover the whole state-space, therefore,
scaling up to high-dimensional state/action-spaces is problematic. It also suffers
from error propagation due to sudden large changes in the policy which is not
convenient for real robotic systems [47]. The value function approaches usually
perform on discrete action-space, and to extend their functionality to support
continuous action-spaces a separate policy function should be integrated.
In literature, the policy and value functions are called actor and critic, correspond-
ingly. Therefore, methods that utilize the value and policy function at the same
time are called actor-critic methods. For example, Deep Deterministic Policy Gra-
dient (DDPG) is an actor-critic method that operates in continuous action and
state-space [38]. In DDPG, the critic function is trained by the returns from the
environment and the actor function is improved based on sampling and evaluating
the value function. But, deep reinforcement learning suffers from the curse of di-
mensionality [8], meaning by increasing the dimensionality the volume of task-space
increases exponentially. Therefore, there need to be extremely more explorations
to cover the whole state-space.

2.2.2 Policy Search Methods

The policy search methods use different ways to encode trajectories into parametric
policies a ∼ π(a | s; θ)) with θ as the parameter vector. Then, local exploration
in parameter space θi ∼ N(θ | µθ,Σθ) is used to find locally optimal solutions like

θnew = θold + α
dJθ

dθ
. The policy search approaches are mostly based on three main

concepts:

1. Policy Gradient (PG): This category of approaches use the gradient de-
scent to find the steepest path to the optimal policy. policy gradient algo-
rithms explore the action-space and update the policy based on the returns
from executed actions. The eNAC algorithm described in 2.2.7 utilizes the
same concept to find an optimal path.

2. Expectation Maximization (EM): This approach tries to iteratively find
the maximum likelihood of parameter θ by maximizing the lower bound
defined as,

θt+1 = argmax
θ′

Lθ(θ
′) (2.12)

To maximize the function the gradient of the function in respect to θ can be
used

∂θ′Lθ(θ
′) = E

{
T∑
t=1

∂θ′ logπ(at | st, t)Qπ(s, a, t)

}
, (2.13)

10

2.2. Reinforcement Learning

where Q is the value function defined as,

Qπ(s, a, t) = E

{
T∑
z=t

r(sz, az, sz+1, z) | sz = s, az = a

}
. (2.14)

To find the maximum, the gradient with respect to θ should be equal to zero
as

E

{
T∑
t=1

∂θ′ logπ(at | st, t)Qπ(s, a, t)

}
= 0. (2.15)

Therefore, an stochastic policy needs to be defined as

a = θTφ(s, t) + ε(φ(s, t)), (2.16)

where φ and θ are basis functions and parameters correspondingly. The plain
concept leads to an algorithm so called eWPR which is the base of PoWER
algorithm described in 2.2.8.

3. Stochastic Optimal Control (SOC): Unlike PG and EM, the SOC based
methods attempt to simply minimize a cost function. A control system in
SOC is defined as

ẋt = f(xt) +G(xt)(ut + εt) = ft +G(ut + εt), (2.17)

where xt is the state, f(xt) defines the passive dynamics, G(xt) is the control
matrix, and ut is the control vector. εt is the noise which is sampled from a
zero mean Gaussian distribution with a covariance Σ.

The cost of a trajectory is defined as

R(τi) = φtN +

∫ tN

ti

rtdt. (2.18)

where the φtN defines the final cost and rt defines the immediate reward at
time t. The value function based on the cost function R is defined as

V (xti) = min
uti:tN

Eτi [R(τi)], (2.19)

where ut is the optimal control at time t. The value function V can be
minimized using the solution of Hamilton-Jacobi-Bellman (HJB) equation
as

∂tVt = qt+(∇xVt)
Tft−

1

2
(∇xVt)

TGtR
−1GT

t (∇xVt)+
1

2
trace((∇xxVt)GtΣεG

T
t),

(2.20)
and,

uti = R−1GT
ti

(∇xti
Vti). (2.21)

The PI2 algorithm described in 2.2.9 uses the nonlinear second order partial
differential equation 2.20 to Iteratively improve the policy.

11

Chapter 2. Background and Related Work

In this chapter, three algorithms are introduced, episodic Natural Actor Critic
(eNAC) based on PG [57], Policy Learning by Weighting Exploration with the Re-
turns (PoWER) based on EM, and Policy Improvement with Path Integrals (PI2)
based on SOC. All the approaches that are introduced require encoded trajectory
in a form of policy parameters. To do so, deep neural networks [31] or move-
ment primitives [78] can be used to extract the policy parameters and decrease the
dimension of the state-space and compress the prior knowledge intuitively.

2.2.3 Dynamic Movement Primitives

Representing a trajectory using its kinematics building blocks, such as position

yt at time step t and its first and second time derivatives, velocity ~v =
d~yt

dt
and

acceleration ~a =
d2~yt

dt2
is trivial. Therefore a recorded trajectory can be deployed by

a robot to reproduce the same movements. Although the trajectory reconstruction
would be almost lossless and produces a precise motion, it is not flexible to changes
such as introducing a new target position or new obstacles. Therefore a flexible
representation that dynamically changes the shape of the trajectory, based on
new conditions is required. Using dynamic movement primitives (DMP) [64], any
trajectory can be encoded as a dynamical system that can be reconstructed under
totally different conditions to reproduce trajectories with different shapes. A DMP
is a nonlinear dynamical system that represents a trajectory in one dimension,

1

τ
ÿ = α(β(g − y)− ẏ) + f (2.22)

f = ψTt θ, (2.23)

where [y, ẏ, ÿ] are position, velocity and acceleration at time t, and the term τ is
the non-zero positive time constant to accelerate (τ > 1) or decelerate (0 < τ < 1)
the motion while keeping the trajectory consistent. The equation 2.22 is actually
combination of linear (underlined part) and nonlinear systems. The linear part is
a simple spring damper system, and, the nonlinear part so-called forcing function
defines the shape of the trajectory using a set of kernels (e.g. Gaussian functions)
ψTt so-called basis functions and shape parameters θ. The jth basis function is
defined as,

[ψt]j =
wj(st)∑p
K=1wk(st)

st(g − x0) (2.24)

1

τ
ṡt = −αst, (2.25)

where s is a linear dynamical system representing the time also called canonical
system. The canonical system guarantees st reaches zero while xt converges to the
goal g, therefore removing the effect of the forcing function 2.24 when the target
is reached. Furthermore, the spatial scaling (g − x0) is responsible to adapt the

12

2.2. Reinforcement Learning

length of the trajectory when a new goal is introduced. In this study, each basis
function w is defined to be Gaussian function [64],

wj = e
−
hj(st − cj)2

2 , (2.26)

where hj and cj are the variance and mean correspondingly. As equation 2.26 de-
fines (st−cj), the canonical system st has been used to determine the kernel centers
(Gaussian mean) making sure the kernels are distributed equally throughout s. To
guarantee that the basis functions spread over the state-space equally, the variance
of Gaussian kernels also should be optimized. To spread the ψ activations through
s the variance is defined as,

hi =
NBF

ci
. (2.27)

2.2.4 Learning the DMP

When the trajectory is demonstrated, the next step is to learn the trajectory by
determining the weights θ in a way that the reconstructed trajectory imitates the
demonstrated trajectory as close as possible. The forcing function is the core of
the learning, where the basis functions guarantee smooth movements meanwhile
the weights promise the flexibility in the Spatio-temporal shape of the trajectory.
Due to available training data (demonstration) and linearity of the parameters,
the initial parameters are generated using supervised learning. To encapsulate the
trajectory in a form of forces the forcing function 2.22 is rearranged as,

f = τ ÿ − αz(βz(g − y)− τ ẏ). (2.28)

The demonstrated trajectory [ydemo(t), ẏdemo(t), ÿdemo(t)] describes a discrete move-
ment where the samples are taken at time step t ∈ [0, 1, ..., T]. The initial point of
the trajectory is defined by ydemo(0) and the goal is defined as ydemo(T). The final
forces ftarget are calculated using the equation 2.28,

ftarget = τ 2ÿdemo − αz(βz(g − ydemo)− τ ẏdemo), (2.29)

where the effects of the point attractor system is eliminated. Finally, the super-
vised learning uses a cost function to determine the numerical distance between
demonstrated and reconstructed trajectory to minimize the discrepancies between
f and ftarget. In this thesis, the locally weighted regression (LWR) [65] is used to
minimize locally weighted quadratic error J by defining the control parameter ψ,

Ji =
P∑
t=1

ψi(t)(ftarget(t)− wiξ(t))2, (2.30)

where ξ(t) = x(t)(g−y(0)). The weighted linear regression problem has a solution
that allows one shot learning as,

wi =
sTΓiftarget
sTΓis

, (2.31)

13

Chapter 2. Background and Related Work

Canonical System

Transformation
System 1

Transformation
System 2

Transformation
System 4

Transformation
System 3

Transformation
System 5

Transformation
System 6

Figure 2.8: The figure shows multiple transformation systems sharing a canonical
system as a central clock to synchronise multiple DMPs.

where,

s =

ξ(1)

ξ(2)

...

ξ(3)

Γi =

ψi(1)

ψi(2)

...

ψi(P)

 ftarget =

ftarget(1)

ftarget(2)

...

ftarget(P).

 (2.32)

One shot learning can increase the performance where there is no need for incre-
mental learning.

2.2.5 Extending DMPs to multiple degrees of freedom

A single DMP can reproduce a trajectory in one degree of freedom (DOF). Nowa-
days the industrial robots have redundancy in their kinematic chain which means
they have more than six DOF. Therefore, multiple DMPs are required to cover the
complete trajectory. Every DMP executes the trajectory in one dimension where
each dimension must be temporally coupled with the others to prevent inconsis-
tency in the execution. There exist three methods to extend the multiple DMPs
[41]:

1. Each DMP uses its transformation and canonical system. But, due to lack
of synchronization between DMPs, they diverge through time and cause in-
consistency.

2. Each DMP uses its transformation and canonical system and a coupling term
to synchronize them. Although coupling terms can extend the capabilities
of DMPs they increase the complexity.

3. Each DMP uses its transformation but the canonical system is shared. Using
a shared canonical system as a central clock can guarantee stable coordination
between all DMPs.

14

2.2. Reinforcement Learning

2.2.6 Model-Free Policy search

Model-free policy search approaches directly update the policy using the return
value. The general function approximation loop in model-free policy search algo-
rithm is defined as below:

1. Exploration: perturbing the current policy π to generate a set of random
trajectories τj

2. Evaluation: using a reward function to asses the quality of the perturbed
trajectory

3. Update: Using the evaluation results to incorporate different features of dif-
ferent trajectories

This loop demands lots of data to converge to a global maximum but in compare
to model-based methods, it is more stable and steady. Also, it requires designing
a task-dependent customized reward function which is usually a complicated task.
The policy gradient or natural gradient [58], expectation-maximization [28] and
path integral [78] methods that have been mentioned are categorised under this
category.
The main difference in most model-free policy search methods lies in how they ex-
plore the state-space which identifies their control policy. Some algorithms define
the exploration as parameter space perturbation and they follow a deterministic
control policy. They are called episode-based due to the modification in the param-
eters before the execution of the trajectory. The step-based approaches, employ
a stochastic control policy and add the perturbation to the action-space at each
time step.

2.2.7 Episodic Natural Actor-Critic (eNAC)

Policy gradient methods utilize the gradient of the cost function to find the steep-
est direction in cost-space to minimize the future return. This process requires
exploration and exploitation in action-space and consequently calculating the cor-
responding parameter,

θk+1 = θk + α∇θJθk , (2.33)

where θ is the parameter vector and ∇θJθk is the gradient of cost function with
respect to changes in parameter vector,

∇θJθk =
∂Jθ
∂θ

. (2.34)

The gradient determines the changes of the cost J due to changes in parameters
θ. Therefore, using the gradient matrix the agent finds the steepest path toward
the local/global minimum/maximum of the cost function. The general form of a
cost function can be defined as,

Jθ =

∫
p(τ ; θ)R(τ)dτ, (2.35)

15

Chapter 2. Background and Related Work

where, p(τ ; θ) is expectation over the trajectory distribution,

p(τ ; θ) = p(s1)
T∏
t=1

π(at | st; θ)p(st+1 | st, at), (2.36)

and R(τ) determines the reward for each trajectory

R(τ) =
T∑
t=1

rt. (2.37)

Using the log-ratio transformation the equation 2.35 can be modified as,

∇θJθ =
N∑
i=1

∇θ log p(τi; θ)R(τi). (2.38)

By combing 2.38 and 2.36 the REINFORCE policy gradient [84] is derived,

∇θJθ =
N∑
i=1

T∑
t=1

∇θ log π(ait | sit; θ)R(τ). (2.39)

The REINFORCE algorithm suffers from the high unintended divergence between
a new and old policy which eNAC has solved it by using the natural gradient
instead of policy gradient. To obtain the eNAC algorithm first the natural gradient
should be defined. The natural gradient uses the Fisher information matrix (FIM)
as the metric. FIM approximates the Kullback Leibler (KL) divergence of two
distribution that defines the distance between them; for example KL(pθ+∆θ ‖ pθ)
shows the deviation in distribution by adding ∆θ to pθ. It is called an information
matrix due to contained information about the effect of each parameter on the
properties of the distribution,

G(θ) = Ep[∇θ log pθ(x)∇θ log pθ(x)T]. (2.40)

The natural gradient of the cost function is defined as below:

∇NG
θ Jθ = argmax∆θ∆θ

T∇θJ ≈ G(θ)−1∇θJ (2.41)

By replacing the policy gradient with a natural gradient in 2.33 the eNAC update
equation is achieved,

θk+1 = θk + α∇NG
θ Jθk . (2.42)

The equations 2.39 and 2.37 show the gradient is defined by the reward of the
whole trajectory. since adding the previous rewards into the calculations make
the system unstable the effect of past rewards should be removed. Therefore, to
generate new policies using future rewards a baseline is introduced to equation
2.39,

∇θJθ =
N∑
i=1

T∑
t=1

∇θ log π(ait | sit; θ)(Qi − b(si)), (2.43)

16

2.2. Reinforcement Learning

where,

Q =
T−1∑
n=t

rn + rT , (2.44)

and,

Qt(st, at) = r(st, at) + V π
t+y(st + 1). (2.45)

Assuming fw(st, at) ≈ (Qi − b(si)), Q can be determined by approximating the
function fw(s, a),

Vt(st) + fw(st, at) = r(st, at) + V π
t+y(st + 1), (2.46)

where the function approximation is defined as,

fw(st, at) = ψ(st, at)
Tw. (2.47)

Based on compatible function approximation which assumes,

ψ(s, a) = ∇θ log π(a | s), (2.48)

and by inserting ψ(s, a) into equation 2.46 the following equation is obtained,

V π(s1)︸ ︷︷ ︸
J

+

(
T−1∑
t=1

∇θ log π(at | st; θ)

)
︸ ︷︷ ︸

ψT

w =
T∑
t=1

r(st, at). (2.49)

To find proper weights w the linear regression is used in two steps,

• Critic step:

[
w

J

]
= (ΨTΨ)−1ΨTR

where

Ψ =

[
ψ1 ψ2 ... ψN

1 1 ... 1

]T
R =

[
R1 RT

2 ... RT
N

]T
• Actor step:

θt+1 = θt + αtwt

17

Chapter 2. Background and Related Work

2.2.8 Policy Learning by Weighting Exploration with the
Returns (PoWER)

PoWER is a robust policy perturbation algorithm based on expectation maxi-
mization [61]. The algorithm uses an exploration method. Unlike gradient-based
algorithms, perturbation happens in the parameter space. The exploration in the
parameter-space leads to smoother trajectories but unobservable actions while per-
turbation in action-space may lead to

1. large variance in parameter-space that accumulates over time [57, 61, 28],

2. neutralized consequent actions due to independent perturbations and causing
the system to act as a low-pass filter [28],

3. damaging the hardware due to instantaneous changes in the movement di-
rection without considering the dynamics of the system [28].

Due to this exploration technique, this algorithm is well-suited for DMPs where
the shape of the trajectory is encoded as a set of parameters. Furthermore, the
returns are considered as an improper probability distribution where the costs are
always positive. The cost for trajectory k at step i,

Skti =
N∑
j=i

rkj , (2.50)

where r is the return value. The parameter update is calculated as below,

δθ ≈

(∑K
k=1

∑N
i=1Mtiε

k
ti
Skti

)
(∑K

k=1

∑N
i=1MtiS

k
ti

) , (2.51)

where M is the projection matrix and, ε determines the perturbation.

Mti =
ψtiψ

T
ti

ψTtiΣψti
(2.52)

The parameter update is defined as,

θ = θ + δθ (2.53)

2.2.9 Policy Improvement using Path Integrals(PI2)

PI2 is a local policy improvement algorithm that instead of using expectation
maximization it uses the stochastic optimal control concept. The main goal of
PI2 is based on minimizing a cost function J by the locally perturbing policy.
The policy perturbation θ + ε is achieved using a normal distribution N(0,Σ).

18

2.2. Reinforcement Learning

The parameter Σ standard deviation of the normal distribution is the only hyper-
parameter in this algorithm. In order to explain the PI2 algorithm in detail first
the equation 2.22 modified,

1

τ
ÿ = α(β(g − y)− ẏ) + ψTt (θ + ε). (2.54)

By creating N different roll-outs of the perturbed trajectory τj and evaluating them
using a cost function the trajectories that are close enough to the demonstrated
trajectory but have less cost can be found. the cost functions as,

J(τi) = φtN +

∫ tN

ti

(rt +
1

2
θTt Rθt)dt (2.55)

Where φtN is the final cost, rt is an immediate cost and, 1
2
θTt Rθt is the immediate

control cost. The discrete form of the finite-horizon cost function is calculated for
each roll-out and at each time step as,

S({τi}k) = {φtN}k +
N−1∑
j=i

{
rtj +

1

2
ΘT
tj
RΘtj

}
k

(2.56)

where S({τi}k) is the cost for trajectory k at step i and Θ is the perturbed policy
parameters as,

Θtj = θ +Mtjεtj (2.57)

Here M is the projection matrix to project the Gaussian noise into the parameter
space defined as,

Mtj =
R−1gtjg

T
tj

gTtjR
−1gtj

(2.58)

where g is the matrix of the basis functions. Finally the exponentiated proba-
bility for each roll out is calculated. This probability defines the importance of
perturbation noises ε in that particular trajectory. The probability is calculated
as,

P ({τi}k) =
e
−1
λ
S({τi}k)∑K

l=1

[
e
−1
λ
S({τi}l)

] . (2.59)

The parameter λ regulates the sensitivity of the exponentiated cost. the λ can be
remoed from the equation by,

e
−

1

λ
S(τi)

= e

− h(S(τi)−minS(τi))

maxS(τi)−minS(τi) , (2.60)

where h is a constant in which is defined 10 as suggested in [78]. Using the
probability weighted average over K roll-outs, the parameter update δθti for each
time step i can be computed as,

δθti =
K∑
k=1

[P ({τi}k)Mti {εti}k] , (2.61)

19

Chapter 2. Background and Related Work

where trajectories with lower cost and higher probability, contribute more to the
parameter update [76]. Similarly, the averaging is calculated over time as,

[δθ]j =

∑N−1
i=0 (N − i)wj,ti [θti]j)∑N−1

i=0 (N − i)wj,ti
. (2.62)

In the time average the activation of the basis functions are used to increase the
effect of the parameter updates with higher activation. The coefficient (N − i) is
to weight each parameter update at time i based on the number of steps left on
the trajectory, this creates a higher impact from the points closer to the start of
the trajectory. To obtain the new parameter the parameter updates is added to
the old one as,

θNew = θOld + δθ. (2.63)

20

Chapter 3

Methodology

3.1 Modular Architecture

In this section the architecture of the teleoperation system is presented. The final
architecture is designed in a modular way to facilitate the analysis and testing
process. The figure 3.1 illustrates the overall architecture of the MMT system.
The network so-called delay in the figure splits the architecture into two main
parts the slave and master sides. Each module (blocks in the figure) is assigned to
execute a separate task that is defined as below:

• Master side:

– Human: The teleoperator who demonstrates the trajectory using the
master device

– Master: The haptic user interface which perceives the operator’s hand
movements and gives the haptic feedback to the operator.

– IK: The inverse kinematics block that calculates the human hand pos-
ture using haptic interface contact points in the work-space.

– HPE: Hand Pose Estimation calculated slave hand configuration based
on human hand posture

– Hand/LWR Simulink simulation: Single instance of Light Weight
Robot (LWR) and Five Finger Hand (FFH) simulations. This simulator
using the environment generates haptic feedback for the Master device.

– Environment: Singe instance of physics simulation combining envi-
ronment with the 3D model of LWR and FFH. This simulation does
not simulate the kinematics and dynamics of LWR and FFH, and it
just simulates the interaction forces with the environment.

– DMP: Dynamic Movement Primitive transformation in the master side
to encode the trajectory to a set of policy parameters.

– AR: Augmented reality module which provides a stereo visual repre-
sentation as a separate environment simulation without considering the
physical properties.

21

Chapter 3. Methodology

• Slave side:

– DMP: Dynamic Movement Primitive transformation on the slave side
to decode the policy parameters to the final trajectory.

– Reinforcement Learning: Improves the trajectory in the case when
DMP fails to complete a task.

– Hand/LWR simulation: Multiple instances of LWR robot and FFH
slave hand simulator. This simulator continuously interacts with the
DMP and Reinforcement Learning blocks for trajectory evaluation.

– Environment (blue blocks): multiple instances of physics simulation
of the remote environments and LWR and FFH. Each instance interacts
with the one LWR and FFH Simulink simulator to update the kinemat-
ics and dynamics of the physics model. Moreover, this simulation gets
updated frequently to increase the feasibility of the final trajectory.

– Slave The real LWR and FFH.

– Environment: The real remote environment.

O
p
era

to
r

M
a
ster

A
R

IK HPE

Hand

LWR

S
im

u
la
to
r

DMP

N
etw

o
rk
(D

elay)

S
la
ve

E
n
viro

n
m
en

t

DMP

RL

Hand

LWR

S
im

u
la
to
r

xcp qhh

x

qsh

qsh

F

x

τ

Figure 3.1: The figure illustrates the overall architecture of the system. The net-
work also called the delay in the figure splits the architecture into two main parts
the slave and master side. The Human teleoperator interacts with the Master
device. In the Master side LWR/Hand simulation using physics simulation, Envi-
ronment provides instant haptic feedback and also information for the Augmented
Reality unit AR. The Inverse Kinematic IK block calculates the human hand pos-
ture given the contact points on the master device. Consequently, the slave Hand
Posture Estimator HPE approximates the corresponding slave hand configuration.
The DMP in the master side encodes the trajectory to basis functions while the
DMP in the slave side encodes them back, and evaluates and reconstructs the new
trajectory based on the new environmental situation given by Hand/LWR and
Environment simulator. IN the case of failure the Reinforcement Learning unit
improves the trajectory and finally, deploys it on the Slave robot in the remote
Environment

22

3.2. Trajectory Encoding

3.2 Trajectory Encoding

Transferring knowledge between structurally different systems requires transforma-
tion and usually results in information loss. Adding more transformations leads to
high degrees of adaptation and eventually higher performance and lower loss. Simi-
larly in teleoperation, in most cases, slave and master have fundamental differences
that aggravate a lossless performance. Besides knowledge transfer, communication
causes a higher loss of information and also lower performance. To evaluate the
knowledge transfer and trajectory reconstruction different properties are taken into
account as follows:

1. The flexibility of reconstruction and degree of adaptation to new
conditions: due to the time difference between demonstration (master side)
and execution (slave side), the environment may change, the differences might
be caused by the slave robot or an external factor (e.g. slipping, drifting).
Therefore, this dissimilarity should be taken into consideration for new tra-
jectory generation, the potential differences that are taken into account are:

• The starting point of the trajectory

• The target point of the trajectory

– Reachability of the target

– Uncertainty in target position

• Obstacles

2. Dimensionality of encoded space: The minimum number of parameters
that are required to encode a trajectory. A low number of parameters leads
to,

• less processing overhead

• less network traffic

• faster optimization

To ensure the transformation loss does not affect the system eventually, an
optimal trade-off needs to be found as a very high number of parameters leads
to complexity and a very low number of parameters leads to inconsistency
and excessive loss.

3. Safe exploration and learning: The reconstructed trajectory must be as
safe as the demonstrated trajectory by the supervising teleoperator. Since
learning mainly relies on exploration in parameter or action-space, intuitive
representation of the trajectory helps to keep the exploration safe.

The trajectory can be encoded in the form of neural network weights, Bézier curves
and Dynamic movement primitives (DMP), etc.. This thesis mainly focuses on
utilizing DMP transformations. Every DMP encodes a trajectory in one DOF

23

Chapter 3. Methodology

therefore for multiple DOF, multiple DMPS are required. DMPs can learn to
reconstruct a trajectory with different temporal and spatial features from the base
trajectory. The reconstruction is happening with one-shot learning. Given the
position [x0, x1, ..., xN], velocities [ẋ0, ẋ1, ..., ˙xN] and acceleration [ẋ0, ẋ1, ..., ˙xN], the
equation 2.31 generates DMP parameters θ. The goal xN or the start of the
trajectory xN can be modified based on the new situation on the slave side. The
dimensionality of space of each trajectory is six, three for position and three for
orientation. As a result, six DMPs are used to encode every demonstration.

[x y z α β γ] (3.1)

The roll, pitch, and yaw of the end-effector are then converted to a rotation matrix
by a set of transformations to avoid singularities. The hand joints are not con-
sidered in the DMP transformation due to the high number of DOFs (21 DOF)
which is outside of the scope of the thesis.
The figure 3.1 shows our proposed architecture, as can be seen, the slave robot
gets the trajectory from two sources, DMP, and Reinforcement learning units.
The DMP in the master side encodes the trajectory using the following steps[64]:

1. Calculate the derivative of position trajectory to access velocity and acceler-
ation

2. Calculate the ftarget using equation 2.29

ftarget = τ 2ÿdemo − αz(βz(g − ydemo)− τ ẏdemo)

3. Calculate the basis functions ψ using equation 2.24 which is shown in figure
3.2.

[ψt]j =
wj(st)∑p
K=1 wk(st)

st(g − x0)

0 100 200 300 400 500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Ke
rn

el
 A

ct
iv

at
io

n
ψ

Figure 3.2: The figure shows the activation of each basis function (Gaussian Kernel)
at every time step.

24

3.2. Trajectory Encoding

0 100 200 300 400 500
Time (ms)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ke
rn

el
 A

ct
iv

at
io

ns
 θ
T
ψ

Figure 3.3: The figure shows the activation of kernels after applying the learned
parameters.

4. Calculate the parameters θ using linear weighted regression equation 2.31

wi =
sTΓiftarget
sTΓis

,

The DMP block on the slave side decodes and rebuilds the trajectory given the
updated values from the slave robot and the environment with the following steps:

1. Calculating the forcing function f using equation 2.23, an example of final
results after this step is depicted in figure 3.3

f = ψTt θ,

2. Reconstruct the trajectory using equation 2.22. This step is incremental
and generates the trajectory in a loop with the length of the trajectory,
the initial value of the trajectory y0, is arbitrary and can be different from
the demonstration (e.g. the current position of the end effector). the same
procedure for the goal g can be adapted to the new position of the target. An
example of a reconstructed trajectory in comparison with the main trajectory
is depicted in figure 3.4

1

τ
ÿ = α(β(g − y)− ẏ) + f

The reconstructed trajectory gets evaluated using simulation, to see if the tra-
jectory can fulfill the task requirements. This thesis mainly focuses on grasping
different objects. The objects have been selected to evaluate the system’s perfor-
mance in grasping objects with different types of geometry (e.g. centric, parallel,
arbitrary). The evaluation conditions are defined in the simulation as described in
4.3. If the reconstructed trajectory can grasp the object in the simulation environ-
ment, then the real slave robot deploys the trajectory, otherwise, the DMP unit
activates the reinforcement learning to adapt and improve the trajectory until a
successful grasp is achieved.

25

Chapter 3. Methodology

0 100 200 300 400 500
Time(ms)

0.62

0.60

0.58

0.56

0.54

0.52

0.50

0.48
x
(m

)
Reconstructed Trajectory Trajectory

Figure 3.4: The figure shows a reconstructed trajectory generated by a DMP. The
black trajectory shows the demonstration by the operator. Due to the low number
of kernels, the reconstructed trajectory using DMP has a rough estimation of the
demonstrated one, therefore losing some features.

0 100 200 300 400 500
Time(ms)

0.62

0.60

0.58

0.56

0.54

0.52

0.50

0.48

x
(m

)

10 Kernels 20 Kernels 50 Kernels 100 Kernels Trajectory

Figure 3.5: The figure shows the trajectories generated using 10, 20, 50, 100 kernels.
Increasing the number of kernels improves the accuracy of the trajectory by adding
more features throughout the trajectory. on the other hand, the unnecessary high
number of kernels increases the learning time and complexity of the trajectory
representation.

3.3 Reinforcement learning

Although DMPs can adapt an old trajectory to new conditions, they may fail due
to reasons such as the approaching angle for grasping with an arbitrary structured
asymmetric end-effector (e.g. anthropomorphic hand) while for a manipulator
with symmetric end-effector configuration the approach angle does not make any
difference. There are also other factors such as the accuracy of the controller to
follow a generated trajectory as close as possible, in this case, failure happens when
the controller diverges incrementally from the intended trajectory. The controller
accuracy relies on the quality of the hardware, for example, a joint with high inertia
or friction cannot follow controller commands due to physical restrictions.
Furthermore, uncertainty in the object position is a common problem and causes

26

3.3. Reinforcement learning

X

Z

Y
Trajectory A
Successful

Trajectory B
Failure

Figure 3.6: The figure shows two trajectories with the same shape but with different
target positions relative to the initial positioning. The problem appears to be due
to the asymmetric shape of the end effector.

collision and inconsistency in grasping and eventually failure of the task. Hence,
a new demonstration might be costly and also result in the same problem, there-
fore it is necessary to adapt the same trajectory to new conditions. There are
several ways to improve a trajectory, such as policy search, path integrals, deep
reinforcement learning, etc. In this thesis, the comparison between fast and robust
algorithms such as Policy Improvement using Path Integrals(PI2), Policy Learn-
ing by Weighting Exploration with the Returns (PoWER) and Episodic Natural
Actor-Critic (eNAC) is presented.

PoWER and PI2 are policy perturbation methods that add noise to the original tra-
jectory in the parameter space πθ+ε to generate more trajectories that are similar
to the original one but have slightly different features. These exploratory trajecto-
ries are essential for RL, they visit new parts of the task-space to find an optimal
solution if it exists. Unlike deep RL, policy search methods usually have a limited
amount of time to find a solution for one specific problem, therefore, the approach
does not consider generalization. The figure 3.7 shows a detail view of the RL
block mentioned in figure 3.1, which outlines the general structure of policy per-
turbation methods. Both PI2 and PoWER algorithms have a similar exploration
behavior, but the differences are in the calculation of parameter update dθ. The
parameter update in PI2 is calculated in a way that provides more freedom for de-
signing the cost function. Whereas the cost function in the PoWER algorithm has
to be an improper probability distribution, therefore, the returns should always be
positive. The use of proper probability distribution may be advantageous, Where

27

Chapter 3. Methodology

the rewards should be positive and add up to one [28].
The PI2 parameter update is calculated in five steps,

1. Determining the cost to go S for each roll-out at each time step using the
equation 2.56

S({τi}k) = {φtN}k +
N−1∑
j=i

{
rtj +

1

2
ΘT
tj
RΘtj

}
k

.

2. Calculate the probability p of each roll-out using the exponential form of S
using equation 2.59. Higher probability indicates a higher contribution of
the roll-out in the final update δθ.

P ({τi}k) =
e
−1
λ
S({τi}k)∑K

l=1

[
e
−1
λ
S({τi}l)

]
3. Averaging over roll-outs using equation ??. The weighted average is due to

the importance of different trajectories, here the trajectories with the lower
cost which have a higher probability, have a higher influence on the final
parameter update.

δθti =
K∑
k=1

[P ({τi}k)Mti {εti}k]

4. Average over time-steps using equation 2.62. The final δθ at time step i is
weighted based on remaining points on the trajectory. It means the points
closer to the start of the trajectory has more influence on the shape since
they affect the bigger part of trajectory [76].

[δθ]j =

∑N−1
i=0 (N − i)wj,ti [θti]j)∑N−1

i=0 (N − i)wj,ti

Simulation

Pe
rt
ur

ba
tio

n

θInit

D
M
P D
M
P

Ev
al
ua

tio
n

U
pd

at
e

Ev
al
ua

tio
n

Sl
av

e

Reinforcement Learning

x

θ + ε1

θ + ε2

θ + ε3

θ + ε4

θ + ε5

θ + ε6

θ + ε7

𝜏1

𝜏2

𝜏3

𝜏4

𝜏5

𝜏6

𝜏7

J1

J2

J3

J4

J5

J6

J7

θNew

θNew

Figure 3.7: The figure shows the general structure of policy parameter perturbation
methods inspired from [76].

28

3.3. Reinforcement learning

5. Update the parameters using equation 2.63

θnew = θold + δθ

But the PoWER algorithm uses a simpler method and update the parameter θ in
three steps:

1. Determining the cost to go S for each roll-out at each time step using the
equation 2.50

skti =
N∑
j=i

rkj

2. Average over time-steps and roll-outs in a single step using the equation 2.51.

δθ ≈
∑K

k=1

∑N
i=1Mtiε

k
ti
Skti∑K

k=1

∑N
i=1 MtiS

k
ti

3. Update the parameter using the equation 2.53.

θnew = θold + δθ

The eNAC algorithm is an actor-critic policy gradient which uses the natural gra-
dient to find the steepest path to the optimal answer. It is called episodic since
the critic is evaluated at the end of trajectory execution, but the algorithm is
step-based since the actions are perturbed each frame. Perturbing actions has
disadvantages [75] such as,

• Introducing independent random small movements to a smooth trajectory
increases the jerkiness,

• The system might behave as a low-pass filter and filter-out the high-frequency
perturbations by averaging.

• Instant changes in robot motion without considering the inertia might dam-
age the robot,

• The variance of the parameter vector might increase dangerously.

3.3.1 Learning under Uncertainty

Due to the uncertainty in object detection, the RL agent must be able to learn
the new trajectory goal while optimizing the trajectory shape. The authors in [76]
introduce an approach to extend the capability of PI2 to adapt the target of the
trajectory. The approach uses the cost of the whole trajectory S({τ0}k) since the
goal does not change throughout the trajectory execution. Given the trajectory
cost S the probability of each trajectory can be calculated,

P ({τ0}k) =
e
−1
λ
S({τ0}k)∑K

l=1

[
e
−1
λ
S({τ0}l)

] (3.2)

29

Chapter 3. Methodology

Where P determines the contribution of each trajectory for the next update. To
be exact, P defines the value of each trajectory based on the cost function. Then
the probabilities are used to calculated the goal parameters,

δg =
K∑
k=1

[P ({τ0}k) {ε
g}k], (3.3)

where {εg}k is the goal exploration related to the trajectory k. The final update
of the goal is defined as below,

g = g + δg (3.4)

The haptic feedback as secondary sensory feedback is used to compensate for
the vision inaccuracy.

Formulation

Exploration Rate Σ

As PI2 and PoWER approaches suggest, the perturbation step introduces explo-
ration into the parameter space. The exploration may cause serious disruptions
in the agent’s behavior and unpredictable movement which can adversely affect
the slave robot and the remote environment simultaneously. Due to the counter-
intuitive definition of the parameters θ which define the final shape of the trajectory
by modifying the DMPs, an intuitive understanding of the applied noise (explo-
ration) Σ is required before performing actions on the slave. A high exploration
rate in parameter perturbation methods may highly diverge the trajectory and
cause physical damages to the robot.
On the other hand, the eNAC algorithm uses the action-space to explore the new
policies therefore the exploration rate Σ is an intuitive measure of distance. The
disadvantage of the perturbation in the action-space is the jerky movement. Low
exploration rate leads to a smoother trajectory while a high exploration rate may
cause damage to the robot by big instance changes in the movement direction. In
parameter and action-space perturbation methods, a trade-off can be found that
speeds up learning while keeping the slave device and remote environment safe.
Furthermore, initially, the RL agent requires higher exploration to increase the
chance to find a solution within the time limit. For that reason, when a solution has
been found the rate of the exploration must decrease to stabilize the convergence
and finalize the trajectory shape. Therefore, the exploration rate Σ decreases at
each time step using the following equation:

γ = max(
Updatemax − i

Updatemax

, 0.1) (3.5)

Σi = γΣinit (3.6)

Where i is the current time step in the trajectory and Updatemax is the maximum
number of the updates. The decay rate γ is responsible for linearly decreasing

30

3.3. Reinforcement learning

the exploration rate. The decay rate has a minimum value of 0.1 due to need for
exploration throughout the learning process. On the other hand, the exploration
rate of the goal defines the perturbation of the target position. Therefore high
goal exploration leads to failure due to diverging quickly before having a chance
to touch the object. On the other hand, a low exploration rate results in late
convergence, therefore the trade-off should be defined properly depending on the
model uncertainty. The learning exploration rate for each approach was defined as
experimentally in the simulation. The final exploration rates for each approach is
defined as below:

PI2 PoWER eNAC Goal

Σ 300 300 0.01 0.04

Learning Rate α

In the critic step of the eNAC algorithm, a learning rate is deployed to control the
final influence of parameter updates on the final trajectory. A small learning rate
leads to late convergence while a high learning rate results in sudden changes in
the trajectory and failure due to high divergence from the initial trajectory.

Cost Function

The cost function in policy search algorithms defines whether the agent should get
a reward. It also defines the scale of the reward depending on the quality of the
action. A cost function interprets several aspects of action in one single value with
different proportions depending on the purpose of the learning. For example, the
cost function can be a combination of,

• Acceleration of the end-effector,

• Velocity of the end-effector,

• Distance from the target,

• The scale of the added noise,

• The number of frames that fingertips are inside the Diaphragm (High number
of frames indicate the trajectory target is well placed in relative to object),

• Number of fingers involved in the grasp (High number of frames indicate a
better grasp),

• The object displacement during grasp.

Different combinations of these parameters have a different interpretation and they
result in different trajectories. For example, integrating the acceleration into the
cost function results in a less jerky trajectory [76]. Another example, by adding the

31

Chapter 3. Methodology

object displacement during the grasp makes the end effector not touching during
its approach. consequently, considering any mentioned property results in a new
trajectory where that property is minimized. Moreover, The simulation involves
characteristics that are unrealistic like continuous access to the precise object po-
sition. In a real environment, the object can be obscured and hard to detect and
locate, therefore, using cost items like the object position is not plausible. As
a final solution, after experiments, two properties are selected; acceleration and
noise scale for the control and trajectory cost. and for the final cost, the number
of involved fingers in grasping is included. The cost function is defined as below
[76],

J(τi) = ΦtN +

∫ tN

ti

(10−11(ẍt
2 +

1

2
θTt Rθt))dt. (3.7)

where Φ is the final reward indicating the success of the grasp. The quality of the
grasp is determined by the number of fingers involved in the grasp NFingers

Φ(τi) = 1− NFingers

5
. (3.8)

The Φ becomes zero when all fingers are involved in the grasp but depending on
the object size the maximum number of fingers might differ. In the next chapters,
the penetration calculation in the physics engine is explained.

Roll-out and Update number

The number of roll-outs determines the number of perturbed instances of the tra-
jectory which must be generated and evaluated for the next update. And the
number of updates defines the maximum number of steps in which at each step
one set of roll-outs are generated. Therefore the total number of trajectories gen-
erated is defined as Roll-out number × Update number. The higher number of
roll-outs k or trajectory perturbation leads to robust learning and slower conver-
gence [76]. 100 updates with Seven roll-outs have been used in the experiments
due to hardware limitations. To increase the learning stability the best two trajec-
tories are kept in the memory to be used in the next update. Although, increasing
the roll-out number increases the robustness against noise but it results in slower
convergence.

32

Chapter 4

Implementation and Validation

To provide a framework to evaluate the system, different modules are designed and
implemented. The concept behind these modules are not the focus of this thesis
but they are necessary to evaluate the study. The main focus of this chapter is the
link between the hardware and software, controllers, and detail description of the
modules in figure 3.1 that were not investigated in the previous chapter. Also, the
hardware architecture including manipulators, robotic hands, visualization devices,
and the middleware are explained with a brief description of the experiments and
the preliminary user-study procedure.

4.1 Master-Slave Command

High-level task demonstration such as grasping in a teleoperation scenario requires
a highly compliant interface that provides weightless movement throughout the en-
tire work-space [56]. In addition to compliance, proper haptic feedback helps the
user to understand the physical properties of the remote environment by touching
the objects and feeling different surfaces. In haptic rendering, compliance plays an
important role. Just like a highly noised image, small inertia or discrepancies in
haptic feedback may confuse or mislead the operator. Therefore, using a gravity
compensation module which provides a weightless physical interface by counterbal-
ancing the weight of the manipulator. Furthermore, other factors such as inertia or
friction that may affect the quality of compliant feedback are taken into account.

The Lagrangian formulation of an uncontrolled robot is defined as below:

F = M(q)ẍd + c(q, q̇) + g(q) + h(q, q̇) (4.1)

Where M, c, g, f are inertia, coriolis and centrifugal, gravity and nonlinear terms
and the parameter xd defines the target position of the end-effector. The compli-
ance can be extended to each robot finger. To do so, a torque controller has been
deployed on the robot hand which provides freedom in the movement at the finger
level. Consequently, the in-hand (e.g. gestures) and human arm movements were
followed by the robot fingers and the manipulator, correspondingly.

33

Chapter 4. Implementation and Validation

On the slave side, the robot requires a position to follow the master, this position so-
called anchor can be any point on the master device, such as the estimated human
hand position or the position of the end-effector. The anchor is a virtual link
that the slave robot uses to replicate the master movements. Using the master’s
end-effector as an anchor without considering the end-effector (robot hand) causes
inconsistency in the model because the displacement of the anchor depends on
the distance from the previous joint. To ensure low position tracking error, the
anchor point is defined by estimating the pose between the Carpometacarpal and
Inter-Metacarpal(IMC) joints in the human palm as shown in figure 4.3. To do so,
the contact points 1 and 2 (red and yellow rings) which are physically connected
to latter joints, therefore, the average position of the contact points defines the
anchor (blue ring). To follow the anchor point by slave robot, a position tracking
controller with high accuracy is necessary. There are two solutions, using inverse
kinematics that calculates the joint angles based on a given absolute position in
the work-space or an impedance controller which uses a spring-damp system to
follow a relative target in work-space. Although inverse kinematics guarantees
high accuracy, it imposes high stiffness to the joints. On the other hand, the
impedance controller supports variable stiffness in Cartesian space which provides
a safe environment for the human-robot interaction.
The impedance controller (figure 4.1) uses the displacement of the anchor (xt −
xt−1) at each time step t. Considering the Lagrangian formulation the impedance
controller,

F = Kx(xd − x) +Kd(ẋd − ẋ) +M(q)ẍd + c(q, q̇) + g(q) + h(q, q̇), (4.2)

where Kx and Kd are the stiffness and damping matrices,

KP
x =

800 0.0 0.0

0.0 800 0.0

0.0 0.0 800

, KR
x =

9.6 0.0 0.0

0.0 9.6 0.0

0.0 0.0 9.6

, Kd =

9.9 1.0

9.9 1.0

9.9 1.0

.

To achieve final torque on the motors the Jacobian of the manipulator is used as
below [3, 83]:

τd = JT (q)F (4.3)

It is worth to mention that as figure 4.2 shows due to the opposing posture of the
teleoperator relative to the interface a transformation is required which rotates the
haptic interface -90 degrees around the z-axis. The reason that the robot needs -90
degrees rotation instead of -180 degrees, is due to the initial -90 degrees rotation
of the end effector (FFH) relative to its base.

4.2 Hand Posture Estimation (HPE)

As figure 4.4 shows, the slave, master and human hands have a different structure.
A pipeline of Inverse Kinematic (IK) [56] and joint-to-joint mapping has been used
to estimate the human hand posture using the slave hand. The IK is used since

34

4.2. Hand Posture Estimation (HPE)

H
is

{w
rt

 I
}

H
d

e
s
{w

rt
 I

}

H
,d

e
s

2

tr
q

,d
e

s

1

z
rs

1

z
e

ro
s
(6

,1
)

V
e

lo
c
it
y

In
1

In
2

O
u

t1

u R IC
y

1 z

u R IC
y

1 z

u R IC
y

1 z

T
ra

fo
3

D

M
u

lt
1

In
1

In
2

O
u

t

T
ra

fo
3

D

M
u

lt

In
1

In
2

O
u

t

T
ra

fo
3

D

In
v
e

rs
e

S
p

a
ti
a

l
S

ti
ff

n
e

s
s

H
1

2
W

1

W
2

S
ig

n
a

l
S

p
e

c
if
ic

a
ti
o

n

D
:7

M
a

tr
ix

M
u

lt
ip

ly

M
a

tr
ix

M
u

lt
ip

ly

M
ir
ro

r
R

o
ta

ti
o

n

0

1

0

0

−
1

0

0

0

0

0

1

0

u
T

A
H

*R
in

it

H
in

it
_

s
o

u
rc

e

H
is

_
s
o

u
rc

e

H
in

it
_

lb
r4

H
d

e
s
_

ta
rg

e
t

 D
a

m
p

e
r3

−
K

−

in
it5 J4

q
,i
s

3

H
,i
s
{I

}

2

H
_

m
a

s
te

r_
is

1

tr
q

_
d

e
s

F
ig

u
re

4.
1:

T
h
e

fi
gu

re
sh

ow
s

th
e

S
im

u
li
n
k

m
o
d
el

re
la

te
d

to
th

e
L
W

R
im

p
ed

an
ce

co
n
tr

ol
le

r.
T

h
e

M
ir

ro
r

tr
an

sf
or

m
at

io
n

,
tr

an
sf

or
m

s
th

e
an

ch
or

p
os

e
(H

m
as

te
r

is
)

w
h
il
e

th
e

d
ev

ia
ti

on
ca

lc
u
la

to
r

(A
H
∗
R
in
it
)

ge
n
er

at
es

th
e

sl
av

e
en

d
-e

ff
ec

to
r

p
os

e
(H

de
s)

.
T

h
e

ch
an

ge
s

ar
e

tr
an

sf
or

m
ed

in
to

sp
ac

ia
l

st
iff

n
es

s
an

d
ad

d
ed

to
th

e
d
am

p
in

g
m

at
ri

ce
s.

T
h
e

d
am

p
er

u
se

s
th

e
ve

lo
ci

ty
an

d
th

e
J
ac

ob
ia

n
of

th
e

m
an

ip
u
la

to
r.

T
h
e

fi
n
al

to
rq

u
e

(t
rq
d
es

)
is

d
ep

lo
ye

d
on

th
e

m
ot

or
s.

35

Chapter 4. Implementation and Validation

Figure 4.2: The figure shows how the operator hand model is evolved in the two
steps to be used as the robot hand. On the left, the operator is attached to the
haptic interface, then, the contact points of the hand and interface are calculated
using the forward kinematics. The calculated positions are used to estimate the
human hand posture using the inverse kinematics of the human hand which is
extracted from MRI models. Finally, the estimated human hand configuration
is used for a joint to joint approximation to calculate the associated robot joint
angles.

Anchor
CP

Figure 4.3: The figure shows the operator’s hand attached to the Exodex Adam
haptic interface. The green rings show the fingertip attaching point while the red
and yellow show the palm attach points. The blue ring defines the anchor point
that the slave robot uses to follow the operator hand movement.

there is no direct way to read human joint values. The IK utilizes the contact points
calculated using forward kinematic (fingertips of master robot hand). Then, the
joint-to-joint mapping uses the human hand joint configuration to compute slave
robot joint values.

The fmincon is used as the optimization method which finds the minimum of a
constrained nonlinear multivariable function. The cost function takes into account
the Euclidean distance between an arbitrary number of points on two curves. Each

36

4.2. Hand Posture Estimation (HPE)

Inverse Kinematic

Joint to Joint Mapping

q
H

um
an

 T
hu

m
b

q
H

um
an

 M
id

dl
e

q
H

um
an

 L
itt

le

q
H

um
an

 In
de

x

q
H

um
an

 R
in

g

q
R

ob
ot

 T
hu

m
b

q
R

ob
ot

 M
id

dl
e

q
R

ob
ot

 L
itt

le

q
R

ob
ot

 In
de

x

q
R

ob
ot

 R
in

g

F
ig

u
re

4.
4:

T
h
e

fi
gu

re
sh

ow
s

fr
om

le
ft

to
ri

gh
t

fi
rs

t
th

e
h
u
m

an
h
an

d
w

it
h

th
e

gl
ov

e
an

d
fi
n
ge

r
ca

p
s

[5
6]

,
th

e
M

R
I

ge
n
er

at
ed

h
an

d
m

o
d
el

,
an

d
th

e
F

iv
e

F
in

ge
r

H
an

d
(F

F
H

).
T

h
e

co
n
ta

ct
p

oi
n
ts

th
en

ar
e

u
se

d
to

es
ti

m
at

e
th

e
h
u
m

an
h
an

d
M

R
I

co
n
fi
gu

ra
ti

on
u
si

n
g

th
e

in
ve

rs
e

k
in

em
at

ic
.

F
in

al
ly

,
th

e
es

ti
m

at
ed

h
u
m

an
h
an

d
co

n
fi
gu

ra
ti

on
is

u
se

d
fo

r
a

jo
in

t
to

jo
in

t
m

ap
p
in

g
to

ca
lc

u
la

te
th

e
as

so
ci

at
ed

ro
b

ot
jo

in
t

an
gl

es
.

37

Chapter 4. Implementation and Validation

curve passes through each joint on both sides (human MRI hand (Master) and
robot hand (Slave)). Therefore, the cost function is a similarity measure between
two fingers (human MRI model finger and its associated finger on the slave robot).
The inputs of the cost function consist of 8-10 constants depending on the finger.
To find the distance between two curves first a transformation must be calculated
that matches two curves. Finally the evaluation is done by calculating the distances
in the finger’s range of motion. The configuration of each joint (Slave) has been
defined by a set of linear equations. Each joint is assumed to be coupled with 2-3
different joints on the human side. The equations for the index finger are given as
follows

q1 = α1MCP2.1 + β1MCP2.2 + γ1PIP2

q2 = α2MCP2.1 + β2MCP2.2 + γ2PIP2

q3 = α3PIP2 + β3DIP2

q4 = α3PIP2 + β3DIP2 = q3

qindex = [q1, q2, q3, q4]

Where MCP , PIP and DIP are Metacarpophalangeal, proximal Interphalangeal
and distal Interphalangeal joint values correspondingly. And, q1, q2, q3, q4 are the
slave robot hand joint values and α, β and γ are constants that are being optimized.
As you see there are eight different values to be optimized. For example, the first
joint of the robot q1 is affected by the first three joints of the human hand MRI
Model. This is an example of optimization results

q1 = (0.6894MCP2.1) + (0.0140MCP2.2) + (0.0246PIP2)

As expected the first joint (abduction of robot hand (Slave) index finger) is highly
affected by the abduction of the Metacarpophalangeal joints, and, other joints have
less effect. All permutations of three values [min, 0, max] are applied to each joint
separately. Finally, the sum of all distances is used as the return value of the cost
function.
It means that the cost function indicates how close the curves were not just in one
configuration but in 81 different configurations. The min and max joint values are
given in [10]. Finally, the slave hand joint values are calculated and transmitted
to the slave hand simulator and from there to the physics simulator. Using the
configuration of the slave hand and a mesh model the simulator calculates the
penetration explained in 4.3 and recognizes the grasping. The slave robot joint
values are sent to the master side simulation where the physical model of the slave
robot and hand is deployed. To synchronize the visualization for the operator the
physics simulation also sends another copy to the AR interface.

38

4.2. Hand Posture Estimation (HPE)

M
id

dl
e

Th
e

re
su

lts
 o

f t
he

 fm
in

co
n

op
tim

iz
at

io
n

A
ut

ho
r:

H
ad

i B
ei

k
M

oh
am

m
ad

i
E

m
ai

l:
ha

di
.b

ei
km

oh
am

m
ad

i@
dl

r.d
e

[1
x8
]

P
ar

am
et

er
s

P
ro

du
ct

P
ro

du
ct

1

P
ro

du
ct

2

P
ro

du
ct

4

P
ro

du
ct

5

P
ro

du
ct

6

P
ro

du
ct

8

P
ro

du
ct

9

A
dd

A
dd

1

A
dd

2

-K
-

G
ai

n

m
in

M
in

M
ax

10

C
on

st
an

t1

-1 G
ai

n1

m
ax

M
in

M
ax

1

-K
-

G
ai

n2

m
in

M
in

M
ax

2

65

C
on

st
an

t2

m
ax

M
in

M
ax

3

0

C
on

st
an

t4

-K
-

G
ai

n3

m
in

M
in

M
ax

4

65

C
on

st
an

t5

m
ax

M
in

M
ax

5

0

C
on

st
an

t6

Te
rm

in
at

or
2

1
q_

m
id

dl
e

1
Jo

in
t_

A
ng

le
s

F
ig

u
re

4.
5:

T
h
e

fi
gu

re
sh

ow
s

th
e

S
im

u
li
n
k

m
o
d
el

fo
r

jo
in

t-
to

-j
oi

n
t

m
ap

p
in

g
of

th
e

m
id

d
le

fi
n
ge

r
fr

om
a

h
u
m

an
h
an

d
to

th
e

ro
b

ot
h
an

d
.

P
ar

am
et

er
s

ar
e

th
e

le
ar

n
ed

co
effi

ci
en

ts
fr

om
th

e
op

ti
m

iz
at

io
n

an
d

co
n
st

an
t1

,
co

n
st

an
t2

,
co

n
st

an
t3

,
co

n
st

an
t4

,
an

d
co

n
st

an
t5

ar
e

th
e

jo
in

t
li
m

it
s.

T
h
e

ga
in

s,
ga

in
2

an
d

ga
in

3
ar

e
th

e
fe

ed
-f

or
w

ar
d

ga
in

s
to

m
an

ip
u
la

te
th

e
an

gl
es

in
ca

se
of

in
co

n
si

st
en

cy
d
u
e

to
ch

an
ge

s
in

th
e

m
o
d
el

.

39

Chapter 4. Implementation and Validation

Figure 4.6: The figure shows different stages of grasping a cube. The left image
shows the normal condition, the center image shows when the middle and ring
finger activate the diaphragm. The right image shows the situation where the
object is successfully grasped.

4.3 Grasping and Force Calculation in Simula-

tion

Since MMT extensively uses a simulation environment, therefore using a simulation
with a proper physics engine is imperative. The chosen physics engine must have
the ability to

• Calculate penetrations on complex objects with convex hulls.

• Simulate rigid body dynamic behavior.

• Process in Real-Time.

Unity [81] is a cross-platform game engine with a powerful built-in physics engine.
Due to its ability to facilitate designing three-dimensional, two-dimensional, aug-
mented reality and virtual reality games it has been widely used in the industry.
Although Unity is a powerful tool to simulate complicated objects with dynamic
behavior but due to limited processing power the capabilities are restricted. For
example, Unity does not support non-convex rigid body collision detection due to
computation overhead and low demand in the market. An object is convex when
there is no line inside the object that intersects with its surface mesh. Conse-
quently, Unity has a default approach to deal with non-convex objects which is to
approximate a new convex-mesh so-called the collider.
Unity does not support penetration calculation for soft objects, for example, hu-
man skin or elastic materials. Although, unity supports simulation for different
tangential forces for instance friction the noise coming from the master robot makes
the surface friction impractical. Surface friction is necessary for grasping, this tan-
gential force is the main reason that the object stays within the hand during the
movements. In the simulation, surface friction fails because of constant attach and
detach of the fingertips and the object surface. This fluctuation causes the object
to slide out of the hand right after picking up off the ground.

40

4.3. Grasping and Force Calculation in Simulation

Other simulation software support tangential forces and penetration detection but
they either suffer from the same problem (e.g. Unreal engine [62], Mujoco [80],
VREP [13], and Gazebo [29]) or they were not commercially accessible for this
work. To solve this problem using Unity a new approach is proposed so-called the
diaphragm. The diaphragm guarantees a smooth attachment without any contact
breakage. The breakage happens when one object mesh enters another object mesh
without being able to apply any force. In unity, two colliders break into each other
where one of them (e.g. robot finger mesh) is controlled kinematically. In Unity,
the objects can be controlled in two different ways, kinematic and non-kinematic.
The non-kinematic control uses forces such as gravity, friction, arbitrary forces and
torques generated via built-in joints. On the other hand, the kinematic control
changes the position and rotation of the object directly.
Although the diaphragm facilitates the grasping, due to high noise in object po-
sition, it may slip out of the hand, to address this issue an external controller is
deployed on the object position. This external controller makes the grasp more
persistent by using a kinematic control and eliminating all the forces including
gravity, therefore, moving the object relative to the robot hand. There are several
conditions to ensure grasping is complete,

• Force equilibrium: This condition ensures the forces applied from different
fingers are facing toward each other. As figure 4.7 shows, to calculate the
equilibrium the angle between two force vectors, the force vector from the
thumb (FThumb) and the average force vector (FOpp) from other involved
fingers is compared to a threshold. To ease the grasping the threshold can
be increased.

F2

F3

F4

F5

F1
Ave

F3
F2F1

Ave

FThumb FOpp
-FOpp

FOpp-FOpp

FThumb

x
Y

Z
^

Figure 4.7: This figure shows the force equilibrium in 2D

• Stability: To increase the stability of the grasp the involved fingers are
checked to have constant contact with the abject mesh for at least ten conse-
quent frames. This ensures if the object slips away from a finger, that finger
should not be involved. So, grasping is not complete unless the object is in
a stable situation inside the hand.

As figure 4.8 shows, the depth and normal vector of the penetration calculated
by the physics engine are sent to the Exodex Adam Simulink model. And, the

41

Chapter 4. Implementation and Validation

AddGet Hit Normal

Get Penetration

Product

Product1-1

Constant

bool uint8

Bool To Uint8

>

Relational
Operator

0

Constant1

1
finger_tip

2
penetration_data

1
proxy

2
is_pen

 ~=

Switch1

proxy_pos

Figure 4.8: The figure shows the Simulink model for arbitrary object penetration
detection. This model also calculates the pose of the fingertip on the surface of
the object if necessary.

Simulink model uses the god object approach [50] to calculate the proper proxy
position to guide the slave hand mesh outside of the object mesh, therefore, pro-
viding haptic feedback for the operator. As figure 4.8 shows the proxy position
defines

xproxy =

{
xfingertip − (~pen ‖pen‖)) pen > 0

xfingertip pen 6 0
(4.4)

The proxy position xproxy defines the closest position to the surface of an object
from each fingertip. Then this position is used as an attractor point for a spring-
damper system which leads the fingertip to that position. Finally, the forces are
converted to torques using the Jacobian of each finger and then sent to the motors.
Due to the simplification in the haptic interface as it is shown in figure 4.4 the
middle, ring and little fingers are derived using the middle finger position. There-
fore the forces generated for these fingers are fed back to the middle finger in the
haptic interface. And the contact points connected to the palm mesh, generate the
force for the manipulator to generate a crisp haptic feeling for the arm.

Diaphragm

The diaphragm is a novel idea which uses an arbitrary virtual object that surrounds
the target object to adapt contact forces between the hand and the objects. It has
the same shape as the object but 20 percent bigger in size with a transparent ap-
pearance. Once one of the robot fingers enter the diaphragm, the physics engine
takes over the low-level control. Consequently, the delay between the robot con-
troller and the physics engine is eliminated and the penetrations can be detected
in the early stage. The diaphragm also introduces a color hint, when it is acti-
vated the object changes its color to yellow. Then, the teleoperator knows when to
keep the hand steady until the process of grasping is complete. Once the grasping
conditions are satisfied the object becomes green and the object is ready to pick
up.

42

4.4. Hardware

Exodex
RT

LWR
Master RT

FFH RT
LWR
Slave RT

Exodex
LWR
Master

LWR
Slave

FFH

LN Master
LWR Slave
Simulation

FFH
Simulation

Hololens

Unity
Simulation
Learning

Unity
Simulation
Demo

4.3.1 Gesture recognition

To finish a task the teleoperator needs to release the object in a designated area.
Therefore, an external signal (e.g. hand gesture) is required. The gestures can
be recognized by analyzing the geometry of the human hand using the relative
positions of the contact points. The Cartesian range of motion on each finger is
measured by calculating the difference between two different gestures, power grasp
and rest (open hand). Then the range of motion is used to recognize which fingers
are bent, therefore, recognizing gestures such as pinch grasp, pointing, power grasp,
and rest. The rest gesture is used as the designated gesture for releasing the object
after a complete grasp.

4.4 Hardware

This section is an overview of the hardware architecture and how the hardware and
tasks are distributed in the master and slave side and also how they communicate.

4.4.1 Architecture

Due to advantages such as easier debugging process and problem rooting, the
system uses a star topology. The figure 4.4.1 shows the connections and nodes
in the master side (green nodes) and slave side (blue nodes) that are defined as
below:

• LN Master: This block regulates the communication between nodes as a
middleware. It also manages the processes and the dataflow between them.

• Slave Side

– FFH: This block contains the Five Finger Hand (FFH) hardware and
low-level controller.

– FFH RT: This block executes the FFH high-level controller (Simulink
executable files) and also the communication to the FFH hardware.

43

Chapter 4. Implementation and Validation

– LWR Slave: This block contains the Light Weight Robot (LWR) hard-
ware and low-level controller.

– LWR Slave RT: This block executes the LWR high-level controller
(Simulink executable files) and also the communication to the LWR
hardware.

– Unity Simulation - Learning: The block contains processes related
to physics simulation containing the environment, FFH, and LWR. It
contains seven different instances of so-called workers that function in
parallel to speed up the learning process.

– FFH Simulation: The block utilizes seven independent FFH Simulink
models running in parallel to provide high-level control for physics sim-
ulation.

– LWR Slave Simulation: This block comprises seven independent
LWR Simulink models running in parallel to provide high-level control
for physics simulation.

• Master Side:

– LWR Master: This block contains the LWR hardware and low-level
controller.

– Exodex Adam: This block contains the Exodex Adam hand interface
hardware and low-level controller.

– Hololens: This block contains a Microsoft Hololens and a simulation
of the environment and the slave device. It provides visual stereo rep-
resentation for the user.

– Exodex Adam RT: This block executes the Exodex Adam hand inter-
face high-level controller (Simulink executable files) and also the com-
munication to the hand interface hardware.

– LWR Master RT: This block executes the LWR high-level controller
(Simulink executable files) and also the communication to the LWR
hardware.

4.4.2 Exodex Adam Haptic Interface

Light Weight Robot (LWR)

Nowadays industries utilize robots to increase efficiency and speed while keeping
high precision. The first versions of industrial robots were designed to be used in
an isolated environment such as cages due to safety issues for humans. The in-
dustrial robots increase precision by increasing the stiffness of the movements and
therefore less drag and drift from the target configuration. Human-robot interac-
tion and collaboration can add high intelligence and accuracy to task performance.
Therefore industrial robots capable of providing safety for human operators have

44

4.4. Hardware

been designed. The KUKA DLR-LWR 4+ robot is one of the best currently avail-
able robots that provide safety for HRI by integrating Force/Torque sensor to each
joint. Therefore the robot can detect the small collisions at the joint level and can
prevent them by stopping the robot in real-time. The LWR has seven Degrees of
freedom (DOF) which provide redundancy for the controller. The redundancy is
a result of having more DOF than the dimensionality of space (three translational
and three rotational) and means for each accessible pose in the task-space there is
an infinite number of configurations.

Simulink Model

The LWR Simulink model that interacts with the robot directly and in real-time
is initially implemented by Thomas Hülin for the DLR HUG project [22]. The
figure 4.9 shows the Simulink model for LWR 4+ manipulator arm, the major
components are defined as below:

• Control and GUI: The settings related to switching between the control
modes (Position, Torque and cartesian), the activation of the telemanipula-
tion. Also, resetting the anchor position is defined in this block.

• High-Level Control: This block receives and processes the forces coming
from the Exodex Adam Simulink model. It also modifies high-level param-
eters for different control modes, for example, joint limits and null-space
forces.

• Robot: The forces are converted to torques to be deployed on the robot.
Also, the torques for joint limit protection and torques to avoid knotting
are calculated here. The telemanipulation block 4.1 is located in this block.
The gravity compensation also located in this block plus the dynamic and
kinematic calculations for the robot. A homogeneous transformation is cal-
culated for each joint from the base to the last joint. The plant containing
the interface to the real robot and its identical simulation is located in this
block.

• Visualization: The useful and meaningful data such as torques, joint values,
etc are visualized using scopes in this block. These data are also published
on the network by Links and Nodes middleware.

Hand Interface

Exodex Adam is a novel haptic interface designed by the MODEX lab at the Ger-
man Aerospace Center [35, 37, 36]. This setup combines an LWR with a custom
design end-effector. The end-effector combines five torque-controlled robotic fin-
gers where each finger has an anthropomorphic structure with three DOF with two
coupled joints. The end-effector of each finger has a gimbal and a magnetic clutch

45

Chapter 4. Implementation and Validation

Control

High-Level Controller Robot
Visualization

Figure 4.9: The figure depicts the Simulink model of the LWR of the Exodex Adam
setup. The model consists of four modules, Control, High-level controller, Plant,
and Visualization.

Figure 4.10: The figure depicts the hand interface of the Exodex Adam setup. The
hand involves five fingers that attach to the human hand using magnetic clutches.

that attaches to the glove worn by a human hand. The magnet allows fast de-
tachment in the case of an emergency. The Simulink model for the Exodex Adam
end-effector runs in different real-time PC and runs the control loop and haptic
feedback.

Simulink Model

The figure 4.11 shows a brief view of the Simulink model which controls each finger
separately. There are four major modules defined as below:

• Command: This component defines the setting for each finger (e.g. joint
limits and feed-forward gain). The control mode of each finger can be also
selected between torque and position control. The calibration of joints also
happens in this block.

46

4.4. Hardware

Command

High-Level Controller Robot

Visualization

Scopes

Figure 4.11: The figure depicts the Simulink model of the hand interface of Exodex
Adam setup. The model consists of four modules, Command, High-level controller,
Plant, and Visualization.

• High-Level Controller (HLC): Here, the penetration data using the
virtual environment are transformed into force feedback to be sent to the
low-level controller. furthermore, the transformations of each joint and link
are calculated using the complete DH parameters from the LWR base to the
fingertips. The position of the fingertips is used for inverse kinematic calcu-
lations to determine the human hand configuration. the kinematic chain of
the human hand (DH parameters) are given by Magnetic Resonance Imag-
ing(MRI) found in previous studies at DLR [10, 73, 74]. Moreover, The
properties of the virtual objects, for instance, the stiffness and friction are
defined in this block.

• Plant: This component is responsible for direct communication between the
Simulink model and the haptic interface through the RobotKernel block. The
RobotKernel is a runtime-configurable hardware abstraction framework de-
signed and implemented at DLR. It encapsulates device drives in dynamical
loadable shared modules and provides generic interfaces to the hardware. To
run Simulink in a simulator mode(Normal), the RobotKernel is replaced by
a block with identical inputs and outputs that imitates the robot dynamic
behavior. Here, the virtual environment forces calculated in the HLC are
converted to torques and finally to pulse width modulation (PWM) signal to
be deployed on the joints. Finally, the measured data from the hardware are
processed, filtered and transformed into Cartesian form to be used in HLC.

• Visualization: The useful and meaningful data such as torques, joint values,
etc are visualized using scopes in this block. These data are also published
on the network by Links and Nodes middleware.

47

Chapter 4. Implementation and Validation

Control

The figure 4.12 shows the control loop for each finger based on [24] where the
transfer function of the impedance felt by the user is defined as below:

u

F
=

1

Zu +
Zm

1 +K
+

Ze

1 +K

(4.5)

Where Zm, Zu, Ze define the impedance of the haptic interface, user and the
virtual environment, respectively. The parameter F determines all external forces
and Fu defines the force exerted by the user. The Zm and Ze are reduced by the
factor of 1 + K which means the exerted forces by the virtual environment are
weakened. Furthermore, K is the gain that is used to intensify the exerted forces
by the user to facilitate the movement of the haptic interface. Since the virtual
environment interaction forces are defined by Ze, these forces are replaced by the
physics simulation in the architecture. As the figure shows the forces from the
virtual environment Fe are opposing the forces applied by the user. Finally, the
command forces Fcmd are generated to be sent to the haptic interface.

Torque
Sensor

Zu

Zm
-1

Ze

+
+
-

-
+

KFuF
Fcmd

Fe

u

Figure 4.12: The figure 4.12 shows the control loop for each finger based on [24].
Zm, Zu, Ze define the impedance of the haptic interface, user and the virtual
environment, respectively.

Attachments and Configurations

The figure 4.13 shows the human hand is attached to the interface. The magnetic
clutch coupled with each fingertip of the interface is the physical attaching point of
the interface and the user. The human hand is covered by a glove combined of four
parts, 3 finger caps each with a magnet on top for the thumb, index and middle
fingers and one half-glove to cover the palm with two magnets. The glove does not
have any sensors and it is only used for attachment purposes. The attaching points
on the interface are connected to a three DOF gimbal that allows free rotation
around the gimbal joint. There are eight non-actuated joints on the interface to
modify the configuration of the fingers and the interface to match the user-specific
requirements such as the hand size.

48

4.4. Hardware

Figure 4.13: The figure shows the human hand attached to the interface. The mag-
netic clutch coupled with each fingertip of the interface is the physical attaching
point of the interface and the user.

4.4.3 Augmented Reality

Microsoft Hololens One was selected as the AR platform due to the short supply
of high-quality augmented reality goggles and also the limited number of options.
This device provides a stereo representation of the virtual environment as an over-
lay on the operator’s real surroundings. Therefore, the operator can interact with
both environments at the same time. Since the device is not supported by links
and nodes middleware a customized communication system has been developed for
low delay communication setup using UDP protocol that translates the packages
to be used in the AR device. Due to the onboard low-performance processor on
the Hololens (Intel 32-bit (1GHz)), the heavy physics calculations are done in a
separate powerful PC and the results are sent to the device as positions. The
packets sent to the Hololens include

• The joint angles of the slave LWR and the fingers,

• The joint angles of the master LWR,

• The virtual object positions,

• The status of the grasp,

• The reference frame of the slave device.

49

Chapter 4. Implementation and Validation

Therefore, the Hololens is used for rendering the scene with no physics. The aug-
mented 3D models of the table, objects, and robots are processed in Unity and
anchored in the workspace using Vofuria. Vuforia is a software development kit
that facilitates augmented reality application development in the Unity engine [1].
It uses an image (Image Target) with a high number of features to determine the
frame of reference for the 3D models in the operator’s point of view. Moreover, it
uses multiple sensors to track the position of the headset when the image is not in
the device range of view. When the image target is recognized the 3D virtual model
appears on top of the real device. Once two environments are matched the master
device and the slave LWR model is removed from the virtual environment leaving
just the FFH model to narrow the operator’s attention down to the important
parts of the scene. The model has been placed in a way that when the operator’s
hand attaches into the master device the operator’s hand matches the FFH aug-
mented model. Therefore, the user can observe the influence of the actions on the
robot hand. The lighting of the visualization also matches the lighting of the real
environment since the master device is stationary, this improves the realistic view
of the virtual environment and therefore helps the operator visually. Moreover,
The diaphragm is visualized in the AR model and the user can interact with it in
real-time.

Once one of the fingertips enters the diaphragm the object gets selected and the
material color becomes yellow and the teleoperator realizes the diaphragm is suc-
cessfully activated and needs to wait until the object becomes green and the grasp-
ing is complete.

4.4.4 Links and Nodes

If two machines run real-time processes the communication between them also
must be real-time. DLR Institute of robotics and mechanics has designed a new
middle-ware so-called Links and Nodes (LN) to manage the processes and the
communication between them. Using LN local processes can share data using
shared memory and two distant processes in two different PCs can share data
using TCP or UDP depending on the type of request. The LN master is the
central process of LN which runs on a separate PC. The LN master has a GUI as
shown in the figure to facilitate the management of multiple processes at the same
time. It uses the topic/service architecture similar to ROS to share data between
two processes. The topic is a concept of sharing information that any process can
read the data just by having the address of that specific topic but just one process
can write on it at the time. And the services allow for sharing information without
loss by using a handshake for requesting each packet. So for reading data with
high frequency, it is better to use topics instead of services.

50

4.5. Evaluation

4.4.5 Slave Device

Master LWR, Slave LWR, The Differences

Due to the anthropomorphic configuration of the slave device to imitate the human
arm, the LWR used in the slave side has joint offsets. The joint offsets are deployed
to increase the work-space of the robot in the human-arm configuration when the
first two joints imitate the shoulder and others play the elbow and wrist roles.
The custom configuration keeps the joints away from the joint limits. furthermore,
an extension to the last joint is deployed as a solution to the common singular-
ity problem in LWR. The customized configuration is first used in Justin robot
designed by DLR. Due to hardware similarities, the same Simulink model (figure
4.9) has been used but the DH parameters and the Jacobian block is borrowed
from the Justin robot model. Another real-time PC is used for low and high-level
controllers. The final model has been optimized and duplicated for seven different
workers. The LN data ports are customized each instance of the Slave model, the
ports connect the RL engine and physics simulator to the Simulink models.

Five Finger Hand (FFH)

The end-effector used in the slave device is a customized version of the DLR hand
so-called FFH hand. The differences are in the position of the 5th finger which is
opposing other fingers to facilitate grasping and in-hand manipulation.

4.5 Evaluation

The experiment includes multiple sub-tasks to evaluate the performance of pro-
posed architecture in real scenarios. Each sub-task is divided into two main parts,

• Demonstration: The operator interacts using the haptic interface attempts
to complete the assigned tasks in a simulated environment. This step contin-
ues until the first successful execution of the task by the operator is finished.
Due to the high influence of the human factor in this step, a small user study
with 10 participants has been conducted at DLR. The participants were all
male and had experience with teleoperation devices. Due to the lack of the
second system for comparison, the standard measures such as the system us-
ability score (SUS) and NASA task load index (NASA-TLX) has been used.
The user-study serves our purpose to test the system with the help of experts
and gathering data to evaluate RL techniques that are used in robotics in
the context of learning high-dimensional motor control tasks.

• Learning: After the demonstration by the operator, the DMP parameters
were sent to the slave side and immediately translated to a Cartesian tra-
jectory corresponding to the new object position. Then the trajectory was
deployed on the simulation worker 1 to evaluate the new trajectory. The
simulation determines whether the grasping was successful. In the case of

51

Chapter 4. Implementation and Validation

failure, the trajectory is sent back to the RL unit which adapts the trajectory
to the new condition. This step includes trajectory deployment, learning, and
evaluation of the architecture and the learning approaches in the simulation.
The evaluation is conducted under different conditions,

– Placing the object in different distances from the initially taught one
shows how often the task requires RL also shows the performance of the
system without uncertainty.

– Applying uncertainty to the object position imitates the inaccuracy in
the vision systems shows the performance of the system when using
tactile feedback as sensory input.

– Grasping objects with different shapes shows the performance of the
approach when facing different geometrical shapes.

– using different hyper-parameters shows whether the final results are
compared based on the best trials and how changing parameter effects
the behavior of the system.

The slave device was used to test the final learned trajectory and was not
involved in the learning process. Learning in simulation guarantees the safety
of the final trajectory for the slave device where any anomaly in the shape
of the trajectory is chacked before deploying it on the slave device. The
final part of the experiment is performed using different learning rates for
policy gradient and, exploration rates for parameter perturbation methods
to guarantee the fairness of the comparison by choosing the trials with the
best performance.

4.5.1 Preliminary User-study Procedure

The user-study has been conducted to collect data and record trajectories to eval-
uate the overall architecture. It involves different tasks, including pick and place
of geometrically different objects. Before the experiment, the participants were
briefed verbally and written about the haptic interface, experiments, and details
about safety procedures, and necessary information in the case of emergencies.
The experiments were conducted under DLR safety regulations, All participants
took the safety procedure course to work with lightweight robots. After signing
the consent form the interface glove and the finger caps were chosen proportional
to user hand size and comfort.

The necessary calibrations were done to reset the torque sensors before attaching
the hand. The gesture recognition personalization was done based on the par-
ticipant’s hand size by asking the user to open the hand completely and close it
completely. Next, the AR goggles were put on the users head by the experimenter
and the quality and comfort were confirmed verbally. During the briefing session,
information about the diaphragm, the expected forces, the meaning associated

52

4.5. Evaluation

with the color hints, and some guidelines about grasping were given to the partic-
ipant. The participants were allowed to train on each task before the recording of
the trajectory. Each task contained two parts, Pick and place, which they were
separately recorded. The duration of performing each part was 10 seconds.

4.5.2 Tasks

The experiment involves four different tasks:

• Pick and place of a box (5cm x 5cm x 5cm) from the orange place holder to
the green place holder to evaluate the performance of the system in grasping
an object with parallel surfaces.

• Pick and place of a cylinder (10cm x 5cm) from the orange place holder to
the green place holder to evaluate centric grasping

• Pick and place of a rock shape object from the orange place holder to the
green place holder to evaluate the performance of the system in grasping
objects with arbitrary shapes.

• Build a tower by picking the box from orange place holder and put it on the
boxes on the other side to evaluate the performance of the system to deploy
high-level tasks.

53

Chapter 4. Implementation and Validation

4.5.3 Questionnaire

System Usability Score (SUS)

The system usability score so-called SUS is a standard score that determines the
usability of a product. The participant ranks the system immediately after per-
forming all tasks in a subdivided scale of 20. The questionnaire includes different
statements that the users choose the closest option to their experiences. The state-
ments include

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

NASA Task Load Index (NASA TLX)

The NASA Task Load Index (NASA TLX) is a multidimensional subjective as-
sessment tool to evaluate the workload of a task or system [20]. The participant
ranks the system immediately after performing each task. The total workload is
subdivided to five different tasks:

• Mental Demand: How much mental or perceptual activity was required(e.g.
thinking, deciding calculation, remembering, looking, searching, etc)? Was
the task easy or demanding, simple or complex?

• Physical Demand: How much physical activity was required (e.g. pushing,
pulling, turning, controlling, activating, and, etc)? Was the task easy or
demanding, slow or brisk, slack or strenuous, restful or laborious?

• Temporal Demand: How much time pressure did you feel due to the rate
or pace at which the tasks or task elements occurred? Was the pace slow
and leisurely or rapid and frantic?

54

4.5. Evaluation

• Performance: How successfully do you think you were in accomplishing the
goals of the task set by the experimenter(or yourself)? How satisfied were
you with your performance in accomplishing these goals

• Frustration Level: How insecure, discouraged, irritated, stressed and an-
noyed versus secure, gratified, content relaxed and complacent did you feel
during the task?

55

Chapter 4. Implementation and Validation

56

Chapter 5

Results and Discussion

In this chapter several metrics are used to examine the performance of the system
in different tasks, namely:

• Trajectory Cost: The continuous decrease in the cost of the trajectory dur-
ing learning trials defines if the approach can minimize the cost in a limited
time. The trajectory cost contains the quality of the grasp by taking into
account the number of fingers involved and the smoothness of the trajectory
by considering the acceleration. In this thesis, the cost and lost are used
interchangeably,

• Success rate: The continuous increase in the success of different instances of
a trajectory throughout the learning determines if the approach can improve
the overall performance

• Total update number: The number of updates that an algorithm requires
to successfully finish a task shows the performance of the method.

• Trajectory shape: The final trajectory shape indicates whether the changes
were close to initially taught skill or if they were drastically different. The
unnecessary changes in trajectory shape are considered as a disadvantage for
the approach.

Finally, the results from user-study show how well the system performs when inter-
acting with a human operator. The System Usability Score (SUS) and NASA Task
Load Index (Nasa-TLX) of the system. This chapter also discusses the eligibility
of the result in detail.

5.1 Grasp Without Uncertainty

The first set of results compare different algorithms in a scenario where the slave
robot grasps a box. To evaluate the approaches the target pose has been changed
incrementally in different directions (on the XY plane or table surface). The figure
5.2 compares the cost of trajectories generated by different methods in an extreme

57

Chapter 5. Results and Discussion

0 10 20 30 40 50 60 70 80 90 100
Updates

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Su

cc
es

s
eNAC Pi2 PoWER

Figure 5.1: The figure shows the success rate after each update. The vertical
axis indicates the number of successful roll-outs and the horizontal axis shows the
update step. As it is shown, although the PoWER algorithm shows a sudden rise
the steady-state stays around two which is lower than PI2 which shows a milder
increase in the success rate initially. On the other hand, eNAC has a slower increase
and also drop but it achieves a constant increase in success rate after 10 updates
which continue till the end.

condition where the object is located more than 40 cm away from the demonstrated
target in both directions (40 cm in X and 10 cm in the Y direction).

The lines indicate the average cost of over five different learning sessions and the
shadow around each line indicates the standard deviation. The initial cost relates
to the trajectory generated by DMPs, and later, each algorithm attempts to reduce
costs within a limited timeframe. The figure shows all the methods decrease the
cost and stabilize the learning with a low cost where the grasping happens. The
PI2 and PoWER rapidly decrease the cost, but PI2 shows higher stability by less
fluctuation while reaching a lower value in its steady-state. The eNAC algorithm
has a more gradual decrease and unusual fluctuations in the steady-state. The
value of the steady-state of the eNAC algorithm shows the final cost is higher than
the other two.

Furthermore, figure 5.1 compares the success rate of the three algorithms. Here,
the lines indicate the average success rate over five different learning session and
the shadow around each line indicates the standard deviation. The figure shows
the PoWER algorithm rapidly increases the success rate but it reaches the learning
steady-state sooner than the others. Although, the PI2 algorithm shows significant
growth with a high steady-state value and eNAC has a slight success increase and
also a decrease after nine updates but it starts a steady increase after 15 updates
which continue till the end and reaches the highest success. Therefore it shows the
approach may need more time to reach better results than PI2 and PoWER.

Figure 5.3 compares the number of required updates to achieve a successful grasp.
Moreover, zero updates indicate the RL was not activated and the DMPs success-

58

5.1. Grasp Without Uncertainty

fully compensate for the changes. The box charts indicate the results gathered
from five different learning sessions for each algorithm.
As it is shown, the learning is required for the objects with more than 10 cm posi-
tional difference ∆x where the median of the required updates is one. Here, all the
approaches have similar performance, therefore, more challenging scenarios/tasks
need to be analyzed. But when ∆x = 40 cm, although PoWER needs a higher
number of updates and the outliers show eNAC and PI2 face occasional difficulties
to find a solution. It is worth to mention ∆x > 40 cm is out of the robot’s reach,
therefore, the positions beyond this limit have been excluded.
Besides, since it was already mentioned in the figure 3.6, the figure 5.4 confirms the
changes in Y are harder to compensate for the learning since the y-direction affects
the approaching angle and also the work-space limits are closer to the initial object
position. The difficulty is due to the geometry of the robot hand, that changing in
Y brings the object closer to the robot base, therefore, the opposing thumb might
collide with the object before an actual grasp happens.
The figure shows when ∆Y = 10 cm, RL approaches demand more learning up-
dates than when ∆X = 40 cm. Here, the PoWER algorithm has a better perfor-
mance by having a smaller inner fence and lower median. The PI2 has the same
average but has a wide boundary. The eNAC has the same issue plus a higher me-
dian and also an outlier which shows the algorithm needed more than 50 updates
to find a proper solution.
Figure 5.1 shows the final trajectories generated using different algorithms. Tra-
jectories have been calculated with no perturbation after the last trial which led
to a successful grasp.
The figure shows eNAC drastically changes the trajectory in TX and TZ while the

0 10 20 30 40 50 60 70 80 90 10
0

Update

0

1

2

3

4

5

6

7

8

C
os

t

eNAC Pi2 PoWER

Figure 5.2: The figure shows the learning cost over 100 updates, each update
contains seven roll-outs performed in the simulation. The targets related to this
plot were placed about 50 cm away from the demonstration. The figure shows PI2

and PoWER has a very steep decrease in the cost of the trajectory while eNAC
has a slower convergence and less stability with high fluctuations.

59

Chapter 5. Results and Discussion

changes by PoWER algorithm are applied on TZ and RX . It is observed that
PI2 has the lowest modification in all dimensions. The same results are achieved
by [79].

The figure 5.1 shows the number of updates needed for the algorithm to be able
to grasp the rock successfully. The results show the changes in X do not require
learning as much as changes in Y and DMP transformations can compensate for
the differences. But the anomaly in ∆X = 5 cm is because the object is located
on a place holder that the place holder stays still and the object moves so since
the place holder is thick when the object is on the edge the object gets tilted and
makes the object configuration different.

In this case, eNAC has the worst performance by requiring more than six update
trials. In ∆X = 5 cm and ∆X = 10 cm also the higher bound is higher for eNAC
in compare with PI2 and PoWER.

To be able to show if the same results are achievable by the real robot, the same
trajectory was deployed on the real and simulated robots, simultaneously. As it is
shown in figure 5.8, the difference between the deployed trajectory at the end is
less than five millimeters. But, the trajectories have small differences in the shape.
At the start, the simulation drifted almost one cm, the trajectory has a shift at
first which is due to initial drift in the simulation. Moreover, the real robot has
a flatter plot when it reaches the highest value, and this flat curve coincidentally
synced the shape of the two trajectories afterward. If the shape of the trajectory
is to avoid an obstacle, for example, if an obstacle is placed in -0.42, the real robot
will crash into it.

0.
0

0.
01

0.
05

0.
10

0.
40

∆x(m)

0

2

4

6

8

10

12

14

U
pd

at
es

eNAC PoWER PI2

Figure 5.3: The figure shows the update number required for different approaches
to find a solution. The horizontal axis indicates the distance from the demonstrated
target and the vertical axis shows the number of updates. The positional differences
are applied on X direction.

60

5.2. Grasping Under Uncertainty

0.
01

0.
05

0.
10

∆y(m)

0

10

20

30

40

50

60
U

pd
at

es
eNAC PoWER PI2

Figure 5.4: The figure shows the update number required for different approaches
to find a solution. The horizontal axis indicates the distance from the demonstrated
target and the vertical axis shows the number of updates. The positional differences
are applied to the Y direction.

5.2 Grasping Under Uncertainty

The figure 5.2 compares the number of updates required to achieve a successful
grasp under uncertainty. As it was mentioned before DMPs are powerful tools
but as the results show they fail with small uncertainty in the object position.
By increasing the uncertainty the number of required update trials increases as
expected. The medians in the figure show the number of required updates decreases
when the uncertainties reach six cm. The drop might be due to the goal exploration
rate Σg = 4 cm so the end-effector does not hit the object since the object is
not in the exploration range, initially. Therefore, smaller exploration rates were
evaluated, but the results were not satisfying and the RL agent mostly failed to
reach the object in 100 trials. The failure is due to the low probability to find the
object since the haptic feedback is used as a reward so as long as the object is not
touched by at least one of the fingers the agent does not receive any reward. For
example, When the uncertainty is six cm but the exploration rate is just two cm
the agent needs at least three trials toward the object with maximum step size to
gain reward from touching the object which is quite unlikely to happen.

The figure 5.2 shows the trajectories generated under different uncertainties in
object position. As the trajectories illustrate, the agent has successfully found
several solutions for each trial with different uncertainties. The final stage of each
trajectory shows where the end effector has grasped the object. The final values of
the trajectories in comparison with the final values of the demonstration show the
approach has successfully found the target. For example, the generated trajectory
has the largest deviation when the uncertainty is seven centimeters. Since the
robot hand is relatively big, the trajectories with uncertainties less than three cm
are not corresponding to their plots. For example, the trajectory generated for two

61

Chapter 5. Results and Discussion

0.60

0.55

0.50

0.45

0.40
T
x
(m

)

eNAC PI2 Demonstration PoWER

0.6

0.4

0.2

0.0

0.2

T
y
(m

)

0.6

0.4

0.2

0.0

T
z
(m

)

0.2

0.0

0.2

0.4

0.6

0.8

R
x
(r
a
d
)

2.8

2.6

2.4

2.2

2.0

1.8

R
y
(r
a
d
)

0 100 200 300 400 500

Time(ms)

0.2

0.0

0.2

0.4

R
z
(r
a
d
)

Figure 5.5: The figure shows the trajectories generated by different approaches.
In Tx, the eNAC trajectories show a high divergence from the demonstrated tra-
jectory. The trajectories generated using PI2 have the lowest deviation from the
demonstration.

cm uncertainty has less deviation at the end than the trajectory generated for one
cm uncertainty.

62

5.3. Userstudy

∆
x

=
0.

00
∆
y

=
0.

0

∆
x

=
0.

01
∆
y

=
0.

0

∆
x

=
0.

05
∆
y

=
0.

0

∆
x

=
0.

10
∆
y

=
0.

0

∆
x

=
0.

40
∆
y

=
0.

0

∆
x

=
0.

00
∆
y

=
0.

01

∆
x

=
0.

00
∆
y

=
0.

05

∆
x

=
0.

00
∆
y

=
0.

10

∆
x

=
0.

00
∆
y

=
0.

20

∆
x

=
0.

40
∆
y

=
0.

10

∆
x

=
0.

40
∆
y

=
0.

20

Distance from Demonstrated Target (m)

0

5

10

15

20

25

30

35

40

45
U
p
da
te
s

eNAC PoWER PI2

Figure 5.6: The figure shows the number of updates that different RL approaches
need to learn to grasp the rock when there is a deviation from the demonstration
target in X and Y directions.

∆
x

=
0.

0
0

∆
y

=
0.

0

∆
x

=
0.

0
1

∆
y

=
0.

0

∆
x

=
0.

05
∆
y

=
0.

0

∆
x

=
0.

1
0

∆
y

=
0.

0

∆
x

=
0.

4
0

∆
y

=
0.

0

∆
x

=
0.

00
∆
y

=
0.

01

∆
x

=
0.

00
∆
y

=
0.

05

∆
x

=
0.

00
∆
y

=
0.

10

∆
x

=
0.

00
∆
y

=
0.

20

∆
x

=
0.

40
∆
y

=
0.

10

∆
x

=
0.

40
∆
y

=
0.

20

Distance from Demonstrated Target (m)

0

10

20

30

40

50

60

70

80

U
p
da
te
s

Figure 5.7: The figure compares different approaches in grasping the cylinder.
The result shows a small deviation from the original position of the object during
demonstration results in a DMP failure. PI2 shows the best performance while
eNAC requires the highest number of updates.

5.3 Userstudy

The figure 5.12 compares different tasks with the results from the NASA-TLX
questionnaire. The results show the pick and place of the cylinder require the
highest mental demand, temporal demand, effort, and frustration while the box

63

Chapter 5. Results and Discussion

0 100 200 300 400 500
Time (ms)

0.56

0.54

0.52

0.50

0.48

0.46

0.44

0.42

0.40

X
(m

)

Figure 5.8: The figure compares the trajectories deployed on the simulated and
real robots. The vertical axis determines the end-effector position in the X-axis
and the horizontal axis shows the time. The blue line illustrates the movement
trajectory of the real robot while the orange line shows the simulated trajectory.

requires the highest physical demand. Grasping the rock has shown to have the
lowest load index since the shape of the rock was coincidentally easy to grasp. Also
building the tower has a lower score which can be due to the order effect: users
are already accustomed to use the system.

The order effect has not been compensated for in this study since this preliminary
study was part of a bigger study and the order effect was applied to other control
variables. The other reason that might have made the tower easier was the different
concept of the task which was more interesting for participants. The process of
building a tower involved grasping a box and then placing it on another two boxes.
The user should have a focus on where they release the object since if they release
the object in a wrong way the tower gets destructed. Therefore, as verbal feedback,
they enjoyed building the tower more than the other three tasks. For centric grasp,
since the object slips inside the hand, the number of meshes in the contact area
increases greatly, making the simulation unstable and laggy.

Based on the final unweighted NASA task load index the centric grasp has the
highest index and parallel grasp, building the tower and, the arbitrary grasp has
lower indices correspondingly.

The results in figure 5.13 shows the NASA-TLX average index over all tasks. It
shows the system requires low frustration and physical demand and as expected
high mental demand. The final unweighted index is fairly low (27) that shows the
system has a low task load. It was verbally confirmed the main reason for high
mental demand was due to the small Field of View (FoV) in the Hololens. The
Hololens one provides a horizontal FoV of 30◦ and a vertical of 17.5◦ using the basic
Pythagorean theorem. Therefore, the FoV is quite small and does not show the
whole scene in one view, so, the user has to look around to be able to finish a task.

64

5.3. Userstudy

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Distance from Demonstrated Target (m)

0

10

20

30

40

50

60

70

80

U
p
da
te
s

Figure 5.9: The figure shows the number of necessary updates for PI2 shape and
goal learning under uncertainty. The vertical axis determines the number of up-
dates and the horizontal axis determines the magnitude of uncertainty. The mag-
nitude increases to seven centimeters from the initial object position. The result
shows an increase in the number of updates due to increasing the uncertainty,
but an anomaly has happened after five trials and the number of total updates
decreases which can be attributed to the exploration rate.

But, the high demand for the effort was mostly caused by the excess inertia in
the LWR hardware due to friction, and joint problems. The other reason that was
verbally confirmed is the small workspace of the fingers which makes the interface’s
finger get detached from the operator’s finger during the task demonstration. There
is another reason that was observed during the execution, it was a small delay in
force feedback when the simulation had processing overhead and could not process
in high frame-rate anymore.

The sharp surfaces and object meshes were bouncy because when the LWR and Ex-
odex real-time computers get the forces the meshes are already colliding, therefore,
the user receives a higher than expected force feedback. After the experiments,
three of the participants actively felt the weight of the object after the grasp which
was expected due to high inertia in the system and the low weight of the objects.
Since the idea of the diaphragm was a novel idea and we could not find anything
similar, there are no results that show the performance of diaphragm in compar-
ison with other similar approaches. The system was also checked without the
diaphragm and due to the complexity that the lack of it causes we do not report
the results.

After the preliminary user-study, the results show the stability of the system allows
for conducting a large scale user-study which covers the HRI aspects and it is
beyond the scope of this thesis. The follow-up user-study should have a larger and
more balanced pool of participants, e.g. better gender balance.

65

Chapter 5. Results and Discussion

0.65

0.60

0.55

0.50

0.45

T
x
(m

)
0.00m

0.01m

0.02m

0.03m

0.04m

0.05m

0.06m

0.07m

0.1

0.0

0.1

0.2

0.3

T
y
(m

)

0.6

0.5

0.4

T
z
(m

)

0.3

0.4

0.5

0.6

0.7

R
x
(r
a
d
)

2.6

2.4

2.2

2.0

R
y
(r
a
d
)

0 100 200 300 400 500

Time(ms)

0.1

0.0

0.1

0.2

R
z
(r
a
d
)

Figure 5.10: The figure shows the trajectories generated under different uncertainty
in object position. The vertical axis shows the translation and rotation of the end-
effector pose and the horizontal axis determines the time.

66

5.4. Summary Discussion

∆
x

=
0.

0
0

∆
y

=
0.

0

∆
x

=
0.

0
1

∆
y

=
0.

0

∆
x

=
0.

0
5

∆
y

=
0.

0

∆
x

=
0.

1
0

∆
y

=
0.

0

∆
x

=
0.

40
∆
y

=
0.

0

∆
x

=
0.

0
0

∆
y

=
0.

01

∆
x

=
0.

0
0

∆
y

=
0.

05

∆
x

=
0.

0
0

∆
y

=
0.

10

∆
x

=
0.

0
0

∆
y

=
0.

2
0

∆
x

=
0.

4
0

∆
y

=
0.

10

∆
x

=
0.

4
0

∆
y

=
0.

2
0

Distance from Demonstrated Target (m)

0

20

40

60

80

100

U
p
da
te
s

StepSize = 0.1cm StepSize = 1cm StepSize = 10cm

Figure 5.11: The figure compares different step sizes in the eNAC algorithm. The
figure shows step size 10 has the best performance and requires fewer updates. The
vertical axis determines the number of updates and the horizontal axis determines
the magnitude of change in the object position relative to the demonstration.

The figure shows the system usability score, which based on the standard adjective
ratings falls into the “Good” category. The separate responses to the questionnaire
show the participants tend to use the system frequently (Q1). Moreover, the
system has low complexity and easy to use (Q3). But the participants believe
they need the support of a technical person to be able to use the system (Q4).
The participants rate the integration of different functions high (Q5) with low
inconsistency in the system (Q6). furthermore, the learnability of the system is
rated high (Q7) with low prior-knowledge (Q10) where people felt confident to use
it (Q9). The participants rate the cumbersomeness of the system low (Q8).

5.4 Summary Discussion

DMPs can cope with challenging problems such as the ball-in-cup game, obstacle
avoidance, and grasping [41, 52, 42], however, in this thesis the complexity and
challenge of the problems stem from the integration of DMPs into a teleoperation
framework. Furthermore, Since uncertainty in many cases results from the use
of physical hardware/slave devices, it is essential to evaluate the approach under
these exact conditions. The results from other researches [76] already show the
method performs well in a real uncertain environment. But, this thesis evaluates
the result in a new hardware setup, simulation set, and different conditions. The

67

Chapter 5. Results and Discussion

main reason that the learning on the real robot was not realized was the time limit
due to the relatively high number of updates and roll-outs required for a successful
grasp. This thesis aims to evaluate the system in a simulation environment and
assess the ability to use sim-to-real to speed up the process.
Furthermore, the algorithms and approaches that have been used in this study
were all policy search methods that explore the state-space locally. Therefore, it is
very likely that the generated solutions are around the local minimum. The deep
RL approaches use a global exploration method which can improve the generality
of the final solution [6, 26]. However, deep RL uses neural networks as policy and
value functions which requires a lot of training data. Therefore, if the slave robot
spends a long time gathering data, the teleoperation may fail or the inconsistency
between demonstration and the environment may increase.
Augmented Reality (AR) is used instead of Virtual Reality (VR) due to the as-
sumption that the master device is complicated and the operator needs to be aware
of the master device visually while performing the tasks. This assumption has to
be investigated in practice to ensure that AR is better than VR in a telemanip-
ulation scenario. The preliminary user study includes a second sub-study that
investigates the use of a flat-screen instead of the AR goggles. In that study, the
AR has got a higher score in SUS and also less Task Load index which proves the
AR is a better solution in comparison to a traditional flat screen.

Mental Demand Physical Demand Temporal Demand Effort Frustration

4

5

6

7

8

9

Sc
or

es

Parallel Centric Arbitrary Tower

0 20 40 60 80 100
NASA Task Load Index(TLX)

Lo
w

H
ig

h

Figure 5.12: The figure shows the result of the NASA-TLX questionnaire compar-
ing the grasp of different objects, The figure on the bottom shows the unweighted
task load index. The vertical axis determines the score and the horizontal axis
shows the workload measurements. The bottom figure compares different tasks
and the axis determines the unweighted NASA-TLX index.

68

5.4. Summary Discussion

Mental Demand Physical Demand Temporal Demand Effort Frustration

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Sc
or

es

0 20 40 60 80 100
NASA Task Load Index(TLX)

Lo
w

H
ig

h

Figure 5.13: The figure shows the result of the NASA-TLX questionnaire Aver-
age over all objects. The vertical axis determines the score and the horizontal
axis shows the workload measurements. The bottom figure illustrates the average
unweighted NASA-TLX index.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sc
or

es

0 20 40 60 80 100
System Usability Score (SUS)

Figure 5.14: The figure shows the result of the system usability score questionnaire
averaged over all tasks. The vertical axis determines the score and the horizontal
axis shows the questions (Can be found in 4.5.3). The figure on the bottom shows
the SUS score which falls into “Good” in adjective ratings.

69

Chapter 6

Conclusion

The DMPs are powerful tools to adapt an old trajectory to new conditions with low
changes in the target position. The used RL methods can compensate for the DMP
failure in the case of large changes in the object position. Therefore two layers of
DMP and RL can ensure the success of task completion in an MMT scenario. The
human error and uncertainty in the object position can be compensated using the
RL since DMPs fail to adapt to unknown conditions.

This thesis aims at the design, implementation, and evaluation of a model mediated
teleoperation pipeline. The proposed architecture uses DMPs and RL to function
in the existence of long time delays. The system assumes the environment is time-
variant with high uncertainty. The mediated model in the architecture is a fully
simulated environment providing instant haptic feedback for the operator as well
as an augmented reality visualization. The simulated environment resembles the
real remote environment and its physical properties.

The DMPs have been used for an initial adaptation to new conditions to compen-
sate for the model mismatch. To increase the performance of the system dealing
with the uncertainty and inaccuracy of the model a layer of RL methods have
been evaluated. The learning process is distributed over seven different simulators
which also increase the speed while it assures the system’s safety.

The novel haptic interface Exodex has been used for the first time in a teleoperation
scenario as the master device to provide haptic feedback with high accuracy. The
slave device resembles the right arm of a Justin robot designed by DLR combining
a five-finger hand (FFH) attached to a custom configured lightweight robot (LWR
4+). Besides, an augmented reality visualization via Microsoft Hololens which
fuses the slave device and virtual environment models was provided to increase the
performance of the operator.

The teleoperation scenario was separated into two different parts, the first part is
the process of performing tasks by the operator on the master device in the virtual
environment. Since this part is closely related to human-robot interaction, the sys-
tem is evaluated using a small user study. The second part related to the learning
and adaptation was evaluated separately for two different challenges. First, the
object was misplaced the old trajectory had to be adapted to new conditions and
the second target position was given with uncertainty, In both, the DMP transfor-

70

6.1. Future work

mation and RL agent had to adapt and learn to successfully deploy the grasp in a
short time.
Our results show the unweighted NASA task load index of the system is low while
the usability score of the system is above average (higher than 60% of all prod-
ucts tested). The learning result shows the deployed RL methods were able to
successfully find a solution for all tasks in a limited time. The results also show
DMPs were able to adapt to new conditions where no uncertainty or work-space
limitation exists.

6.1 Future work

We believe that apart from looking for learning from demonstration, future research
should look for different methods such as learning from imitation and from videos
to facilitate the learning process. Regardless, future research could continue to
explore the online Deep Reinforcement Learning (DLR) methods such as Deep
Deterministic Policy Gradient [39] and batch algorithms such as Trust Region
Policy Optimization (TRPO) [70]. Investigating the effect of using a virtual reality
representation might prove important. Future research should further develop and
confirm these initial findings by using a real slave setup. The inverse kinematics for
human hand pose estimation can be replaced by a Kinfinity glove 1 or Cyberglove
2. Future studies should aim to replicate results in a larger user-study. The
system can be modified to be used out of the teleoperation setup where a single
robot observes the actions and tries to mimic them using DMPs and RL. Looking
forward, further attempts could prove quite beneficial to the literature.

6.2 Disclaimer

This study does not introduce new RL and DMP approaches. All the algorithms
have been borrowed from different studies. The base of the code is borrowed from
the main Matlab repository from Stefan Schaal’s lab and it was reimplemented
using Python 2.7. The repository will be accessible on GitHub3. The Simulink
models related to LWR robot control and dynamics were borrowed from the DLR
HUG project. The Simulink robot dynamics block of the slave robot arm was
borrowed from the Justin robot model. The impedance controller for teleopera-
tion was already implemented in the DLR institute for robotics and mechatronics
(RMC). All the Simulink models are for internal use and confidentially stored on
internal DLR GitHub servers.

1http://kinfinity-solutions.com/ (Visited on: 31/12/2019)
2http://www.cyberglovesystems.com/ (Visited on: 31/12/2019)
3https://github.com/hadibeikm/PolicySearch.git(Visited on: 31/12/2019)

71

http://kinfinity-solutions.com/
http://www.cyberglovesystems.com/
https://github.com/hadibeikm/PolicySearch.git

Chapter 6. Conclusion

72

Bibliography

[1] Vuforia, https://www.ptc.com/en/products/augmented-reality/vuforia, last
check: 2019-12-29.

[2] A. Achhammer, C. Weber, A. Peer, and M. Buss. Improvement of model-
mediated teleoperation using a new hybrid environment estimation technique.
In 2010 IEEE International Conference on Robotics and Automation, pages
5358–5363, May 2010.

[3] A. Albu-Schaffer and G. Hirzinger. Cartesian impedance control techniques for
torque controlled light-weight robots. In Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No.02CH37292), volume 1,
pages 657–663 vol.1, May 2002.

[4] R. J. Anderson and M. W. Spong. Bilateral control of teleoperators with time
delay. IEEE Transactions on Automatic Control, 34(5):494–501, May 1989.

[5] Ribin Balachandran, Mikael Jorda, Jordi Artigas Esclusa, J.H. Ryu, and Ous-
sama Khatib. Passivity-based stability in explicit force control of robots.
In IEEE International Conference on Robotics and Automation ICRA, June
2017.

[6] Hadi Beik Mohammadi, Mohammad Ali Zamani, Matthias Kerzel, and Stefan
Wermter. Mixed-Reality Deep Reinforcement Learning for a Reach-to-grasp
Task. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11727
LNCS, pages 611–623. Springer Verlag, 2019.

[7] A. K. Bejczy, W. S. Kim, and S. C. Venema. The phantom robot: predictive
displays for teleoperation with time delay. In Proceedings., IEEE International
Conference on Robotics and Automation, pages 546–551 vol.1, May 1990.

[8] Richard Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, USA, 1 edition, 1957.

[9] Mark Brudnak. Predictive displays for high latency teleoperation. 08 2016.

[10] Ricardo Camarero, Thomas Hulin, and Bernhard Vodermayer. The stamas
simulator: A kinematics and dynamics simulator for an astronaut’s leg and
hand exoskeleton. 10 2015.

73

Bibliography

[11] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy
search for robotics. Found. Trends Robot, 2(1–2):1–142, August 2013.

[12] Emma Delgado, Pablo Falcon, Miguel Diaz-Cacho, and Antonio Barreiro.
Four-channel teleoperation with time-varying delays and disturbance ob-
servers. Mathematical Problems in Engineering, 2015:1–11, 08 2015.

[13] M. Freese E. Rohmer, S. P. N. Singh. Coppeliasim (formerly v-rep): a
versatile and scalable robot simulation framework. In Proc. of The In-
ternational Conference on Intelligent Robots and Systems (IROS), 2013.
www.coppeliarobotics.com.

[14] Max Fischer, Patrick van der Smagt, and Gerd Hirzinger. Learning techniques
in a dataglove based telemanipulation system for the dlr hand. In Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), volume 2, pages 1603–1608. IEEE, 1998.

[15] A. Forouzantabar, H. Talebi, and Ali Sedigh. Adaptive neural network control
of bilateral teleoperation with time delay. Nonlinear Dynamics, 67:1123–1134,
05 2012.

[16] Antonio Frisoli, Edoardo Sotgiu, Damaso Checcacci, Francesco Simoncini,
Simone Marcheschi, Carlo Alberto Avizzano, and Massimo Bergamasco. The-
oretical and experimental evaluation of a 2-channel bilateral force reflection
teleoperation system. 2004.

[17] M. B. Hafez, C. Weber, and S. Wermter. Curiosity-driven exploration en-
hances motor skills of continuous actor-critic learner. In 2017 Joint IEEE In-
ternational Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), pages 39–46, Sep. 2017.

[18] Muhammad Burhan Hafez, Cornelius Weber, Matthias Kerzel, and Stefan
Wermter. Deep Intrinsically Motivated Continuous Actor-Critic for Efficient
Robotic Visuomotor Skill Learning. oct 2018.

[19] B. Hannaford and Jee-Hwan Ryu. Time-domain passivity control of haptic
interfaces. IEEE Transactions on Robotics and Automation, 18(1):1–10, Feb
2002.

[20] Sandra G. Hart. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting,
50(9):904–908, 2006.

[21] Changchun Hua and Yana Yang. Neural network-based adaptive position
tracking control for bilateral teleoperation under constant time delay. Neuro-
computing, 113:204–212, 08 2013.

74

Bibliography

[22] Thomas Hulin, Katharina Hertkorn, Philipp Kremer, Carsten Preusche, Si-
mon Schätzle, Jordi Artigas, Mikel Sagardia, and Franziska Zacharias. The
dlr bimanual haptic device with optimized workspace. Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages
3441–3442, May 2011.

[23] Jin-Quan Huang and F. L. Lewis. Neural-network predictive control for non-
linear dynamic systems with time-delay. IEEE Transactions on Neural Net-
works, 14(2):377–389, March 2003.

[24] Jorge Juan and Emilio J. Sánchez. Control algorithms for haptic interaction
and modifying the dynamical behavior of the interface. 2005.

[25] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-
ment learning: A survey. Journal of artificial intelligence research, 4:237–285,
1996.

[26] Matthias Kerzel, Hadi Beik Mohammadi, Mohammad Ali Zamani, and Stefan
Wermter. Accelerating Deep Continuous Reinforcement Learning through
Task Simplification. Technical report.

[27] Matthias Kerzel and Stefan Wermter. Learning of neurobotic visuomotor
abilities based on interactions with the environment, Nov 2017.

[28] Jens Kober and Jan Peters. Policy search for motor primitives in robotics.
Machine Learning, 84(1):171–203, Jul 2011.

[29] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol-
ume 3, pages 2149–2154 vol.3, Sep. 2004.

[30] O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters. Towards
learning hierarchical skills for multi-phase manipulation tasks. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 1503–
1510, May 2015.

[31] Sergey Levine and Vladlen Koltun. Learning complex neural network poli-
cies with trajectory optimization. In International Conference on Machine
Learning, pages 829–837, 2014.

[32] Neal Y. Lii, Zhaopeng Chen, benedikt Pleintinger, Christoph H. Borst, Gerd
hirzinger, and Andre Schiele. Toward understanding the effects of visual- and
force- feedback on robotic hand grasping performance for space teleopera-
tion. In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3745–3752, October 2010.

75

Bibliography

[33] Neal Y. Lii, Zhaopeng Chen, Máximo A. Roa, Annika Maier, Benedikt
Pleintinger, and Christoph Borst. Toward a task space framework for ges-
ture commanded telemanipulation. 2012 IEEE RO-MAN: The 21st IEEE
International Symposium on Robot and Human Interactive Communication,
pages 925–932, 2012.

[34] Neal Y. Lii, Daniel Leidner, André Schiele, Peter Birkenkampf, Ralph Bayer,
Benedikt Pleintinger, Andreas Meissner, and Andreas Balzer. Simulating
an extraterrestrial environment for robotic space exploration: The meteron
supvis-justin telerobotic experiment and the solex proving ground. In 13th
Symposium on Advanced Space Technologies in Robotics and Automation (AS-
TRA), May 2015.

[35] Neal Y. Lii and Miguel Neves. Eingabesystem, de102017220990, May 2019.

[36] Neal Yi-Sheng Lii, Andreas Balzer, Georg Stillfried, Zhaopeng Chen, Benedikt
Pleintinger, and Markus Grebenstein. Handexoskeleton and robotic arm with
such a hand exoskeleton, de102017220936a1, November 2017.

[37] Neal Yi-Sheng Lii, Georg Stillfried, Zhaopeng Chen, Maxime Chalon,
Benedikt Pleintinger, and Annika Maier. exoskeleton, de102017220996a1,
November 2017.

[38] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning, 2015.

[39] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Man-
fred Otto Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. CoRR, abs/1509.02971,
2015.

[40] Chao Liu, Jing Guo, and Philippe Poignet. Nonlinear model-mediated tele-
operation for surgical applications under time variant communication delay.
IFAC-PapersOnLine, 51(22):493 – 499, 2018. 12th IFAC Symposium on Robot
Control SYROCO 2018.

[41] Jens Lundell. Dynamic movement primitives and reinforcement learning for
adapting a learned skill. Master’s thesis, Lule̊a University of Technology,
Department of computer science, electrical and space engineering, 2016.

[42] Takamitsu Matsubara, Sang-Ho Hyon, and Jun Morimoto. Learning para-
metric dynamic movement primitives from multiple demonstrations. Neural
Networks, 24(5):493 – 500, 2011.

[43] Probal Mitra. Model-mediated telemanipulation model-mediated telemanip-
ulation. 2007.

76

Bibliography

[44] F. Mobasser and K. Hashtrudi-Zaad. Stable impedance reflecting teleopera-
tion with online collision prediction. In 2007 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 476–482, Oct 2007.

[45] Hadi Beik Mohammadi, Michael Görner, Stefan Wermter, Matthias Kerzel,
Hadi Beik-Mohammadi, Mohammad Ali Zamani, and Manfred Eppe. Neural
End-to-End Learning of Reach for Grasp Ability with a 6-DoF Robot Arm.
Technical report, 2018.

[46] Hadi Beik Mohammadi, Nikoletta Xirakia, Fares Abawi, Irina Barykina, Kr-
ishnan Chandran, Gitanjali Nair, Cuong Nguyen, Daniel Speck, Tayfun Alpay,
Sascha Griffiths, Stefan Heinrich, Erik Strahl, Cornelius Weber, and Stefan
Wermter. Designing a Personality-Driven Robot for a Human-Robot Interac-
tion Scenario. Technical report.

[47] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to
select and generalize striking movements in robot table tennis. The Interna-
tional Journal of Robotics Research, 32(3):263–279, 2013.

[48] G. Niemeyer and J. . E. Slotine. Stable adaptive teleoperation. IEEE Journal
of Oceanic Engineering, 16(1):152–162, Jan 1991.

[49] Emmanuel Nuño, Luis Basañez, and Romeo Ortega. Passivity-based control
for bilateral teleoperation: A tutorial. Automatica, 47(3):485 – 495, 2011.

[50] Michael Ortega-Binderberger, Stéphane Redon, and Sabine Coquillart. A six
degree-of-freedom god-object method for haptic display of rigid bodies. IEEE
Virtual Reality Conference (VR 2006), pages 191–198, 2006.

[51] M. Panzirsch, H. Singh, M. Stelzer, M. J. Schuster, C. Ott, and M. Ferre.
Extended predictive model-mediated teleoperation of mobile robots through
multilateral control. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages
1723–1730, June 2018.

[52] D. Park, H. Hoffmann, P. Pastor, and S. Schaal. Movement reproduction and
obstacle avoidance with dynamic movement primitives and potential fields.
In Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid
Robots, pages 91–98, Dec 2008.

[53] C. Passenberg, A. Peer, and M. Buss. Model-mediated teleoperation for multi-
operator multi-robot systems. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4263–4268, Oct 2010.

[54] L. S. D. Pecly, M. L. O. Souza, and K. Hashtrudi-Zaad. Model-reference
model-mediated control for time-delayed teleoperation systems. In 2018 IEEE
Haptics Symposium (HAPTICS), pages 72–77, March 2018.

77

Bibliography

[55] Luis F Penin and Kotaro Matsumoto. Teleoperation with time delay: A
survey and its use in space robotics. Technical report, National Aerospace
Laboratory (NAL), 2002.

[56] A. Pereira, G. Stillfried, T. Baker, A. Schmidt, A. Maier, B. Pleintinger,
Z. Chen, T. Hulin, and N. Y. Lii. Reconstructing human hand pose and
configuration using a fixed-base exoskeleton. In 2019 International Conference
on Robotics and Automation (ICRA), pages 3514–3520, May 2019.

[57] J. Peters and S. Schaal. Policy gradient methods for robotics. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2219–2225, Oct 2006.

[58] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy
gradients. Neural Networks, 21(4):682–697, May 2008.

[59] Vesna Rankovic, Jasna Radulovic, Nenad Grujovic, and Dejan Divac. Neu-
ral network model predictive control of nonlinear systems using genetic al-
gorithms. International Journal of Computers Communications and Control,
7(3):540–549, 2014.

[60] Florian Richter, Yifei Zhang, Yuheng Zhi, Ryan K. Orosco, and Michael C.
Yip. Augmented reality predictive displays to help mitigate the effects of
delayed telesurgery. In International Conference on Robotics and Automation,
ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pages 444–450, 2019.

[61] Thomas Rückstieß, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and
Jürgen Schmidhuber. Exploring parameter space in reinforcement learning.
Paladyn, Journal of Behavioral Robotics, 1:14–24, 03 2010.

[62] Andrew Sanders. An Introduction to Unreal Engine 4. A. K. Peters, Ltd.,
Natick, MA, USA, 2016.

[63] S. Schaal and C. G. Atkeson. Robot juggling: implementation of memory-
based learning. IEEE Control Systems Magazine, 14(1):57–71, Feb 1994.

[64] Stefan Schaal. Dynamic Movement Primitives -A Framework for Motor Con-
trol in Humans and Humanoid Robotics, pages 261–280. Springer Tokyo,
Tokyo, 2006.

[65] Stefan Schaal and Christopher G. Atkeson. Assessing the quality of learned
local models. In NIPS, 1993.

[66] Peter Schmaus, Daniel Leidner, Ralph Bayer, Benedikt Pleintinger, Thomas
Krüger, and Neal Y. Lii. Continued advances in supervised autonomy user in-
terface design for meteron supvis justin. In 2019 IEEE Aerospace Conference.
IEEE Computer Society, March 2019.

78

Bibliography

[67] Peter Schmaus, Daniel Leidner, Thomas Krüger, Ralph Bayer, Benedikt
Pleintinger, André Schiele, and Neal Y. Lii. Knowledge driven orbit-to-ground
teleoperation of a robot coworker. IEEE Robotics and Automation Letters,
5(1):143–150, October 2019.

[68] Peter Schmaus, Daniel Leidner, André Schiele, Benedikt Pleintinger, Ralph
Bayer, and Neal Y. Lii. Preliminary insights from the meteron supvis justin
space-robotics experiment. IEEE Robotics and Automation Letters, 3(4):3836–
3843, July 2018.

[69] Annika Schmidt. Viscosity perception of virtual fluids rendered by a hand
exoskeleton. Master’s thesis, Delft University of Technology, Faculty of Me-
chanical, Maritime and Materials Engineering, 2018.

[70] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In Francis Bach and David Blei, ed-
itors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1889–1897,
Lille, France, 07–09 Jul 2015. PMLR.

[71] A. C. Smith and K. Hashtrudi-Zaad. Adaptive teleoperation using neural
network-based predictive control. In Proceedings of 2005 IEEE Conference on
Control Applications, 2005. CCA 2005., pages 1269–1274, Aug 2005.

[72] Ora Smith. Closer control of loops with dead time. 1957.

[73] Georg Stillfried, Ulrich Hillenbrand, Marcus Settles, and Patrick van der
Smagt. MRI-Based Skeletal Hand Movement Model, pages 49–75. Springer
International Publishing, Cham, 2014.

[74] Georg Stillfried and Patrick van der Smagt. Movement model of a human
hand based on magnetic resonance imaging (mri). 10 2010.

[75] Freek Stulp and Olivier Sigaud. Robot Skill Learning: From Reinforcement
Learning to Evolution Strategies. Paladyn, 4(1):49–61, 2013.

[76] Freek Stulp, Evangelos Theodorou, and Stefan Schaal. Reinforcement learning
with sequences of motion primitives for robust manipulation. Robotics, IEEE
Transactions on, 28:1360–1370, 12 2012.

[77] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, second edition, 2018.

[78] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path
integral control approach to reinforcement learning. J. Mach. Learn. Res.,
11:3137–3181, December 2010.

79

Bibliography

[79] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Learning policy im-
provements with path integrals. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Re-
search, pages 828–835, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR.

[80] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033, Oct 2012.

[81] Unity Technologies, https://unity.com, Last check: 2019-06-10. Unity.

[82] K. Warwick, editor. Industrial Digital Control Systems. Control, Robotics
amp; Sensors. Institution of Engineering and Technology, 1988.

[83] Wikipedia contributors. Impedance control — Wikipedia, the free encyclope-
dia, 2019. [Online; accessed 8-November-2019].

[84] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3):229–256, May 1992.

[85] Xiao Xu, Burak Cizmeci, Clemens Schuwerk, and Eckehard G. Steinbach.
Model-mediated teleoperation: Toward stable and transparent teleoperation
systems. IEEE Access, 4:425–449, 2016.

80

Erklärung der Urheberschaft

Ich versichere an Eides statt, dass ich die Master thesis im Studiengang Intelligent
Adaptive Systems selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-
Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-
gen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weiter-
hin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren ein-
gereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Ort, Datum Unterschrift

81

Erklärung zur Veröffentlichung

Ich erkläre mein Einverständnis mit der Einstellung dieser Master thesis in den
Bestand der Bibliothek.

Ort, Datum Unterschrift

83

	1 Introduction
	1.1 Motivation
	1.2 Objective and Approach
	1.3 Major Contribution
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 Teleoperation for object manipulation and remote task execution
	2.1.1 Model Mediated Control (MMT)

	2.2 Reinforcement Learning
	2.2.1 Value-based reinforcement learning
	2.2.2 Policy Search Methods
	2.2.3 Dynamic Movement Primitives
	2.2.4 Learning the DMP
	2.2.5 Extending DMPs to multiple degrees of freedom
	2.2.6 Model-Free Policy search
	2.2.7 Episodic Natural Actor-Critic (eNAC)
	2.2.8 Policy Learning by Weighting Exploration with the Returns (PoWER)
	2.2.9 Policy Improvement using Path Integrals(PI2)

	3 Methodology
	3.1 Modular Architecture
	3.2 Trajectory Encoding
	3.3 Reinforcement learning
	3.3.1 Learning under Uncertainty

	4 Implementation and Validation
	4.1 Master-Slave Command
	4.2 Hand Posture Estimation (HPE)
	4.3 Grasping and Force Calculation in Simulation
	4.3.1 Gesture recognition

	4.4 Hardware
	4.4.1 Architecture
	4.4.2 Exodex Adam Haptic Interface
	4.4.3 Augmented Reality
	4.4.4 Links and Nodes
	4.4.5 Slave Device

	4.5 Evaluation
	4.5.1 Preliminary User-study Procedure
	4.5.2 Tasks
	4.5.3 Questionnaire

	5 Results and Discussion
	5.1 Grasp Without Uncertainty
	5.2 Grasping Under Uncertainty
	5.3 Userstudy
	5.4 Summary Discussion

	6 Conclusion
	6.1 Future work
	6.2 Disclaimer

	Bibliography

