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Abstract
GNSS positioning relies on orbit and clock information, which is predicted on
the ground and transmitted by the individual satellites as part of their broadcast
navigation message. For an increased autonomy of either the space or user seg-
ment, the capability to predict a GNSS satellite orbit over extended periods of up
to two weeks is studied. A tailored force model for numerical orbit propagation
is proposed that offers high accuracy but can still be used in real-time environ-
ments. Using theGalileo constellationwith its high-grade hydrogenmaser clocks
as an example, global average signal-in-space range errors of less than 25 m RMS
and 3D position errors of less than about 50 m are demonstrated after two-week
predictions in 95% of all test cases over a half-year period. The autonomous orbit
predictionmodel thus enables adequate quality for a rapid first fix or contingency
navigation in case of lacking ground segment updates.
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1 INTRODUCTION

Positioning in global navigation satellite systems (GNSSs)
is enabled through pseudo-distance measurements to at
least four tracked satellites along with knowledge of the
satellites’ positions and clock offsets (Langley et al., 2017).
The latter information is made available in the form
of broadcast ephemerides transmitted by each individ-
ual satellite as part of its navigation message. Broadcast
ephemerides describe the orbital motion and clock offset
variation through a small set of parameters over a limited
validity range of less than a few hours. Batches of multi-
ple ephemeris data sets covering a larger period of time are
obtained from orbit and clock determination and predic-
tion in the ground segment and routinely uploaded to the
GNSS satellites. Depending on the constellation architec-
ture, this information is refreshed on representative time
scales of one hour to a day.

Current GNSSs thus largely depend on the availability of
ground-based orbit determination and time synchroniza-
tion (OTDS) as well as regular upload capability to supply
orbit and clock information to the users. A greater inde-
pendence can be achieved through autonomous onboard
orbit determination based on measurements with inter-
satellite links (ISLs; Ananda et al., 1990) but is not gener-
ally available in today’s GNSSs. GPS has implemented ISLs
in Block IIR (Rajan, 2002), Block IIF (Fisher & Ghasemi,
1999), and GPS III (Maine et al., 2003) satellites, but it is
not publicly disclosed whether and to what extent they
can also be used for an autonomous onboard generation
of ephemeris data. BeiDouhas implemented ISLswith pre-
cise ranging capability on all satellites of the BDS-3 constel-
lation (Wang et al., 2019; Yang et al., 2019; Zhou et al., 2018)
and makes use of such measurements in the ground-based
ODTS process. Even though autonomous navigation con-
cepts based on these ISLs are addressed in various studies
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(see, e.g., Tang et al., 2018; Guo et al., 2020), their onboard
implementation status is unclear. Galileo considers ISLs to
enhance the ODTS process for next generation satellites
(Fernandez et al., 2010; Amarillo Fernandez, 2011), but it
is likewise open whether ISL measurements will also be
used for autonomous on-board orbit determination.
In the absence of full-featured autonomous orbit deter-

mination and prediction capability (“autonav”), a routine
upload of broadcast ephemeris fitted to a long-term orbit
prediction can be used as a backup in case of the extended
loss of contact between the control segment and a GNSS
satellite. A corresponding “extended mode” is defined
in GPS (IS-GPS-200K, 2019), during which the satellites
provide a ranging capability with reduced performance
for at least 14 days after the last successful upload. The
globally averaged signal-in-space range error (SISRE)
degrades gracefully over time and is specified to remain
below a 95th-percentile value of 388 m throughout this
two-week period (DOD, 2020). This value includes orbit
and clock contributions and represents an upper limit
for the overall constellation performance. In practice, a
notably better performance has been demonstrated in a
70-day long-term propagation test conducted with the
GPS III-1 satellite in mid-2019. Here, worst-user-location
SISRE values remained below 45 m after 20 days and
below 600 m after 70 days (Steigenberger et al., 2020).
While the daily upload of broadcast ephemeris batches

covering a long period of time can address the needs
of extended operations, it implies a high uplink capac-
ity and adequate onboard storage. Even though improved
ephemeris compression techniques may contribute to a
reduction of the required data volume, they are not
expected to change this situation in a fundamental man-
ner and would also require a change of the established
ephemeris models and representation.
Within this study, we consider the feasibility of long-

term ephemeris prediction through numerical integration.
Other than analytical models, numerical orbit models can
provide a close-to-reality representation of forces acting on
a GNSS satellite and are therefore well suited to describe
orbital perturbations over extended periods. In accordwith
practical needs, propagation errors in numerical orbit pre-
diction are close to zero near the reference epoch and
grow gradually over time. This is different from analytical
orbit models based on “general perturbation” theories that
exhibit a model-dependent best-fit error at all times due
to a simplified representation of short-periodic perturba-
tions. In principle, a single state vector and a limited set
of auxiliary parameters, such as force model coefficients
and Earth orientation parameters, can be used to predict a
GNSS orbit over “arbitrary” times with the graceful degra-
dation of accuracy.

Numerical orbit propagation of GPS and GLONASS was
studied earlier in Seppänen et al. (2012) as a means to
reduce the time-to-first-fix of consumer grade receivers in
the absence of network assistance. Here, prediction peri-
ods of up to four days were considered and clock stability
was identified as a key limitation for the achievable SISRE
and the resulting positioning accuracy.
In the present study, we assess necessary force model

improvements to bridge periods without broadcast
ephemerides of up to 14 days through numerical orbit
prediction. The related error budgets in terms of orbit
errors, SISRE, and single point positioning (SPP) per-
formance are discussed. As a reference case, we select
the Galileo constellation, which does not presently offer
ISLs or autonav capabilities, but is particularly promising
in terms of long-term orbit and clock modeling. Among
others, Galileo employs a highly homogeneous constel-
lation in terms of satellite platforms, which facilitates
the use of a common dynamical model in a long-term
orbit propagator. In addition, Galileo offers highly stable
atomic frequency standards, which helps to confine
the respective SISRE contribution. On the other hand,
Galileo involves a pair of satellites in moderately eccentric
orbits, which provide additional insight into the capa-
bilities of numerical as opposed to analytical long-term
orbit models.
We start this study with an assessment of the Galileo

orbit prediction accuracy that can be achieved with state-
of-the-art models considering a ground-based GNSS orbit
determination and subsequent prediction. The respective
results are used to identify actual limits in the long-term
predictability of a GNSS orbit and provide a reference for
the performance assessment of a simplified (analytical or
numerical) orbit propagator.
In a second step, a tailored force model is identified

that can be used to propagate a GNSS satellite orbit
based on an initial state-vector and auxiliary parameters
from a ground-based orbit determination process. Aside
from a trade-off of gravitational force models, a combined
analytical-plus-empirical solar radiation pressure (SRP)
model is presented to offer an adequate representation of
non-gravitational contributions. Finally, a numerical inte-
gration scheme is identified that combines low complexity
with proper efficiency and is thus well suited to be used
on receiver or on-board processors with limited computa-
tional capabilities.
Conceptually, the numerical orbit propagator can be

executed inside a GNSS satellite to provide real-time infor-
mation on its own instantaneous position and velocity or,
alternatively, inside a user receiver to compute the orbits
of the entire constellation at a time. Given the computa-
tional effort associated with long-term orbit integration,
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TABLE 1 Processing standards for Galileo orbit determination and prediction

Data, models,
algorithms Precise Tailored
Observations Dual-frequency code and phase observations from

80 globally distributed monitoring stations of
the International GNSS Service (IGS; Johnston
et al., 2017)

Cartesian satellite positions

Data arc 3 d 2 d
Sampling 5 min 5 min
Reference frame
transforma-
tions

IAU2006/2000 precession/nutation (Petit &
Luzum, 2010); USNO ΔUT1, estimated LOD
and polar motion, linear prediction

IAU 1976 precession, IAU 1980 nutation (106
terms) and sidereal time (Seidelmann, 2006);
IGS Earth orientation parameters (linear
extrapolation)

Earth gravity EIGEN-05C (12 × 12; Förste et al., 2008), solid
Earth and pole tides (IERS Conventions 2010,
Petit & Luzum, 2010), ocean tides (FES2004;
Lyard et al., 2006), post-Newtonian relativity
approximation (IERS Conventions 2010, Petit &
Luzum, 2010)

GGM01S model (9 × 9), 𝑘2 tides (Rizos & Stolz,
1985), no relativity

Third-body
perturbations

Sun, Moon, all planets, Pluto; DE405 (Standish,
1998)

Sun and Moon; analytical series truncated to 5′′

and 2′′ (Montenbruck & Pfleger, 2000)
Radiation
pressure

5-param. ECOM-1 model (estimated; Beutler et al.,
1994) with a priori box-wing-model
(Steigenberger & Montenbruck, 2017); conical
Earth and Moon shadow; Earth radiation
pressure (Springer, 2009); antenna thrust
(Steigenberger et al., 2018)

3-param. ECOM-1 model (estimated; Beutler et al.,
1994) with a priori 2-param. cuboid model
(Montenbruck et al., 2015); conical Earth and
Moon shadow

Numerical
integration

8th-order Adams-Bashforth-Moulton multi-step
predictor-corrector method with 8th-order
Runge-Kutta starting step (Springer, 2009);
shadow boundary handling

5th-order Dormand-Prince Runge-Kutta method
(Dormand & Prince, 1980) with 4th-order
interpolant (Hairer et al., 1987); optional
shadow boundary handling

we specifically assess the run-time characteristics on a rep-
resentative micro-processor as a final step of our study.

2 GALILEO ORBIT PREDICTION

Propagation errors in numerical methods relate to simpli-
fications of the underlying force models and discretization
errors of the numerical integration scheme, as well as
the knowledge of the actual forces acting on a satellite.
Non-gravitational forces, in particular, lack an adequate
predictability and pose a technical and practical limit
to long-term forecasts of GNSS satellite orbits. Specific
aspects include the actual orientation of the satellite body
and solar panels, which affect the resulting radiation
forces, thermal emissions, and even small thruster firings
for attitude control or momentum dumping. In addition,
the capability to properly recover the current orbit from
measurements of a global network of monitoring stations
directly affects the accuracy of orbit forecasts.
To assess the practical limits of orbit predictability, we

determined precise Galileo orbits from observations of a
global set of reference stations and subsequently predicted

them over a two-week time interval. All computations
were performed using the NAvigation Package for Earth
Orbiting Satellites (NAPEOS v3.3.1; Springer, 2009), which
implements state-of-the-artmodels for GNSS data process-
ing and orbit modeling. Roughly 180 solutions with a one-
day shift in the start were obtained over a half-year interval
covering the October 2019 to March 2020 time frame. Rel-
evant processing standards are summarized in Table 1.
In comparison with precise orbit products produced by

analysis centers of the International GNSS Service (IGS)
and its Multi-GNSS Experiment (MGEX; Montenbruck
et al., 2017) and based on satellite laser ranging residuals,
the resulting orbits exhibit a representative position error
of less than 0.3m (3DRMS)within the orbit determination
arc. This is generally negligible compared to orbit errors
in the predicted part of the resulting trajectory and allows
evaluating the propagation error by comparing a predicted
orbit arc with an orbit determination for the same interval.
For our analysis, the RMS position errors over all active
satellites have thus been determined for the 1st to 14th
day of the overall prediction period for each of the daily
solutions. Overall, the errors in all axes show a gradual,
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F IGURE 1 Variation of Galileo orbit prediction errors in radial (left) and along-track direction (right) using high-fidelity models in the
orbit determination and prediction. The graphs show the distribution (median and 5th/95th percentile) of the constellation-wide RMS error at
the 𝑛-th day of prediction over 180 solutions for the six-month test period [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

near-parabolic growth over time but differ substantially
in magnitude. While orbit errors Δ𝑟R and Δ𝑟C in radial
and cross-track direction are mostly confined to the few
meters level, the errorsΔ𝑟A in the along-track direction can
reach a magnitude of more than 100 m after a two-week
prediction.
On the other hand, user positioning accuracy is not

affected equally by errors in these three directions, since
the modeled range depends only on the line-of-sight com-
ponent of the satellite orbit error. Considering a geographi-
cal average over the surface of theEarth as seen by aGalileo
satellite (Montenbruck et al., 2018), the orbit-only contri-
bution to the instantaneous SISRE 𝑠 is given by

𝑠2 = 0.9842Δ𝑟2R + 0.1242(Δ𝑟2A + Δ𝑟2C), (1)

and a corresponding expression applies for the RMS SISRE
as a function of the RMS orbit errors. Given the rela-
tive magnitude and contribution of the individual com-
ponents, cross-track errors can actually be neglected, and
it is sufficient for the present discussion to consider
only the radial (𝑅 = RMS(Δ𝑟R)) and the along-track (𝐴 =

RMS(Δ𝑟A)) components for the SISRE contribution,

SISREorb ≈
√
(0.984 ⋅ 𝑅)2 + (0.124 ⋅ 𝐴)2, (2)

of the GNSS orbit propagation errors.
Statistics of the RMS orbit prediction errors obtained

for the six-month test period at prediction times of 1–14
days are illustrated in Figure 1. In 50% of all cases, the
root-mean-square of the along-track error over all satel-
lites in the constellation remains confined to less than
30 m on the 14th day of the prediction arc. Considering
both radial and along-track errors, this yields a median

value of the geographical-average, orbit-only RMS SISRE
of about 4 m and a 95th percentile value of about 11 m.
All results refer to the use of the “best” models for orbit
determination and prediction (see Table 1) and reflect the
practical limitations in forecasting the orbital motion over
extended periods of time. Given the high accuracy of mod-
els for the gravitational forces acting on a GNSS satellite,
non-gravitational forces remain a major source of uncer-
tainty in the trajectory modeling. Even though the adjust-
ment of empirical accelerations can partly alleviate these
uncertainties in the orbit determination arc, it cannot com-
pensate for changes in the satellite behavior related to,
e.g., attitude variations, solar panel orientation changes, or
time-varying thermal radiation in response to the onboard
temperature control. While subtle in nature, the result-
ing changes in acceleration can cause notable position
changes when accumulating over sufficiently long periods
of time.
Despite these limitations, the results demonstrate that

numerical orbit propagation can, in principle, deliver
ephemeris information with a degraded, but still rea-
sonable, accuracy to support user positioning even in
extended periods without broadcast ephemeris updates.
When defining tailored models for autonomous orbit pre-
diction inside a GNSS satellite or receiver, these results will
serve as a guideline for the trade-off of model complexity
and forecast accuracy.

3 TAILOREDMODEL FOR
NUMERICAL ORBIT PREDICTION

In a numerical orbit model, the motion of a GNSS satellite
is defined by its position 𝒓 and velocity𝒗 at an initial time 𝑡0
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and a differential equation �̈� = 𝒂(𝑡, 𝒓, 𝒗), where 𝒂 denotes
the modeled acceleration as a function of time, position,
and velocity. The resulting initial value problem can then
be solved by numerical integration using a diverse set of
available methods.
Within this section, we propose a tailored choice ofmod-

els for reference system transformations, forcemodels, and
the numerical integration method in GNSS orbit predic-
tion, which can be accommodated in real-time systems
with limited processing capability. Compared to the high-
fidelity modeling employed in the previous section, the
tailored models are intended to offer a notably reduced
computational complexity at only a moderate loss in the
prediction performance.

3.1 Reference systems
and transformations

Even though orbital motion is most naturally described in
an inertial or celestial reference frame (CRF), broadcast
ephemerides of GNSS satellites are traditionally expressed
in a terrestrial reference frame (TRF). This choice is par-
ticularly convenient for the user segment, since it avoids
the need for explicit evaluation of theCRF-to-TRF transfor-
mation when computing user positions in an Earth-fixed
system.
Rather than performing the orbit prediction in a CRF

and transforming the result into the TRF, a formulation of
the equation of motion in the rotating TRF may therefore
be considered. This approachhas long been adopted for the
broadcast ephemeris models of GLONASS and SBAS and
was likewise found advantageous for real-time onboard
navigation systems of low Earth satellites (Montenbruck
& Ramos-Bosch, 2008).
For an arbitrary CRF-to-TRF transformation matrix 𝑼,

the equation ofmotion in theTRF involves additional Cori-
olis and centrifugal accelerations, which are given by

Δ𝑟TRF = +2�̇�𝑼𝑇𝒗TRF + (−2(�̇�𝑼𝑇)2 + �̈�𝑼𝑇)𝒓TRF. (3)

Considering the near constant Earth rotation rate 𝜔 and
the close alignment of the instantaneous rotation axis with
the 𝑧-axis of the TRF, Equation (3) can notably be simpli-
fied. This yields the familiar expression:

Δ𝑟TRF ≈ +2𝜔 ⋅ (𝑣𝑦, −𝑣𝑥, 0)
𝑇
TRF + 𝜔2 ⋅ (𝑟𝑥, 𝑟𝑦, 0)

𝑇
TRF, (4)

(see, e.g., GLO-ICD-5.1, 2008), which adds no rele-
vant complexity to the equation of motion as com-
pared to an inertial formulation and is routinely used in
GLONASS/SBAS receivers for evaluation of the respective
broadcast ephemerides.

However, the same approximation can no longer be
applied when integrating the equation of motion over
time scales of days or weeks. While apparently small,
the neglected contributions to the Coriolis and centrifu-
gal acceleration would result in a notable mismatch of the
propagated orbit. A rigorous evaluation of Equation (3),
in contrast, implies computation of the time derivatives �̇�
and �̈�. In view of numerical errors, approximation errors,
and/or an undue complexity of the resulting expressions,
neither difference quotient approximations nor analyti-
cal differentiation were found to provide derivatives of
adequate accuracy and computational effort. Overall, the
effort for a proper evaluation of the Coriolis and centrifu-
gal accelerations rapidly compensates the potential savings
of the TRF model in orbit predictions over extended time
scales. A CRF formulation of the equation of motion is
therefore preferred for use in the long-term orbit propaga-
tion.
Common models (Petit & Luzum, 2010; Seidelmann,

2006) describe the transformation 𝑼 as a sequence of ele-
mentary rotations with rotation angles defined through
polynomials, harmonic series, and observed tabulated
quantities. Uncertainties in individual angles do not affect
the radial position of the predicted satellite position and
also leave the relative geometry of the entire constella-
tion unaffected. However, they result in rotational mis-
alignment and ultimately a shift of the user position on
the Earth’s surface. By way of example, a 1′′ angular
error in the CRF-to-TRF transformation translates into a
150 m cross-track or along-track error of a GNSS satellite
at 30,000 km altitude and a 30 m North-South or East-
West error of the estimated user location. Given the over-
all error budgets for long-term broadcast ephemerides in
extended-mode GNSS operations, a 0.01′′ truncation level
is considered adequate for individual contributions to the
overall transformation.
Since the full accuracy of IERS 2010 transformations

is not required for the present purpose, we can safely
adopt the legacy IAU 1976/1980models (Seidelmann, 2006)
of precession, nutation, and sidereal time, along with
observed values of the Earth orientation parameters. The
overall transformation is given by

𝑼 =𝑹𝑦(−𝑥p) 𝑹𝑥(−𝑦p)𝑹𝑧(GMST + Δ𝜓 cos 𝜀)

𝑹𝑥(−𝜀−Δ𝜀)𝑹𝑧(−Δ𝜓)𝑹𝑥(𝜀)

𝑹𝑧(−𝑧)𝑹𝑦(𝜗) 𝑹𝑧(−𝜁),

(5)

where 𝑹𝑥,𝑦,𝑧 denotes elementary rotation matrices for the
respective axes. The precession angles (𝑧, 𝜗, and 𝜁) as well
as the obliquity of the ecliptic (𝜀) are described through
third-order polynomials in time, which place no relevant
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computational burden. The nutation angles Δ𝜀 and Δ𝜓, in
contrast, are expressed through harmonic series requiring
extensive trigonometric function evaluations.
Compared to the current IAU 2000A nutation model

with a total of 1,365 terms (Petit & Luzum, 2010), the IAU
1980 nutation model proposed here for the long-term orbit
propagator comprises only 106 terms. Still, evaluation of all
termsmay induce a heavy computational load for real-time
systems. Given the previously defined accuracy thresh-
old, a reduced set of 18 terms with amplitudes above five
milli-arcseconds is, in principle, sufficient when convert-
ing propagated CRF positions into the TRF. On the other
hand, a roughly ten times better accuracy of the nutation
modelmay occasionally be required in the orbit determina-
tion, which is used to adjust initial conditions for the long-
term propagation. During the eclipse season, in particular,
even small errors in the observation model may affect the
estimation of empirical SRP parameters with an adverse
impact on the drift and along-trackmotion during the sub-
sequent long-term propagation.
It is therefore preferred to make use of an extended sub-

set of the IAU9180 nutation series with 49 terms >0.5 mas.
For a computationally lean implementation, substantial
savings may, e.g., be achieved through Chebyshev approx-
imation of the slowly varying nutation angles Δ𝜀 and Δ𝜓.
Alternatively, the explicit evaluation of trigonometric func-
tions in the nutation series may be minimized through
systematic use of the addition theorems. These allow us
to compute the sine and cosine of linear combinations of
the mean arguments of luni-solar motion from the sine
and cosine of the elementary angles using basic arith-
metic operations (Montenbruck & Pfleger, 2000). At the
expense of a moderately increased code complexity, sub-
stantial reductions in the overall computing timemay thus
be achieved.
Greenwich mean sidereal time (GMST) in Equation 5

is related to the UT1 time scale through a third-order
polynomial, which poses no computational burden, but
requires knowledge of the time varying ΔUT1 = UT1 −
UTCdifference. Alongwith the pole coordinates 𝑥p and 𝑦p,
ΔUT1 constitutes a set of three Earth orientation param-
eters (EOPs) that cannot be described through models
but must be retrieved from actual observations of Earth
rotation and extrapolated for use in the prediction of
GNSS ephemerides.
Since Earth rotation exhibits notable periodic variations

due to luni-solar tides, it is common practice to extrapo-
late a regularized version (UT1R) in which zonal tides with
periods of 5 to 35 d have been removed and to add these
terms back to the extrapolated UT1R to obtain the predic-
tion ofUT1 itself. Conventional expressions ofUT1 −UT1R
involving 41 harmonic terms are provided in Petit and
Luzum (2010) and used within this study. Even though

the overall amplitude of these terms is less than 2.5 ms,
or, equivalently, 5 m at GNSS altitude, their neglect may
adversely affect the adjustment of drift and SRP parame-
ters with notable impact on the long-term prediction. Fur-
thermore, diurnal and semi-diurnal tides need to be added
to tabular as well as extrapolated 𝑥p, 𝑦p, and ΔUT1 values.
To limit the computational effort, the eight-term series of
McCarthy (1996) is employed.
For use in specialized, e.g., spaceborne, navigation appli-

cations, most GNSSs have incorporated EOP information
in their modernized civil navigation messages. EOP pre-
dictions including epoch values of 𝑥p, 𝑦p, and ΔUT1 along
with first-order time derivatives are presently transmitted
by the GPS IIR-M/IIF/III and GLONASS-K1 satellites, as
well as the BeiDou-3, QZSS, and IRNSS constellations as
part of their modernized civil navigation messages. A sys-
tematic performance analysis of broadcast EOPs has not
been performed so far, and it remains unclear to what
extent these data would be suitable for predictions over the
two-week time frame considered here. For Galileo, EOPs
are not part of the existing INAV and FNAV navigation
messages and would in any case need to be included into
the ephemeris parameters of a possible long-term broad-
cast ephemeris model.

3.2 Gravitational forces

GNSS satellites in medium Earth orbit operate at alti-
tudes of roughly 4–5 Earth radii, which results in a rapid
attenuation of high-degree and -order contributions of
the Earth-gravity field. A 12 × 12 expansion is commonly
used in precise GNSS orbit determination, but an even
smaller 9 × 9 is considered adequate for use in a long-term
orbit propagator. Compared to the slightly larger standard,
it offers a small advantage in terms of computational
load with no relevant impact on accuracy (Table 2).
Computationally efficient and stable recurrence relations
for computing the acceleration from a given set of Earth
gravitymodel parameters are given in Cunningham (1970).
For the present study, the GGM01S gravity model

obtained from early measurements of the GRACEmission
(Tapley et al., 2004) is adopted. It is intentionally different
and older than the models used in Section 2 to show the
potential impacts of a reduced quality on the prediction
performance. GGM01S involves linear variations of the
second-order terms consistent with the definition of
the Earth rotation pole but is otherwise static. Given the
targeted propagation accuracy, no need is identified to
account for seasonal gravity field variations in the present
application. However, gravity field variations caused by
deformations of the Earth due to luni-solar tidal forces
need to be taken into account in at least the lowest



MONTENBRUCK et al. 7

TABLE 2 Performance comparison of model options. Peak errors in 14-day prediction arcs following a two-day orbit determination have
been evaluated for eight test dates spread over a three-month period. Median and maximum errors over the tests are provided for various
forms of simplifications relative to a comprehensive reference along with the approximate reduction in computational load. Models marked
by a × symbol are recommended for use in the long-term propagator

Peak error Runtime
median/max reduction

Model Recommended Option [m] [%]
Nutation IAU980 (106 terms) (ref)

× 49 terms > 0.0005′′ 3.4 / 21 −1

18 terms > 0.005′′ 23 / 85 −2

EOPs Observed (ref)
× Extrapolated 34 / 59 −2

Earth gravity 12 × 12model (ref)
10 × 10model 0.1 / 0.1 −4

× 9 × 9model 0.3 / 0.3 −5

Relativity Schwarzschild correction (ref)
× neglected 2.6 / 7.8 −1

Tides Solid Earth (ref)
× 𝑘2 tide 0.5 / 2.4 −5

none 34 / 74 −8

Sun position full series (ref)
× terms > 5′′ 3.7 / 5.0 −4

Keplerian 13 / 29 −11

Moon position full series (ref)
× terms > 2′′ 6.1 / 47 −7

terms > 10′′ 39 / 260 −8

Recommended (×) 32 / 62 −25

degree/order. Compared to a neglect of solid Earth tides,
which may cause errors at the 50 m level after the two-
week propagation, the consideration of the 𝑘2 contribution
(Rizos & Stolz, 1985) already provides a more than ten-fold
accuracy improvement (Table 2). Higher degree and order
contributions to the solid Earth tides, as well as pole and
ocean tides, need not be considered in the present context.
Relativistic effects in the motion of Earth orbit satel-

lites are commonly described through post-Newtonian
corrections of the equation of motion. The dominating
Schwarzschild correction (Petit & Luzum, 2010) results in
a perigee rotation of about 1 mas/d (Hugentobler & Mon-
tenbruck, 2017) for GNSS satellites. When neglected in the
combined orbit determination and prediction, errors at the
few-meter level may arise (Table 2), which is well tolerable
for the proposed long-term orbit propagator.
In terms of third-body perturbations, a point-mass

model for the gravitational acceleration of the Sun and
Moon is sufficient, while planetary perturbations can
safely be neglected. Since precomputed ephemerides
requiring a large amount of tabular data are hardly suitable
for use in embedded systems, analytical models of luni-

solar motion are preferred for the definition of the long-
term orbit propagator.
As shown in Hugentobler andMontenbruck (2017), rep-

resentative solar perturbations of a GNSS satellite amount
to roughly 1 to 2 km after two revolutions for a given initial
state, and a 2–3 times higher value applies for perturba-
tions by the Moon. A relative accuracy of typically 4⋅10−4,
or, equivalently, 50′′ in the computation of the lunar and
solar positionmight thus be considered adequate to obtain
a propagation error of a few tens ofmeters over a two-week
interval. However, similar to the nutation model discussed
above, much larger errors may again arise in a combined
orbit determination/prediction due to unfavorable cou-
pling of unmodeled perturbations with the estimation of
the semi-major axis and empirical SRP coefficients.
In case of solar perturbations, a Keplerian approxima-

tion of the Earth’s motion around the Sun is found to be
only marginally sufficient for the purpose. Consideration
of the dominating planetary perturbations and the offset
of the Earth’s center from the Earth-Moon barycenter is
therefore recommended. Compared to a comprehensive
analytical solar ephemeris (Montenbruck& Pfleger, 2000),
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TABLE 3 Cuboid box-wing model parameters for Galileo
satellites

Parameter
Value
[nm/s𝟐]

Cubic body acceleration 𝑎C +14.5
Stretching parameter 𝑎S +5.0
Solar panel acceleration 𝑎sp +87.0

truncation to the 5′′ level reduces the resulting GNSS prop-
agation errors to the few-meter level at a tolerable expense
in computing time (Table 2). In view of larger perturba-
tions, an even better accuracy is required in the formu-
lation of the lunar ephemeris. Here, an analytical model
based on the Improved Lunar Ephemeris (USNO, 1954)
with mean elements of the Ephemeride Lunaire Parisi-
enne (ELP2000; Chapront-Touzé & Chapront, 1988) has
been adopted, and a 2′′ truncation is applied in the har-
monic series. A computationally efficient implementation
that minimizes the evaluation of trigonometric functions
in this model is described in Montenbruck and Pfleger
(2000).

3.3 Non-gravitational forces

Non-gravitational forces acting on a GNSS satellite are
dominated by solar radiation pressure. The corresponding
acceleration reaches amagnitude at the 100 nm/s level and
causes km-level perturbations after a few days of predic-
tion (Hugentobler & Montenbruck, 2017). Other contribu-
tions such as Earth albedo, thermal radiation, and antenna
thrust are roughly two orders ofmagnitude smaller and are
neglected in the present context in view of insufficient or
complex a priorimodels.
Solar radiation pressure acting on the Galileo satellites

can largely be described by a three-parameter cuboid box-
wing model for a stretched satellite body with solar pan-
els in a nominal yaw-steering attitude (Montenbruck et al.,
2015). The model parameters comprise two characteris-
tic accelerations (𝑎C, 𝑎S) related to absorption and diffuse
reflection of cubic and stretched body contributions, as
well as the total solar panel acceleration, 𝑎sp. Remaining
imperfections can be covered by the empirical CODE orbit
model (ECOM; Beutler et al., 1994) considering a limited
set of three empirical accelerations (𝐷0, 𝑌0, 𝐵∗𝑐 ) that are
adjusted as part of the orbit determination process.
Both, the a priori and empirical SRP contributions are

described in a DYB frame aligned with the Sun direc-
tion (D), the direction perpendicular to the Sun-spacecraft-
Earth plane (Y), and the B-axis orthogonal to D and Y. The

respective components of the radiation pressure accelera-
tion are given by

𝑎D =−𝑎C ⋅
(| cos 𝜖| + sin 𝜖 +

2

3

)

−𝑎S ⋅
(| cos 𝜖| − sin 𝜖 −

4

3
sin

2
𝜖 +

2

3

)
−𝑎sp + 𝐷0

𝑎Y =𝑌0

𝑎B =−
4

3
𝑎S ⋅ (cos 𝜖 sin 𝜖) + 𝐵∗𝑐 ⋅ cos(𝜇)

, (6)

where 𝜖 denotes the Sun-spacecraft-Earth angle. As amod-
ification of the original ECOM formulation introduced in
Beutler et al. (1994), the argument of latitude 𝑢 in the har-
monic terms is replaced by the orbit angle 𝜇 since local
midnight. Parameterization of the orbit periodic contribu-
tions in terms of 𝜇 naturally accounts for the inherent sym-
metries in the SRP acceleration due to a regularly shaped
satellite body (Montenbruck et al., 2015; Arnold et al., 2015)
and allows dropping of the sinusoidal 𝐵𝑠 term required in
the original ECOM formulation.
Use of the a priori box-wing model likewise reduces

the number of empirical terms that would otherwise be
required for a proper SRP modeling and allows us to con-
fine the empirical accelerations to small values. Given
the very similar properties of the In-Orbit Validation
(IOV) and Full Operational Capability (FOC) satellites
(Steigenberger & Montenbruck, 2017), a common param-
eter set can be used for the entire constellation. Values
adopted for the long-term propagator are summarized
in Table 3.
Themodeling of SRP forces is further complicated by the

fact that GNSS satellites are not permanently sunlit. For
Galileo, regular eclipse periods with Earth shadow tran-
sits arise typically twice per year whenever the Sun ele-
vation above the orbital plane is less than roughly 15◦. In
addition, Moon shadow transits may occur on an irreg-
ular basis. While comparatively rare, the neglect of such
eclipseswould result in undue propagation error. Byway of
example, the Moon shadow transit of Galileo satellite E26
on November 26th, 2019, causes a drift change of roughly
80m/d.Given their distance from the center of the Earth or
Moon, GNSS satellites experience a nonnegligible penum-
bra phase at the begin and end of an eclipse during which
the radiation pressure varies gradually between zero and
its full value. A conical shadowmodel is therefore required
for the long-term propagator. This is particularly true for
lunar shadow transits, which include at best a very short
umbral phase. Within an eclipse, the modeled SRP accel-
eration as given in Equation 6 is multiplied by an illumina-
tion factor 0 ≤ 𝜈 < 1 that accounts for the reduced amount
of solar energy received by the satellite.
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3.4 Integration and interpolation

The choice of a suitable numerical integration method for
the long-term orbit propagator is driven by various con-
siderations. Single-step methods are generally preferred
for an embedded system to simplify bookkeeping as well
as a start and restart of integration at discontinuities.
When computing navigation solutions in a receiver at
representative update rates of 1 Hz or up, GNSS satel-
lite positions must be available at an equally high sam-
pling rate. In order not to constrain the step size in an
undue manner, numerical integration with dense out-
put requires the availability of an interpolant of corre-
sponding order, ideally with no need for additional eval-
uations of the equation of motion. High-order methods
offer improved overall efficiency in terms of the accu-
racy vs. number of function evaluations over large time
intervals, but do not commonly support dense output
and become less efficient when discontinuities enforce an
integrator restart. Finally, a particularly high efficiency is
offered bymethods for the direct integration of the second-
order equation of motion �̈� = 𝒂(𝑡, 𝒓) that does not depend
on velocity. Typically, this condition is met for all satel-
lites outside the atmosphere when using an inertial for-
mulation of the equation of motion, but is still violated
in the present case. Orbit-periodic accelerations in the
ECOM1 radiation pressure model (Section 3.2) are formu-
lated in terms of the orbit angle 𝜇, which is measured
along the orbital plane. Computation of 𝜇 thus necessi-
tates knowledge of the velocity in the acceleration model
and therefore inhibits use of, e.g., Runge-Kutta-Nystrøm
methods.
Two low-order single-step methods for dense output

that have earlier been studied for use in real-time nav-
igation systems (Montenbruck & Gill, 2001) include a
combination of the classical fourth-order Runge-Kutta
with Richardson extrapolation (RK4R; Hairer et al., 1987)
and the fifth-order RK5(4)7M Runge-Kutta method of
Dormand and Prince (1980). Both methods are effectively
of the fifth order and require 5.5–6 stages, i.e., evalua-
tions of the differential equation, per integration step.
The Dormand-Prince method, subsequently designated
as DP5, offers an embedded fourth-order solution for
step size control at the expense of a seventh function
evaluation. However, given the near circular nature of
GNSS satellite orbits, no step-size control is required here,
and only the fifth-order/six-stage formula is therefore
considered. Representative step sizes of the order of 100 to
300 s can be used for GNSS orbit propagation with the two
methods. State vectors at intermediate epochs are conve-
niently obtained from a fifth-order Hermite interpolation
in case of the RK4R method or a fourth-order interpolant
in case of DP5 (Hairer et al., 1987).

All numerical integration methods are based on the
inherent assumption that the equation of motion is con-
tinuously differentiable up to the order of the method.
For satellite orbits, this condition appears readily fulfilled
in maneuver-free periods, but is actually violated when
considering shadows of, e.g., the Earth or Moon in the
SRP modeling. This is obvious for a cylindrical shadow
model that causes a discontinuous acceleration, but like-
wise applies for a conical shadow model, which exhibits a
continuous but non-differentiable acceleration. As pointed
out in Lundberg et al. (1991), Lundberg (2000), and Wood-
burn (2000), neglect of shadow boundaries may cause
pronounced orbit propagation errors unless appropriately
handled by a restart of the integrator at each disconti-
nuity. Shadow boundaries are particularly critical when
using high-order integration methods but have a less pro-
nounced impact when working with low-order methods
and short step sizes.
To assess the performance of the two methods at differ-

ent step sizes, orbits of the Galileo constellation have been
propagated over a two-week period starting on March 10,
2020 using the tailored force model of Table 1. The test
epoch coincides with a phase of deep eclipses for all satel-
lites in plane C and partial eclipses of the Galileo E14 and
E18 satellites in eccentric orbits for studying the impact of
shadow transits on the overall accuracy. For assessment
of propagation errors with different integration options, a
solution based on short (50 s) steps and including shadow
boundary handling is considered as a reference. Propa-
gated positions were evaluated at a 270 s sampling that is
not an integer multiple of the step size. This ensures that a
substantial fraction of the output points considered in the
performance analysis is obtained from interpolation rather
than just the beginning and end of a step. All computa-
tions were performed using eight-byte (double-precision)
floating point data types, which provide a 10−16 precision
of individual arithmetic operations. With rounding errors
of this magnitude, the global integration errors over the
14-day prediction are dominated by the approximation of
the employed fifth-order methods rather than numerical
precision over the relevant range of step sizes.
The results compiled in Table 4 show a clearly bet-

ter performance of the DP5 method over RK4R at the
identical step size, which cannot be compensated by the
slightly smaller number of stages. Even though bothmeth-
ods share the same order, DP5 exhibits a much lower
integration error. Given a similar or even reduced com-
plexity of implementation, DP5 is clearly preferable for
the present application, even though the associated inter-
polant exhibits a slightly lower order than the integration
method itself.
In all cases, the total position error due to numerical

integration is dominated by the along-track component,
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TABLE 4 Peak orbit propagation errors (3D, in m) over two weeks for different integration methods, step sizes, and shadow boundary
handling

RK4R DP5
without with without with

Step [s] boundary handling boundary handling Notes
50 0.7 0.6 0.1 (ref)
100 19 19 0.5 0.5
150 140 140 5.8 2.9
200 610 590 9.8 12 All satellites

2.5 2.5 Plane A and B
4.4 2.6 Plane C
9.8 12 E14/E18

250 – – 37 34
300 – – 84 82

F IGURE 2 Numerical integration error of Galileo orbits using
the fifth-order Dormand-Prince method at 200 s step size over a 14-
day arc without shadow boundary handling during the eclipse period
of orbital plane C [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

and peak values are achieved near the end of the predic-
tion arc. Comparison of individual satellites shows that
the peak errors are driven by the two Galileo satellites
(E14/E18) in slightly eccentric orbits. By way of example,
this is shown in Table 4 for the DP5 integrator at 200 s
step size but applies equally for the remaining test cases.
Satellites in circular orbits show a quadratic growth of
propagation errors over time that is almost identical for
all non-eclipsing satellites. With shadow boundary han-
dling, the propagation error of eclipsing satellites in cir-
cular orbits matches that of the non-eclipsing satellites.
Without shadow boundary handling, a quadratic growth
can also be observed for the eclipsing satellites, but the
overall amplitude differs among the individual satellites
(Figure 2). Despite small advantages, no pronounced bene-
fit of the shadow boundary handling can thus be identified
for the given order and step size of the integrator.
For completeness, we note that a notably different

growth of integration errors is obtained when determin-
ing the initial conditions of the orbit propagation in a
preceding orbit determination that uses the same dynam-
ical model and integrator as the prediction part (Table 5).
Here, errors are mostly lower than in the prediction with

fixed initial conditions, and a more pronounced ben-
efit of the shadow boundary handling is obtained. In
fact, the orbit adjustment allows us to compensate for
numerical integration errors in the subsequent prediction,
which reflects itself in solution-specific values of the esti-
mated semi-major axis and empirical non-gravitational
force model parameters.
Based on the test results, use of the DP5 integrator and

its associated interpolant at a step size of ℎ = 200 s is identi-
fied as a suitable compromise between accuracy and com-
putational effort for the long-term orbit propagator. With
peak values at the 10 m level, the numerical integration
errors remain well below the inherent predictability dis-
cussed in the previous section even for the more demand-
ing case of the two Galileo satellites in eccentric orbits. At
the given step size, integration across shadow boundaries
is tolerable for the orbit prediction, which greatly simpli-
fies the user implementation. On the other hand, a rigor-
ous shadow boundary handling is clearly advisable for the
orbit determination and parameters adjustment.

4 CLOCK PREDICTION

Next to orbit errors, the user positioning accuracy is
directly affected by uncertainties in the predicted satel-
lite clock offsets. Other than orbit prediction, which is
largely driven by the quality of the dynamical models, the
performance of satellite clock prediction is governed by
the inherent clock stability. Galileo is renown for the first
use of passive hydrogen masers as a time and frequency
standard in GNSS satellites (Falcone et al., 2017), and
numerous reports have highlighted the exceptional qual-
ity and in-orbit performance of these clocks (Steigenberger
& Montenbruck, 2017; Galluzzo et al., 2018; Huang et al.,
2019). During the September 2019 to April 2020 test period



MONTENBRUCK et al. 11

TABLE 5 Peak orbit propagation errors (3D, in m) over two weeks after a two-day orbit determination for different integration methods,
step sizes, and shadow boundary handling

RK4R DP5
without with without with

Step [s] boundary handling boundary handling Notes
50 2.4 0.3 0.5 (ref)
100 21 4.7 4.0 0.3
150 110 37 15 0.8
200 1300 156 35 2.6 All satellites

0.1 0.1 Plane A and B
35 2.6 Plane C
34 0.7 E14/E18

250 – – 62 8.5
300 – – 120 22

considered in the present study, all satellites of the Galileo
constellation were operating on H-masers, except for
the first IOV satellite GSAT101 (E11) that used one of its
Rubidium atomic frequency standard (RAFS).
Representative Allan deviations of the H-masers

amount to 10−12∕
√
𝜏∕s at time scales 𝜏 of 1 to 100, 000 s

(Beard & Senior, 2017) corresponding to stochastic clock
variations at the sub-nanosecond level around a poly-
nomial clock model over time scales of up to a day. For
24 h clock prediction, peak errors of about 3 ns (1 m)
for H-masers and 8 ns (2.5 m) for RAFS are reported in
Falcone et al. (2017) for the first Galileo satellites, but only
limited information is available for extended forecasts.
For the assessment of clock prediction performance over

extended time intervals, Galileo clock offsets obtained in a
precise orbit and clock determination process (see Table 1)
were approximated by a low-order polynomial:

𝛿𝑡 = 𝑎0 + 𝑎1 ⋅ (𝑡 − 𝑡0) + 𝑎2 ⋅ (𝑡 − 𝑡0)
2, (7)

over a two-day interval. Predicted values for up to 14 d
beyond the end of the data interval were then compared
against precise clock offsets. For all H-masers, best results
were obtained with a first-order clock polynomial (i.e.,
𝑎2 = 0) but use of the second-order terms is required in
case of Rb clocks. Still, notable differences in the forecast
qualitymay be recognized for the two clock types as shown
in Figure 3 for a sample period in mid-March 2020. While
the superior stability of the H-masers allows us to confine
the forecast error to less than 10 m, substantially larger
errors are encountered for the Rb clock on Galileo satel-
lite E11. Among others, this is due to subtle changes in
the clock rate near March 15 and March 21, but it remains
unclear whether these events are related to intentional
clock adjustments or the natural variation of the uncon-
trolled oscillator.

F IGURE 3 Clock prediction of a Galileo satellite with Rb clock
(top) and satellites withH-maser (bottom) based on second- and first-
order clock polynomials adjusted over two days. Individual satellites
are distinguished by different colors [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

Major changes in clock drift could be observed on
satellites E11 (Δ𝑎1 ≈ 12 μs∕d) and E25 (Δ𝑎1 ≈ 1 μs∕d) in
November 2019 following a temporary off-period. In the
same month, gradual frequency adjustments by 50 to
120 ns/d within 5 to 15 days took place on satellites E07,
E30, and E33. Otherwise, all H-masers showed extremely
stable clock drifts with typical variations of less than
±5 ns/d over many months (Figure 4).
Other than orbit prediction, which shows a largely

homogeneous performance and gradual growth across all
satellites, the prediction of clock offset variations in the
Galileo constellation reveals a less uniform picture. While
most satellites exhibit a surprisingly good performance and
allow for a 5 to 10 m RMS error for most of the time even
after a two-week prediction, a small subset of satellitesmay
be affected by unforeseeable clock drift changes that can
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F IGURE 4 Clock drift variation ofGalileo satellites over the six-
month test period [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

cause errors of 100 to 1,000 m. While exclusion of satel-
lites with Rb-clocks (currently only E11) can certainly alle-
viate this problem, undesirable frequency changes on the
H-masers are also encountered on some of the Galileo
satellites in the first months of our test period. On the
other hand, the limited number of satellites in the con-
stellation that is concurrently affected by large clock pre-
diction errors and the magnitude of these errors would
generally allow us to discard these satellites as part of the
receiver autonomous integrity monitoring (RAIM; Parkin-
son & Axelrad, 1988). Based on this consideration, we
exclude satellites with errors larger than 100 m in the pre-
dicted clock offset from the statistics but otherwise incor-
porate all satellites of the constellation irrespective of the
employed clock type.
Results in Figure 5 show that themedian RMS clock pre-

diction error with 100 m outlier screening increased grad-
ually to about 8 m over the first to seventh day of predic-
tion and essentially stays at this magnitude up to day 14.
95th percentile errors amount to roughly 20 m in our test
period. Compared to orbit prediction errors discussed in
the previous sections, a balanced contribution of orbit and
clock errors to the overall SISRE can thus be achieved for
long-term broadcast ephemeris prediction in the Galileo
constellation due the use of high performance atomic fre-
quency standards.

5 PERFORMANCE
CHARACTERIZATION

Overall, the long-term orbit propagator concept com-
prises the provision of an epoch state vector, empirical
solar radiation pressure coefficients, and a clock offset
polynomial for each satellite, as well as a set of Earth

F IGURE 5 Variation of Galileo clock offset prediction errors.
The graph shows the distribution (median and 5th/95th percentile)
of the constellation-wide RMS error at the 𝑛-th day of prediction
over 180 solutions for the six-month test period excluding individ-
ual clock offset errors larger than 100 m [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

orientation parameters valid for the entire constella-
tion. For a comprehensive assessment, the corresponding
parameters were generated over a six-month time frame
from October 2019 to March 2020. After characterizing
the computational effort on a representative embedded
computer system, the achieved accuracy is assessed by
comparing the propagated orbit and clock states against a
reference solution and by evaluating single point position-
ing errors.

5.1 Parameter adjustment

As discussed in Section 3.1, Earth orientation parameters
are required in the long-term orbit propagator concept to
transform the propagated state into the terrestrial refer-
ence for user positioning. Since availability of EOPs and
associated rates enabling a two-week propagation is not
ensured in current GNSSs, linear polynomials for pole
and UT1R were adjusted to the observed EOPs from the
igs96p02 rapid EOP series over a two-day arc prior to the
arc used for the orbit estimation.
Daily orbit and clock products based on 24 h of obser-

vations were used to adjust the orbit and clock parameters
for the individual Galileo satellites. For improved accu-
racy of drift terms and empirical accelerations, precise
ephemerides from two consecutive days were concate-
nated prior to fitting the individual parameters of the
long-term propagator. Longer orbit determination arcs
did not show relevant changes in the overall statistics.
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TABLE 6 Long-term orbit propagator parameters and
recommended numerical representation. The number of bits in
column 4 refers to a single parameter of the specified type.
Depending on the parameter generation process, common epochs
may be adopted for EOP and orbit/clock parameters to reduce the
total amount of data transmitted to the user

Parameter Unit No. of bits LSB
Epoch 𝑤eop 13

𝑡eop [s] 8 3600
Pole offset 𝑥p, 𝑦p [′′] 21 2−20

�̇�p, �̇�p [′′/d] 15 2−21

UT1R offset ΔUT1R [s] 31 2−24

Δ ̇UT1R [s/d] 19 2−25

Total EOPs 143
Epoch 𝑤oe = 𝑤oc 13

𝑡oe = 𝑡oc [s] 8 3600
Epoch position 𝑥, 𝑦, 𝑧 [m] 34 2−8

Epoch velocity �̇�, �̇�, �̇� [m/s] 34 2−21

Empirical accels. 𝐷0, 𝑌0, 𝐵∗
𝑐 [nm/s2] 13 2−9

Clock 𝑎0 [s] 27 2−30

𝑎1 [s/s] 25 2−50

𝑎2 [s/s2] 17 2−70

Total per satellite 333

Clock offset polynomials of the first or second order were
obtained for satellites operating hydrogen masers and the
rubidium clock, respectively. To avoid a need for external
information, the clock type and required polynomial
order were automatically determined based on the clock
residuals of a linear fit using a 1 ns threshold.
Finally, the epoch state vector as well as the coef-

ficients of the three-parameter ECOM-1 empirical solar
radiation pressure model were adjusted using positions
from the precise ephemerides as pseudo-observations.
Force model and numerical integration options for the
orbit adjustment were chosen to match the recommended
long-term orbit propagator settings (Table 2) to ensure
full consistency of the models on the provider and
user side.
Table 6 summarizes the set of long-term orbit propa-

gator parameters and provides a recommendation for the
required numerical range and precision. The number of
bits and the least-significant bit (LSB) suggested for the
EOPs match the values currently adopted in the CNAV
navigation message of GPS, except for the EOP epoch that
is parameterized with an hourly resolution. LSBs for the
epoch state vector are based on the consideration that a
semi-major axis error Δ𝑎 gives rise to an along-track error
of roughly 10Δ𝑎 after one revolution and about 250Δ𝑎 after
two weeks. Centimeter-level uncertainties in the position,

or, equivalently, micrometer-level velocity errors will thus
give rise to meter-level along-track errors at the end of the
envisaged propagation time span. LSBs for the clock poly-
nomial coefficients are chosen such as to confine the dis-
cretization error to roughly 1 ns over a 14 d interval, and
the total number of bits is selected such as to keep the sup-
ported range of values compatible with the present Galileo
navigation message.
For the performance assessment, all estimation param-

eters were rounded to the bit resolution specified in
Table 6 after the EOP, epoch state, and clock adjustment.
Discretization errors are thus considered in the overall
error budget.

5.2 Orbit and range error

The overall performance of the long-term orbit propaga-
tor is summarized in Figure 6. Radial errors, which map
directly into the modeled range, reach a median RMS of
4 m after two weeks and a peak RMS value of 7 m over
the half-year test period. In the along-track direction, the
daily RMS error of the predicted positions exhibits a 40 m
median, while the peak RMS error over all days amounts
to 90m. Roughly one eighth of this error, i.e., 5 m (median)
and 11 m (peak) would map into the line-of-sight direc-
tion on a global average, but worst-user location errors can
amount to roughly twice these values.
Compared to the results of Figure 1 obtained with “best

possible” dynamical models, the tailored models yield a
degradation of roughly a factor of two in the radial com-
ponent but less than 30% in the along-track direction. This
illustrates again that the achievable long-term orbit predic-
tion accuracy is driven by unpredictable motion changes
that cannot adequately be described by a priori or empiri-
cal models.
The combined effect of orbit and clock prediction errors

is best described by the associated signal-in-space range
errors. Statistics for the globally averaged RMS SISRE over
the half-year test period are shown in Figure 7. Similar to
the clock error analysis in Figure 5, a 100 m SISRE thresh-
old was employed to eliminate coarse outliers. Themedian
RMS SISRE increases almost monotonically over time and
attains a value of roughly 12 m after a 14-day prediction.
For 95% of all days in the test period, the SISRE after two
weeks remains below 22 m.

5.3 Positioning error

As a final test, the single-point positioning accuracy using
the predicted ephemeris data has been evaluated for a
representativemid-latitude user location (11.6◦W, 48.1◦N).
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F IGURE 6 Variation of Galileo orbit prediction errors in radial (left) and along-track direction (right) using the tailoredmodels of Tables 1
and 2 in the orbit determination and prediction. The graph shows the distribution (median and 5th/95th percentile) of the constellation-wide
RMS error at the 𝑛-th day of prediction over 180 solutions for the six-month test period [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com and www.ion.org]

F IGURE 7 Evolution of Galileo global average RMS SISRE
using the tailored models of Tables 1 and 2 in the orbit determina-
tion and prediction [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

Results in Figure 8 include the combined effects of
line-of-sight orbit errors and clock errors for an individual
station taking into account all visible satellites above a
5◦ elevation limit. Furthermore, a position dilution of
precision (PDOP) threshold of ten and a 100 m outlier
rejection limit were applied. Median values of the 3D
position error grow roughly linearly with the forecast
period and reach a value of about 23 m on day 14. For 95%
of all days in the test period, the 3D RMS position errors
remain below 50 m. Overall, the position error statistics
correspond closely to the SISRE statistics discussed before
for a representative PDOP of 2–2.5.

F IGURE 8 Evolution of SIS-related single-point positioning
errors for different forecast periods. The graph shows the distribution
(median and 5th/95th percentile) of the 3D RMS position error at the
𝑛-th day of prediction over 180 solutions for the six-month test period
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

5.4 Run-time performance

Aside from accuracy, the feasibility of a long-term orbit
propagator also depends on the computational effort. The
tailored orbit models presented in Section 3 offer a globally
averaged orbit-only SISRE of less than 15 m RMS in 95% of
all cases after a two-week prediction period. This is roughly
compatible with the achievable clock prediction accuracy
for Galileo Hydrogen masers over the same interval and
yields a balanced contribution of both error sources to the
overall SISRE. On the other hand, the model exhibits a
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TABLE 7 Execution time for 14 d orbit prediction of a single
GNSS satellite on two different processors for embedded systems

Processor Frequency Time
ARM Cortex A9 800 MHz 9 s
ARM1176JZF-S 700 MHz 30 s

notable algorithmic complexity, and the choice of a numer-
ical orbit propagation concept for the long-term ephemeris
model implies a linear growth of the computational effort
with the time between the reference epoch of the state vec-
tor and the epoch at which aGNSS satellite position is eval-
uated. This is less critical during continued integration in
real time, butmay raise concerns after extended off-periods
of a receiver.
For an assessment of the run-time performance, the

execution time for propagation of a single GNSS satellite
orbit over two weeks at a 200 s step size and using the
recommended model options of Table 2 was determined
for two different 32-bit processors that are widely used in
embedded systems (Table 7). They comprise an ARM Cor-
tex A9 processor as used in the Altera Cyclone V System
on Chip (SoC) field programmable gate array (FPGA) and
a single-core ARM1176JZF-S processor integrated in the
Broadcom BCM2835 SoC of a Raspberry Pi 1B+miniature
computer. These processors exhibit a computing power
that is roughly two orders of magnitude lower than that
of common desktop computers.
In a worst-case scenario, the orbit propagation for the

entire GNSS constellation with 30 satellites would thus
require 5 to 15 min on these processors when operating a
receiver with a two-week old, long-term ephemeris data
set. Even though this is comparable to the transmission
time of a GPS almanac and probably still tolerable, a more
realistic operation scenario would assume operation of a
receiver at least once per day. In this case, the propagated
state vectors could be stored in nonvolatile memory prior
to shut down, and the time to reactivate the receiver a
day later would amount to only 20 to 65 s. Both times
appear compatible with actual user requirements for oper-
ation of a long-term ephemeris model and justify consid-
eration of the approach for reduced-accuracy navigation in
the absence of regular broadcast ephemeris updates.
As an alternative use case, one may consider an on-

board implementation of the orbit model to continu-
ously propagate its own orbit during extended periods
without ground contact. The resulting state vector could
then be downloaded to the users in regular intervals
using a GLONASS or SBAS-like ephemeris message, or an
adjusted set of quasi-Keplerian orbit parameters as used in
the common GPS, Galileo, and BeiDou ephemeris mod-
els. While still depending on the ground-based genera-

tion of the long-term ephemeris data, this architecture
would enable a fully autonomous navigation payload oper-
ation. Obviously, this concept notably reduces the com-
plexity of user segment modifications, but would require
adequate spare resources in the onboard processor of each
GNSS satellite.

6 SUMMARY AND CONCLUSIONS

The feasibility of predicting GNSS satellite orbits and
clocks over periods of up to two weeks has been stud-
ied using the Galileo system as a test case. A tailored set
of force models and reference system transformations is
identified, based on which GNSS satellite motion can be
propagated using numerical integration. The models are
likewise applicable for near-circular and slightly eccentric
orbits and properly account for eclipses. Along-track errors
of about 40mmedianRMSare onlymoderatelyworse than
those of high-fidelity models and essentially represent the
inherent predictability of GNSS orbits in the presence of
characterized, satellite-related perturbations.
Given the high performance of the Galileo Hydrogen

masers, which allow for clock prediction accuracies of
better than 1 m/d, the combined orbit and clock predic-
tion over a two-week time frame enables a 95th-percentile
global-average RMS SISRE of less than 25 m. This trans-
lates into a 3D RMS user position accuracy of better than
50m (95th percentile) or 23m (median). For comparison, a
95th-percentile SISRE of better than 388 m is specified for
GPS extended mode operations over a two-week period.
Despite its obvious complexity, the long-term orbit prop-

agator is shown to be compatible with representative
processing capabilities of embedded processors and may
be considered for either user segment or space segment
implementation. Compared to the present GPS extended
mode architecture, use of the propagator notably reduces
the data volume for the uploading of short-arc broad-
cast ephemerides. It therefore lends itself as an interesting
alternative for the implementation of extended operation
modes in GNSSs that do not presently offer autonomous
navigation capabilities.
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