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Potential of Recurrence Metrics from Sentinel-1
Time Series for Deforestation Mapping

Felix Cremer , Mikhail Urbazaev , Member, IEEE, José Cortés, John Truckenbrodt,
Christiane Schmullius, and Christian Thiel

Abstract—The REDD+ framework requires accurate estimates
of deforestation. These are derived by ground measurements sup-
ported by methods based on remote sensing data to automatically
detect and delineate deforestations over large areas. In particular,
in the tropics, optical data is seldom available due to cloud cover. As
synthetic aperture radar (SAR) data overcomes this limitation, we
performed a separability analysis of two statistical metrics based
on the Sentinel-1 SAR backscatter over forested and deforested
areas. We compared the range between the 5th and 95th temporal
percentiles (PRange) and the recurrence quantification analysis
(RQA) Trend metric. Unlike the PRange, the RQA Trend considers
the temporal order of the SAR data acquisitions, thus contrasting
between dropping backscatter signals and yearly seasonalities. This
enables the estimation of the timing of deforestation events. We
assessed the impact of polarization, acquisition orbit, and despeck-
ling on the separability between forested and deforested areas and
between different deforestation timings for two test sites in Mexico.
We found that the choice of the orbit impacts the detectability of
deforestation. In all cases, VH data showed a higher separabil-
ity between forest and deforestations than VV data. The PRange
slightly outperformed RQA Trend in the separation between forest
and deforestation. However, the RQA Trend exceeded the PRange
in the separation between different deforestation timings. In this
study, C-Band backscatter data was used, although it is commonly
not considered as the most suitable SAR dataset for forestry ap-
plications. Nevertheless, our approach shows the potential of dense
C-Band backscatter time series to support the REDD+ framework.

Index Terms—Forestry, radar remote sensing, synthetic
aperture radar, time series analysis.
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I. INTRODUCTION

THE tropical forest ecosystems stabilize the world climate
[1] and protect global biodiversity [2]. In the last decades,

remote sensing technologies have played a substantial role by
providing consistent, reliable, and timely information about for-
est cover and forest cover changes. Operational forest/nonforest
and forest cover change products are mainly based on optical
sensors [3]. However, clouds obstruct optical imagery, especially
in the tropics during the rainy season. Alternatively, forest cover
and forest cover change can be mapped using cloud penetrating
synthetic aperture radar (SAR) data. These maps are mostly
based on L-Band SAR data because the longer wavelength
penetrates deeper into the forest structure [4] or on X-Band SAR
interferometry data [5]. Unfortunately, there exists no freely
available global SAR L-Band time series dataset. This will
change in the near future once the NASA-ISRO L-Band sen-
sor NISAR is launched. The European Copernicus Programme
provides a global SAR C-Band dataset with a high spatial (ca.
10 m) and temporal resolution (six days).

Since SAR is sensitive to geometrical and dielectric properties
of a target, the backscattered signal of the single time steps can
vary considerably. As a result, vegetation maps based on mono-
temporal SAR data might show high variance. The separability
between the forest cover and the bare soil in C-Band data can be
enhanced by time series data. This can be achieved by reducing
the effects of environmental conditions (e.g., rain, wind, etc.) on
the SAR signal.

Current approaches that use Sentinel-1 backscatter data to
detect deforestations can be summarized in two different groups.
One group represents the approaches that use the Sentinel-1 time
series as a stream of single images or a stream of a few images.
Bouvet et al. [6] used the emerging and disappearing radar
shadow effects due to the logging of tall trees to detect the edges
of deforested areas. Since the SAR shadow is a geometrical
effect, it is persistent over time and therefore not prone to
seasonal effects. This method detects edges only in the viewing
direction of the satellite and therefore works best when it is used
on ascending and descending acquisition orbits in combination
to reconstruct the full deforestation polygons. Rüetschi et al.
[7] used the difference of the average of five images before and
after a storm event respectively to detect windthrow areas. Then
they apply a threshold on the backscatter difference and on the
number of pixels per detection to derive affected areas. This
method achieves a good detection rate, but it cannot delineate
the areas and thus is not suitable for area estimations.
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Another group of methods use the time series during a
preparation time span to derive for every pixel what is to be
expected and to then use every new acquisition to update whether
deforestations appear. Shimizu et al. [8] used a harmonic model
to derive indices which describe the seasonality of the Sentinel-1
time series. These indices are then used to train a random forest
model which is updated on every succeeding time step. By using
the harmonic model, they are incorporating the seasonality of
the Sentinel-1 time series. They showed that their method’s
accuracy is sensitive to the selected threshold for disturbance
from the random forest model and also to the minimum mapping
unit. Reiche et al. [9] used Bayesian updating on deforesta-
tion probabilities to derive a possible deforestation on every
acquisition. They spatially normalized the pixel time series to
decrease the seasonality of the Sentinel-1 time series. Spatial
normalization is conducted by dividing the value of one pixel
by the 95th percentile of the neighborhood. Then they used the
first year of their sensing period to derive local forest/nonforest
distributions. With these F/NF distributions, they converted the
pixel value in a nonforest probability and used the Bayesian
theorem to update their nonforest probability in every pixel.
When the nonforest probability exceeds a certain threshold, the
time step was marked as a possible deforestation which was
confirmed or declined on the next step. Hirschmuggl et al. [10]
used a threshold on the temporal coefficient of variation to derive
changing pixels. They flagged these pixels as deforestation if
they have a negative backscatter trend. The backscatter trend
was computed as the difference of the average backscatter of
the first three images of the time series and the average of
the last three images of the time series. They showed that
all deforestations larger than 1 ha have been detected at least
partially.

In this article, we examine two statistical metrics calculated
from Sentinel-1 C-Band SAR backscatter time series data on
their performance to separate forested and deforested areas.
One statistical metric is the range between the 5th and 95th
percentiles (PRange). This metric was proposed by [11], but its
applicability to separating forest and deforestation has not been
investigated yet.

Another statistical metric can be derived from recurrence
quantification analysis (RQA) [12]. This is a technique to derive
multitemporal statistics by considering the inherent order of a
time series. RQA is based on recurrence plots (RPs) which have
been introduced by [13]. So far, this technique has only been
applied to optical remote sensing time series. RQA has been used
to investigate temporal dynamics of AVHRR NDVI time series
between 1981 and 2003 [14] and of RQA MODIS EVI data
for the years 2000–2013 [15]. They both showed that the RQA
metrics can be used to differentiate between the predictability
of the time series for different land covers. This is the first time
that the RQA metrics are calculated for SAR time series. The
rest of this article is organized as follows. In Section II, we
describe RPs and RQA. In Section III, we describe the results
of the comparison of the PRange and the RQA Trend metric.
Section IV discusses the results and Section V summarizes the
results of the article.

Fig. 1. Recurrence plots for (a) the sum of two sine waves with different
frequencies, (b) a step function with noise, and (c) a sine wave with trend.

Fig. 2. Pléiades data in October 2017 of the two test sites, which are located
in Mexico and are dominated by temperate forests (Hidalgo) and tropical dry
forest (Kiuic).

II. METHODS

A. Multitemporal Metrics

RPs are a method to visualize the recurrences of a signal.
From these patterns, we can compute RQA metrics to quantify
the number and duration of recurrences. The RP of a time series
xi is defined as follows:

Ri,j = θ(ε− |xi − xj |), i, j = 1, ..., N (1)

where ε is a threshold value that indicates up to which distance
two time steps are viewed as similar. θ is the Heaviside function
which sets everything below zero to zero and every positive
value to one. N is the number of elements of the signal. This
computation leads to a square matrix with black dots where the
time steps are similar to each other. The main diagonal is always
black because every time step is similar to itself. Fig. 1(a) shows
examples of RPs of a sum of two sine waves with different
frequencies, Fig. 1(b) shows a step function from three to zero
with an overlaid white noise with standard deviation of 1, and
Fig. 3(c) shows a sine wave with overlaying trend. For the
composition of two sine curves, we see a regular pattern with
distinguished diagonals which indicate the frequencies of the
subsignals. In the noisy step function, four distinct quadrants
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Fig. 3. Recurrence plots for 25 pixels of deforestation (left) and stable forest
(right). The gray lines are each pixel’s time series and the colored line is their
respective mean.

can be found in the RP. In the two quadrants near the main
diagonal, every point is randomly similar to other points with
a high probability. In the other two quadrants, the probability
that two points are similar to a point in the other part of the step
function is low. In the third example, a clear pattern can be seen,
but these patterns fade out to the edge of the RP. This is due to
the difference of the values at the beginning and the end of the
time series. Therefore, we can use this pattern as an indicator
for a trend in the time series.

These visual patterns can be quantified using RQA [12],
[16]. The simplest measure is the recurrence rate (RR) which
is the number of recurrences divided by the squared number of
elements in the signal. It measures the density of the recurrence
points in an RP. In the following, we use the Trend metric for
separability analysis. It is defined as

TREND =

∑Ñ
τ=1(τ − Ñ/2)(RRτ − 〈RRτ 〉)

∑Ñ
τ=1(τ − Ñ/2)

. (2)

Hereby, Ñ is the number of time steps and RRi is the number
of recurrent values on the ith diagonal. It represents the linear
regression coefficient over the RR of the diagonals in comparison
to their distance to the main diagonal. It indicates whether the
process is drifting or not. All RQA results have been produced
with the Julia RecurrenceAnalysis.jl package [17].

The percentile range is proposed by [11] as an approach to
detect deforestation. The PRange is defined as the difference
between the 95th and 5th percentile to mitigate the influence of
massive outliers

PRange = P95 − P5. (3)

As the span of the temporal values, it is highly influenced
by fluctuations in the time series. It captures the general
variability of a time series. Since deforestations correspond
to a drop in backscatter, the PRange can be used to detect
deforestations [11].

B. Receiver Operator Characteristics

A common method to evaluate binary classifiers is to compare
the receiver operating characteristic (ROC) curves. The ROC
curve plots the true positive rate (correctly identified defor-
estation) against the false positive rate (incorrectly identified
deforestation) as the decision threshold changes. The unitary
slope line represents a random classification, whereas points
above it are results better than random, and points below are
results that are worse than random. A measure of a model’s
overall performance can be given by the area under the curve
(AUC) of the ROC curve. High values of AUC represent
strong overall performance. An AUC of 0.5 is equivalent to
a random classification, and an AUC of 1 represents perfect
classification.

III. EXPERIMENTAL RESULTS

A. Test Sites

We tested the separability between forested and deforested
areas over two study sites in Mexico which are shown in Fig. 2.
The first study site is located in the municipality of Zacualtipan,
state of Hidalgo, and covered by mountain cloud forest, pine
forest, and pine-oak forests [18]. The second study site is situated
on the Yucatan peninsula near the biocultural reserve of Kaxil
Kiuic and is covered by tropical dry forests [19]. Each of the
study sites extends over an area of 10 × 10 km.

The Hidalgo site is a mountainous region characterized by
a minimum elevation of about 1125 m and a maximum eleva-
tion of 2238 m with a mean slope of 16° [20]. The regional
climate is humid-temperate characterized by a mean annual
temperature of 13°C and around 2000 mm of precipitation
[18] with a pronounced rainy season between June and Oc-
tober, when more than 80% of the total annual precipitation
occur [21]. The management strategies have focused on de-
velopment of even-aged stands of Pinus patula, which is a
highly productive fast growing subtropical species broadly used
for forest plantations [22]. AGB of the pine-managed forest
stands (3–28 years old) ranges between 0.5 and 170t ha−1,
while primeval old-growth forests reach a maximum AGB of
290t ha−1 [23].

The second study site, Kiuic, is located on flat terrain with
an average elevation of 94 m and a mean slope of 9 °C. The
regional climate is tropical subhumid with slightly higher air
temperatures in summer than in winter. The average annual
temperature between 2013 and 2017 was 27 °C [24]. Average
annual precipitation ranges from 1000 to 1100 mm. The period
between May and November is characterized by pronounced
rainfall, and the relatively dry period extends between December
and April [24]. The forests in the north-western part of the
Yucatan peninsula have experienced slash-and-burn agriculture
for 2000 years, resulting in forest patches at different succession
stages [25]. The Kiuic site is located in a private protected
area and mainly covered by dry semideciduous tropical forests,
where more than 50% of tree species shed their leaves during
the dry season [19]. The average aboveground biomass in the
area ranges between 110 and 180t ha−1 [19].
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Both study sites are part of the network of intensive carbon
monitoring sites in Mexico [26], where forest carbon fluxes are
measured at different spatial scales (e.g., permanent plots, eddy
covariance towers, LiDAR remote sensing, and carbon dynamics
models) [26].

B. Data and Preprocessing

We preprocessed the Sentinel-1 GRD datasets after [27] and
resampled them to a 10× 10 m pixel spacing. The preprocessing
consists of the following steps: Thermal noise removal, border
noise removal, calibration, terrain flattening, and terrain correc-
tion. The orthorectification is based on the orbit state vectors and
the 30 m SRTM digital elevation model [28]. The preprocessing
also included radiometric terrain flattening after [29], which
results in γ0 backscatter values. Areas featuring layover, fore-
shortening, and radar shadow were masked out. All images were
coregistered in the DEM geometry after geocoding to achieve a
subpixel coregistration precision which is of eminent importance
when a time series analysis is applied. We preprocessed the SAR
data with the SNAP software [30] in version 6 and the Python
package pyroSAR [31] and handled it afterwards in the Earth
System Data Lab Julia package [32].

We reduced speckle and other unwanted short-term changes
of the data using the nonspatial temporal filter described in
[33]. The filter is based on the empirical mode decomposition,
a data adaptive alternative to the Fourier transform, which can
handle nonstationary data. Each pixel is separately decomposed
into subsignals of different temporal frequencies. In order to
reduce speckle, the two subsignals with the highest temporal
frequencies are removed. This results in a nonparametric image
transform that fully preserves the geometric resolution and
has a similar speckle suppression as the spatio-temporal filter
proposed by [34] with a 5 × 5 filter window [33].

We manually derived reference forest and deforestation areas
by comparing Pléiades data acquired in September 2016, Oc-
tober 2017, and July 2018. We delimited three classes: Forest
over the entire time, deforestation between September 2016 and
October 2017, and deforestation between October 2017 and July
2018. We computed the RQA Trend metric from the time series
between March 2017 and March 2019 to ensure a high detection
rate of deforestations in the time series and to allow for a ramp
up and ramp down phase for the RQA metric.

C. RQA Trend and PRange results

The RPs for Sentinel-1 time series over exemplary forested
and deforested areas can be seen in Fig. 3. The upper figures
show the time series of VH backscatter over 25 randomly sam-
pled pixels of a deforested area (a) and a stable forest (b) with the
mean backscatter as shown in red and green, respectively. The
lower figures show the grayscale of the corresponding RPs. The
darker a point in the RP, the more the pixels have similar time
steps. Hence, at black points, every pixel shows a similarity of
the two time steps and at white points, no pixel shows it. There
is a clear drop in the backscatter time series for the pixels in
the deforested area. The RP representes this change as tow large
white areas in the corner similar to the example in Fig. 1(b).

Fig. 4. Visual comparison between RQA Trend and PRange. The red poly-
gons are deforestations between September 2016 and October 2017 and the
violet polygons are deforestations between October 2017 and July 2018. These
polygons were selected from yearly VHR Pléiades data.

The time series of the deforested area shows seasonality with an
amplitude as high as the forest time series for short time periods,
visible in the RP as small dark stripes in the white corner.

In the forest, the time series is stable with small backscatter
differences between every time step. This is visible in the RP as
random noise.

Fig. 4 shows the RQA Trend and the PRange computed
from original and EMD-filtered VH data from March 2017
to March 2019. The red polygons represent deforested areas
between September 2016 and October 2017 and the violet ones
are deforested areas between October 2017 and July 2018. The
later deforestations, which are completely in our sensing period,
are distinctly visible as clear black areas in the RQA Trend
metric and in the PRange metric for VH ascending data. To
reduce the effect of speckle and short-term changes in the data,
we used the EMD filter. The EMD filter reduces the temporal
variance in the time series and thereby enhances the difference
between forest and deforestation areas. The PRange metric
benefits especially from the temporal denoising by the EMD
filter. The earlier deforestations are also partly visible because
the Sentinel-1 backscatter signal of the deforested areas shows
a yearly seasonality with a maximum amplitude similar to the
amplitude of the forest backscatter signal which leads to a high
PRange value. The VH backscatter data shows a higher contrast
than VV backscatter data between deforestation areas and stable
forest. We noticed also a difference between the ascending and
the descending orbits. The deforestation areas are better visible
in the ascending orbits in both temporal metrics. In the RQA
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Fig. 5. Violin plots of the Hidalgo test site of deforestation (right) and a stable
forest area (left) of similar size for the original and EMD-filtered data for the
ascending and descending stacks in both polarizations. The line in the violin is
the median of the data.

Fig. 6. Violin plots of the Kiuic test site of deforestation (right) and a stable
forest area (left) of similar size for the original and EMD-filtered data for the
ascending and descending stacks in both polarizations.

Trend metric, the old deforestation areas are more distinguish-
able from the new deforestation areas than in the PRange metric.
This is consistent over all combinations of polarizations and filter
application.

D. Separability Analysis

We compare the histograms in the violin plots (Figs. 5 and
6). Deforestation areas are shown in orange and the stable forest
areas in green. In Hidalgo, the pixels over stable forests have
a narrow distribution compared to the deforestation pixels. The
least overlap between the histograms is visible in the VH ascend-
ing PRange data. The EMD-filter further reduces the histogram
overlap for the PRange in the VH data by lowering the overall
PRange values, especially pronounced for the stable forest areas.
The EMD-filtered VH ascending data achieves a nearly complete
separation between the stable forest and the deforestation areas.
The RQA Trend histograms of the deforested areas are rather
stretched and thus overlap with the histograms of the stable forest
areas.

Fig. 7. ROC for the labeling of deforestation against stable forest for the
PRange and RQA Trend in Hidalgo.

Fig. 8. ROC for the labeling of new deforestation against old deforestation for
the PRange and RQA Trend.

Fig. 6 shows similar plots for the tropical dry forest in Kiuic.
The backscatter variability of the stable forest areas is higher
than that in the Hidalgo test site. Therefore, the separability is
overall worse. The EMD-filter smoothes the backscatter time
series, thus improving separability. For the RQA Trend metric,
the best separability is achieved in the VH descending data and
for the PRange in the VH ascending data.

We used the ROC as shown in Fig. 7 for Hidalgo to quantify
the separability between forest and deforestation. For every
polarization and orbit combination, the PRange separates better
between deforestation and stable forest than the RQA Trend
metric. The ranking of the polarizations and orbit combinations
is the same in both metrics, namely VH ascending, VH descend-
ing, VV ascending, and VV descending. VH descending and VV
ascending perform similarly in the PRange metric. Table I shows
the corresponding AUC values with the minima and maxima of
the comparison in bold.

For the same comparison of the separation between old and
new deforestation, see Fig. 8. The RQA Trend metric shows
higher separation between old and new deforestation. For the
PRange, the ranking is the same as in the separation between
forest and new deforestation. For the RQA Trend metric, the VH
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TABLE I
AREA UNDER CURVE VALUES

Fig. 9. ROC for the labeling of deforestation against stable forest for the
PRange and RQA Trend in Kiuic.

ascending data is best and all other combinations are similar to
each other.

Fig. 9 shows the ROC curves for the Kiuic test site. Here
the RQA Trend metric and the PRange are similar in separating
between stable forest and deforestation although with different
underlying datastacks. For the RQA Trend, the best combination
is the VH descending data and for the PRange, it is the VH
ascending data.

IV. DISCUSSION

Since deforestation leads to a drop in backscatter, the PRange
and the RQA Trend both succeed in separating deforestation
from stable forest areas in Sentinel-1 C-Band SAR data. The
deforested areas in our test sites are changed into a land
cover with a highly seasonal backscatter signal with maxima
which are as high as the backscatter from stable forest (see
Fig. 3). This leads to misclassifications of old deforestation
as new deforestation in the PRange. The RQA Trend is not
so prone to these seasonality effects and thus can distinguish
between old and new deforestations. Thus, RQA Trend pro-
vides additional information such as the time of deforesta-
tion, which might be a valuable parameter within the REDD+
framework.

Furthermore, the orbit influences the separability between for-
est and deforestation. Stable forest features a lower backscatter
in the descending orbit than in the ascending orbit and deforested
areas feature a higher backscatter in the descending orbit than in
the ascending orbit. These influences on the backscatter intensity
lower the difference between stable forest and deforested areas
in the descending orbit. The differences in backscatter intensity
between the orbits are visible not only for single deforestations
but over the whole region and in different angles to the satel-
lite. Therefore, a different looking angle cannot explain this
observation. Since geometric changes on the ground would be
visible in both ascending and descending orbit, we conclude that
these differences are caused by regular changes in the dielectric
properties of the land cover. The ascending and descending orbits
differ by the acquisition time. The descending orbit images are
acquired at 7:30 A.M. and the ascending orbit images are acquired
at 7:40 P.M. local time. This difference in the acquisition time
is presumably connected to differences in the water content on
and in the vegetation caused by the diurnal water cycle. In our
case, the PRange metric performs best with VH ascending data
for both test sites, whereas the RQA Trend shows a different
behavior in the two test sites. Since the water cycles are different
for different biomes, the best possible orbit has to be selected
for the monitored biome and climate region. The influence of
the acquisition time on the mapping accuracy should be further
investigated in future studies.

We utilized the EMD-filter to reduce the influence of speckle.
This filter is only applied to the temporal domain and therefore
does not diminish the spatial resolution. It reduces the tempo-
ral variance in the backscatter signal for the forested and the
deforested areas and therefore decreases the overall PRange
values. However, it decreases the PRange values of forest by a
larger amount than the PRange values for deforestations. Thus,
the filtering had a positive impact on the separability between
deforestation and stable forest.

In contrast to other approaches of deforestation mapping with
Sentinel-1, we do not aspire to map the deforestations in near
real time rather to produce yearly or biennially maps with the
best possible spatial resolution. Since the introduced approach
uses the full time series and its order, we can incorporate the
seasonality of the forest signal in our change detection algorithm.
It also accomplishes to map small-scale deforestations. The
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mapping accuracy is comparable to the approaches reported in
[8]–[10]. The derived deforestation information can be updated
yearly and can be used in measurement reporting and verification
systems for the REDD+ process.

V. SUMMARY AND CONCLUSION

We investigated the use of multitemporal metrics of hypertem-
poral Sentinel-1 backscatter time series to separate stable forest
from deforestation. We compared the RQA Trend metric to the
range between the 5th and the 95th multitemporal percentile. To
the best of our knowledge, this is the first time that RQA has
been applied on SAR data and the first thorough investigation
of the separation capabilities of the PRange. Both methods are
suited to separate between stable forest and deforestation. The
PRange provides a better separability between stable forest and
new deforestation. The RQA Trend metric on the other hand
detects the time of the deforestation. We tested the separability
at two test sites in Mexico. One test site is a temperate forest area
in central Mexico, and the other is a tropical dry forest area in
Yucatan. We observed an impact of the orbit on the separability
of deforestations and assume that this observation is due to the
different water contents during the acquisition times. In the tem-
perate forest, the VH ascending PRange separates best between
deforestation and forest. For dry forest, the results are not as
conclusive. Therefore, we suggest that the best combination of
polarization, acquisition time, and algorithm must be detected
separately for every biome.

This study demonstrates the great potential of RQA on
Sentinel-1 time series for the detection of deforestations in the
semitropics. In future work, this metric should be used to derive
deforestation maps for larger areas. Nevertheless, further inves-
tigations are needed to quantify the impact of the parameters
of the RPs on the RQA metric computation. These parameters
could be revised for the detection of deforestations. From the RP
of a time series, other metrics can be computed. These metrics
should be examined for the tasks of land cover and land cover
change classification.
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